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Fig. 1. Our system takes a user’s RGB-D selfies as inputs and automatically produce a high-fidelity, riggable head model with high-resolution albedo map and
normal map. The model faithfully preserves the user’s facial identity features and can be rendered as a realistic digital human character.

We present a fully automatic system that can produce high-fidelity, photo-
realistic 3D digital human heads with a consumer RGB-D selfie camera. The
system only needs the user to take a short selfie RGB-D video while rotating
his/her head, and can produce a high quality head reconstruction in less than
30 seconds. Our main contribution is a new facial geometry modeling and re-
flectance synthesis procedure that significantly improves the state-of-the-art.
Specifically, given the input video a two-stage frame selection procedure is
first employed to select a few high-quality frames for reconstruction. Then a
differentiable renderer based 3DMorphable Model (3DMM) fitting algorithm
is applied to recover facial geometries from multiview RGB-D data, which
takes advantages of a powerful 3DMM basis constructed with extensive data
generation and perturbation. Our 3DMM has much larger expressive capaci-
ties than conventional 3DMM, allowing us to recover more accurate facial
geometry using merely linear basis. For reflectance synthesis, we present a
hybrid approach that combines parametric fitting and CNNs to synthesize
high-resolution albedo/normal maps with realistic hair/pore/wrinkle details.
Results show that our system can produce faithful 3D digital human faces
with extremely realistic details. The main code and the newly constructed
3DMM basis is publicly available.
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1 INTRODUCTION
Real-time rendering of realistic digital humans is an increasingly
important task in various immersive applications like augmented
and virtual reality (AR/VR). To render a realistic human face, high-
quality geometry and reflectance data are essential. There exist
specialized hardware like Light Stage [Alexander et al. 2009] for
high-fidelity 3D faces capturing and reconstruction in the movie
industry, but they are cumbersome to use for consumers. Research
efforts have been dedicated to consumer-friendly solutions, trying to
create 3D faces with consumer cameras, e.g., RGB-D data [Thies et al.
2015; Zollhöfer et al. 2011], multiview images [Ichim et al. 2015], or
even a single image [Hu et al. 2017; Lattas et al. 2020; Yamaguchi
et al. 2018]. While good results have been shown, the reconstructed
3D faces still contain artifacts and are far from satisfactory.

Indeed, faithful 3D facial reconstruction is a challenging problem
due to the extreme sensitivity that human perception has towards
faces. First, the recovered facial geometry needs to preserve all
important facial features like cheek silhouettes and mouth shapes.
Single-image based approaches [Hu et al. 2017; Lattas et al. 2020;
Yamaguchi et al. 2018] can hardly achieve this due to the lack of
reliable geometric constraints. With multiview RGB/RGB-D inputs,
existing approaches [Ichim et al. 2015; Thies et al. 2015; Zollhöfer
et al. 2011] do not fully leverage most recent advances in deep
learning and differentiable rendering [Gecer et al. 2019; Genova et al.
2018], leading to inaccurate recovery that does not fully resemble
the user’s facial shape. Second, the synthesized facial reflectance
maps need to be high-resolution with fine details like eyebrow hair,
lip wrinkles, and pore details on facial skin. Several recent work
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[Lattas et al. 2020; Saito et al. 2017; Yamaguchi et al. 2018] have
tried to address these issues, but their results still lack natural facial
details that are critical for realistic rendering.
In this paper, we present new facial geometry modeling and re-

flectance synthesis approaches that can produce faithful geometry
shapes and high-quality, realistic reflectance maps, from multiview
RGB-D data. Our geometry modeling algorithm extends differen-
tiable renderer based 3DMM fitting, such as GANFIT [Gecer et al.
2019], from single image to multiview RGB-D data. Different from
GANFIT, we employ conventional PCA-based texture bases instead
of GAN to reduce the texture space, so that more data constraints
can be exerted on geometric shaping. Additionally, we present an
effective frame selection scheme, as well as an initial model fit-
ting procedure, which can avoid enforcing conflicting constraints
and increase system robustness. Moreover, we propose an effective
approach that takes advantages of extensive data generation and
perturbation to construct the 3DMM, which has much larger expres-
sive capacity compared with previous methods. We show that even
with the linear basis of the new 3DMM, our method can consistently
recover accurate, personalized facial geometry.

For facial reflectance modeling, we use high-resolution 2K (2048
× 2048) UV-maps consisting of an albedo map and a normal map.
We propose a hybrid approach that consists of a regional para-
metric fitting and CNN-based refinement networks. The regional
parametric fitting is based on a set of novel pyramid bases con-
structed by considering variations in multi-resolution albedo maps,
as well as high-resolution normal maps. Faithful but over-smoothed
high-resolution albedo/normal maps can be obtained in this step.
GAN-based networks are then employed to refine the albedo/normal
maps to yield the final high-quality results. Our experiments show
that even with the 680 × 480 resolution inputs, our method can
produce high-resolution albedo/normal maps, where eyebrow hair,
lip wrinkles and facial skin pores are all clearly visible. The high-
quality reflectance maps significantly improve the realism of the
final renderings in real-time physically based rendering engines.
With the recovered facial geometry and reflectance, we further

present a fully automatic pipeline to create a full head rig, by com-
pleting a head model, matching a hair model, estimating the posi-
tion/scale of eyeballs/teeth models, generating the expression blend-
shapes, etc. We conduct extensive experiments and demonstrate
potential applications of our system.
Our major contributions include:

• A fully automatic system for producing high-fidelity, real-
istic 3D digital human heads with consumer-level RGB-D
selfie cameras. Compared with previous avatar approaches,
our system can generate higher quality assets for physically
based rendering of photo-realistic 3D characters. The total
acquisition and production time for a character is less than
30 seconds. The core code and 3DMM is publicly available1.
• A robust procedure consisting of frame selection, initial model
fitting, and differentiable renderer based optimization to re-
cover faithful facial geometries from multiview RGB-D data,
which can tolerate data inconsistency introduced during user
data acquisition.

1Code and 3DMM is available at: https://github.com/tencent-ailab/hifi3dface

• A novel morphable model construction approach that takes
advantages of extensive data generation and perturbation.
The constructed linear 3DMM by our approach has much
larger expressive capacity than conventional 3DMM.
• A novel hybrid approach to synthesize high-resolution facial
albedo/normal maps. Our method can produce high-quality
results with fine-scale realistic facial details.

2 RELATED WORK
Creating high-fidelity realistic digital human characters commonly
relies on specialized hardware [Alexander et al. 2009; Beeler et al.
2010; Debevec et al. 2000] and tedious artist labors like model edit-
ing and rigging [von der Pahlen et al. 2014]. Several recent work
seek to create realistic 3D avatars with consumer devices like a
smartphone using domain specific reconstruction approaches (i.e.,
with face shape/appearance priors) [Ichim et al. 2015; Lattas et al.
2020; Yamaguchi et al. 2018]. We mainly focus on prior arts along
this line and briefly summarize the most related work in this section.
Please refer to the recent surveys [Egger et al. 2020; Zollhöfer et al.
2018] for more detailed reviews.

2.1 Face 3D Morphable Model
The 3Dmorphable model (3DMM) is introduced in [Blanz and Vetter
1999] to represent a 3D face model by a linear combination of shape
and texture bases. These bases are extracted with PCA algorithm on
topological aligned 3D face meshes. To recover a 3D face model from
observations, the 3DMM parameters can be estimated instead. Since
the 3DMM bases are linear combinations of source 3D models, the
expressive capacity of a 3DMM is rather limited. Researchers tried
to increase the capacity either by automatically generating large
amounts of topological aligned face meshes [Booth et al. 2016] or
turn the linear procedure into a nonlinear one [Lüthi et al. 2017; Tran
and Liu 2018]. However, the sampled face models with these 3DMM
models are usually flawed (e.g., distorted mesh surfaces around eyes
and mouths due to imperfect alignment [Booth et al. 2016], twisted
[Lüthi et al. 2017] or noisy [Tran and Liu 2018] face meshes) and
not suitable for realistic digital human rendering. Another line to
increase the expressive capacity of 3DMM is to segment the face
into regions and then employ spatially localized bases to model each
region [Blanz and Vetter 1999; Neumann et al. 2013; Tena et al. 2011].
We present a novel data augmentation approach that can effectively
increase the capacity of either global or localized 3DMM with the
same amount of source 3D face meshes as existing approaches.

