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ABSTRACT

Recommender systems usually face the issue of filter bubbles: over-
recommending homogeneous items based on user features and
historical interactions. Filter bubbles will grow along the feedback
loop and inadvertently narrow user interests. Existing work usually
mitigates filter bubbles by incorporating objectives apart from
accuracy such as diversity and fairness. However, they typically
sacrifice accuracy, hurting model fidelity and user experience.
Worse still, users have to passively accept the recommendation
strategy and influence the system in an inefficient manner with
high latency, e.g., keeping providing feedback (e.g., like and dislike)
until the system recognizes the user intention.

This work proposes a new recommender prototype called User-
Controllable Recommender System (UCRS), which enables users to
actively control the mitigation of filter bubbles. Functionally, 1)
UCRS can alert users if they are deeply stuck in filter bubbles.
2) UCRS supports four kinds of control commands for users to
mitigate the bubbles at different granularities. 3) UCRS can respond
to the controls and adjust the recommendations on the fly. The
key to adjusting lies in blocking the effect of out-of-date user
representations on recommendations, which contains historical
information inconsistent with the control commands. As such,
we develop a causality-enhanced User-Controllable Inference (UCI)
framework, which can quickly revise the recommendations based
on user controls in the inference stage and utilize counterfactual
inference to mitigate the effect of out-of-date user representations.
Experiments on three datasets validate that the UCI framework can
effectively recommend more desired items based on user controls,
showing promising performance w.r.t. both accuracy and diversity.
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1 INTRODUCTION

Recommender systems become increasingly important to provide
personalized information filtering services in this information
explosion era [35]. A de facto standard for building recommender
systems is mining user interests from user features (e.g., gender
and age) and historical interactions (e.g., click). Due to merely
fitting the data, recommender systems typically face filter bubble
issues: continually recommending many homogeneous items,
isolating users from diverse contents [19, 33, 48]. For example,
if a user has clicked many micro-videos to learn making coffee,
the system may continuously recommend similar micro-videos
from different uploaders, occupying the opportunities of other
informative videos such as hot news. Worse still, due to the
feedback loop as shown in Figure 1, filter bubbles might gradually
become severer, narrow users’ interests, and even intensify the
segregation between users [33]. In the long-term, filter bubbles will
decrease user activeness and item originality, hurting the ecosystem.
Therefore, it is essential to mitigate filter bubbles.

Towards the goal, existing studies prevent the recommenda-
tions from merely fitting historical interactions by incorporating
additional objectives. For instance, 1) diversity [6, 58], which
pushes the recommendation list to cover more item categories;
2) fairness [3, 30], which pursues fair exposure opportunities over
item categories; and 3) calibration [39, 48], which ensures that
the recommendation list exhibits the same distribution over item
categories as the user’s history. However, these methods typically
make the trade-off across multiple objectives, sacrificing accuracy
and even degrading user experience [39, 58]. Moreover, in the
feedback loop, users passively adjust the recommendations by
user feedback (e.g., click, like, and dislike), which is inefficient and
inadequate because users need to constantly provide user feedback
until the system recognizes users’ intention.

We argue that users have the right to decide whether to mitigate
filter bubbles and choose which bubble to mitigate. To this end,
we conceptually propose a new prototype called User-Controllable
Recommender System (UCRS) with three main considerations: 1)
the system has the responsibility to remind users if they are stuck
in filter bubbles; 2) the system should provide various commands
to fully support users’ control intentions; and 3) the system should
respond to the controls on the fly. UCRS achieves the three
objectives with three additional functions beyond conventional
recommender systems.
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Figure 1: Illustration of feedback loop and user controls.
User feedback passively affects the recommendation strat-
egy while user controls can directly adjust the strategy.

e Filter bubble alert. We define several metrics to measure the
strength of filter bubbles. With these metrics, e.g., presented as a
system notification, we aim to let users understand the status of
filter bubbles and decide whether to mitigate the bubbles.

o Control commands. We suggest user controls at two levels
regarding either a user or item feature. At the fine-grained level,
UCRS supports the commands to increase the items wr.t. a
specified user or item feature, such as “more items liked by young
users” and “more items in a target category (e.g., action movies)”.
Noticing that users may not intend to specify the target group,
UCRS also supports commands at the coarse-grained level, e.g.,
“no bubble w.r.t. my age” and “no bubble w.r.t. item category”.

e Response to user controls. Once receiving control commands,
UCRS adjusts the recommendations by incorporating the com-
mands into recommender inference!. This is however non-trivial
because some out-of-date user representations learned from
historical interactions have encoded the preference information
leading to filter bubbles. Thus such user representations can still
cause homogeneous recommendations.

To tackle the challenges, we propose a causality-enhanced
User-Controllable Inference (UCI) framework, which inspects the
generation procedure of recommendations from a causal view
and leverages counterfactual inference to mitigate the effect of
out-of-date user representations. Specifically, UCI imagines a
counterfactual world where out-of-date user representations are
discarded, and estimates their effects as the difference between
factual and counterfactual worlds. After deducting such effects, UCI
incorporates the control command into recommender inference. As
to user-feature controls, UCI revises the user feature specified by the
control command (e.g., changing age from middle age to teenager)
to conduct the final inference at the two levels. As to item-feature
controls, UCI adopts a user-controllable ranking policy to control
the recommendations w.r.t. item category. Extensive experiments
on three datasets validate the superiority of UCI on mitigating filter
bubbles without sacrificing recommendation accuracy. We release
the code and data at: https://github.com/WenjieWW]/UCRS.

To sum up, the contributions of this work are threefold:

e We study a new problem of using user controls to adjust filter
bubbles, and propose a user-controllable recommender prototype,
emphasizing the user rights of controlling recommender systems.

e We propose the UCI framework, which can mitigate the effect
of out-of-date user representations via counterfactual inference
and perform real-time adaptation to four kinds of user controls.

