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A Game Theoretic Model for the Formation of
Navigable Small-World Networks — the Tradeoff between Distance and
Reciprocity

ZHI YANG, Peking University
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Kleinberg proposed a family of small-world networks to explain the navigability of large-scale real-world
social networks. However, the underlying mechanism that drives real networks to be navigable is not yet well
understood. In this paper, we present a game theoretic model for the formation of navigable small world
networks. We model the network formation as a game called the Distance-Reciprocity Balanced (DRB)
game in which people seek for both high reciprocity and long-distance relationships. We show that the
game has only two Nash equilibria: One is the navigable small-world network, and the other is the random
network in which each node connects with each other node with equal probability, and any other network
state can reach the navigable small world via a sequence of best-response moves of nodes. We further show
that the navigable small world equilibrium is very stable — (a) no collusion of any size would benefit from
deviating from it; and (b) after an arbitrary deviations of a large random set of nodes, the network would
return to the navigable small world as soon as every node takes one best-response step. In contrast, for
the random network, a small group collusion or random perturbations is guaranteed to bring the network
out of the random-network equilibrium and move to the navigable network as soon as every node takes one
best-response step. Moreover, we show that navigable small world equilibrium has much better social welfare
than the random network, and provide the price-of-anarchy and price-of-stability results of the game. Our
empirical evaluation further demonstrates that the system always converges to the navigable network even
when limited or no information about other players’ strategies is available, and the DRB game simulated on
real-world networks leads to navigability characteristic that is very close to that of the real networks, even
though the real-world networks have non-uniform population distributions different from the Kleinberg’s
small-world model. Our theoretical and empirical analyses provide important new insight on the connection
between distance, reciprocity and navigability in social networks.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Network problems

Additional Key Words and Phrases: Small-world network, game theory, navigability, reciprocity

1. INTRODUCTION

In 1967, Milgram published his work on the now famous small-world experi-
ment [Milgram 1967]: he asked test subjects to forward a letter to their friends in order
for the letter to reach a person not known to the initiator of the letter. He found that on
average it took only six hops to connect two people in U.S., which is often attributed as the
source of the popular term six-degree of separation. This seminal work inspired numerous
studies on the small-world phenomenon and small-world models, which last till the present
day of information age.
In [Watts and Strogatz 1998] Watts and Strogatz investigated a number of real-world

networks such as film actor networks and power grids, and showed that many networks
have both low diameter and high clustering (meaning two neighbors of a node are likely to
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be neighbors of each other), which is different from randomly wired networks. They thus
proposed a small-world model in which nodes are first placed on a ring or a grid with
local connections, and then some connections are randomly rewired to connect to long-
range contacts in the network. The local and long-range connections can also be viewed
as strong ties and weak ties respectively in social relationships originally proposed by Gra-
novetter [Granovetter 1973; Granovetter 1974].
Kleinberg notices an important discrepancy between the small-world model of Watts and

Strogatz and the original Milgram experiment: the latter shows not only that the average
distance between nodes in the network are small, but also that a decentralized routing
algorithm using only local information can construct short paths. Here, we call a routing
algorithm decentralized in that given a source node u and a destination node v, the algorithm
attempts to come up with a path u = x0, x1, x2, . . . , xm = v, only using the acquaintance
relationships of these m intermediate nodes x0, x1, x2, . . . , xm−1. By contrast, a centralised
algorithm (e.g., Dijkstra’s algorithm) requires the nodes to know full network (i.e., the
acquaintance relationships among all people in the world) to find an optimal route, but
obviously they cannot know this in real networks.
To address this issue, Kleinberg adjusted the Watts-Strogatz model so that the long-

range connections are selected not uniformly at random among all nodes but inversely
proportional to a power of the grid distance between the two end points of the connec-
tion [Kleinberg 2002]. More specifically, Kleinberg modeled a social network as composed of
nk nodes on a k-dimensional grid, with each node having local contacts to other nodes in its
immediate geographic neighborhood. Each node u also establishes a number of long-range
contacts, and a long-range link from u to v is established with probability proportional to
dM (u, v)−r, where dM (u, v) is the grid distance between u and v, and r ≥ 0 is the model
parameter indicating how likely nodes prefer to connect to remote nodes, which we call
connection preference in the paper. The Watts-Strogatz model corresponds to the case of
r = 0, and as r increases, nodes are more likely to connect to other nodes in their vicinity.
Kleinberg modeled Milgram’s experiment as decentralized greedy routing in such networks,
in which each node only forwards messages to one of its neighbors with coordinate closest
to the target node. He showed that when r = k, greedy routing can be done efficiently in
O(log2 n) time in expectation, but for any r 6= k, it requires Ω(nc) time for some constant
c depending on r, exponentially worse than the case of r = k. Therefore, the small world at
the critical value of r = k is meant to model the real-world navigable network validated by
Milgram and others’ experiments, and we call it the navigable small-world network.
After Kleinberg’s theoretical analysis, a number of empirical studies have been con-

ducted to verify if real networks indeed have connection preferences close to the critical
value that allows efficient greedy routing [Liben-Nowell et al. 2005; Adamic and Adar 2005;
Cho et al. 2011; Goldenberg and Levy 2009; Schaller and Latank 1995]. Since real popula-
tion is not evenly distributed geographically as in the Kleinberg’s model, Liben-Nowell
et al. [Liben-Nowell et al. 2005] proposed to use the fractional dimension D, defined as
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the best value to fit |{w : dM (u,w) ≤ dM (u, v)}| = c · dM (u, v)D, averaged over all u
and v. They showed that when the connection preference r = D, the network is naviga-
ble. They then studied a network of 495,836 LiveJournal users in the continental United
States who list their hometowns, and find that D ≈ 0.8 while r = 1.2, reasonably close to
D. We apply the same approach to a ten million node Renren network [Jiang et al. 2010;
Yang et al. 2011], one of the largest online social networks in China. We map the home-
town listed in users’ profiles to (longitude, latitude) coordinates. The resolution of our
geographic data is limited to the level of towns and cities and thus we cannot get the
exact distance of nodes within 10km. We found that D ≈ 1 (Figure 1) and r ≈ 0.9
(Figure 2) in the Renren network. Other studies [Adamic and Adar 2005; Cho et al. 2011;
Goldenberg and Levy 2009; Schaller and Latank 1995] also reported connection preference
r to be close to 1 in other online social networks (including Gowalla, Brightkite and Face-
book). Even though they did not report the fractional dimension, from both the LiveJournal
data in [Liben-Nowell et al. 2005] and our Renren data, it is reasonable to believe that the
fractional dimension is also close to 1. Therefore, empirical evidences all suggest that the
real-world social networks indeed have connection preference close to the critical value and
the network is navigable.
A natural question to ask next is how navigable networks naturally emerge? What

are the forces that make the connection preference become close to the critical
value? As Kleinberg pointed out in his survey paper [Kleinberg 2006] when talk-
ing about the above striking coincidence between theoretical prediction and empiri-
cal observation, “it suggests that there may be deeper phenomena yet to be discov-
ered here”. There are several studies trying to explain the emergence of navigable
small-world networks [Mathias and Gopal 2001; Hu et al. 2011; Clauset and Moore 2003;
Sandberg and Clarke 2006; Chaintreau et al. 2008], mostly by modeling certain underlying
node or link dynamics (see additional related work below for more details).
In this paper, we tackle the problem in a novel way using a game-theoretic approach,

which is reasonable in modeling individual behaviors in social networks without central
coordination. One key insight we have is that connection preference r is not a global prefer-
ence but individual’s own preference — some prefer to connect to more faraway nodes while
others prefer to connect to nearby nodes. Therefore, we establish small-world formation
games where individual node u’s strategy is its own connection preference ru (Section 2).
This game formulation is different from most existing network formation games where indi-
viduals’ strategies are creating actual links in the network (c.f. [Tardos and Wexler 2007]).
It allows us to directly explore the entire parameter space of connection preferences and
answer the question on why nodes end up choosing a particular parameter setting leading
to the navigable small world.
In terms of payoff functions, we first consider minimizing greedy routing distance to other

nodes as the payoff, since it directly corresponds to the goal of navigable networks. However,
Gulyás et al. [Gulyás et al. 2012] prove that with this payoff the navigable networks cannot
emerge as a equilibrium for the one-dimensional case. Our empirical analysis also indicates
that nodes will converge to random networks (ru = 0, ∀u) rather than navigable networks
for higher dimensions. Our empirical analysis further shows that if we adjust the payoff with
a cost proportional to the grid distance of remote connections, the equilibria are sensitive
to the cost factor.
The above unsuccessful attempt suggests that besides the goal of shortening distance to

remote nodes, some other natural objective may be in play. Reciprocity is regarded as a
basic mechanism that creates stable social relationships in a person’s life [Gouldner 1960]. A
number of prior works [Java et al. 2007; Liben-Nowell et al. 2005; Mislove et al. 2007] also
suggest that people seek reciprocal relationships in online social networks. Therefore, we
propose a payoff function that is the product of average distance of nodes to their long-range
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contacts and the probability of forming reciprocal relationship with long-range contacts.
We call this game the distance-reciprocity balanced (DRB) game. In practice, increasing
relationship distance captures that individuals attempt to create social bridges by linking
to “distant people”, which can help them search for and obtain new resources. Meanwhile,
increasing reciprocity captures that individuals look at social bonds by linking to “people
like them”, which could help them preserve or maintain resources. Therefore, the DRB game
is natural since it captures sources of bridging and bonding social capital in building social
integration and solidarity [Gittell and Vidal 1998]. We further allow heterogeneous utility
functions in that different users may weigh the tradeoff between distance and reciprocity in
different ways.
Even though the payoff function for the DRB game is very simple, our analysis demon-