2.2 Facial Geometry Capture
Capturing from Single Image. Given a single face image, the 3D face
model can be recovered by estimating the 3DMM parameters with
analysis-by-synthesis optimization approaches [Blanz and Vetter
2003; Garrido et al. 2013, 2016; Gecer et al. 2019; Hu et al. 2017; Romd-
hani and Vetter 2005; Thies et al. 2016; Yamaguchi et al. 2018]. A
widely adopted approach among them is described in the Face2Face
work [Thies et al. 2016], where the optimization objective consists
of photo consistency, facial landmark alignment, and statistical reg-
ularization. Although there is a recent surge of deep learning based
approaches to use CNNs to regress 3DMM parameters [Genova

https://github.com/tencent-ailab/hifi3dface
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et al. 2018; Tewari et al. 2017; Tran et al. 2017; Zhu et al. 2016], the
results are commonly not in high fidelity due to lack of reliable
geometric constraints. Some work go beyond the 3DMM parametric
estimation to use additional geometric representations to model
facial details [Chen et al. 2020; Guo et al. 2019; Jackson et al. 2017;
Kemelmacher-Shlizerman and Basri 2011; Richardson et al. 2017;
Sela et al. 2017; Shi et al. 2014; Tewari et al. 2018; Tran et al. 2018],
but the results are generally not satisfactory for realistic rendering.

Capturing from Multiview Images. Ichim et al. [2015] present a com-
plete system to produce face rigs by taking hand-held videos with a
smartphone. The system relies on a multiview stereo reconstruction
of the captured head followed by non-rigid registrations, which is
slow and error-prone, especially when motion occurs or no reliable
feature points can be detected in face regions. Recent research on
multiview face reconstruction with deep learning methods [Dou and
Kakadiaris 2018; Wu et al. 2019] do not explicitly model geometric
constraints and are not accurate enough for high-fidelity rendering.

Capturing from RGB-D Data. Modeling facial geometries from RGB-
D data commonly consists of several separated steps [Bouaziz et al.
2013; Li et al. 2013; Weise et al. 2011; Zollhöfer et al. 2011, 2014].
First, accumulated point clouds are obtained with rigid registration
[Newcombe et al. 2011]. Then a non-rigid registration procedure is
employed to obtain a deformed mesh from the target mesh model
[Bouaziz et al. 2016; Chen et al. 2013]. Finally, in order to obtain
a 3DMM parametric representation, a morphable model fitting is
applied using the deformed mesh as geometric constraints [Bouaziz
et al. 2016; Zollhöfer et al. 2011]. Although the approach is widely
adopted as standard practices, it suffers from accumulated errors
due to the long pipeline. Thies et al. [2015] propose to use an unified
parametric fitting procedure to directly optimize camera poses to-
gether with 3DMM parameters, taking into account both RGB and
depth constraints. Their method achieves high-quality results in fa-
cial expression tracking, but is not specially designed for recovering
personalized geometric characteristics.

2.3 Facial Reflectance Capture
Saito et al. [2017] propose to synthesize high-resolution facial albedo
maps using CNN style features based optimization like the style
transfer algorithm [Gatys et al. 2016]. However, the approach re-
quires iterative optimization and needs several minutes of compu-
tation. Yamaguchi et al. [2018] further propose to inference albedo
maps, as well as specular maps and displacement maps, using tex-
ture completion CNNs and super-resolution CNNs. GANFIT [Gecer
et al. 2019] employs the latent vector of a Generative Adversarial
Network (GAN) as the parametric representation of texture maps
and then use an differentiable renderer based optimization to es-
timate the texture parameters. The most recent work AvatarMe
[Lattas et al. 2020] propose to infer separated diffuse albedo maps,
diffuse normal maps, specular albedo maps, and specular normal
maps using a series of CNNs. We present a novel hybrid approach
that can achieve high-quality results while at the same time is more
robust than the above pure CNN-based approaches.

2.4 Full Head Rig Creation
To complete a full head avatar model, accessories beyond face re-
gion need to be attached to the recovered face model, e.g., hair,
eyeballs, teeth, etc. Ichim et al. [2015] describe a simple solution to
transfer these accessories (except hair) from a template model and
adapt the scales/positions to the reconstructed face model. Cao et
al. [2016] use image-based billboards to deal with eyes and teeth,
and coarse geometric proxy to deal with hair model. Nagano et al.
[2018] employ a GAN-based network to synthesis mouth interiors.
Hu et al. [2017] propose to perform hair digitization by parsing hair
attributes from the input image and then retrieving a hair model
for further refinement. There are also some approaches working
on modeling hairs in strand level [Chai et al. 2015; Hu et al. 2015;
Luo et al. 2013; Saito et al. 2018; Wei et al. 2005]. We in this paper
adopt a simplified retrieval approach like Hu et al. [2017] to attach
hair/eyeballs/teeth models.

For expression blendshape generation, Ichim et al. [2015] present
a dynamic modeling process to produce personalized blendshapes,
while Hu et al. [2017] adopt a simplified solution to transfer generic
FACS-based blendshapes to the target model. The expression blend-
shapes can also be generated with a bilinear 3DMM model like
FaceWarehouse [Cao et al. 2014], where the face identity and expres-
sion parameters are in independent dimensions. Wang et al. [2020]
recently present a global-local multilinear framework to synthesize
high-quality facial expression blendshapes. For simplicity, we adopt
a blendshape transfer approach similar to Hu et al. [2017] to obtain
expression blendshapes for rigging.

3 OVERVIEW
We first introduce the 3D face dataset used in our system. Then we
describe the goal of our system, followed by the user data acquisition
process and a summary of the main processing steps.

3D Face Dataset. We use a specialized camera array system [Beeler
et al. 2010] to scan 200 East Asians, including 100 males and 100
females, aged from 20 to 50 years old (with their permissions to use
their face data). The scanned face models are manually cleaned and
aligned to a triangle mesh template with 20,481 vertices and 40,832
faces. Each face model is associated with a 2K-resolution (2048 ×
2048) albedo map and a 2K normal map, where pore-level details
are preserved. A linear PCA-based 3DMM [Blanz and Vetter 1999]
can be constructed from the dataset, which consists of shape basis,
albedo map basis, and normal map basis. Note that we propose a
novel approach to construct an augmented version of the 3DMM
shape basis in Sec. 5.3. Besides, a novel pyramid version of the
3DMM albedo/normal maps is presented in Sec. 6.1.

Goal. The goal of our system is to capture high-fidelity users fa-
cial geometry and reflectance with RGB-D selfie data, which is
further used to create and render full-head, realistic digital humans.
For geometry modeling, we use 3DMM parameters to represent a
face, since it is more robust to degraded input data and with more
controllable mesh quality than deformation-based representations.
For reflectance modeling, we synthesize 2K-resolution albedo and
normal maps regardless of the input RGB-D resolution.



4 • Linchao Bao, Xiangkai Lin, Yajing Chen, Haoxian Zhang, Sheng Wang, Xuefei Zhe, Di Kang, Haozhi Huang, Xinwei Jiang, Jue Wang, Dong Yu, and Zhengyou Zhang

……

Real-Time 
Landmark 
Detection

…

Coarse Screening 
and Grouping

…

Front Image Quality 
Ranking

Rigidness
Screening

Template 
3D Model 

Image Quality 
Ranking

Left

…

Up

…

Right

…

Coarse Screening (Computed during Acquisition) Frame Selection (Computed after Acquisition)

Left

…

Up

…

Right

…
Reference

Fig. 2. Our two-stage frame selection procedure. Four frames are selected out of 200-300 frames considering both view coverage and data quality. Note that
the reference model used for coarse screening and grouping is a template 3D face model, which may lead to inaccurate pose estimation. But the rough poses
are sufficient for excluding extreme/invalid frames and categorizing the rest frames into pose groups. In the second stage, the reference model for rigidness
screening is the lifted 3D landmarks from the front face data, which can result more accurate poses for more strict rigidness verification.