1UCRS cannot respond to user controls timely by model retraining or fine-tuning. The
computation cost is also unaffordable.
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o We define several metrics to measure filter bubbles and conduct
extensive experiments on three datasets, validating the effective-
ness of UCI in maintaining the accuracy and mitigating filter
bubbles by following user controls.

2 RELATED WORK

o Filter bubbles in recommendation. Although recommender
systems have achieved great success in the past years [11, 12,
22], the debate on filter bubbles has always attracted extensive
attention [2, 31]. On one side, researchers claim that recommender
systems provide users with satisfying items, and might expose some
items that users would never see without recommendations [31].
On the other side, many studies [14, 33, 41] have stated that
personalized recommendation would cause group polarization,
where users are fragmented and the users with similar interests are
grouped. Later, some work introduces filter bubbles in recommen-
dation: users always receive similar content and gradually become
isolated from diverse items [1, 18]. Moreover, due to the feedback
loop [25, 29], the continual exposure of similar content will further
intensify user interests over such items [7], leading to the issues of
echo chamber [15, 19, 45] and ideological segregation [33]. In this
work, we have found that filter bubbles do exist in the scenarios of
content recommendation, such as movies and books. Different from
previous work, our consideration is to let users decide whether to
mitigate filter bubbles and directly control the recommendations.
This is a big step for user engagement because it transfers the
decision right from recommender platforms to users.

e Diversity in recommendation. Diversity has been widely used
as one additional objective to alleviate filter bubbles [10], where
recommender models are encouraged to generate dissimilar items
in a recommendation list [6, 13]. Generally, item similarity can be
compared by various distance functions (e.g., cosine similarity) and
item features (e.g., item category and well-trained embeddings) [59].
Technically, the diversity-oriented recommendation can be divided
into post-processing [5] and end-to-end methods [58]. The former
diversifies the recommendation lists generated by some models
via re-ranking [5, 59]. In contrast, the latter directly balances
the objectives of accuracy and diversity during training and
inference [9]. However, existing methods simply recommend
diverse items to users, and then find new item categories liked
by the users. This process does not only take lots of time and user
feedback, but also brings many irrelevant items [59]. To solve these
problems, our proposed UCRS utilizes user controls to indicate user
intention and provide efficient diversification.

e Fairness in recommendation. Extensive fairness-oriented
work has considered encouraging equal exposure across item
groups, where groups can be partitioned by item features, such
as producer and category. Previous studies [28, 30] usually focus
on the definitions of fairness, spanning from amortized equity of
attention [3], discounted cumulative fairness [54], to multi-sided
fairness [53]. Besides, Steck et al. [39] proposed the objective of
calibration, which forces the proportion of item categories in a
recommendation list to follow that of user’s historical interac-
tions [48]. Although fairness-related work is able to partly alleviate
filter bubbles, they inevitably lie in the trade-off between accuracy
and fairness, thus degrading the user experience.
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e User-controllable recommendation. User controls can help
users explicitly specify their interests and efficiently achieve recom-
mendation adjustments [24, 43, 47]. Prior literature usually falls into
two categories: user controls during the preference estimation [23,
27] and the controls over recommendation lists [38, 42]. In the
stage of preference estimation, recommender systems can acquire
user controls by multiple ways, such as preference forms [23]
and interactive conversations [32, 40]. Once recommendations
are presented, users can control by critiquing [8] and interactive
explanations [44, 56]. Although these methods can perform user
controls in different stages, they ignore the advantages of user
controls on alleviating filter bubbles. Besides, previous studies
never consider the possible inconsistency between out-of-date user
representations and user controls. As such, existing methods can
serve as the interface to acquire user controls, which are then used
in UCRS to mitigate filter bubbles via the causal UCI framework.

e Causal recommendation. We use counterfactual inference to
mitigate the effect of out-of-date user representations, which is
related to causal recommender models [4, 26, 60]. Generally, two
causal frameworks have been applied to recommendation: potential-
outcome framework [36] and Structural Causal Models (SCMs) [34].
The former mainly leverages inverse propensity scoring [37, 51] and
doubly robust [21] to debias user feedback. SCMs typically abstract
causal relationships into causal graph and estimate causal effects
via intervention [48, 57] or counterfactual inference [52, 55], which
are widely used for debiasing [48], explainable [44, 46], and out-of-
distribution recommendations [50]. Nevertheless, using causality
for diversity or alleviating filter bubbles receives little scrutiny.

3 PRELIMINARY ON FILTER BUBBLES

To intuitively understand filter bubbles, we conduct preliminary
experiments to analyze their effects w.r.t. different user groups.

o Experimental settings. We train a representative recommender
model, Factorization Machine (FM) [35], on three public datasets
(i.e., DIGIX-Video, Amazon-Book, and ML-1M), and then collect
the top-10 recommended items for each user. Next, to study the
phenomenon of filter bubbles, we split users into groups according
to two factors: user features and user interactions. Specifically,
we are able to divide user groups by available user features, such
as gender and age. Besides, different users usually have interests
in different item categories (e.g., romance movies), and thus we
can also distinguish user groups by user interactions over item
categories. For each item category, we select the users whose
interaction proportion over this category is larger than a threshold
(e.g., 0.5). Thereafter, we compare users’ historical interactions and
the recommendations generated by FM w.r.t. user groups.

e Analysis. For male and female users in DIGIX-Video, we visualize
their historical distributions over top-3 item categories in Figure
2(a). From the figure, we can observe that male and female users
express different interests in item categories. For example, as
compared to females, male users prefer more action movies than
romance movies. Consequently, the recommender models will
inherit the biased distributions [39, 57]. As shown in Figure 2(b)
and (c), the distribution of recommendations for male and female
users is quite similar to that in the history, showing that the
users will continually receive homogeneous items. Worse still, the
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Figure 2: Analysis of filter bubbles and bias amplification.
In Figure (d) and (e), “His.” and “Rec.” denote the historical
interactions and recommendations, respectively.

models tend to amplify the bias and expose more historical majority
categories [48] as shown in Figure 2(b) and (c), causing severer
segregation between male and female users.