strates that it is extremely effective in producing navigable small-world networks as the
equilibrium structure. In theoretical analysis (Section 3), we first show that navigable small
world (ru = k, ∀u) and random small world (ru = 0, ∀u) are the only two Nash equilibria of
the DRB game, despite the flexible and heterogeneous utility functions. Moreover, for any
strategy profile that is not the random network, it can always reach the navigable small
world through a cascade of nearby nodes adopting strategy k in a best-response dynamic.
In terms of the stability of NE, we prove that the navigable small world is a strong Nash

equilibrium, which means that it tolerates collusion of any size trying to gain better payoff.
Moreover, it also tolerates arbitrary deviations (without the objective of increasing anyone’s
payoff) of large groups of random deviators, since the system is guaranteed to return back
to the navigable NE as soon as every node takes one best-response step. In contrast, random
small world can be moved away from its equilibrium state by either a random perturbation
of one node or a collusion of two nearby nodes, and when a small random set of nodes
perturb to different strategies, we prove that the system is guaranteed to converge to the
navigable small world as soon as every node takes one best-response step. Our theoretical
analysis provides strong support that the navigable small-world NE is the unique and stable
equilibrium that would naturally emerge in the DRB game.
We further examine the global function of social welfare (i.e., the total payoff of all nodes)

and how selfish behavior of users affect the social welfare. Interestingly, we find that the
global optimum can be reached by a fraction of nodes sacrificing their distance payoff to
focus on reciprocity (by selecting a strategy greater than k) so that their neighbors could
select strategy k to reach a high balanced payoff of both distance and reciprocity. This
situation reminds us social relationships generated by different social status (e.g. employee-
employer relationship) or by tight bonds with mutual understanding and support (such
as marriages). Next we compare the social welfare of navigable and random small-world
networks with the global optimum through the standard price of anarchy (PoA) and price
of stability (PoS) metrics, which is the ratio of social welfare between the global optimum
and the worst (or the best) Nash equilibrium, respectively. We show that navigable network
has the better social welfare, and being only logarithmically worse than the global optimum.
To complement our theoretical analysis, we conduct empirical evaluations to cover more

realistic game scenarios not covered by our theoretical analysis (Section 5). We first test
random perturbation cases and show that arbitrary initial profiles always converge to the
navigable equilibrium in a few steps, while a very small random perturbation (less than
theoretical prediction) of the random small world causes it to quickly converge back to the
navigable equilibrium. Next, we simulate more realistic scenarios where nodes have limited
or no information about other nodes’ strategies. We show that if they only learn their friends’
strategies (with some noise), the system still converges close to the navigable equilibrium
in a small number of steps. Further, even when the node has no information about other
players’ strategies and can only use its obtained payoff as feedback to search for the best
strategy, the system still moves close to the navigable equilibrium within a few hundred
steps (in the 100×100 grid). Finally we simulate the DRB game on Renren and LiveJournal
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networks, which have non-uniform population distributions different from Kleinberg’s grid-
based small-world model. Our simulation results show that in both networks, the game
quickly converges to an equilibrium where connection preferences of users are close to the
empirical ones.
In summary, our contributions are the following: (a) we propose the small-world formation

game and design a balanced distance-reciprocity payoff function to explain the navigability
of real social networks; (b) we conduct comprehensive theoretical and empirical analysis
to demonstrate that navigable small world is the unique robust equilibrium that would
naturally emerge from the game under both random perturbation and strategic collusions;
and (c) our game reveals a new insight between distance, reciprocity and navigability in
social networks, which may help future research in uncovering deeper phenomena in navi-
gable social networks. To our best knowledge, this is the first game theoretic study on the
emergence of navigable small-world networks, and the first study that linking relationship
reciprocity with network navigability.

Additional related work. We provide additional details of prior works on explaining
the emergence of navigable small-world networks, and other related studies not covered in
the introduction.
Some studies try to explain navigability by assuming that nodes form links to optimize

for a particular property. Mathias et al. [Mathias and Gopal 2001] assume that users try to
make trade-off between wiring and connectivity. Hu et al. [Hu et al. 2011] assume that peo-
ple try to maximize the entropy under a constraint on the total distances of their long-range
contacts. These works rely on simulations to study the network dynamics. Moreover, the
navigability of a network is sensitive to the weight of wiring cost or the distance constraint,
and it is unlikely that navigable networks as defined by Kleinberg [Kleinberg 2002] would
naturally emerge.
Another type of works propose node/link dynamics that converge to navigable small-

world networks. Clauset and Moore [Clauset and Moore 2003] propose a rewiring dynamic
modeling a Web surfer such that if the surfer does not find what she wants in a few
steps of greedy search, she would rewire her long-range contact to the current end node
of the greedy search. They use simulations to demonstrate that a network close to Klein-
berg’s navigable small world will emerge after long enough rewiring rounds. Sandberg and
Clarke [Sandberg and Clarke 2006] propose another rewiring dynamic where with an inde-
pendent probability of p each node on a greedy search path would rewire their long-range
contacts to the search target, and provide a partial analysis and simulations showing that
the dynamic converges to a network close to the navigable small world. Chaintreau et
al. [Chaintreau et al. 2008] use a move-and-forget mobility model, in which a token starting
from each node conducts a random walk (move) and may also go back to the starting point
(forget), and use the distribution of the token on the grid as the distribution of the long-
range contacts of the starting node. They provide theoretical analysis showing that there
exists a critical forgetting value for which the move-and-forget model provides navigabil-
ity. However, the underlying mechanism driving the critical value to be chosen in practice
remains unclear.
The approach taken by these studies can be viewed as orthogonal and complementary

to our approach: they aim at using natural dynamics (rewiring or mobility dynamics) to
explain navigable small world, while we focus on directly exploring the entire parameter
space of connection preferences of nodes and use game theoretic approach to show, both
theoretically and empirically, that the nodes would naturally choose their connection pref-
erences to form the navigable small world. The connection preference can be considered a
higher level decision-making variable for individuals that pushes them to make long-range
connections over time. In particular, selecting connection preference captures the people’s
process of cognitively creating behavioral plans (i.e., intensions) on how to distribute the
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finite time and effort among nodes of different distance. Once the preference is selected, the
players would engage in activities such as rewiring or mobility dynamics to create long-range
contacts with the corresponding connection intension. Moreover, all the prior studies only
show that they converge approximately to the navigable small world, while in our game the
navigable small world is precisely the only robust equilibrium. Finally, none of these works
introduce reciprocity in their model and we are the first to link reciprocity with navigability
of the small world.
Some studies use hyperbolic metric spaces or graphs to try to explain navigability in small-

world networks (e.g. [Boguñá et al. 2009; Papadopoulos et al. 2010; Krioukov et al. 2010;
Krioukov et al. 2009; Chen et al. 2013; Gulyás et al. 2015]). However, they do not explain
why connection preferences in real networks are around the critical value and how navigable
networks naturally emerge. In particular, Chen et al. [Chen et al. 2013] show that the nav-
igable small world in Kleinberg’s model does not have good hyperbolicity. Most recently,
Gulyás et al. [Gulyás et al. 2015] propose a game where each player tries to minimize the
number of links in order to be able to greedily route to all other nodes. The equilibrium of
the game is a scale-free network whose degree distribution follows a power law. However,
this game is not intended and does not explain the emergence of navigable small-world
network validated by Milgram and others’ experiments, where greedy routing can be done
efficiently in O(log2 n) time in expectation, and relationship reciprocity is not included in
any aspect of the game.

2. SMALL-WORLD FORMATION GAMES

In this section, we first present the game formulation based on Kleinberg’s small-world
model, and we then study the payoff function which is key to understanding the underlying
mechanisms that give rise to navigable small world networks.

2.1. Game Formulation based on Kleinberg’s Small-World Model

Small-world model. Let V = {(i, j) : i, j ∈ [n] = {1, 2, . . . , n}} be the set of n2 nodes
forming an n × n grid. For convenience, we consider the grid with wrap-around edges
connecting the nodes on the two opposite sides, making it a torus. For any two nodes
u = (iu, ju) and v = (iv, jv) on this wrap-around grid, the grid distance or Manhattan
distance between u and v is defined as dM (u, v) = min{|iv − iu|, n− |iv − iu|}+min{|jv −
ju|, n− |jv − ju|}.
The Kleinberg’s small-world model has two universal constants p, q ≥ 1, such that (a)

each node has undirected edges connecting to all other nodes within lattice distance p,
called its local contacts, and (b) each node has q random directed edges connecting to
possibly faraway nodes in the grid called its long-range contacts, drawn from the following
distribution. Each node u has a connection preference parameter ru ≥ 0, such that the i-th
long-range edge from u has endpoint v with probability proportional to 1/dM (u, v)ru , that
is, with probability pu(v, ru) = dM (u, v)−ru/c(ru), where c(ru) =

∑

∀v 6=u dM (u, v)−ru is the
normalization constant. Let r be the vector of ru values on all nodes. We use r ≡ s to denote
ru = s, ∀u ∈ V .
The above model can be easily extended to k dimensional grid (with wraparound) for

any k = 1, 2, 3, . . ., where each long range contact is still established with probability pro-
portional to 1/dM (u, v)ru . We use K(n, k, p, q, r) to refer to the class of Kleinberg random
graphs with parameters n, k, p, q, and r.