User Data Acquisition. We use an iPhone X to capture user selfie
RGB-D data. Note that it is common nowadays for a smartphone to
be equipped with a front-facing depth sensor and any such phone
can be used. While a user is taking selfie RGB-D video, our capturing
interface will guide the user to consecutively rotate his/her head
to left, right, upward, and back to middle. The entire acquisition
process takes less than 10 seconds, and a total of 200-300 frames
of RGB-D images are collected, with resolution 640 × 480. The face
region for computation is cropped (and resized) to 300 × 300. The
camera intrinsic parameters are directly read from the device.

Processing Pipeline. We first employ an automatic frame selection
algorithm to select a few high-quality frames that cover all sides of
the user (Sec. 4). Then an initial 3DMM model fitting is computed
with the detected facial landmarks in the selected frames (Sec. 5.1).
Starting from the initial fitting, a differentiable renderer based opti-
mization with multiview RGB-D constraints (Sec. 5.2) is applied to
solve the 3DMMparameters as well as lighting parameters and poses.
Based on the estimated parameters, high-resolution albedo/normal
maps are then synthesized (Sec. 6). Finally, high-quality, realistic
full head avatars can be created and rendered (Sec. 7).

4 FRAME SELECTION
There are typically 200-300 frames acquired from a user. For ef-
ficiency and robustness, we developed a robust frame selection
procedure to select a few high-quality frames for further processing,
which considers both view coverage and data quality. As shown in
Fig. 2, the procedure consists of two stages as described below.

Coarse Screening and Preprocessing. We first apply a real-time facial
landmark detector (a MobileNet [Howard et al. 2017] model trained
on 300W-LP dataset [Zhu et al. 2016]) on RGB images to detect 2D
landmarks for each frame. Then a rough head pose for each frame
can be efficiently computed with the correspondences between the
2D landmarks and the 3D keypoints on a template 3D face model us-
ing PnP algorithm [Lepetit et al. 2009]. Frames with extreme/invalid
poses or closed-eye/opened-mouth expressions can be easily identi-
fied and screened out with the 2D landmarks and rough head poses.
We categorize the rest frames by poses into groups: front, left, right,
and up. Each group only keeps 10-30 frames near the center pose of
the group. Note that more groups can be obtained by categorizing
the frames with finer-level angle partitioning. We experimented
with different number of groups and found four is a good balance
between accuracy and efficiency. The remaining depth images are
preprocessed to remove depth values beyond the range between
40cm and 1m (the typical selfie distances). Bilateral filtering [Paris
and Durand 2009] with a small spatial and range kernel is then
applied to the depth images to attenuate noises.

Frame Selection. For each group, we further select one frame based
on two criteria: image quality and rigidness. To measure the image
quality of a frame, we compute the Laplacian of Gaussian (LoG) filter
response and use the variance as a motion blur score (images with
a larger score are sharper). A front face frame is first selected based
on the motion blur score in the front group. We then compute the
rigidness between each frame in the other groups and the front face
with the help of depth data. Specifically, the detected 2D landmarks
for each frame are lifted from 2D to 3D using depth data. Note that
occluded landmarks are automatically removed according to the
group that a frame belongs to, e.g., for a frame in the left group,
the landmarks on the right side of the face are removed. We use
RANSAC method to compute the relative pose between each frame
in the other groups and the front face using the 3D-3D landmark
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Fig. 3. The masks derived from the detected landmarks for texture blending.
We use the verb “unwrap” to refer to the process of extracting partial texture
maps from input photos and blending them into a complete texture map.

correspondences [Arun et al. 1987]. Frames with too many outliers
are considered as low rigidness and thus are excluded. Then a best
frame in each group can be found based on the motion blur score.
The output of this step is four frames with the 3D landmarks.

5 FACIAL GEOMETRY MODELING

5.1 Initial Model Fitting
We use PCA-based linear 3DMM [Blanz and Vetter 1999] for para-
metric modeling. The shape and albedo texture of a face model is
represented as

s = s̄ + 𝑆x𝑠ℎ𝑝 ,
a = ā +𝐴x𝑎𝑙𝑏 ,

where s̄ is the vector format of the mean 3D face shape model,
𝑆 is the shape identity basis, x𝑠ℎ𝑝 is the corresponding identity
parameter vector to be estimated, ā is the vector format of the mean
albedo map, 𝐴 is the albedo map basis, x𝑎𝑙𝑏 is the corresponding
albedo parameter vector to be estimated. The details of the bases
are presented in Secs. 5.3 (shape) and 6.1 (albedo).
We fit an initial shape model with the detected 3D landmarks

(with depth information) using a ridge regression [Zhu et al. 2015].
A partial texture map can be extracted by projecting the shape
model onto each input image. With a predefined mask derived from
landmarks for each view (see Fig. 3), the partial texture maps are
then blended into a complete texture map using Laplacian pyramid
blending [Burt and Adelson 1983]. The initial albedo parameters
can be obtained with another ridge regression to fit the blended
texture map.

5.2 Optimization
Fig. 4 shows our optimization framework. The parameters to be
optimized are

P = {x𝑠ℎ𝑝 , x𝑎𝑙𝑏 , x𝑙𝑖𝑔ℎ𝑡 , x𝑝𝑜𝑠𝑒 },

and x𝑠ℎ𝑝 ∈ R500 is the shape parameter, x𝑎𝑙𝑏 ∈ R199 is the albedo
parameter, x𝑙𝑖𝑔ℎ𝑡 ∈ R27 is the second-order spherical harmonics
lighting parameter, x𝑝𝑜𝑠𝑒 ∈ R6 include the rotation and translation
parameters for rigid transformation. Note that we have only one
x𝑠ℎ𝑝 and one x𝑎𝑙𝑏 for an user, while the number of x𝑙𝑖𝑔ℎ𝑡 and x𝑝𝑜𝑠𝑒
equals to the number of views. With a set of estimated parame-
ters and the 3DMM basis, a set of rendered RGB-D frames can be
computed via a differentiable renderer [Gecer et al. 2019; Genova

et al. 2018]. The distances between the rendered RGB-D frames and
the input RGB-D frames can be minimized by backpropagating the
errors to update parameters P. The loss function to be minimized
is defined as:

𝐿(P) = 𝜔𝑟𝑔𝑏𝐿𝑟𝑔𝑏 (P) + 𝜔𝑑𝑒𝑝𝐿𝑑𝑒𝑝 (P)+
𝜔𝑖𝑑𝐿𝑖𝑑 (P) + 𝜔𝑙𝑎𝑛𝐿𝑙𝑎𝑛 (P) + 𝜔𝑟𝑒𝑔𝐿𝑟𝑒𝑔 (P), (1)

where 𝐿𝑟𝑔𝑏 (P) denotes pixel-wise RGB photometric loss, 𝐿𝑑𝑒𝑝 (P)
indicates pixel-wise depth loss, 𝐿𝑖𝑑 (P) is identity perceptual loss,
𝐿𝑙𝑎𝑛 (P) represents landmark loss, and 𝐿𝑟𝑒𝑔 (P) means regulariza-
tion terms. Note that the landmark loss, RGB photometric loss,
and regularization term are similar to conventional analysis-by-
synthesis optimization approaches [Thies et al. 2016]. The identity
perceptual loss is also employed in recent differentiable renderer
based approaches [Gecer et al. 2019; Genova et al. 2018]. We extend
these losses into multiview setting and incorporate depth data for
geometric constraints. The details of each term are as follows.

RGB Photo Loss. The pixelwise RGB photometric loss is:

𝐿𝑟𝑔𝑏 (P) = ∥𝐼𝑟𝑔𝑏 − 𝐼𝑟𝑒𝑛𝑑𝑒𝑟 (P)∥2,
where 𝐼𝑟𝑔𝑏 is the input RGB image, 𝐼𝑟𝑒𝑛𝑑𝑒𝑟 is the rendered RGB
image from the differentiable renderer. We adopt ℓ2,1-norm because
it is more robust against outliers than ℓ2-norm.