As to the user groups divided by user interactions, we present
the results on Amazon-Book and ML-1M in Figure 2(d) and (e),
respectively. The results on DIGIX-Video with similar observations
are omitted to save space. From the figures, we have the following
findings. 1) The largest categories in users’ history are dominating
the recommendation lists. Besides, as compared to Amazon-Book,
the distributions on ML-1M are more diverse and the domination
of majority categories is less severe. This is because most items
in ML-1IM have multiple categories. 2) The models usually have
the bias amplification issue [48] and increase the proportions of
recommended majority categories. Due to the bias amplification,
filter bubbles will be gradually intensified, which inevitably narrow
users’ interests, fragment users, and lead to group segregation.

e Summary. We find that filter bubbles exist on the sides of user
and item features. The bubbles w.r.t. item features are caused by the
biased interactions over item categories. In this light, we propose
the user-feature and item-feature controls correspondingly.

4 USER-CONTROLLABLE
RECOMMENDATION

In this section, we first formulate the paradigm of user-controllable
recommender systems, and then introduce the proposed causal UCI
framework for the response to real-time user controls.

4.1 Formulation of UCRS

4.1.1 User-controllable Recommender Systems. As shown in
Figure 3, UCRS introduces another loop between the users and
recommender systems by incorporating two modules: detection
and control modules. First, the detection module is used to measure
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Figure 3: Illustration of the proposed UCRS, which intro-
duces another loop between users and recommender sys-
tems for the detection of filter bubbles and user controls.

the severity of filter bubbles over time, and alert users if they are
heavily stuck in filter bubbles. If users are willing to mitigate filter
bubbles, they can utilize the control commands and perform real-
time adjustments over the recommendations by the control module.
Formally, given users’ historical interactions D, traditional
recommender models aim to predict the recommendations R via
P(R|D). In contrast, UCRS additionally considers user controls C
and estimates P(R|D, do(C)) with the user interventions do(C) [34],
where the interventions formulate the four kinds of controls from
a causal view. By the interventions, users are able to quickly
adjust the recommendations, significantly decrease the items in
historical majority categories, and freely jump out of filter bubbles.
Specifically, we formulate four kinds of user controls based on user
and item features at the fine-grained and coarse-grained levels.

4.1.2 User-feature Controls. We represent N features of user u
asxy = [xlll, e X s xf:]], where xJ; € {0, 1} denotes whether user
u has the feature x™. For instance, if [xl, xz] represents the features

of male and female, x,, = [0, 1] indicates that user u is female.

e Fine-grained user-feature controls. To alleviate the filter
bubbles w.r.t. user features (e.g., gender and age), we design the fine-
grained user-feature controls, which prompt UCRS to recommend
more items liked by other user groups. For example, 30-year-old
users might have interests in the videos liked by teenagers. Formally,
to perform P(R|D,do(C)) for user u, we formulate the control
as do (C = ¢y, (+x, @)), where ¢, (+%, &) is the control command
to expose more items liked by other user group % and ¢, (+%, @)
requires that user u does not have feature %, i.e., X, = 0 for user
u. Besides, @ € [0, 1] is a coefficient to adjust the strength of user
controls on recommendations.

e Coarse-grained user-feature controls. However, users might
simply want to mitigate filter bubbles and do not enjoy the items
liked by other user groups. In addition, some users possibly do
not know which user group is attractive. As such, we propose
the coarse-grained user-feature controls, which help to jump out
the filter bubbles of users’ own groups. For example, 30-year-old
users may not wish the recommendations to be restricted by the
feature “age=30". Formally, the control do(C) in P(R|D,do(C)) is
formulated as do (C = ¢, (=%, @)), which reduces the items liked
by user’s own group X, i.e., X, = 1 for user u.
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4.1.3 Item-feature Controls. Although user-feature controls are
able to mitigate the filter bubbles w.r.t. user features, they ignore the
filter bubbles caused by user interactions. As shown in Figure 2(d),
recommender models typically expose more items in the historical
majority categories. Therefore, to complement user-feature controls,
we develop item-feature controls to adjust recommendations w.r.t.
item features. Similar to user features, we represent M features
of item i as h; = [hll h;", h{VI] where hg" € {0,1} denotes
whether item i has the feature h™, e.g., action movies.

¢ Fine-grained item-feature controls. If users have the target
item categories (e.g., more romance movies), fine-grained item-
feature controls can be applied to increase their recommendations.
Specifically, the intervention do(C) can be expressed as do(C =
ci(+h, B)), where h is the target item category and f € [0,1] is to
modify the strength of user controls.

e Coarse-grained item-feature controls. Correspondingly, we
suggest coarse-grained item-feature controls to alleviate the users’
burden of specifying target item categories. The goal of coarse-
grained item-feature controls is to decrease the recommendations of
the largest item category in user historical interactions. In particular,
the intervention can be denoted as do(C = c¢;(—h, f)), where —h
means to reduce the largest category h in the history.

4.2 Instantiation of UCRS

The key to instantiating UCRS lies in the implementation of the
detection and control modules.