Small-world formation game. A game is described by a system of players, strategies and
payoffs. Connection preference ru in Kleinberg’s model reflects u’s intention in establishing
long-range contacts: When ru = 0, u chooses its long-range contacts uniformly among all
nodes in the grid; as ru increases, the long-range contacts of u become increasingly clustered
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in its vicinity on the grid. Our insight is to treat connection preference as node’s strategy
in a game setting and study the game behavior.
More specifically, we model this via a non-cooperative game among nodes in the network.

First, we assume that each ru is taken from a discrete set Σ = {0, γ, 2γ, 3γ, . . . , }, where γ
represents the granularity of connection preference and is in the form of 1/g for some positive
integer g ≥ 2. Using discrete strategy set avoids nuances in continuous strategy space and
is also reasonable in practice since people are unlikely to make infinitesimal changes.
Next, we model the small-world network formation as a game Γ = (Σ, πu)u∈V , where V

is the set of nodes (players) in the grid, connection preference ru ∈ Σ is the strategy of a
player u, and πu : S → R is the payoff function of u, with S = Σ×Σ× . . .×Σ. An element
r = (r1, r2, . . . , rn) ∈ S is called a strategy profile.
Let C = 2V \ ∅ denote the set of all coalitions. For each coalition C ∈ C, let −C = V \C,

and if C = {u}, we denote −C by −u. We also denote by SC the set of strategies of players
in coalition C, and rC the partial strategy profile of r for nodes in C.

Objective. Greedy routing on the small-world network from a source node u to a target
node v is a decentralized algorithm starting at node u, and at each step if routing reaches a
node w, then w selects one node from its local and long-range contacts that is closest to v
in grid distance as the next step in the routing path, until it reaches v. In [Kleinberg 2002],
Kleinberg shows that given a two-dimensional grid, when r ≡ 2, the expected number of
greedy routing steps (called delivery time) is O(log2 n), but when r ≡ s 6= 2, it is Ω(nc) for
some constant c related to s. More generally, for any k dimensional grid, it is shown that
r ≡ k is the critical value allowing efficient greedy routing. Hence, we call Kleinberg’s small
world with r ≡ k the navigable small world.
Interestingly, empirical evidences have demonstrated that the real-world

network is navigable with the connection preference close to the criti-
cal value [Liben-Nowell et al. 2005; Cho et al. 2011; Adamic and Adar 2005;
Goldenberg and Levy 2009; Lambiotte et al. 2008; Illenberger et al. 2013]. We aim to
explain this striking coincidence from the perspective of individual incentives. In particular,
our objective is to study intuitively appealing payoff functions πu and find one that
individual efforts to get this payoff lead fairly quickly to the emergence of navigable
small-world network.

2.2. Routing-based Payoff

As navigable small world achieves best greedy routing efficiency, it is natural to consider
the payoff function as the expected delivery time to the target in greedy routing. Given the
strategy profile r ∈ S, let tuv(ru, r−u) be the expected delivery time from source u to target
v via greedy routing. The payoff function is given by:

πu(ru, r−u) = −
∑

∀v 6=u

tuv(ru, r−u). (1)

We take a negation on the sum of expected delivery time because nodes prefer shorter
delivery time.
Although the above payoff function is intuitive and simple, it has some serious issues.

Prior work [Gulyás et al. 2012] has already proved that, with the length of greedy paths as
the payoff, player u’s best response is to link uniformly (i.e., ru = 0) for the one-dimensional
case. For higher dimensions, Figure 3 shows the expected delivery time for a single node u
at a 100× 100 grids, where each node generates q = 10 links. We see that when other nodes
fixed their strategy (e.g., r−u ≡ 2), the best strategy of a single node u is 0. More tests
on different initial conditions reach the same result that the system will converge to the
random small-world networks. The intuitive reason is that to reach other nodes quickly, it
is better for a node to evenly spread its long-range contacts from the individual prospective
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(or equivalently, seeking the long-range contacts of the largest distance on average given
ru ≥ 0). This is inconsistent with empirical evidence that real-world networks are navigable
ones, where links are much more likely to connect neighbor nodes than distant nodes.
In practice, creating and maintaining long-range links have higher costs, so one may adapt

the above payoff function by adding the grid distances of long-range contacts as a cost term
in the payoff function:

πu(ru, r−u) = −
∑

∀v 6=u

tuv(ru, r−u)− λ
∑

∀v 6=u

pu(v, ru)dM (u, v), (2)

where λ is a factor controlling the long range cost and pu(v, ru) = dM (u, v)−ru/c(ru) is
the probability that u takes v as a long-range contact under the strategy of ru. A larger
λ means users are more concerned with distance costs. Figure 4 shows that the best strat-
egy of a user u is significantly influenced by the cost factor. Similar result is also shown
in [Gulyás et al. 2012]. Thus, it is unclear if the navigable small-world network can naturally
emerge from this type of game.
In the above payoff functions, we use the expected delivery time to measure the routing

efficiency to an arbitrary node. It is also possible to give more complex payoff functions by
considering the distribution functions of delivery time, such as the percentage of nodes that
can be delivered within a given number of steps. However, given that individuals can have
different strategies, it is very difficult to obtain the explicit form of delivery time tuv(ru, r−u)
in terms of users strategies r. Due to this disadvantage of the delivery time-based games,
there is no theoretical guarantee that the network formation would converge to the desired
navigable small world.

2.3. Distance-Reciprocity Balanced Payoff

The previous section demonstrates that seeking short routing distance alone cannot ex-
plain the emergence of navigable small world, and thus people in the social network must
have some other objective to achieve. Reciprocity is regarded as a basic mechanism that
creates stable social relationships in the real world [Gouldner 1960]. Several empirical
studies [Java et al. 2007; Liben-Nowell et al. 2005; Mislove et al. 2007] also show that high
reciprocity is also a typical feature present in real small-world networks (such as Flickr,
YouTube, LiveJournal, Orkut and Twitter).
Therefore, we consider the payoff of a user u as the following balanced objective between

distance and reciprocity:

πu(ru, r−u) =





∑

∀v 6=u

pu(v, ru)dM (u, v)





αu

×





∑

∀v 6=u

pu(v, ru)pv(u, rv)



 , (3)
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where
∑

∀v 6=u pu(v, ru)dM (u, v) is the mean grid distance of u’s long-range contacts,
∑

∀v 6=u pu(v, ru)pv(u, rv) is the mean probability for u to form bi-directional links with its

long-range contacts, i.e., reciprocity, and αu (αu > 0) is a constant exponent with respect to
node u, capturing how that user weighs the relative importance of distance and reciprocity.
Note here the tradeoff exponent αu could be heterogeneous among players, modeling users
having different weights on the balance between the distance and reciprocity tradeoff. So our
utility function is very flexible and actually represents a large class of tradeoff functions. We
refer the small-world formation game with payoff function in Eq.(3) the Distance-Reciprocity
Balanced (DRB) game.
The payoff function in Eq.(3) reflects two natural objectives users in a social network

want to achieve: first, they want to connect to remote nodes, which may give them di-
verse information as in the famous ”the strength of weak ties argument” by Granovetter
[Granovetter 1973]; second, they want to establish reciprocal relationship which are more
stable in the long term. However, these two objectives can be in conflict for a node u when
others prefer linking in their vicinity (i.e., other nodes v choosing positive exponent rv). In
this case, faraway long-range contacts are less likely to create reciprocal links. Therefore,
node u should obtain the maximum payoff when it achieves a balance between the two
objectives. We use the simple product of distance and reciprocity objectives to model this
tradeoff, and allow different nodes to have different emphasis on distance-reciprocity trade-
offs with their own exponents. One may also consider the addition of the distance term and
the reciprocity term to model the tradeoff, but since the two quantities have different unit
of scale — distance scales from 1 to O(kn) while reciprocity is a probability between 0 and
1, we believe the multiplicative formulation makes more sense.
We remark that the reciprocity term

∑

∀v 6=u pu(v, ru)pv(u, rv) does not consider reci-
procity formed by fixed local contacts. Effectively, we disregard local contacts and treat
p = 0 in the small world setting K(n, k, p, q, r). This treatment makes our analysis more
streamlined and only focused on long-range contacts, and it also makes intuitive sense: the
local contacts are passively given based on geographic location, while long-range contacts
are actively established by nodes based on their connection preference, and thus reciprocity
based on long-range contacts could make more sense. For example, your neighbors in the
same apartment building are your local contacts by physical location, but it does not mean
that they are your friends, and you still need to intentionally establish friendship (based on
your preference) among your neighbors, and thus reciprocity only by physical location does
not mean much but reciprocity based on actively established relationship does mean a lot
for an individual.
Existing network formation games typically use pure-link-based strategy and lead to

mostly trivial equilibria such as cliques or stars. Different from prior games, we use the link
probability functions as the strategies, which can be viewed as a mix strategy on pure links,
but with restricted distributions. Here, we focus on the power-law distributions assumed
in Kleinberg’s small-world models, which is also supported from findings in several real
complex networks, such as human travel network [Gonzlez et al. 2008; Zhao et al. 2015],
communication network [Krings et al. 2009], trade network [Bhattacharya et al. 2008] and
other social networks [Liben-Nowell et al. 2005; Cho et al. 2011].
In practice, the strategy captures certain behavioral preference of players related to con-

nection. One concrete example is mobility preference in human travel network, where the
link distribution can be understood as the trip distance distribution by taking the grid loca-
tion of a node as its home. In this network, the strategy ru captures the mobility preference
of individual u, large ru results in large possibility of short distance travel. Our game means
that each user adjusts its mobility preference to the heterogeneous preferences of others for
a better payoff, such as obtaining non-redundant information via long-distance visits and
social support enforced by mutual visits.
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3. PROPERTIES OF THE DRB GAME