Depth Loss. The depth loss is defined as:

𝐿𝑑𝑒𝑝 (P) = 𝜌 (∥𝐼𝑑𝑒𝑝 − 𝐼𝑧 (P))∥22),
where 𝜌 (·) defines a truncated ℓ2-norm that clips the per-pixel mean
squared error, 𝐼𝑑𝑒𝑝 is the input depth image, 𝐼𝑧 is the rendered
depth image from the differentiable renderer. The truncated function
makes the optimization more robust to depth outliers.

Identity Perceptual Loss. To capture high-level identity information,
we apply identity perceptual loss defined as

𝐿𝑖𝑑 (P) = ∥𝜓 (𝐼𝑟𝑔𝑏 ) −𝜓 (𝐼𝑟𝑒𝑛𝑑𝑒𝑟 )∥22,
where𝜓 (·) is the deep identity features exacted from a pretrained
face recognition model. Here we use features from the fc7 layer of
VGGFace model [Parkhi et al. 2015].

Landmark Loss. Wedefine the landmark loss as the average distances
between the detected 2D landmarks and projected landmarks from
the predicted 3D model:

𝐿𝑙𝑎𝑛 (P) =
1
|F |

∑︁
𝑓𝑗 ∈F

𝜔 𝑗 ∥ 𝑓𝑗 − Π(Φ(𝑣 𝑗 ))∥22,

where 𝑓𝑗 ∈ F are the detected landmarks, Π(Φ(𝑣 𝑗 )) denotes that
the vertex 𝑣 𝑗 is rigidly transformed by Φ and projected by camera
Π. The weighting 𝜔 𝑗 is to control the importance of each keypoint,
where we set 50 for those located in eye, nose and mouth, while
others are 1.

Regularization. To ensure the plausibility of the reconstructed faces,
we apply regularization to shape and texture parameters:

𝐿𝑟𝑒𝑔 (𝑃) = 𝜔𝑠ℎ𝑝 ∥𝑥𝑠ℎ𝑝 ∥22 + 𝜔𝑎𝑙𝑏 ∥𝑥𝑎𝑙𝑏 ∥22,
where we set 𝜔𝑠ℎ𝑝 = 0.4 and 𝜔𝑎𝑙𝑏 = 0.001.
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Fig. 4. Our optimization framework. The parameters to be solved include: 3DMM parameters x𝑠ℎ𝑝 and x𝑎𝑙𝑏 for a user, lighting parameters x𝑙𝑖𝑔ℎ𝑡 and poses
x𝑝𝑜𝑠𝑒 for each view. The constraints include: landmark loss 𝐿𝑙𝑎𝑛 , RGB photo loss 𝐿𝑟𝑔𝑏 , depth loss 𝐿𝑑𝑒𝑝 , and identity perceptual loss 𝐿𝑖𝑑 .

Implementation Details. For efficiency, we use albedo maps of a
512 × 512 resolution during the optimization. We render RGB-D
images and compute the pixel losses in the same resolution as input
depth images, which is 300 × 300. The weightings in Eq. (1) is set
to 𝜔𝑟𝑔𝑏 = 1000.0, 𝜔𝑑𝑒𝑝𝑡ℎ = 1000.0, 𝜔𝑖𝑑 = 1.8, 𝜔𝑙𝑎𝑛 = 10, 𝜔𝑟𝑒𝑔 =

1.0. We use Adam optimizer [Kingma and Ba 2014] in Tensorflow
to update parameters for 150 iterations to get the results, with a
learning rate 0.05 decaying exponentially in every 10 iterations.

Relation to Existing Approaches. The differences between our ap-
proach and state-of-the-art 3DMM fitting approaches are listed in
Table 1. Result comparisons are presented in Sec. 8.2. Note that our
implementation will be publicly available and can be easily config-
ured into equivalent settings to other approaches by changing the
combinations of input data and loss terms.

Method Input Loss Term Optimizer
Ours RGB-D 𝐿𝑟𝑔𝑏 , 𝐿𝑑𝑒𝑝 , 𝐿𝑖𝑑 , 𝐿𝑙𝑎𝑛, 𝐿𝑟𝑒𝑔 DR-based

GANFIT RGB 𝐿𝑟𝑔𝑏 , 𝐿𝑖𝑑 , 𝐿𝑙𝑎𝑛, 𝐿𝑟𝑒𝑔 DR-based
Face2Face RGB 𝐿𝑟𝑔𝑏 , 𝐿𝑙𝑎𝑛, 𝐿𝑟𝑒𝑔 Gauss-Newton

[Thies et al. 2015] RGB-D 𝐿𝑟𝑔𝑏 , 𝐿𝑑𝑒𝑝 , 𝐿𝑙𝑎𝑛, 𝐿𝑟𝑒𝑔 Gauss-Newton

Table 1. Different 3DMM fitting approaches. “DR-based” stands for differ-
entiable renderer based optimizer.

5.3 Morphable Model Augmentation
As the constraints incorporated in the optimization are rich, we
found the expressive capacity of the linear 3DMM constructed us-
ing conventional approaches are very limited. We here present an
augmentation approach to effectively boost the 3DMM capacity.
Our approach is motivated by the observation that human faces are
mostly not symmetrical. This will cause ambiguities when align-
ing face models. The reason is that during the alignment of two
models, the relative rotation and translation between them is de-
termined by minimizing the errors at some reference points on the
models. Different reference points may lead to different alignment
results. There are no perfect reference points due to the asymmetri-
cal structures of human faces. This reminds us that we can perturb
the relative pose between two aligned models to get an “alternative”

Fig. 5. Masks for region replacement.

alignment. In this way, we can actually get additional samples for
PCA, since the new alignments introduces new morphing targets.
Furthermore, we can use a set of perturbation operations including
pose perturbation, mirroring, region replacement, etc., to augment
the aligned models. Based on the large amount of generated data,
we propose a stochastic iterative algorithm to construct a 3DMM
that compresses more capacities into lower dimensions of the basis.

Data Generation and Perturbation. Starting from the 200 aligned
face shape models, our data generation and perturbation process
consists of the following steps:

• Region Replacement with Perturbation. We first replace the
nose region of each model with other models, with a rotation
perturbation along the pitch angle (uniformly sampled within
±1 degree). Mouth region is also processed in the same way.
For eye region, we apply replacement without perturbation.
The different perturbations are empirically designed by mini-
mizing the introduced visual defects during processing. The
facial regions used in this step are shown in Fig. 5.
• Rigid Transformation Perturbation. We then apply rigid trans-
formation perturbations to each face model, where the uni-
formly sampled range is set to:±1 degree along yaw/pitch/roll
angles for rotation, ±1% along each of the three axes for trans-
lation, ±1% for scale.
• Mirroring. Finally, we apply a mirroring for all the generated
face models along model local coordinate system. In this way,
we get over 100,000 face models in total.
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ALGORITHM 1: Iterative 3DMM Construction Algorithm
Params :𝑛 = 1000,𝑚 = 25,𝑇ℎ𝑟𝑒𝑠ℎ
begin

Face model set S ← initial 200 models;
repeat

Randomly sample (without replacement) a test set D with 𝑛
face models from the whole dataset (over 100,000 models);

𝑘 ← 0;
𝜉 ←∞;
while 𝜉 > 𝑇ℎ𝑟𝑒𝑠ℎ do

Apply Principal Component Analysis (PCA) on S;
Select the principal components with 99.9% cumulative
explained variance to get the 3DMM basis 𝑆𝑘 ;

Fit the models in D using basis 𝑆𝑘 ;
Select the𝑚 models with largest fitting errors as setM;
Add the the𝑚 corresponding mirrored models intoM;
𝜉 ← the median error of the𝑚 models;
S ← S ∪ M;
𝑘 ← 𝑘 + 1;

end
until the whole dataset is sampled;

end
Output :PCA basis 𝑆𝑘 .

Fig. 6. Mean fitting errors with two versions of basis. Note that the basis
without augmentation are constructed from 200 models and thus have a
maximum number of dimensions 199. The results show the expressive power
of our basis is much larger than original basis.