4.2.1 Detection of Filter Bubbles. We suggest several metrics
to measure the severity of filter bubbles from different perspectives,
such as diversity and isolation. At different time periods, we
can calculate the metrics and obtain the severity level of filter
bubbles (e.g., from 1 to 5) by some heuristic rules designed by the
recommender platform. Subsequently, the severity level is presented
to users and let users decide whether to control filter bubbles.

e Coverage. Filter bubbles usually decrease the diversity of
recommended items, and thus we incorporate a widely adopted
metric for diversity: coverage, which calculates the number of item
categories in the recommendation list [58].

e Isolation Index. In addition to diversity-based metrics, we
propose Isolation Index [20] to measure the segregation across
different user groups, which is popular to estimate the ideological
segregation in sociology [20]. Here, we revise it for the recom-
mendation task. Formally, given two user groups a and b, we can
calculate the Isolation Index of their recommendations by

_ aj aj b; aj
s_.Z(an ai+bi) iezj(bn ai+bi)) W

where 7 is the item set; a; and b; are the numbers of users in
group a and b who receive the recommendation of item i. Besides,
an = Y;er ai, which is the total frequency of items exposed to the
users in group a. Meanwhile, by, is similar to ap,. Finally, s € [0, 1] is
equal to the weighted average item exposure of group a minus that
of group b, where the weights are a;—ib,- [20]. Intuitively, s captures
the extent of recommendation segregation between two groups and
higher values denote severer segregation. If there are multiple user

groups, we take the average value of s between any pair of groups.
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Figure 4: Causal graph behind the generation procedure of
recommendations.

® Majority Category Domination (MCD). Isolation index is more
suitable to measure the group segregation w.r.t. user features (e.g.,
age and gender). As to filter bubbles w.r.t. item features, we can
utilize MCD to obtain the proportion of the historically largest
item category in recommendation lists. The increase of MCD across
different time periods reflects that the filter bubbles w.r.t. item
category are becoming increasingly serious.

4.2.2 Response to User-feature Controls. If users aim to miti-
gate filter bubbles, UCRS needs real-time responses to user controls.
For fine-grained user-feature controls do (C = ¢, (+%, @)), users
want more items liked by other user group %. As such, UCRS
is actually required to generate recommendations based on the
changed user features, which are contrary to the facts. For example,
age changes from 30 to 18. From a causal view, the objective of
fine-grained user-feature controls is to answer a counterfactual
question [34]: what the recommendations would be if the user were
in a counterfactual group x? Similarly, coarse-grained user-feature
controls are to answer the question: what the recommendations
would be if the user were not in the factual group x ? To answer the
counterfactual questions, the UCI framework needs to inspect the
causal relations between user features and recommendations, and
then conduct counterfactual inference [34].

o Causal view of generating recommendations. As illustrated
in Figure 4, we analyze the generation procedure of recommen-
dations by a causal graph [34]. Specifically, for most models (e.g.,
FM [35]), recommender training learns the user representations
from interactions, including the representations of ID, age, and
gender. Thereafter, the representations of user u and item i are used
to predict the probability of user u preferring item i, i.e,, ¥, ; € [0,1].
In detail, Yy, ; is fused from the preference scores of the individual ID
and multiple group features, where the group preference is shared
by the users in the corresponding user group.

To answer the counterfactual question of fine-grained user-
feature controls, an intuitive solution is to change the user features
for recommender inference, e.g., changing the age from 30 to 18. As
to coarse-grained user-feature controls, we can directly discard
the user feature x (e.g., the age of 30) for inference. However,
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as shown in Figure 4, user interactions are actually confounders,
which affect the representations of user ID and other group features
(e.g., age) during recommender training. Therefore, the correlations
exist between the representations of user ID and group features.
Although the group features are changed or discarded, user ID
representations still encode the out-of-date interests of original
features, which are inconsistent with user controls and hinder the
recommendations of target user groups.

To remove the confounding effect, the popular choices are con-
founder balancing [36], back-door and front-door adjustments [34].
Nevertheless, confounder balancing and back-door adjustment
require estimating the causal effect of confounders on represen-
tations. The estimation is infeasible because 1) user interactions
are in a dynamic high-dimension space where new interactions are
continually increasing; and 2) the effect of user interactions on rep-
resentations is decided by the recommender training process, which
differs across models and training manners (e.g., optimizer and
learning rate). Besides, front-door adjustment needs to discover the
mediator that blocks all back-door paths, which is not applicable in
the causal graph of Figure 4. To avoid these challenges, we propose
to directly reduce the causal effect of user ID representations on
the prediction Y;,; during inference, which can effectively decrease
the influence of out-of-date representations without knowing the
training process.

o Implementation of counterfactual inference. In particular,
the UCI framework first estimates the effect of user ID represen-
tations via counterfactual inference, and then deducts it from the
original prediction Yy, ; [16, 17, 49]. Formally, we image what the
prediction Yy ; would be if user u had not the ID representations in
a counterfactual world [49], where @ denotes the representations
of user u without ID representations. By comparing Yy, ; with Y;; ;,
we can measure the effect of user ID representations by Yy, ; — ¥y ;.
Thereafter, we subtract it from the original prediction Y;,; with the
coefficient a:

Yui = - (Yui — Yau)

=f(wi) —a (f(wi)-f (1) @

=(1-a) f(wi)+a- f(@i),

where f(-) can be any recommender function of using user and
item representations to calculate the prediction Y (e.g., FM), and
a € [0,1] adjusts the strength of mitigating the effect of user ID
representations.

o Summary of UCI. The UCI framework consists of two steps to
answer the two questions of user-feature controls during inference:
1) changing specific user features to X for fine-grained controls and
discarding the user feature x for coarse-grained controls; and 2)
using counterfactual inference to mitigate the effect of out-of-date
user ID representations via Equation (2).