In this section, we conduct theoretical analysis to discover the properties of the DRB game.
We begin by considering the problem of the existence of equilibria in the game, and if
the answer is yes, whether there exist multiple equilibria. In Section 3.1, we prove that
DRB game has only two Nash equilibria r ≡ k and r ≡ 0, corresponding to the navigable
and random small-world networks, respectively. Given multiple Nash equilibria, we further
investigate if the navigable small world possesses further properties making it the likely
choice in practice. This is the task of the next two sections.
One way to solve the problem of multiple equilibria is to consider a more appealing

equilibrium concept–strong Nash equilibrium (SNE). While in a NE no player can improve
its payoff by unilateral deviation, in a SNE there is no coalition of players that can improve
their payoffs by collective deviation. In Section 3.2, we show that the navigable small-world
equilibrium is a SNE in the game, which is much more stable than the random small-world
equilibrium.
Another way to approach the problem is to study the convergence to equilibrium under

the best response dynamics. This dynamics could help to select among multiple equilibria of
the game. In Section 3.3, we show that the navigable small-world equilibrium is reachable
via best response dynamics from any state not in the other equilibrium. We also prove
that the navigable small-world NE can also tolerate large perturbations of players under
best response dynamics, whereas the random small-world NE is extremely unstable under
perturbation.
We finally give a description how the navigable small-world network is formed by sum-

marizing our results in Section 3.4.

3.1. Equilibrium Existence

Nash equilibrium (NE) for the strategic game Γ = (Σ, πu)u∈V is a strategy profile r∗ ∈ S
such that each player’s strategy r∗u (∀u ∈ V ) is a best response to the other players’ strategies
s∗−u, where the best response is defined as follow:

Definition 3.1 (Best response). Player u’s strategy r∗u ∈ Σ is a best response to the
strategy profile r−u ∈ S−u if

πu(r
∗
u, r−u) ≥ πu(ru, r−u), ∀ru ∈ Σ \ {r∗u},

Moreover, if “≥” above is actually “>” for all ru 6= r∗u, then s∗u is the unique best response
to s−u. We denote this unique best response as Bu(s−u). Strategy profile r∗ is a strict Nash
equilibrium if for every player u ∈ V , r∗u is the unique best response to r∗−u.

We first show that the navigable small-world network is a Nash Equlibrium of the DRB
game. To do so, we focus on a local region centering around a node w preferring local
connection, and we have the following important lemma.

Lemma 3.1. In the k-dimensional DRB game, for any constant δ, there exists n0 ∈ N

(may depend on δ), for any n ≥ n0, for any non-zero strategy profile r 6≡ 0, if a node w
satisfies rw ≥ k or rw = maxv∈V rv, then for any node u within δ grid distance of w (i.e.
dM (u,w) ≤ δ), u has the unique best response of ru = k.

Proof (Sketch). The intuition is as follows. When a node w satisfying rw ≥ k or
rw = maxv∈V rv, it prefers its long-range contacts to be in its vicinity. For a nearby node u
with dM (u, v) ≤ δ, the case of ru = k provides the best balance between good grid distance
to long-range contacts and high reciprocity (even just counting the reciprocity received from
w). In other cases, the node u obtains either too low reciprocity or too short average grid
distance to long-range contacts. In the case of ru < k, the node u could increase the average
grid distance to long-range contacts by an factor of O(lnn), but the reciprocity can be
reduced by a factor of Ω(nγ), as compared with those provided by ru = k. Thus, the ratio
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of payoff for ru < k to payoff for ru = k is at most O(lnαu n/nγ), which is smaller than
one given sufficient large n. Similarly, in the case of ru > k, the node u could increase the
reciprocity by an factor of O(lnn), but the average grid distance to long-range contacts can
be reduced by a factor of Ω(nγ), as compared with those provided by ru = k. Thus, the
ratio of payoff for ru > k to payoff for ru = k is also at most O(lnn/nαuγ), which is also
smaller than one given sufficient large n. The detailed proof is included in Appendix B.

The above lemma shows that given a non-zero profile, we can find a local region where the
best response of every node is k. This lemma is instrumental to several analytical results,
including the following theorem.

Theorem 3.1. For the DRB game in a k-dimensional grid, the following is true for
sufficiently large n: 1 For every node u ∈ V , every strategy profile r, and every s ∈ Σ, if
r−u ≡ s, then u has a unique best response to r−u ≡ s:

Bu(r−u ≡ s) =

{

k if s > 0,

0 if s = 0.

Proof (Sketch). For the case of s > 0, given the strategy profile of r−u ≡ s, for every
node u, each of its nearest neighbor w (i.e., dM (u,w) = 1) satisfies rw = maxv∈V rv. Thus
by Lemma 3.1, node u’s unique best response to r−u ≡ s is ru = k.
When s = 0, all others nodes link uniformly. In this case, the reciprocity for node u

becomes a constant independent of its strategy ru. Thus, ru should be selected to maximize
average distance of u’s long-range contacts, which leads to ru = 0. The detailed proof of
this case is included in Appendix C.

Theorem 3.1 shows that when all other nodes use the same nonzero strategy s, it is
strictly better for u to use strategy k; when all other nodes uniformly use the 0 strategy, it
is strictly better for u to also use 0 strategy. When setting s = k and s = 0, we have:

Corollary 3.1. For the DRB game in the k-dimensional grid, the navigable small-
world network (r ≡ k) and the random small-world network (r ≡ 0) are the two strict Nash
equilibria for sufficiently large n, and there are no other uniform Nash equilibria.

We next examine if there exists any non-uniform equilibrium.

Theorem 3.2. In the k-dimensional DRB game, there is no non-uniform Nash equi-
librium for sufficiently large n.

Proof. Given any non-uniform strategy profile r, let V≥k = {v|rv ≥ k}. If V≥k 6= ∅, we
can find a pair of grid neighbors (u,w) with ru 6= k and rw ≥ k. If V≥k = ∅, we can find
a pair of grid neighbors (u,w) with ru 6= k and rw = maxv∈V rv. In either case, we know
the node u could obtain better payoff by unilaterally deviating to the strategy ru = k by
Lemma 3.1. Therefore, non-uniform strategy profile r is not a Nash equilibrium.

Combining the above theorem with Corollary 3.1, we see that DRB game has only two
Nash equilibria r ≡ k and r ≡ 0, corresponding to the navigable and random small-world
networks, respectively.

3.2. Equilibrium Stability under Collusion

While in an NE no player can improve its payoff by unilateral deviation, some of the players
may benefit (sometimes substantially) from forming alliances/coalitions with other players.

1Technically, a statement being true for sufficiently large n means that there exists a constant n0 ∈ N that
may only depend on model constants such as k, γ and αu, such that for all n ≥ n0 the statement is true in
the grid with parameter n.
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So we study a more general t-Strong Nash equilibrium (t-SNE) to study the resilience to
coalitions.

Definition 3.2 (t-Strong Nash equilibrium). For a number t ∈ {1, 2, . . . , |V |}, a strategy
profile r∗ ∈ S is a t-strong Nash equilibrium if for all C ∈ C with |C| ≤ t, there does not
exist any rC ∈ SC such that

∀u ∈ C, πu(rC , r
∗
−C) ≥ πu(r

∗), ∃u ∈ C, πu(rC , r
∗
−C) > πu(r

∗).

When t = |V |, we simply call r∗ the strong Nash equilibrium (SNE). Note that 1-SNE falls
back to NE.

We first show the important result that the navigable small-world network is able to
tolerate collusion of any group of players, i.e., r ≡ k is a |V |-SNE or simply SNE.

Theorem 3.3. For the DRB game in the k-dimensional grid, the navigable small-world
network (r ≡ k) is a strong Nash equilibrium for sufficiently large n.

Proof (Sketch). We prove a slightly stronger result — any node u in any strategy
profile r with ru 6= k has strictly worse payoff than its payoff in the navigable small world.
Intuitively, when u deviates to 0 ≤ ru < k, its loss on reciprocity would outweigh its gain on
link distance; when u deviates to ru > k, its loss on link distance is too much to compensate
any possible gain on reciprocity. The detailed proof is in Appendix D.

The above theorem shows that the navigable small-world equilibrium is not only immune
to unilateral deviations, but also to deviations by coalitions of any size, and in particular it
is Pareto-optimal, such that no player can improve her payoff without decreasing the payoff
of someone else.
After showing that the navigable small-world is robust to collusions of any size, we now

show that random small world equilibrium is not stable even under the collusion of a pair
of nodes.

Theorem 3.4. For the DRB game in a k-dimensional grid, the random small-world
NE r ≡ 0 is not a 2-strong Nash equilibrium for sufficiently large n.