Stochastic Iterative 3DMM Construction. Our iterative 3DMM con-
struction algorithm is presented in Alg. 1. There are two levels of
loops in our algorithm. We maintain a model set S for 3DMM con-
struction and update it inside the loops. In each iteration of the
outer loop, we sample a test set D with 𝑛 = 1000 models from the
whole generated dataset. In each iteration of the inner loop, we use
the constructed 3DMM from S to fit models in D, and add𝑚 = 25
models with largest fitting errors in D into S. The convergence
threshold is empirically set such that the inner loop is usually con-
verged in less than 5 iterations. Note that in the inner loop, a model
sample in D could be repeatedly added into S for several times. In
this case, constructing a 3DMM from the final S is different from
directly performing PCA on the whole dataset as the data popula-
tion is changed. Our algorithm encourages more data variance to
be captured using fewer principal components (note that in each
iteration we construct 3DMM using only the principal components
with 99.9% cumulative explained variance).

Fig. 7. The recovered geometries with two versions of basis. The basis
obtained with our method can preserve more personalized facial geometries
(note the regions of facial silhouette, mouth shape, and the nose shape).

Evaluation. In order to validate the effectiveness of our technique,
we design a numerical evaluation experiments with the help of BFM
2009 model [Paysan et al. 2009]. Note that the source face models
in our dataset are all East Asians, while those in BFM are mostly
not Asians. The domain gap between the two datasets provides us
a good benchmark for cross validation (our goal is not to model
cross-ethnicity fitting, but use the relative fitting errors between
different versions of 3DMM to evaluate their expressive power). For
each BFM basis, we compute two 3D face models using the positive
and negative standard deviation values. A total of 398 BFM face
models are obtained in this way. We register the BFM face models
to our mesh topology using Wrap3 software [R3ds 2020]. We use
the extracted PCA basis from our dataset to fit the obtained BFM
face models and measure the fitting errors. Fig. 6 shows the compar-
ison of fitting errors between the augmented basis and the original
basis. If only 100 basis vectors are used, the augmented version
has no advantage against the original version. As the number of
basis vectors grows, the augmented version clearly outperforms the
original version. Note that the maximum number of basis vectors
of the original version is 200 since there are only 200 source models
for 3DMM construction. For the augmented version, thousands of
basis vectors could be obtained since there are over 100,000 models
after augmentation. Since our iterative algorithm emphasizes the ex-
pressive power of the principal components with 99.9% cumulative
explained variance, most of the expressive capacities are compressed
into these components. In our experiments, we found the final num-
ber of the components with 99.9% cumulative explained variance
in different runs is generally around 500. Thus we use 500 basis
vectors through this paper. Fig. 7 shows a comparison of the facial
geometries obtained using our optimization algorithm in Sec. 5.2
with different versions of PCA basis.

Comparison to Direct PCA& Stochastic Stability. We further compare
our stochastic approach to direct PCA. Fig. 8 shows the fitting
errors of the BFM face model samples with our method and direct
PCA when using different number of principal components (PCs).
The results show that when the number of used PCs is less than
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Fig. 8. Fitting errors of the BFM face model samples with our stochastic approach and direct PCA. Red shaded regions are the error variations of 10 different
runs of our algorithm. Compared with direct PCA, our approach has clear advantages when the used PCs are less than 1500. Note that we use 500 PCs for our
facial geometry modeling algorithm in this paper, as we found that the optimization with more than 500 PCs does not yield better results in most of our
experiments, possibly due to the optimization difficulty with more parameters and its sensitivity to noisy RGB-D inputs.

1500, our approach consistently outperforms direct PCA. When
the number grows up to 1500, direct PCA gradually surpasses our
stochastic approach. This can be explained by the intentional design
of our stochastic algorithm that emphasizes expressive capacities
of the lower dimensions of the basis. Consequently, the expressive
power of the components beyond the concerned dimensions are
compromised. Note that the red shaded regions in the figure are the
error variations of 10 different runs of our stochastic algorithm. The
algorithm performs quite stably over different runs.

Relation to Localized 3DMM. There are some approaches construct-
ing separate 3DMM for each facial region [Blanz and Vetter 1999;
Neumann et al. 2013; Tena et al. 2011]. The localized 3DMMs obtain
more capacities compared with global models by separating the de-
formation correlations between different facial regions. The region
replacement augmentation in our approach is in the same spirit as
localized 3DMM by explicitly generating samples with possible com-
binations of facial regions from different subjects. Compared with
localized models, our 3DMM avoids online fusion of facial regions
and thus is more efficient. Besides, our perturbation scheme and
iterative 3DMM construction algorithm can be applied to localized
models to improve their capacities as well. In this paper, we employ
global model for efficiency consideration.

6 FACIAL REFLECTANCE SYNTHESIS
In this section, we present a our hybrid approach to synthesis high-
resolution albedo and normal maps. We notice that super-resolution
based approaches [Lattas et al. 2020; Yamaguchi et al. 2018] cannot
yield high-quality, hair-level details of the eyebrows. On the other
hand, directly synthesizing high-resolution texture maps [Saito et al.
2017] may lead to overwhelming details, which also makes the
rendering not realistic. Our approach addresses the problems with
the help of a pyramid-based parametric representation. Fig. 9 shows
the pipeline of our approach, which we explain as follows.

6.1 Regional Pyramid Bases
Fig. 10 illustrates the process to construct our regional pyramid
bases. We first compute image pyramids consisting of two resolu-
tions (512 × 512 and 2048 × 2048) for the 200 albedo maps in our

dataset. We divide facial regions
into 8 sub-regions indicated as the
different colors in the left UV-map.
The region partitioning is based
on the fact that different regions
have different types of skin/hair
details. Denote the set of all re-
gions as K . For each region 𝑘 ∈ K ,
we construct a linear PCA-based
blending model. We define each
sample in our dataset as a triplet

(a𝑘512, a
𝑘
2048, g

𝑘
2048), where a𝑘512 stands for 512 × 512 albedo map

of region 𝑘 , and a𝑘2048 and g𝑘2048 are the albedo map and nor-
mal map in 2048 × 2048 resolution. Then the triplet is vectorized
into a vector format by fetching and concatenating all pixel val-
ues together from the three maps in the region. Note that dur-
ing the process, the pixel indices in the three maps are recorded
such that the vectorized sample can be “scatter back2” into UV-
map format. For each region 𝑘 , we apply a PCA on the the 200
vectorized samples to get the basis. Finally, the vectorized basis
can be scattered back into UV-map format to obtain the blending
basis {𝐴𝑘

512, 𝐴
𝑘
2048,𝐺

𝑘
2048}𝑘∈K , where 𝐴𝑘

512 ∈ R
𝑛𝑘×199 is the low-

resolution albedo basis, 𝐴𝑘
2048 ∈ R

16𝑛𝑘×199 is the high-resolution
albedo basis, 𝐺𝑘

2048 ∈ R
16𝑛𝑘×199 is the high-resolution normal basis.

and 𝑛𝑘 is the number of pixels within region 𝑘 in the 512-resolution.
The constructed regional pyramid bases have several advantages

compared with conventional bases. First, the expressive capacity is
larger than global linear bases, while each region can be processed

2We use the “scatter_nd” function in Tensorflow as the “scatter back” operation.