4.2.3 Response to Item-feature Controls. As to item-feature
controls, fine-grained controls aim to increase the target item
category h while coarse-grained ones are to decrease the largest
item category h of users’ history. Indeed, they are asking two
interventional questions [34]: what the recommendations will be
if users want more items in the target category h or users do not
want the largest category h? To answer such questions, the UCI
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framework utilizes a user-controllable ranking policy as:
Yoi = Yui+f-r(i), 3)

where Yl: ; 18 the revised score for ranking, and f € [0,1] is a
coefficient to adjust the strength of user controls. Besides, r(i)
denotes a regularization term over item i. Specifically,

2, if h; = 1 for item i with fine-grained controls
r(i) =40, if h; = 1 for item i with coarse-grained controls  (4)

1, otherwise,

where r(i) encourages more recommendations of the items in the
target category h under fine-grained controls, and decreases the
largest category h if coarse-grained controls are applied.

o Target category prediction. Due to the extensive item cate-
gories, it is a burden for users to specify target categories in fine-
grained item-feature controls. Although coarse-grained controls
partly alleviate the burden, we can further enhance it by predicting
the possible target categories for users. Specifically, if users wish to
decrease the largest category of the history, we can predict which
item category users will prefer, and then improve the coarse-grained
item-feature controls with fine-grained ones.

As shown in Figure 5, we sort users’ interacted items by time,
and then split the interaction sequence into two parts to obtain the
distributions over item categories, respectively. Next, we predict
the second category distribution based on the first one via multiple
Multi-Layer Perceptrons (MLPs). During training, MLPs utilize the
category distributions of all users to capture 1) the temporal interest
transition (e.g., the increasing preference over some categories), and
2) the relationships between item categories (e.g., the users liking
action movies probably prefer crime movies). In the inference stage,
we leverage the second category distribution to predict top-K target
categories. Besides, we conduct intervention do(h = 0) to indicate
the user controls of reducing category h. The top-K item categories
with the highest values are treated as the target ones in the fine-
grained controls. Finally, UCI further enhances coarse-grained item-
feature controls by using target category prediction.

e Summary of UCIL Under item-feature controls, user ID
representations also encode the historical interests, which conflict
with the objective of increasing target categories or decreasing
the historical majority category. Therefore, 1) UCI first conducts
counterfactual inference to mitigate the causal effect of user ID
representations on Yy, ; as illustrated in Equation (2); 2) for coarse-
grained item-feature controls, UCI leverages target category
prediction to obtain the top-K target categories; and 3) UCI adopts
the ranking policy in Equation (3) for recommendations.

5 EXPERIMENTS
We conduct experiments to answer the following questions:

e RQ1. How does UCI perform to adjust recommendations for
alleviating filter bubbles via four kinds of user controls?

e RQ2. How do users can control the recommendations by the
coefficients (i.e., « and f)?

e RQ3. How does the proposed counterfactual inference affect the
recommendations?
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Figure 5: Illustration of the training and inference proce-
dures to predict the target item categories.

Table 1: Statistics of the three datasets. “#IC” denotes the
number of item categories.

Datasets ‘ #Users ‘ #Items ‘ #Interactions ‘ Density ‘ #IC

DIGIX-Video 7,643 15,526 | 316,045 0.0027 135
ML-1M 6,040 3,883 575,276 0.0245 18
Amazon-Book | 29,115 | 16,845 | 1,712,409 0.0035 29

5.1 Experimental Settings

o Datasets. We utilize three real-world datasets for experiments:
DIGIX-Video, ML-1M, and Amazon-Book, which are publicly
available and vary in terms of domain, user/item features, and
sparsity. The statistics of the datasets are presented in Table 1.
Specifically, 1) DIGIX-Video? is a video recommendation dataset,
released by 2021 DIGIX AI Challenge. It covers rich user and item
features, including age, gender, and item category. 2) ML-1M? is
a widely-used movie dataset, in which each movie usually has
multiple categories. 3) Amazon-Book is a popular dataset for book
recommendations, where users only have ID features and each
item has a hierarchical taxonomy. In contrast to multi-label item
categories in ML-1M, we only keep the largest category, and thus
each book is assigned with only one category. For each dataset, we
use the 10-core setting and treat the interactions with ratings > 4
as positive samples. In addition, we sort interactions by timestamps,
and then split 80%, 10%, and 10% of interactions as the training,
validation, and test sets, respectively. For each interaction, we
randomly sample an unobserved interaction as the negative sample
for training.

¢ Evaluation of user-feature controls. Since online testing is
expensive and infeasible for researchers, we design an offline
evaluation setting: 1) assuming some users are willing to mitigate
filter bubbles and provide the four kinds of controls; 2) generating
the recommendations by different recommender methods according
to user controls; and 3) evaluating the recommendations in terms
of accuracy and the metrics on mitigating filter bubbles, such as
Isolation Index, MCD, and Coverage.

Zhttps://www.kaggle.com/voler2333/2021- digix-video-recommendation.
3https://grouplens.org/datasets/movielens/1m/.
“https://nijianmo.github.io/amazon/index.html.
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Datasets. For user-feature controls, we utilize DIGIX-Video for
evaluation because it has rich user features (i.e., gender and age)
and video categories. In contrast, Amazon-Book only has user ID
features; and the users in ML-1M are heavily affected by the dataset
bias, where the favorite movie categories of over 77% of users
are “drama” and “comedy”, and 10% popular movies occupy 52%
interactions. Consequently, the users with different features (e.g.,
age) show similar interaction distributions. As such, Amazon-Book
and ML-1M are not well suitable for evaluating the filter bubbles
w.r.t. user features. In this work, we test the fine-grained and coarse-
grained user-feature controls over the gender groups and the age
groups of DIGIX-Video, respectively. The users take the opposite
gender group as the target under fine-grained controls and want to
jump out of their own age groups under coarse-grained controls.
This is because the number of age groups is larger, and thus users
are more likely to utilize coarse-grained controls without the burden
of specifying target age groups.

Baselines. All the baselines and our proposed UCI are model-
agnostic, which are compared on two representative recommender
models: FM and Neural Factorization Machine (NFM) [22].

1) woUF trains the models without user features (woUF) such as
age and gender, which possibly alleviate the segregation across
user groups during recommender training.