Proof (Sketch). If a pair of grid neighbors collude to deviate their strategies to k, they
could gain much benefit in terms of reciprocity, as compared with the loss of relationship
distance. As a result, they would both get better payoff than their payoff in r ≡ 0. The
detailed proof is in Appendix E.

3.3. Convergence under Best Response Dynamics

For our game, we finally study its best response dynamics to investigate its properties of
convergence to Nash equilibria. Best response dynamics are typically specified in terms of
asynchronous steps: in each asynchronous step, one player moves from its current strategy
to its best response to the current strategy profile, and thus the entire strategy profile
moves one step accordingly. To facilitate the study of convergence speed, we also look into
synchronous steps for the best response dynamics: in each synchronous step, every player
moves from its current strategy to its best response to the current strategy profile, and
collectively we count this as one synchronous step.
With the concept of best-response dynamics, we first show that for any non-zero profile,

we can find a node that triggers a cascade of adopting strategy k from neighbors to neighbors
of neighbors, and so on, ultimately leading to the navigable small world equilibrium.

Theorem 3.5. In the k-dimensional DRB game, for sufficiently large n, the navigable
small-world equilibrium r ≡ k is reachable via best response dynamics from any non-zero
strategy profile r 6≡ 0. Moreover, if all nodes move synchronously in the best response dy-
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namics, then it takes at most k⌊n/2⌋ synchronous steps for any non-zero strategy profile to
converge to the navigable small-world equilibrium r ≡ k.

Proof. Let Vw(j) = {v|dM (v, w) ≤ j}. Given a non-zero profile r, we can find a node
w satisfying rw ≥ k or rw = maxv∈V rv. Given a constant δ (δ ≥ 2), Lemma 3.1 implies
that for sufficiently large n, for every u ∈ Vw(δ), in one asynchronous step u will set ru = k.
Then consider u’s neighbors Vu(δ), in one asynchronous step each of them will also set their
strategy to k. Following this cascade it is clear that there exists a step sequence such that
the non-zero profile r will reach the navigable small world r ≡ k.
We now consider that all nodes move synchronously. Again we first find a node w satisfying

rw ≥ k or rw = maxv∈V rv. By Lemma 3.1 all nodes in Vw(δ/2) (δ/2 ≥ 1) move to strategy
k in the first synchronous step. Consider the second synchronous step. Even though we
are not sure if node w adopts strategy k in the first synchronous step, we know that w
adopts k in the second synchronous step since w has neighbors adopting k after the first
synchronous step. Moreover, for all nodes in Vw(δ/2), their mutual grid distance is at most
δ, and thus Lemma 3.1 applies to these nodes in the second synchronous step and they
all stay at strategy k. Finally for their grid neighbors within grid distance δ/2, essentially
nodes in Vw(δ) \ Vw(δ/2), they will also adopt strategy k in the second synchronous step.
Repeating the above procedure, all nodes that have adopted k will keep k while their grid
neighbors will also adopt k. Since the longest grid distance among nodes in the k-dimension
grid is k⌊n/2⌋, after at most k⌊n/2⌋ synchronous steps, all nodes adopt k.

The proof of the above theorem provides valuable insights into the scalability of the
game. Notice that a k-dimension grid contains a total of |V | = nk players, so the above
theorem states that, for any non-zero strategy profile, the convergence time to navigable NE

is at most O(|V |
1
k ) synchronous steps if players move synchronously in the best response

dynamics. Also, any player u involved in the cascade of adopting ru = k can make this best
decision locally according to the strategies of the players in his neighborhood. Thus our
game is scalable with the number of players.
Next, we would like to see if the navigable equilibrium can also tolerate perturbations

of players under best response dynamics, where the perturbations could be arbitrary and
there is no guarantee that perturbed players are better off. From Theorem 3.5, we know
that as long as not all nodes deviate to zero, there exists a best response dynamic sequence
for the system to go back to the navigable small world, and if all nodes move synchronously,
the system reaches the navigable small world in at most k⌊n/2⌋ synchronous steps. We now
give a further result on the stability of navigable small-world in tolerating perturbations of
random players: we show that even if each individual independently perturbs to an arbitrary
strategy with a fairly large probability, the system moves back to the navigable small world
in just one synchronous step, and even if players move asynchronously, it is guaranteed
that the system moves back to the navigable small world after each node takes at least one
asynchronous step.

Theorem 3.6. Consider the navigable small-world equilibrium r ≡ k for the DRB
game in a k-dimensional grid (k > 1). Suppose that with probability pu each node u ∈ V
independently perturbs ru to an arbitrary strategy r′u ∈ Σ, and with probability 1−pu r′u = ru.
Let αmin = minu∈V αu, then for any constant ε with 0 < ε < min{1, αmin}γ/4, there exists
n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0, if pu ≤ 1 − n−ε, with probability
at least 1 − 1/n, the perturbed strategy profile r′ moves back to the navigable small world
(r ≡ k) in one synchronous step, or as soon as every node takes at least one asynchronous
step in the best response dynamics.

Proof (Sketch). The independently selected deviation node set satisfies that with
high probability, for any node u, at sufficiently many distance levels from u there are enough
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fraction of non-deviating nodes. We then show that u obtains higher order payoff just from
these non-deviating nodes than any possible payoff she could get from any possible deviation.
The detailed proof is in Appendix F.

Notice that the bound of 1−n−ε is close to 1 when n is sufficiently large, meaning that the
navigable equilibrium tolerates arbitrary deviations from a large number of random nodes.
For the random small-world network, which is shown to be the other NE, Theorem 3.5

already implies that even one deviating player could possibly drive the system out of the
random small-world equilibrium and lead it towards the navigable small-world equilibrium.
However, converging to navigable small world is not guaranteed in this case. In the fol-
lowing, we show a stronger convergence result: if each individual u deviates from ru = 0
independently with even a small probability, then the system could switch to the navigable
small world in just one synchronous step, or after each node takes at least one asynchronous
step, and the convergence to the navigable small world is guaranteed in this case.

Theorem 3.7. For the DRB game in a k-dimensional grid (k > 1) with the initial
strategy profile r ≡ 0 and a finite perturbed strategy set S ⊂ Σ with at least one non-zero
entry (0 < maxS ≤ β), for any constant ε with 0 < ε < γ/2, there exists n0 ∈ N (depending
only on k, γ, and ε), for all n ≥ n0, if for any u ∈ V , with independent probability of

p ≥ n− (k−1)ε
k+β , ru ∈ S \ {0} after the perturbation, then with probability at least 1 − 1/n,

the network converges to the navigable small world in one synchronous step, or as soon as
every node takes at least one asynchronous step in the best response dynamics.

Proof (Sketch). We consider the gain of a node u when selecting ru = k separately
from each group of nodes with the same strategy after the perturbation, and then apply
the results in Theorem 3.1. The full proof is in Appendix G.

Note that 1/n
(k−1)ε
k+β is very small for large n and a finite perturbed strategy set S, which

implies that the best response of any node u in the perturbed profile becomes ru = k as
long as a small number of random nodes are perturbed to a finite set of nonzero strategies.

3.4. Implications from Theoretical Analysis

Combining the above theorems together, we obtain a better understanding of how the
navigable small-world network is formed. From any arbitrary initial state, best response
dynamic drives the system toward some equilibrium, with the navigable small world as one
of them (Corollary 3.1 and Theorem 3.5). Even if the systems temporarily converges to
a non-navigable equilibrium, the state will not be stable — either a small-size collusion
(Theorem 3.4) or a small-size random perturbation (Theorem 3.7) would make the system
leave the current equilibrium and quickly enter the navigable equilibrium. Once entering the
navigable equilibrium, it is very hard for the system to move away from it — no collusion
of any size would drive the system away from this equilibrium (Theorem 3.3), and even if
a large random portion of nodes deviate arbitrarily the system still converge back to the
navigable equilibrium as long as each node takes one best-response step (Theorem 3.6).
These theoretical results strongly support that the navigable small world is the unique
stable system state, which suggests that the fundamental balance between reaching out to
remote people and seeking reciprocal relationship is crucial to the emergence of navigable
small-world networks.

4. QUALITY OF EQUILIBRIA

In a Nash equilibrium, each user is maximizing its individual payoff. However, there is also
a global function of social welfare, which is the total payoff of all nodes. A natural question
then is how the social welfare of a system is affected when its users are selfish. Thus, in this
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section, we would like to examine how good the solution represented by an equilibrium is
relative to the global optimum.
To study the social welfare, we focus on the homogenous network in which all players

use the same tradeoff exponent α, since it is difficult to normalize and integrate individual
utility measures if they have different emphasis on distance or reciprocity. We first examine
the global optimum.

Theorem 4.1. In the k-dimensional homogeneous DRB game, the optimal social wel-

fare is Θ
(

nα+k

lnα+1 n

)

for sufficiently large n.

Proof (Sketch). We prove that a node u with ru = k could get high payoff if it has
at least one neighbor v with rv > k. In this case, the node u could get both large grid
distance to long-range contacts and high reciprocity (at least from v). So if the system has
a constant fraction of such nodes, the social welfare is optimized. The detailed proof is
included in Appendix H.