High-Fidelity 3D Digital Human Head Creation from RGB-D Selfies • 9

Regional 
masks

Normal refinement

delight

unwrap

Regional pyramid bases

A2048 G2048A512

Albedo refinement

delight unwrapextract parametric fit
（lowres）

apply
(highres)

Regional fitting

x𝑎𝑎𝑎𝑎𝑎𝑎

…

Fig. 9. Our albedo/normal map synthesis pipeline. We first extract textures from the source images using the estimated shape and poses from Sec. 5.2. Then a
model-based delighting using the estimated lighting parameters from Sec. 5.2 is applied on the extracted textures, followed by an unwrapping and blending to
yield an initial 512 × 512 albedo UV-map. Then we use a novel regional fitting approach (Sec. 6.2) to fit the albedo map to get a albedo map and a normal map,
both in 2048 × 2048 resolution. Finally, the albedo map and normal map are refined with two detail synthesis CNNs, respectively.

a512k a2048k g2048k

A512
k

A2048
kMask & Vectorize Scatter BackPCA

…

Samples Pyramid Basis for Region k

G2048k

a512k a2048k g2048k

Region k

…

PCA Basis

…

Fig. 10. Construction of the regional pyramid bases. Take the eyebrow region (denoted as region 𝑘) as an example, the pyramid basis is constructed as follows.
First, for each sample in our dataset, we fetch the pixel values in the masked region from the 512 albedo map, the 2048 albedo map, and the 2048 normal map
to get a𝑘512, a

𝑘
2048, g

𝑘
2048, respectively. Then they are vectorized and concatenated together to get a single sample for PCA. Note that each row in the “samples”

(middle left) is a vectorized sample containing information from all three maps. Thus the PCA process simultaneously captures variations in three maps across
resolutions. Finally, the vectorized PCA basis is scattered back into image format by filling the corresponding pixels back into region 𝑘 .

individually to accelerate the runtime. Second, the bases capture
variations in both albedo and normal map. Third, the incorporated
multiple resolutions can emphasize more structural information
in the extracted bases. With the pyramid basis, we can perform
parametric fitting on the low resolution, and directly apply the
same parameters on high-resolution bases to obtain high-resolution
albedo and normal maps. This not only reduces computation, but
also generally yields higher-quality results than directly fitting on
high resolution. Note that the albedo basis employed in our geomet-
ric fitting procedure (Sec. 5.2) is the conventional global model in
512-resolution, while the bases used in this section dedicated for
reflectance synthesis are the regional pyramid model. The reason
is that we found the less powerful albedo basis would make the
optimization constraints more imposed on the geometric parameter
estimation rather than texture parameter estimation. Otherwise
more powerful albedo basis tends to result in overfitted textures but
underfitted geometries.

6.2 Regional Fitting
Since the albedo parameters x𝑎𝑙𝑏 obtained in Sec. 5.2 are based on
conventional global bases, the resulting albedo maps are not satis-
factory due to limited expressive power. Here we directly extract
textures from the source images using the estimated shape and
poses from Sec. 5.2. Then a model-based delighting using the esti-
mated lighting parameters from Sec. 5.2 is applied on the extracted
textures, followed by an unwrapping and blending to yield an initial

512× 512 albedo map 𝐼𝑖𝑛𝑖𝑡 . We use the 512-resolution regional bases
{𝐴𝑘

512}𝑘∈K to fit the initial albedo map:

𝐿(x𝑎𝑙𝑏 ) = ∥𝐼𝑓 𝑖𝑡 (x𝑎𝑙𝑏 ) − 𝐼𝑖𝑛𝑖𝑡 ∥2 +𝜔𝑡𝑣 𝑓𝑡𝑣 (𝐼𝑓 𝑖𝑡 (x𝑎𝑙𝑏 )) +𝜔𝑎𝑙𝑏 ∥x𝑎𝑙𝑏 ∥22,

where 𝐼𝑓 𝑖𝑡 (x𝑎𝑙𝑏 ) =
∑
𝑘∈K 𝐴𝑘

512x
𝑘
𝑎𝑙𝑏

, 𝑓𝑡𝑣 denotes the total variation
function, 𝜔𝑡𝑣 = 0.0001 and 𝜔𝑎𝑙𝑏 = 0.001. Note that the total vari-
ation term is essential to eliminate the artifacts in the resulting
albedo maps near boundaries between regions. After obtaining x𝑎𝑙𝑏 ,
we can directly compute a high-resolution albedo map â2048 and a
normal map ĝ2048 as

â2048 =
∑︁
𝑘∈K

𝐴𝑘
2048x

𝑘
𝑎𝑙𝑏

ĝ2048 =
∑︁
𝑘∈K

𝐺𝑘
2048x

𝑘
𝑎𝑙𝑏

.

With the help of regional pyramid bases, different types of skin/hair
details in different regions can be separately preserved via the high-
resolution bases, while the fitting process on low resolution makes
the algorithm focus on major facial structures, e.g., the shape of
the eyebrows and lips. Since the parametric representation is based
on linear blending model, the results are usually over-smoothed
(see Fig. 17). We next present our detail synthesis step to refine the
albedo and normal maps.
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6.3 Detail Synthesis
We adopt two refinement networks to synthesize details for albedo
and normal map respectively. The refinement networks employ
the architecture of a GAN-based image translation model, pix2pix
[Isola et al. 2017]. As shown in Fig. 9, for albedo refinement, the
network takes the fitted 2048-resolution albedo map as input and
outputs a refined albedo map in the same resolution. For normal
refinement, the refined albedo map and the fitted normal map are
concatenated along channel dimension. The refinement network
takes the concatenation as inputs and outputs a refined normal map.
During training, we first use facial region replacement and skin

color transfer [Reinhard et al. 2001] to augment the 200 high-quality
albedo/normal maps (from the dataset for constructing the 3DMM)
into 4000 maps, which serve as ground-truth supervision for train-
ing the two networks. Then we perform regional fitting (Sec. 6.2)
on the 4000 maps to get the fitted albedo/normal maps, which serve
as inputs of the networks during training. We only use the facial
regions out of the whole UV maps for computing training losses.
Similar to pix2pix [Isola et al. 2017], we keep 𝐿1 loss and GAN loss
in both networks. For albedo refinement, we additionally apply total
variation loss to reduce artifacts and improve skin smoothness. The
weights for 𝐿1, GAN and total variation losses are 100, 1, 0.001. For
normal refinement, we additionally employ a pixel-wise cosine dis-
tances between the predictions and ground-truth maps to increase
the accuracy of normal directions. The weights for 𝐿1, GAN and
cosine distance losses are 100, 1, 0.001. The networks are trained
with Adam optimizer for 75000 iterations.

Relation to Existing Approaches. There are three recent CNN-based
approaches that can be adopted to synthesize high-resolution facial
UV-maps, which are Yamaguchi et al. [2018], GANFIT [Gecer et al.
2019], and AvatarMe [Lattas et al. 2020]. However, these approaches
cannot produce satisfactory results in our case. GANFIT [Gecer et al.
2019] needs about 50 times more training data than ours to train a
GAN as the nonlinear parametric representation of texture maps. In
their work, the 10, 000 texture maps are obtained using unwrapped
photos, where shadings and specular highlights are not removed.
In our system, the 200 albedo maps and normal maps are created
with very high-quality artistic efforts, where shadings and specular
highlights are completely removed and hair-level details are pre-
served. It is rather difficult to extend our data amount to theirs while
keeping such high data quality. Regarding the other two approaches,
we also tried super-resolution based network as in Yamaguchi et
al. [2018] and pure CNN-based synthesis in AvatarMe [Lattas et al.
2020], and found the results obtained with their approaches are
generally inferior to ours. We present some comparison in Sec. 8.3.

7 FULL HEAD RIG CREATION AND RENDERING
Head Completion. Although the scanned 200 models in out dataset
are full head models, there are usually no reliable geometric con-
straints beyond facial regions for a RGB-D selfie user. We employ
an algorithm to automatically complete a full head model given the
recovered facial model. The regions involved in our algorithm are:
• A: facial region;
• B: back head region;
• C: intermediate region;

• D: overlapped region between A and C.

Our goal is to compute a full head shape such that region A matches
the facial shape and region B matches a reference back head shape.
The reason of using a reference shape for back head region B is it can
further ease the difficulties to attach accessories like hair models. To
this end, we construct a head morphable model using only regions
B ∪ C of the 200 source models. Note that this model does not need
strong expressive power as face models, thus we do not employ the
technique in Sec. 5.3 but directly use PCA to extract basis. Given the
recovered facial shape of a user, we apply a ridge regression similar
to Sec. 5.1 to get the head 3DMM parameters, using the constraints
of region B ∪ D. Then the full head model is obtained by combining
the resulting shape (B ∪ C) with facial region A.