2) changeUF utilizes well-trained recommender models and only
changes user features (UF) to the target % for inference, e.g.,
changing age from 30 to 18. ChangeUF is used for the fine-grained
user-feature controls.

3) maskUF discards the original user features x (e.g., age=30) for
the inference of coarse-grained user-feature controls.

4) Fairco [30] is a user-controllable ranking algorithm, which
pursues fair exposure opportunities across item groups.

5) Diversity [59] incorporates a re-ranking method to diversify
recommendations by minimizing the intra-list similarity.

Metrics. To measure the performance, we utilize the all-ranking
protocol [49], and the top-10 items are returned as recommenda-
tions. We adopt Recall and NDCG to evaluate the accuracy. To
quantify the severity of filter bubbles, we leverage Isolation Index
(Iso-Index) and Coverage to estimate the group segregation and
diversity. In addition, for the fine-grained user-feature controls with
target user groups, we develop the metrics DIS-EUC to compare
the distance between the recommendations of users and groups.
Formally, we denote x and x as the original and target groups
of user u, respectively; d, € RM is the distribution over item
categories in the recommendations of user u; g, € RM denotes
the same distribution by averaging over the users in the original
group % (e.g., 30-year-old users); and g, € RM represents the
same distribution of the target group x. Thereafter, we calculate
DIS-EUC = dis(dy, §u) — dis(dy, gu) for user u, where dis(-) uses
Euclidean distance. DIS-EUC measures the distance difference from
the user to two groups, where larger distances indicate severer
group segregation and filter bubbles.

o Evaluation of item-feature controls. We conduct experiments
on the users who have preference shifts from the training to test sets.
Specifically, for each user, we obtain the largest item categories
in the training and test sets, and then we select the users with
different largest categories. This simulates the situation that users
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Table 2: Performance comparison between UCI and the
baselines under the coarse-grained user-feature controls.

Recall T NDCGT Iso-Index | Coverage T
Random 0.0008 0.0005 0.0008 11.6185
FM 0.0758 0.0584 0.1082 9.5191
FM-woUF 0.0757 0.0582 0.1195 9.9211
FM-maskUF 0.0756 0.0577 0.1048 9.6185
FM-Fairco 0.0728 0.0534 0.1050 9.9241
FM-Diversity 0.0756 0.0574 0.1025 9.8742
FM-UCI 0.0767 0.0592 0.0777 9.8802
NFM 0.0774 0.0585 0.1144 10.2670
NFM-woUF 0.0722 0.0542 0.1191 10.1445
NFM-maskUF 0.0759 0.0575 0.1378 9.9740
NFM-Fairco 0.0755 0.0571 0.1130 10.3458
NFM-Diversity | 0.0741 0.0562 0.1026 10.3268
NFM-UCI 0.0767 0.0596 0.0760 9.9000

aim to mitigate historical filter bubbles and want more items in
other categories. The numbers of selected users in DIGIX-Video,
ML-1M, and Amazon-Book are 4320, 3806, and 5155, respectively.

Baselines. We generate recommendations for the selected
users by using the following methods: 1) wolF trains FM and
NFM without item features (wolF); 2) Fairco; 3) Diversity; 4)
Reranking is one variant of UCIL, which only uses the ranking
policy in Equation (3) and discards counterfactual inference and
target category prediction; 5) C-UCI denotes the UCI strategy with
target category prediction under coarse-grained controls; and 6)
F-UCI represents UCI under fine-grained controls, which knows
the target category of each user, i.e., the largest category in the test
set.

Metrics. For performance comparison, we use Recall, NDCG,

and Coverage. Besides, we introduce a new metric Weighted
NDCG (W-NDCG), which assigns the NDCG relevance scores
of the positive items in the target categories, the positive ones
in non-target categories, and the negative ones as 2, 1, and 0,
respectively. W-NDCG distinguishes the positive items in the
target and non-target categories, and prefers the positive ones in
the target categories. Furthermore, we employ MCD and Target
Category Domination (TCD) to calculate the proportions of
the historical majority category and users’ target category in the
recommendations, respectively.
o Hyper-parameter settings. We train FM and NFM by following
the settings in [22]: the sizes of user/item representations are 64;
and Adagrad with the batch size of 1,024 is used for parameter
optimization. The learning rate is searched in {0.001,0.01,0.05}.
The hidden size of the MLP in NFM and target category prediction
istuned in {4, 8, 16, 32} and the normalization coefficient is searched
from {0,0.1,0.2}. K in target category prediction is chosen from
{1,2,...,5}. Besides, a and f in the controls of ¢, (-) and ¢;(-) are
adjusted in {0,0.1,...,0.5} and {0,0.01,...,0.1}, respectively. We
select the best model by Recall on the validation set.

5.2 Performance Comparison

5.2.1 Performance under User-feature Controls (RQ1). We
present the results under the coarse-grained and fine-grained user-
feature controls in Table 2 and Table 3, respectively. From the two
tables, we have the following observations:
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Table 3: Performance comparison between UCI and the baseline under the fine-grained user-feature controls. The best results
are highlighted in bold and the second best ones are underlined.