The proof of the above theorem provides some interesting insights: First, the optimal strat-
egy profile is not the navigable network where all players get the same payoff, instead, it
exhibits inequality in the distribution of payoff. The rich (e.g., those with strategy of k)
could get high payoff whereas the poor (e.g., those with strategy larger than k) only get
very low payoff. Furthermore, the optimum social welfare is achieved when the poor sac-
rifice their distance payoff and focus on their reciprocity (by selecting a strategy greater
than k), so that their rich neighbors could obtain a high balanced payoff of both distance
and reciprocity. This situation reminds us social relationships generated by different social
status (e.g. employee-employer relationship) or by tight bonds with mutual understanding
and support (such as marriage relationship).
We next focus on the standard measures of the sub-optimality introduced by self-

interested behavior. In particular, price of stability (PoS) is the ratio of the solution quality
at the best Nash equilibrium relative to the global optimum, whereas the price of anarchy
(PoA) is the ratio of the worst Nash equilibrium to the optimum.

Theorem 4.2. In the k-dimensional homogeneous DRB game, for sufficiently large n,

the PoS is Θ(lnn) and the PoA is Θ
(

nk

lnα+1 n

)

.

Proof (Sketch). From the analysis in Section 3.1, we know that the system has only
two Nash equilibria r ≡ k and r ≡ 0, corresponding to navigable and random small-world
networks, respectively. We show that the navigable small-world NE is a better equilibrium
since the strategy of k provides the best balance between grid distance to long-range contacts
and reciprocity. Combined with Theorem 4.1, we get the PoS and PoA of the system. The
detailed proof is included in Appendix I.

The above theorem indicates that, in the good case when the system is in the navigable
network equilibrium, the social welfare is reasonably close to the social optimum (with ratio
Θ(lnn) among nk nodes), but in the bad case when the network is in the random network
equilibrium, the social welfare is far from the social optimum.

5. EMPIRICAL EVALUATION

In this section, we empirically examine the stability of navigable small-world NE. We sim-
ulate the DRB game on two dimensional grids, and consider nodes having full information,
limited information, or no information of other players’ strategies.
In Section 5.1 and Section 5.2, we focus on the homogeneous game (αu = 1, ∀u ∈ V ) as

our equilibrium analysis is robust to αu under the k-dimensional grid of people. In Section
5.3, we further examine the heterogeneous game under non-uniform population density
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world NE (perturbed probability
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across real social networks. Before the main empirical evaluation, we first test the effect of
the grid size n on navigable equilibrium, since our theoretical results require a sufficiently
large n.
Our theoretical analysis shows that one can find a large enough constant n0, such that

the navigable equilibrium is exactly r ≡ 2 for all n ≥ n0. Thus, we first verify empirically
the relationship between the size of the grid and the actual connection preference value for
the equilibrium. Figure 5 shows how the equilibrium value changes over n in a 2D grid, with
various granularity. For example, with a granularity of γ = 0.1, the equilibrium decreases
from r ≡ 2.3 for a very small 10×10 grid, to r ≡ 2 for a 1000×1000 grid. This shows that we
do not need a very large grid in order to obtain results close to our theoretical predictions.
In our following experiments, we use a 100× 100 grid with the granularity γ = 0.1, which
leads to an equilibrium r ≡ 2.1 close to theoretical prediction while reducing the simulation
cost.

5.1. Stability of NE under Perturbation

To demonstrate the stability of navigable NE, we simulate the DRB game with random
perturbation. At time step 0, each player is perturbed independently with probability p. If
the perturbation occurs on a player u, we assume that the player u chooses a new strategy
uniformly at random from the interval [0, 10] ∩ Σ. Notice that for strategy ru > 10, the
behavior of nodes is similar to ru = 10 as nodes only connect to the 4 grid neighbors.
Let r0 be the strategy profile at time 0 after the perturbation. At each time step t ≥ 1,
every player picks the best strategy based on the strategies of others in the previous step:
rtu = argmaxru∈Σ∩[0,10] π(ru, r

t−1
−u ), ∀u, ∀t > 1.

Figure 6 shows an extreme case where every player is perturbed when the initial profile
is r ≡ 2. The box-plot shows the distribution of players’ strategies at each step. The figure
shows that in just two steps the system returns to the navigable small-world NE. We tested
100 random starting profiles, and all of them converge to the navigable NE within two
steps. This simulation result indicates that the navigable NE is very stable for random
perturbations.
To contrast, we study the stability of the random small-world network in terms of toler-

ating perturbations. Figure 7 shows the result of randomly perturbing only 1% of players
at the random NE, which are shown as the outliers at step 0. Note that 1% perturbation
does not meet the requirement in Theorem 3.7. However, this small fraction of players
would affect the decision of additional players in their vicinity, who can significantly im-
prove the reciprocity by also linking in the vicinity (indicated by Theorem 3.5). The figure
clearly shows that in a few steps, more and more players would change their strategies, and
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Fig. 10. Players have no knowl-
edge of strategies of others.

the system finally goes to the navigable small-world NE.2 We tested 100 random starting
profiles, and all of them converge to the navigable NE within at most 12 steps.
These results show that the navigable small-world NE are robust to perturbations, while

random small-world NE is not stable and easily transits to the small-world NE under a
slight perturbation.

5.2. DRB Game with Limited Knowledge

In practice, a player does not know the strategies of all players. So we now consider how to
operate best response dynamics in practical scenarios. We first examine a weaker scenario
where a player only knows the strategies of their friends. With these limited knowledge, a
player can guess the strategies of all other players and pick the best response to the estimated
strategies of all players. We next consider the weakest scenario where each player has no
knowledge about the strategies of other players, and the only information needed is the
empirical payoff observed by the player. To get this information, a player can create a certain
number of links with the current strategy, and compute the payoff by multiplying the average
link distance and the percentage of reciprocal links. In this scenario, players cannot directly
calculate the best responses. Instead, they perform a heuristic search through choosing a
response of better payoff than their current strategies, whenever they have opportunities to
adjust the strategies. So as the time goes on, the player could change the strategy towards
the best response.

Scenario 1: knowing friends’ strategies. To examine the convergence of navigable
small-world NE in this scenario, we simulate the DRB game as follows. At time step 0,
each player chooses an initial strategy uniformly at random from the interval [0, 10]∩Σ. At
every step t ≥ 0, each player u creates q out-going long-range links based on her current
strategy rtu, and learns the connection preferences of these q long-range contacts. Let F t

u
be the set of these q long-range contacts. We further allows a random noise term ε for
each connection preference learned from the friends. Let r̂tv (v ∈ F t

u) be the learned (noisy)
connection preference. Then based on these newly learned connection preferences, player u
estimates the strategies of all other players. One reasonable estimation method is to assume
that players close to one another in grid distance have similar strategy. More specifically,
for a non-friend node v 6∈ F t

u, u estimates the strategy of v by the average weight of known

strategies: r̂tv =

∑

f∈Ft
u
r̂f,t−1/dM (v,f)

∑

f∈Ft
u
1/dM (v,f) .

Here we do not use the connection preferences learned in the previous steps and effectively
assume that those old links are removed. This is both for convenience, and also reasonable

2In step 1 and 2 in Figure 7, the number of outliers is larger than in step 0, even though the rendering make
it seems they are less.
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Fig. 11. The hometown location of Renren users.
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Fig. 12. Simulated network evolution over Renren
grid.

since people could only maintain a limited number of connections and it is natural that
new connections replace the old ones. Moreover, the connection preferences of those old
connections may become out-dated in practice anyway. After the estimation procedure,
player u uses the strategy r̂tv from all other players (either learned or estimated) to compute
its best response r̂t+1

u for the next step.
In our experiment, we set q = 30. Figure 8 shows that when players have accurate

knowledge of the strategies of their friends without noise, the system converges in just two
steps. Even when the information on friends’ strategies is noisy, the system can still quickly
stabilize in a few steps to a state close to the navigable small-world NE, as shown in Figure 9.
We tested 100 random starting profiles and also other estimation methods such as randomly
choosing a connection preference based on friends’ connection preference distributions, and
results are all similar. This experiment further demonstrates the robustness of the small-
world NE even under limited information on connection preferences.

Scenario 2: No information about others’ strategies. To make it even harder, we do
not allow the player to try many different strategies at each step before fixing her strategy
for the step. Instead, at each step each player only has one chance to slightly modify her
current strategy. If the new strategy yields better payoff, the player would adopt the new
strategy. So as the time goes on, the player could change the strategy towards the best one.
We simulate the DRB game as follows: At time step 0, each player chooses an initial

strategy uniformly at random from the interval [0, 10]∩Σ. Every player creates q out-going
links with her current strategy. At each time step t ≥ 1, each player changes the strategy,
i.e.,ru ← ru+δ, and creates q new links with this new strategy, where δ is a random number
determined as follows. First, for the sign of δ, in the first step it is randomly assigned positive
or negative sign with equal probability; in the remaining steps, to make the search efficient,
we keep the sign of δ if the previous change leads to a higher payoff; otherwise we reverse
the sign of δ. For the magnitude of δ, i.e. |δ|, we sample a value uniformly at random from
(0, 1] ∩Σ.
We simulate this system with q = 30. Figure 10 demonstrates that the system can still

evolve to a state close to the navigable small-world NE in a few hundred steps, e.g., the
strategies of 80.5% players fall in the interval [1.8, 2.4], and the median of the strategies is
the navigable NE strategy of 2.1. We test 50 random starting profiles, and take snapshots
of the strategy profiles at the time step t = 500. On average, the strategies of 79.8% players
in the snapshots fall in the interval [1.8, 2.4].
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Fig. 15. Simulated network evolu-
tion over LiveJournal network.