Accessories. We perform a hairstyle classification on the user’s front
photo (using a MobileNet [Howard et al. 2017] image classification
model trained on labeled front photos) and attach the correspond-
ing hair model (created by artists in advance) to the head model
according to the predicted hairstyle label. There are in total 30 hairs
models in different hairstyles in our system (see supplementary
materials). For eyeballs, we use template models and calculate the
positions and scales based on reference points on the head model.
For teeth, we employ an upper teeth model and a lower teeth model.
The upper teeth model is placed according to reference points near
nose, and it remains still when facial expression changes. The lower
teeth model is placed according to reference points on the chin.
When mouth opens or closes, the lower teeth model moves with the
chin. Note that the accessory models are not the focus of this work,
their modeling and animation can be found in dedicated research
work [Bérard et al. 2016, 2019; Velinov et al. 2018; Wu et al. 2016;
Zoss et al. 2019, 2018].

Expression Rigging. We adopt a simple approach similar to Hu et
al. [2017] to transfer generic FACS-based blendshapes to the target
model to obtain expression blendshapes. Note that our approach can
be extended to further acquire user’s expression data and construct
personalized blendshapes like Ichim et al. [2015].

Rendering. The recovered full head mesh model, as well as the high-
quality albedo map and normal map, can be rendered with any
physically based renderer. In this work, we show rendered results
using Unreal Engine 4 (UE4), with a skin PBR material template
simplified from the official skin PBR material template provided by
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Processing Step Runtime
Landmark Detection –
Coarse Screening –
Bilateral Filtering –
Frame Selection 0.2s

Initial Model Fitting 0.1s
Initial Texture 0.5s
Optimization 10s

Regional Parametric Fitting 1.5s
Detail Synthesis 1s
Head Completion 0.5s

Accessories 0.1s
Expression Rigging 1s

Total ∼15s
Table 2. The runtime for each step in our system. Note that the first three
steps are computed during data acquisition and thus do not need additional
processing time. GPU and multi-thread CPU are used.

Avatar Creation Acquisition Processing Manual
System Time Time Interaction

[Ichim et al. 2015] 10 minutes ∼1 hour 15 minutes
[Cao et al. 2016] 10 minutes ∼1 hour needed
[Hu et al. 2017] <1 second ∼6 minutes –

Ours <10 seconds ∼15 seconds –

Table 3. Time comparison with other avatar creation systems.

the engine [2020]. The skin PBR material details can be found in
the supplementary materials.

8 RESULTS AND EVALUATION

8.1 Acquisition and Processing Time
The selfie data acquisition typically takes less than 10 seconds (200-
300 frames). The total processing time after data acquisition is about
15 seconds. Note that some of the processing steps like real-time
landmark detection, coarse screening, and bilateral filtering can be
computed on the smartphone client while the user is taking selfie.
The preprocessed data are streamed to a server via WiFi during
acquisition. The rest steps of the processing are computed on the
server. Table 2 shows the runtime on our server with an Nvidia
Tesla P40 GPU and an Intel Xeon E5-2699 CPU (22 cores). Note
that the frame selection and expression blendshape generation are
implemented with multi-thread acceleration and the total runtime is
largely reduced thanks to parallel processing. Table 3 shows a time
comparison with other avatar creation systems. In terms of total
acquisition and processing time, our system provides a convenient
and efficient solution for users to create high-quality digital humans.

8.2 Quality of Facial Geometry
We evaluate the quality of our recovered facial shapes in extensive
experimental settings. The experiments include quantitative and
qualitative comparisons of different variants of our approach and
existing methods such as Face2Face [Hu et al. 2017; Thies et al. 2016;
Yamaguchi et al. 2018], GANFIT [Gecer et al. 2019; Lattas et al. 2020],

Single rgb+id Single rgbd+id N-ICP Ours

1.88 ± 1.26 1.39 ± 0.90 1.48 ± 1.12 1.31 ± 0.96

1.99 ± 1.24 1.68 ± 1.04 1.60 ± 1.05 1.47 ± 0.86

Mult rgb+id

1.87 ± 1.18

2.03 ± 1.30

Mult rgb

1.89 ± 1.26

1.80 ± 1.01

Fig. 11. Error maps (in mm) for different variants of our approach.

Single rgbd+id OursMult rgb+id Ours w/o init fit

Fig. 12. Visual comparison for different variants of our approach. The results
obtained with multiview RGB-D data and identity loss (ours) are generally
more faithful than other results. We also show the results obtained without
initial model fitting, which are usually flawed.

N-ICP [Bouaziz et al. 2016; Weise et al. 2011], etc. Note that all the
results are obtained with our 3DMM basis for fair comparisons.

Quantitative Evaluation. We use the same workflow as the produc-
tion of our dataset to manually create the ground-truth models of
two users. Since the ground-truth obtained in this way is very expen-
sive, we only perform numerical evaluations on the two models to
get quantitative observations. The corresponding geometries recov-
ered from RGB-D selfie data with different variants of our approach
are evaluated. The results are in Fig. 11. It can be seen from the
results that our method yields the lowest mean errors, closely fol-
lowed by N-ICP and the single-view variants of our method (single
rgbd+id). Compared with N-ICP, our method performs better on
detailed facial geometries near eyes, nose, and mouth. It conforms to
our motivation that appearance constraints (photo loss and identity
perceptual loss) help capture more accurate facial features.

Qualitative Evaluation. Fig. 12 shows two examples of the shape
models obtained with different variants of our method. The version
with multiview RGB-D data generally outperforms other variants.
Besides, as shown in the figure, random initialization of our opti-
mization can lead to flawed models. The initial fitting in Sec. 5.1
improves the system robustness. We further show results compar-
isons between our method with Face2Face [Hu et al. 2017; Thies et al.
2016; Yamaguchi et al. 2018], GANFIT [Gecer et al. 2019; Lattas et al.
2020], and N-ICP [Bouaziz et al. 2016; Weise et al. 2011] in Fig. 13. In
general, both our method and N-ICP can reconstruct more accurate
facial shapes than the methods using only RGB data (Face2face and
GANFIT). This can be clearly observed from the silhouettes near
the cheek region in the results. Watching more closely, our method
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Fig. 13. Visual comparison with state-of-the-art approaches. As pointed out by the red arrows, our method is able to generate face geometries with more
accurate cheek silhouettes and more faithful mouth shapes to the input photos. In comparison, the mouth shapes obtained by N-ICP lack personalized
features and are similar to each other among all the subjects. For fair comparison, all the results are obtained with our 3DMM.

Fig. 14. Examples of our synthesized albedo and normal maps.
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Fig. 15. Overlay results with our synthesized albedo maps. Note that the eyebrow and mouth shapes in our albedo maps are faithful to input photos.

Fig. 16. Ablation results of intermediate or alternative steps of our albedo synthesis pipeline. The global fitting results are obtained from our 3DMM optimization
in Sec. 5.2. The recovered facial structures (like the eyebrow shapes) are not faithful to inputs due to limited capacities of the global texture basis. In contrast,
our regional fitting results are much more faithful. The final refinement CNN further improves the realism by adding more hair/pore details.
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Fig. 17. Close-ups of the synthesized albedo results for the left subject in Fig. 16.

Fig. 18. Ablation results of our albedo synthesis pipeline with/without the delighting step.

can recover more faithful and personalized facial shapes than N-
ICP, especially near mouth region. The mouth shapes obtained with
N-ICP are similar among all the faces, while our results preserve
personalized mouth features and are more faithful to the photos.
This can be explained by the additionally incorporated photometric
loss and identity loss in our method.

8.3 Quality of Facial Reflectance
Results. Our method can produce albedo and normal maps with
high-quality, realistic details while preserving major facial features
of the users. Fig. 14 shows several examples of our obtained albedo
and normal maps. Hair-level details in the albedo and normal maps
are clearly visible. Fig. 15 shows the overlay results with synthesized
albedo maps. The major facial features are consistent between the
synthesized albedo maps and the input photos, especially in the eye-
brow region. More importantly, the hair-level details near eyebrow
region and the pore-level skin details are clearly visible. Note that

the input RGB-D images in our method are in 640 × 480 resolution,
where actual skin micro/meso-structures and hair-level details are
hardly visible (see Fig. 15 left column). The synthesized skin/hair
details by our approach are actually plausible hallucination, which
is critical for realistic rendering of digital humans.