M NFM
Recall T NDCGT | Iso-Index | DIS-EUC| | Coverage T | RecallT NDCG?1T | Iso-Index| DIS-EUC | | Coverage T
Random 0.0008 0.0005 0.0008 0.0001 11.6185 0.0008 0.0005 0.0008 0.0001 11.6185
FM/NFM 0.0861 0.0650 0.1161 0.0568 8.6781 0.0849 0.0630 0.1046 0.0436 9.5126
woUF 0.0858 0.0648 0.1156 0.0561 8.7526 0.0847 0.0630 0.1048 0.0431 9.5193
changeUF 0.0858 0.0649 0.1152 0.0566 8.6859 0.0839 0.0626 0.1035 0.0432 9.5461
Fairco 0.0782 0.0550 0.1082 0.0533 9.1206 0.0619 0.0420 0.1011 0.0357 9.7353
Diversity 0.0750 0.0573 0.0995 0.0552 9.4312 0.0731 0.0552 0.0864 0.0399 9.8614
ucl 0.0870 0.0661 0.0979 0.0516 9.0304 0.0844 0.0635 0.0844 0.0354 9.6439

Table 4: Results of item-feature controls on ML-1M and Amazon-Book. “UB” implies that F-UCl is the “upper bound” of C-UCL

ML-1M Amazon-Book
Method Recall T NDCGT W-NDCGT MCD| TCDT Coverage T|RecallT NDCGT W-NDCGT MCD| TCD T Coverage T
Random 0.0029  0.0031 0.0029 0.2859 0.0446 8.5024 0.0004  0.0004 0.0004 0.2414 0.0163 4.5892
M 0.0659  0.0536 0.0485 0.5994 0.2222 8.6600 0.0118  0.0095 0.0085 0.5353 0.2305 3.0175
FM-wolF 0.0649  0.0529 0.0481 0.5952 0.2238 8.6755 0.0116  0.0097 0.0084 0.5310 0.2268 3.1792
FM-Fairco 0.0605  0.0506 0.0459 0.3812 0.2417 9.3799 0.0117  0.0095 0.0085 0.1559 0.2942 3.2700
FM-Diversity 0.0531 0.0473 0.0428 0.5597 0.2351 9.5407 0.0092  0.0080 0.0072 0.5199 0.2383 3.1899
FM-Reranking 0.0761  0.0637 0.0603 0.1000 0.3099 8.9409 0.0178  0.0142 0.0142 0.0026 0.5348 3.0196
FM-C-UCI 0.0770  0.0665 0.0630 0.2466 0.3334 9.1206 0.0173  0.0141 0.0146 0.0213 0.6310 2.0768
FM-F-UCI (UB) 0.2095 0.1704 0.1792 0.3544 1.0000 8.0712 0.0334 0.0283 0.0337 0.0023 1.0000 1.0002
NFM 0.0651  0.0556 0.0501 0.5748 0.2321 8.8854 0.0121  0.0102 0.0088 0.5488 0.2294 2.9818
NFM-wolF 0.0654  0.0551 0.0498 0.5732 0.2290 9.0110 0.0112  0.0092 0.0082 0.5330 0.2332 3.0900
NFM-Fairco 0.0626  0.0516 0.0470 0.4750 0.2441 9.3715 0.0114  0.0091 0.0085 0.1856 0.2891 3.8497
NFM-Diversity 0.0522  0.0481 0.0438 0.5391 0.2391 9.7018 0.0109  0.0092 0.0081 0.5146 0.2427 3.1825
NFM-Reranking | 0.0752  0.0672 0.0631 0.0296 0.3163 9.0468 0.0180 0.0144 0.0144 0.0025 0.5421 3.0184
NFM-C-UCI 0.0778  0.0687 0.0647 0.2753 0.3119 9.0744 0.0181  0.0148 0.0154 0.0049 0.6779 1.4190
NFM-F-UCI (UB) | 0.2125 0.1729 0.1820 0.3319 1.0000 8.2299 0.0338 0.0276 0.0327 0.0023 1.0000 1.0002

The intuitive baselines (i.e., woUF, changeUF, and maskUF)
slightly decrease the recommendation accuracy and alleviate
the group segregation in terms of Isolation Index and DIS-EUC.
Meanwhile, diversity rises marginally in most cases. However,
the overall performance is quite similar to FM or NFM. This
is consistent with the analysis in Section 4.2.2: although the
user features are discarded for training or changed/masked for
inference, the user ID representations still encode the historical
interactions, which are affected by the users’ original features
and lead to similar recommendations with FM and NFM.
Fairness and diversity methods can effectively mitigate the
issue of filter bubbles and diversify the recommendation lists.
Nevertheless, they bring sharp performance drop. For example,
the accuracy of Fairco on FM declines by 15.38% w.r.t. NDCG in
Table 3. It makes sense because pursuing the objectives of fairness
and diversity will inevitably recommend many irrelevant items,
occupying the opportunities of positive items.

UCI significantly alleviates the group segregation in filter bubbles
while achieving superior accuracy. Besides, the diversity also
increases as compared to FM and NFM, which relieves the
accuracy-diversity dilemma. We attribute the improvements to
the effectiveness of counterfactual inference in reducing the effect
of out-of-date user ID representations. The mitigation of such ef-
fect pushes the recommender model to expose fewer items similar
to historical interactions, and makes the recommendations more

diverse. Meanwhile, the superior accuracy is because « in the
user control ¢, (-, ) adjusts the influence of the representations
of user ID and other group features (e.g., age and gender), leading
to a better balance between individual preference and group
preference as illustrated in Figure 4.

5.2.2 Performance under Item-feature Controls (RQ1). Ta-
ble 4 provides the results of item-feature controls on ML-1M and
Amazon-Book. The observations on DIGIX-Video are similar to
those on ML-1M. The consideration of presenting ML-1M and
Amazon-Book is to compare the effects of single-label and multi-
label item categories. From Table 4, we have the following findings:

As compared with FM and NFM, wolF marginally decreases the
historical majority categories w.r.t. MCD, where the marginal
effect shows that wolF still recommends many items in the
historical majority categories without knowing item features.
Moreover, wolF slightly degrades the accuracy and improves
the diversity. Such observations and the underlying reasons are
analogous to woUF under user-feature controls.