In summary, our empirical evaluation strongly supports that our payoff function consid-
ering the balance between link distance and reciprocity naturally gives rise to the navigable
small-world network. The convergence to navigable equilibrium will happen either when
the players know all other players’ strategies, or only learn their friends’ strategies, or only
use the empirical distance and reciprocity measure. Once in the navigable equilibrium, the
system is very stable and hard to deviate by any random perturbation. Furthermore, other
equilibria such as the random small world is not stable, in that a small perturbation will
drive the system back to the navigable small-world network.

5.3. DRB Game under Real Population Distribution

Recall that real population is not evenly distributed geographically as in the Kleinberg’s
model. So we want to examine if our game could lead to an overall connection preference
r similar to the empirical one in the real network. To do so, we examine our game with
the non-uniform geographic distribution of people in the following two real networks. We
also introduce heterogeneity in players’ tradeoff functions with αu taken from a uniform
distribution on [0.1, 10].

Renren Network. We sample 10K users at random from Renren network, and we con-
struct a real grid through mapping the hometown listed in users’ profiles to (longitude,
latitude) coordinates, as shown in Figure 11. To examine the convergence of navigable
small-world NE in this scenario, we simulate the DRB game as follows. At time step 0, each
player chooses an initial strategy uniformly at random from the interval [0, 5] ∩Σ. At each
time step t ≥ 1, every player picks the best strategy based on the strategies of others in the
previous step: rtu = argmaxru∈Σ∩[0,5] π(ru, r

t−1
−u ), ∀u, ∀t > 1.

Figure 12 shows that in a few steps, the system reaches a NE, where individual users
adopt their respective equilibrium strategies. In the NE, the mean of the strategies is 0.85
and the strategies of 88.1% users fall in the interval [0.7,1.1]. So the overall connection
preference of users in the simulated game is very close to the empirical value of 0.9 shown
in Figure 2.

LiveJournal Network. To evaluate across-dataset generalization, we also examine our
DRB game in the LiveJournal social network. LiveJournal is a community of bloggers
with over 39 million registered users worldwide as the end of 2012. Each user provides
a personal profile, including home location, personal interests and a list of other blog-
gers considered as friends. We crawl the profiles of 527,769 LiveJournal users used in the
study [Liben-Nowell et al. 2005]. Given the 224,155 users providing city information, we
successfully obtained a meaningful geographic location for only 197,504 users, as shown in
Figure 13. To get the empirical connection preference of these LiveJournal users, we com-
pute the friendship probability p(d) for any given distance d by the proportion of friendships
among all pairs (u, v) with distance d. Figure 14 shows the relationship between friendship
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probability and geographic distance, which shows that the real connection preference of
users is around 1.08. These results demonstrates that our game does generalize across on-
line social networks.

6. DISCUSSION AND FUTURE WORK

Our paper is a contribution to the literature on navigability and also on network formation
games. There exists a plethora of results relating to network formation games in economics,
as well as in computer science [Jackson 2004]. Existing games typically use pure-link-based
strategy, and it is difficult for an individual to estimate the potential likelihood of forming
reciprocal links to other users (i.e., the introduced notion of reciprocity). These games lead
to mostly trivial equilibria such as cliques or stars. Different from prior games, our game
uses the link probability functions as the strategies, and an individual is able to estimate
reciprocity by learning the connection preferences of others. This difference in modeling
methodology is substantive since it gives rise to the non-trivial structure of navigable small
world networks. Also, most network formation games examine the strategically stable net-
works in static and non-perturbed settings. By contrast, our game examines the stability of
equilibrium networks under the best response dynamics with the perturbation introduced.
Dynamics could help select among different equilibria of the static game, the results in this
paper illustrate this potential very well.
In the paper, we use a k-dimensional grid (k ∈ N \ {0}) to be consistent with Kleinberg’s

small-world model, where each grid location contains a single node (a total of nk nodes).
Let Bl(u) denote the number of nodes within distance l(l > 0) from a node u. In fact, the
key spatial property required in our analysis is Bl(u) = Θ(lD), ∀u ∈ V, ∀D > 0, where D is
actually the fractional dimension proposed by Liben-Nowell et al. [Liben-Nowell et al. 2005].
So most of our results can be easily extended to a more general space that can be described
the fractional dimension, where the grid is only the special case of integer dimension. The
results in Section 5.3 actually provided empirical demonstration on Renren and LiveJournal
latitude-longitude space that have a fractional dimension close to one. Similarly, we can
also allow multiple nodes to be in the same location as long as the spatial property of
Bl(u) = Θ(lD), ∀u ∈ V holds for l > 0, i.e., the space could still be described by the
fractional dimension. Given p = 0 in our setting K(n, k, p, q, r), each node has undirected
edges connecting to all other nodes in the same location as local contacts. As we have
discussed in Section 2.3, we do not consider these local contacts in our game.
The population size and the payoff obtained at the critical value are sufficiently large to

allow us to ignore stochastic effects. In our game, the environment state consists of (i) the
geographical distribution of users, which remains stable over time given the large population
size; and (ii) the tradeoff factor αu (αu > 0) for any user u, which has no influence on the
strategy choice over time, as implied by lemma 3.1. Specifically, a node u chooses ru = k
once it has a nearby node w satisfying rw ≥ k or rw = maxvV rv, irrespective of the tradeoff
factor every node chooses (including the u itself).
Our study opens many possible directions of future work. For example, one may provide

a theoretical analysis of the DRB game on the non-uniform population distributions, which
has been empirically validated by our experiments on the Renren and LiveJournal datasets.
Another direction is to integrate prior studies on human mobility model to provide a more
complete picture of the underlying mechanisms for navigable small-world networks. For
example, one could use move-and-forget mobility model [Chaintreau et al. 2008] to generate
link probability functions of power law form, and adopt our game-theoretic approach to drive
individuals to choose the critical one enabling navigability to arise. It is also interesting to
investigate the existence of other forms of utility functions, since given the complex human
behavior in the real world, there might be more behavioral factors leading to the actual real
small world. We wish our study could encourage more empirical and theoretical studies on
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the relationship between reciprocity, distance, and navigability, and perhaps uncover the
underlying human behavior model that integrates these factors together.
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Table I.

No-

ta-
tion

k, n Dimension and edge length of a grid n× n× . . .× n
︸ ︷︷ ︸

k

nD Diameter of grid, nD = k⌊n/2⌋
V Set of players
p, q Number of local and long-range contacts

dM (u, v) Manhattan distance between players u and v
ru Connection preference of player u
αu Constant exponent for player u’s distance-reciprocity tradeoff, (αu > 0)

c(ru) Normalization constant c(ru) =
∑

∀v 6=u dM (u, v)−ru

pu(v, ru) Probability that u connects v under ru, pu(v, ru) = dM (u, v)−ru/c(ru)
r Vector of ru values on all players (strategy profile)

πu(ru, r−u) Player u’s payoff given the strategy profile r

D(ru) Average link distance of u, D(ru) =
∑

∀v 6=u pu(v, ru)dM (u, v)
Pu(ru, r−u) Reciprocity of u, Pu(ru, r−u) =

∑

∀v 6=u pu(v, ru)pv(u, rv)
γ Granularity of connection preference, strategy set Σ = {0, γ, 2γ, 3γ, . . . , }

bu(j) The number of players at grid distance j from u
ξ−k Constant making bu(j) ≥ ξ−k jk−1 for 1 ≤ j ≤ ⌊n/2⌋
ξ+k Constant making bu(j) ≤ ξ+k jk−1 for j ≤ nD

ε Deviation from strategy k, ε = k − ru

A. COMMONLY USED RESULTS ON THE KLEINBERG’S SMALL WORLD AND THE DRB

GAME

In all proofs in the appendix, for a given node u ∈ V , we denote D(ru) =
∑

∀v 6=u pu(v, ru)dM (u, v) as its average grid distance of its long range contacts (simply

referred to as the link distance), and Pu(ru, r−u) =
∑

∀v 6=u pu(v, ru)pv(u, rv) as its reci-

procity. When r−u ≡ s, we simply use P (ru, s) to denote Pu(ru, r−u ≡ s). Moreover, for any
A ⊆ V , let Pu,A(r) =

∑

v∈A pu(v, ru)pv(u, rv) be the reciprocity u obtained from subset
A. We denote c(ru) =

∑

∀v 6=u dM (u, v)−ru as u’s normalized coefficient. The subscript u in

D(ru), P (ru, s) and c(ru) is omitted because their values are the same for all u ∈ V .
Let nD be the longest grid distance among nodes in K(n, k, p, q, r). We have that nD =

k⌊n/2⌋. We denote bu(j) as the number of players at grid distance j from u. We can find two
constants ξ−k and ξ+k only depending on the dimension k, so that ξ−k jk−1 ≤ bu(j) ≤ ξ+k j

k−1

for 1 ≤ j ≤ ⌊n/2⌋ and 1 ≤ bu(j) ≤ ξ+k j
k−1 for ⌊n/2⌋ < j ≤ nD.3 Note that the payoff

function for the DRB game is indifferent of parameters p and q of the network, so we treat
p = q = 1 for our convenience in the analysis.
Recall that we assume that each ru is taken from a discrete set Σ = {0, γ, 2γ, 3γ, . . . , },

where γ represents the granularity of connection preference and is in the form of 1/g for some
positive integer g ≥ 2. Using discrete strategy set avoids nuances in continuous strategy
space and is also reasonable in practice since people are unlikely to make infinitesimal
changes. Henceforth, for any ru 6= k, we have |k− ru| ≥ γ. The notation commonly used in
the paper is described in Table I.
We first show the following two lemmas, which will be used in the most of theorems.