Ablation Study. Since our albedo synthesis pipeline consists of sev-
eral major steps, we show the ablation results of intermediate or
alternative steps of our pipeline in Fig. 16. The unwrapped textures
are typically blurry and dirty due to low-resolution inputs and im-
perfect lighting removal. The global fitting results cannot faithfully
preserve major facial structures (like the eyebrow shapes) due to
limited expressive power of global texture basis. Our regional fitting
can recover more accurate facial structures, while lacking hair/pore
details. The final refinement CNN supplements hallucinated high-
quality, realistic details to the albedo maps. Fig. 17 shows several
additional close-ups of the intermediate results. Fig. 18 shows an
example of the results obtained with/without delighting.
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Fig. 19. Comparison between pix2pix and pix2pix-HD. The results obtained
with pix2pix-HD are generally with uneven skin colors and obvious artifacts.

Method Avg. ranking
AvatarMe [Lattas et al. 2020] 7.0%
GANFIT [Gecer et al. 2019] 5.1%

Ours 4.5%
Table 4. Identity verification using rendered images of the 3D reconstruc-
tions. The experiment is conducted with 36 subjects’ selfie data against
more than 40, 000 distracting photos. Lower ranking means the rendered
images are more recognizable to user photos from the point of view of a
face recognition network. For example, the average ranking percentage 4.5%
means there are in average 4.5% photos in the distracting dataset that are
more similar to the rendered results than the users’ own photos.

Pix2pix vs pix2pix-HD. We experimented with two variants of our
detail synthesis CNNs, i.e., pix2pix [Isola et al. 2017] and pix2pix-HD
[Wang et al. 2018]. We found pix2pix-HD is more difficult to train
and the results are generally worse than pix2pix (see Fig. 19 for an
example), possibly due to the small amounts of training data.

8.4 Comparison to State-of-the-art Approaches
Visual Comparison. We compare our results to two state-of-the-art
3D face reconstruction approaches, GANFIT [Gecer et al. 2019]
and AvatarMe [Lattas et al. 2020]. Fig. 20 shows two examples of
the results comparison. Fig. 21 shows the rendered comparison.
Our results are generally more faithful to input photos, with more
accurate facial geometries and higher-quality texture maps. Note
that the inputs to GANFIT/AvatarMe are front-view single images,
while our results are obtained with RGB-D selfie videos.

Identity Verification. To further justify the recognizability of our
results, we design a novel face verification experiment for numerical
evaluation. We collect selfie data from 36 subjects and put their selfie
photos into a large “distracting” face image dataset with over 40, 000

photos of Asian people. Then the reconstructed results of the 36
subjects are obtained using different approaches and rendered into
realistic images using UE4.We compute the feature distances of each
rendered image to all the photos in the “distracting” dataset with a
face recognition network [Deng et al. 2019]. Ideally, a user’s selfie
photo among all the “distracting” photos should be with the shortest
distance to the rendered image. Thus, for each rendered image, the
distance ranking of a user’s selfie photo among all the “distract-
ing” photos is a good indicator of whether the rendered image is
more recognizable to himself/herself or not. The average ranking
percentage of our identity verification experiment are shown in
Table 4 (lower rankings are better). Our results are generally more
recognizable to user photos than AvatarMe and GANFIT.

8.5 Comparison to Model-free Reconstruction
We notice some commercial systems (e.g., Bellus3D [2020]) utilize
RGB-D selfies to reconstruct static 3D face models and directly
extract texture maps from input photos. Their systems commonly
employ a model-free reconstruction approach like KinectFusion
[Newcombe et al. 2011] and the results usually seem very faithful
to input photos. However, there are several drawbacks in their
results. First, as shown in Fig. 23, their reconstructed meshes are not
topologically consistent and are prone to flaws. It would be difficult
to attach accessories and animate them. Moreover, the extracted
texture maps contain shadows and highlights, which are undesired
since they cause severe unnatural issues when the rendered lighting
is different from the captured lighting. In comparison, our results
are high-quality and ready for realistic rendering and animation
(see Fig. 23).

8.6 Robustness to Different Inputs
We conduct experiments for a user taking selfies in different lighting
conditions (Fig. 22). The recovered shape and reflectance remain
consistent regardless of different lighting conditions and poses. Note
that there is an inherent decoupling ambiguity between skin color
and illumination. The resulting skin color in the right of the figure
is actually a little bit more yellowish due to the yellower input
photo. However, the facial structures (like the eyebrow shape) in
the resulting reflectance map are consistent.

8.7 Rendered Results
Fig. 27 shows some of our rendered results with UE4. Thanks to the
high-fidelity geometry and reflectance maps, the rendered results
are realistic and faithful to input faces. Note the wrinkle details on
the lips, the pore-level details on the cheek, the hair-level details
of the eyebrows. Fig. 24 shows two examples of our results with
attached hair models, which are retrieved from our hair model
database by performing hairstyle classification on the selfie photos.
More results are in the supplementary video.

8.8 Limitations
Our approach does not take into account cross-ethnicity generaliza-
tion. Since our 3DMM is constructed from East-Asian subjects, our
evaluations are designed on the same ethnical population. We tried
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Fig. 20. Visual comparison of our results to state-of-the-art approaches. Our recovered facial shapes are more faithful and recognizable. Our synthesized facial
textures are with much higher quality, while there are undesired shadows/highlights or severe artifacts in the results of GANFIT and AvatarMe.

Fig. 21. Rendered comparison. Our results are more faithful to input photos, with more realistic details. More results are in the supplementary document.
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Fig. 22. Results obtained using RGB-D data captured in different lighting
conditions, but rendered in an identical lighting setting. The recovered facial
structures are consistent in the two lighting conditions. Note that the skin
color result in the right rendered image is a little bit more yellowish than the
left. This is because the photos in the right is captured with a different white
balance setting from the left. There is an inherent decoupling ambiguity
between skin color and illumination in our approach.

to directly apply our approach on some people from other ethnici-
ties and Fig. 26 shows two examples. Although the results roughly
resemble the subjects being captured, some ethnicity-specific facial
features are not recovered. Besides, our approach cannot model fa-
cial hairs like moustache and beard. Children or aged people beyond
the age scope of our dataset are also not considered in our approach.
Another limitation of our approach is that less common details

like moles or freckles are not captured. The problem needs to be
tackled by capturing these details and then sending them into the
detail synthesis networks, which would be left as future work. Be-
sides, the skin tone variation in the reconstructed albedo is also
limited, due to the inherent decoupling ambiguity between skin
color and illumination (see Figs. 22 and 26 for examples). It can be
solved with a color checker while taking selfies.

9 APPLICATIONS
The avatars created with our method are animation-ready. Ani-
mations can be retargeted from existing characters [Bouaziz and
Pauly 2014], or interactively keyframe-posed [Ichim et al. 2015],
or even transferred from facial tracking applications [Weise et al.
2011]. We demonstrate an application of lip-sync animation in the
supplementary video, where a real-time multimodal synthesis sys-
tem [Yu et al. 2019] is adopted to simultaneously synthesize speech

and expression blendshape weights given input texts. Fig. 25 shows
several snapshots of the animation. The application enables users to
conveniently create high-fidelity, realistic digital humans that can
be interacted with in real time. We also include another lip-sync
animation result driven by speech inputs [Huang et al. 2020] in the
supplementary video.

10 CONCLUSION
We have introduced a fully automatic system that can produce high-
fidelity 3D facial avatars with a commercial RGB-D selfie camera.
The system is robust, efficient, and consumer-friendly. The total
acquisition and processing for a user can be finished in less than 30
seconds. The generated geometry models and reflectance maps are
in very high fidelity and quality. With a physically based renderer,
the assets can be used to render highly realistic digital humans. Our
system provides an excellent consumer-level solution for users to
create high-fidelity digital humans.

Future Work The animation with generic expression blend-
shapes are not satisfactory. We intend to extend our system to
capture personalized expression blendshapes like Ichim et al. [2015].
Besides, the current system employs very simple approaches to
handle accessories like hair, eyeballs, and teeth. We intend to incor-
porate more advanced methods to model accessories.
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