The performance of Fairco and Diversity is similar to that under
user-feature controls: at the expense of sacrificing accuracy, they
substantially alleviate the filter bubbles by recommending fewer
historical majority categories and improving diversity.
Reranking and C-UCI have significant performance improve-
ments over the baselines w.r.t. the accuracy and mitigation
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Figure 6: Effects of the control coefficients o and  w.r.t. accuracy, isolation, diversity, and category domination.

of majority categories. This is due to using coarse-grained
item-feature controls, which indicate the largest categories
in the history to decrease. Besides, C-UCI performs better
than Reranking, especially in terms of W-NDCG, validating
the superiority of counterfactual inference and target category
prediction. Counterfactual inference reduces the influence of
out-of-date ID representations for these users with preference
shifts; and meanwhile UCI recommends more target categories
due to the target category prediction. Furthermore, as compared
to ML-1M, the improvements of UCI over Reranking on Amazon-
Book are only significant w.r.t. W-NDCG. It is reasonable because
Amazon-Book only has user ID features and counterfactual
inference is impractical: only ID representations are to represent
users and reducing their effect usually does not change the
ranking lists. Therefore, on Amazon-Book, purely target category
prediction is helpful to enhance W-NDCG and TCD.

o F-UCT achieves the best accuracy by following users’ fine-grained
item-feature controls, showing that directly incorporating user
controls into recommender inference is greatly effective to
understand users’ interests as compared to passively learning
from user interactions. As the upper bound of C-UCI, it also
implies the promising potential of target category prediction,
where a more accurate prediction of target categories can lead to
dramatic accuracy improvements.

e The performance of diversity varies from ML-1M to Amazon-
Book, especially over Reranking, C-UCI, and F-UCI. Both C-UCI
and F-UCI decrease the diversity while the relative drop on
Amazon-Book is larger. The reasons are that 1) C-UCI and F-
UCI emphasize the recommendations of target item categories;
and 2) the items in Amazon-Book have single-label categories.
Purely recommending the target categories will easily degrade
the diversity. This indicates that users should adjust the control
coefficients & and f to balance the superior accuracy and diversity
at their own will.

5.2.3 Effect of Coefficients in User Controls (RQ2). To study
whether users can flexibly adjust the recommendations, we explore
the effect of the control coefficients @ and . The results of FM-
UCI and NFM-UCI w.r.t. varying a on DIGIX-Video are reported
in Figure 6(a), (b), and (c). The performance of FM-C-UCI w.r.t. f
on ML-1M is summarized in Figure 6(d) and (e). More results on
other datasets have similar trends, which are omitted to save space.

Table 5: Performance comparison with (w/) and without
(w/0) counterfactual inference (CI).

Method Variants | Recal NDCG W-NDCG MCD Coverage
w/oCl | 02094 0.1689  0.1777 03587  7.9519

FMEUCT ) ) o 0.2095 0.1704 0.1792  0.3544  8.0712
w/oCI | 02094 0.1687  0.1775 03525  8.0155

NEM-FUCT | ) o 0.2125 0.1729  0.1820 0.3319  8.2299

From the figures, we can find: 1) & controls the influence of user-
feature controls, where a larger « significantly alleviates the filter
bubbles and enhances the diversity as shown in Figure 6(b) and
(c); 2) the accuracy w.r.t. increasing « first rises, and then gradually
decreases. Besides, we can observe that the accuracy drop is more
steady as compared to the isolation and diversity. Such findings
verify that UCI can mitigate filter bubbles and improve diversity
without sacrificing accuracy or with less accuracy decline; and 3)
from the results in Figure 6(d) and (e) under item-feature controls,
is able to mitigate the domination of historical majority categories
while improving the accuracy.

5.2.4 Ablation Study of Counterfactual Inference (RQ3).
We conduct ablation study to further analyze the effect of coun-
terfactual inference. In Figure 6(a), (b), and (c), @ = 0 denotes the
ablation of counterfactual inference under user-feature controls.
Besides, we remove it from FM-F-UCI and NFM-F-UCI under item-
feature controls, and summarize the results on ML-1M in Table 5.
From Figure 6 and Table 5, we observe that using counterfactual
inference alleviates the filter bubbles, improves the diversity, and
even enhances the accuracy when « is small. The higher accuracy
is mainly due to the inconsistency between out-of-date user ID
representations and the latest user interests.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a novel recommender prototype UCRS to
flexibly alleviate filter bubbles, which provides users more choices to
adjust recommendations. Functionally, the prototype can detect the
severity of filter bubbles and allow users to adjust filter bubbles via
user controls. In particular, we developed four kinds of user controls:
the user-feature and item-feature controls at the fine-grained and
coarse-grained levels. To implement the user controls, we designed
a UCI framework for recommender inference, which leverages
counterfactual inference to mitigate the effect of out-of-date user
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ID representations on recommendations. Furthermore, UCI revises
the user features for user-feature controls and adopts a ranking
policy with target category prediction for item-feature controls. We
proposed several metrics to measure filter bubbles and conducted
experiments on three datasets, validating the effectiveness of UCI
in alleviating filter bubbles and maintaining the accuracy.

The new UCRS prototype and the novel UCI framework can
be widely deployed in the practical recommender systems. The
recommender platform can design various interactive interfaces
(e.g., conversational systems and control panels) to acquire the
control commands, and then adopt UCRS to effectively adjust
recommendations. This additional interaction paradigm between
users and recommender systems will 1) ensure the user rights of con-
trolling recommender strategies, 2) increase the user engagement
in the recommendation ecosystem, and 3) significantly enhance the
user satisfaction over the recommended items.

Nevertheless, this work takes the initial step to perform user-
controllable recommendation against filter bubbles, leaving many
potential directions to future work. In particular, 1) it is non-trivial
to instantiate the proposed UCRS framework in the online testing
platforms, which is costly and impractical for researchers but shows
a better justification w.r.t. the efficiency and effectiveness of UCI;
and 2) more user controls under the framework of UCRS can be
designed by collecting users’ opinions, which will help users to
quickly adjust recommendations by more diverse interfaces.
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