3The exact values of ξ−k and ξ+k can be derived by the combinatorial problem of counting the number of
ways to choose k non-negative integers such that they sum to a given positive integer j.
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Lemma A.1. In the k-dimensional grid K(n, k, p, q, r), for a given node u ∈ V with a
strategy of ru, the normalized coefficient c(ru) has the following bounds:







ξ−k
2k+1k

nk−ru ≤ c(ru) ≤ ξ+k kk−runk−ru if ru < k, (A.1a)

ξ−k lnn

2
≤ c(ru) ≤ ξ+k ln(2kn) if ru = k, (A.1b)

ξ−k ≤ c(ru) ≤ ξ+k (1 + 1/γ) if ru > k. (A.1c)

Proof. In the case of ru < k, we write ε = k − ru (γ ≤ ε ≤ k). The coefficient c(ru)
can be bounded as:

c(ru) =
∑

∀v 6=u

dM (u, v)−ru ≥

n/2
∑

j=1

bu(j)j
−ru ≥ ξ−k

n/2
∑

j=1

jε−1

≥ ξ−k

∫ n/2

1

xε−1dx ≥
ξ−k
ε

(n

2

)ε

−
ξ−k
ε

≥
ξ−k
2ε

(n

2

)ε

The last inequality above relies on a loose relaxation of 1
2

(

n
2

)ε
≥ 1, which is guaranteed

for all n ≥ 21+1/γ since ε ≥ γ. Note that ε < k, so we have:

c(ru) ≥
ξ−k

21+εε
nε ≥

ξ−k
21+kk

nε.

The upper bound of coefficient c(ru) can be given as:

c(ru) =
∑

∀v 6=u

dM (u, v)−ru =

nD∑

j=1

bu(j)j
−ru ≤ ξ+k

nD∑

j=1

jε−1

≤

{

1 + ξ+k
∫ nD

1
jε−1dx ≤ 1 + (kn/2)ε if ε < 1,

ξ+k
∫ nD+1

j=1
jε−1dx ≤ ξ+k (kn/2 + 1)ε if ε ≥ 1,

≤ ξ+k kεnε.

The last inequality above relies on a loose relaxation of kn
2 ≥ 1, which is guaranteed for all

n ≥ 2 since k ≥ 1.
We now turn to the case of ru = k. The upper bound of normalization coefficient c(k)

can be given as

c(k) =
∑

∀v 6=u

dM (u, v)−k =

nD∑

j=1

bu(j)j
−k ≤ ξ+k

nD∑

j=1

1

j
≤ ξ+k ln(2kn),

and its lower bound is

c(k) ≥ ξ−k

n/2
∑

j=1

j−1 ≥ ξ−k

∫ n/2

1

x−1dx ≥ ξ−k (lnn− ln 2) ≥
ξ−k lnn

2
.

where the last inequality is true when n ≥ e4.
We finally consider the the case of ru > k, it is easy to get that

c(ru) =
∑

∀v 6=u

dM (u, v)−ru ≥

n/2
∑

j=1

bu(j)j
−r ≥ bu(1) ≥ ξ−k ,

and its upper bound is given as:

c(ru) =
∑

∀v 6=u

dM (u, v)−ru =

nD∑

j=1

bu(j)j
−ru ≤ ξ+k

nD∑

j=1

jk−1j−ru ≤ ξ+k

nD∑

j=1

j−(ru−k)−1.
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Note ru − k ≥ γ, we have:

c(ru) ≤ ξ+k

nD∑

j=1

j−(ru−k)−1 ≤ ξ+k

nD∑

j=1

j−γ−1 ≤ ξ+k (1 +

∫ nD+1

1

x−γ−1dx) ≤ ξ+k

(

1 +
1

γ

)

.

Lemma A.2. In the k-dimensional grid K(n, k, p, q, r), for a given node u ∈ V with
a strategy of ru, the average distance of its long-range contacts D(ru) has the following
bounds:







D(ru) ≤
ξ+k k1+k

c(ru)
n1+k−ru if ru < k, (A.2a)

ξ−k n

2c(k)
≤ D(ru) ≤

ξ+k n

c(k)
if ru = k, (A.2b)

D(ru) ≤
ξ+k k

2γc(ru)
n1−γ

if k < ru < k + 1, (A.2c)

D(ru) ≤
ξ+k

c(ru)
ln(2kn). if ru ≥ k + 1 . (A.2d)

Proof. When ru < k, we write ε = k− ru (γ ≤ ε ≤ k) and get the upper bound for the
link distance

D(ru) =

∑nD
j=1 bu(j) · j

−ru · j

c(ru)
≤

ξ+k
∫ nD+1

1
xεdx

c(ru)
≤

ξ+k (nD + 1)1+ε

(1 + ε)c(ru)
≤

ξ+k (kn)1+ε

c(ru)
≤

ξ+k k1+k

c(ru)
n1+ε.

We now turn to the case of ru = k. The upper bound of link distance D(k) can be given
as

D(ru = k) =

∑nD
j=1 bu(j) · j

−k · j

c(ru)
≤

ξ+k n

c(k)
,

and its lower bound is

D(ru) ≥

∑n/2
j=1 bu(j) · j

−k · j

c(k)
≥

ξ−k n

2c(k)
.

We finally consider the case of ru > k. We write ε = ru − k(ε ≥ γ), and the bound for
the link distance is:

D(ru) =

∑nD
j=1 bu(j) · j

−ru · j

c(ru)
≤ ξ+k

nD∑

j=1

j−ε

c(ru)
≤ ξ+k

1 +
∫ nD

1
x−εdx

c(ru)

In the case of ε < 1,

D(ru) ≤ ξ+k
1 +

∫ nD

1
x−εdx

c(ru)
≤

ξ+k
(1− ε)c(ru)

(kn/2)1−ε ≤
ξ+k k

2γc(ru)
n1−ε ≤

ξ+k k

2γc(ru)
n1−γ .

otherwise,

D(ru) ≤ ξ+k
1 +

∫ nD

1
x−εdx

c(ru)
≤

ξ+k
c(ru)

ln(2kn).

Lemma A.3. In the k-dimensional DRB game, there exists a constant κ (only depending
on model constants k and γ), for sufficiently large n (in particular n ≥ max(e4, 2k)), the
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following statement holds: for any strategy profile r, any node u with ru 6= k and αu > 0,
πu(ru, r−u) ≤ κnαu−min{1,αu}γ .

Proof. We introduce some notations first. Given the strategy profile r and a node u
with ru 6= k, we partition the rest nodes V \{u} into three sets: V<k = {v ∈ V \{u} | rv < k},
V>k = {v ∈ V \ {u} | rv > k}, V=k = {v ∈ V \ {u} | rv = k}. Then we have

πu(r) = D(ru)
αu
(
Pu,V<k (r) + Pu,V>k(r) + Pu,V=k(r)

)
. (A.3)

We now consider the case of ru < k and ru > k separately.

Payoff of ru < k. Let ε = k − ru (γ ≤ ε ≤ k). We first consider the average grid
distance to long-range contacts in this case. Based on the bound on D(ru) and c(ru) given
by inequalities (A.2a) and (A.1a), we get:

D(ru)
αu =

ξ+k k1+k

c(ru)
n1+ε =

ξ+k k1+k

ξ
−

k

2k+1k
nε

n1+ε =
2k+1ξ+k k2+k

ξ−k
n (A.4)

We now examine the reciprocity. We first consider the reciprocity player u obtains from
the players in V<k. We have c(rv) ≥ c(k−γ) for ∀v ∈ V<k, since rv ≤ k−γ. Then we have:

Pu,V<k(r) =
∑

v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤
∑

v∈V<k

dM (u, v)−ru

c(ru)c(k − γ)
≤

∑

∀v 6=u dM (u, v)−ru

c(ru)c(k − γ)
=

1

c(k − γ)
.

Combining with the inequalities (A.4) and (A.1a), we get:

D(ru)
αuPu,V<k(r) ≤

(
2k+1ξ+k k2+k

ξ−k
n

)αu
1

ξ−
k

2k+1k
nγ

≤
(ξ+k )αu2(k+1)(αu+1)k(k+2)αu+1

(ξ−k )αu+1
nαu−γ .

(A.5)

Next we examine the reciprocity that player u obtains from the players in V>k. Note that
for all v ∈ V>k, rv ≥ k + γ. Using the bound on c(rv) given by inequality (A.1c), we have:

Pu,V>k(r) =
∑

v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑nD
j=1 bu(j) · j

−ru · j−k−γ

ξ−k c(ru)
=

ξ+k
∑nD

j=1 j
−1−ru−γ

ξ−k c(ru)

≤
ξ+k (1 +

∫ nD

1
x−1−ru−γdx)

ξ−k c(ru)
≤

ξ+k (1 + ru + γ)

ξ−k (ru + γ)c(ru)
≤

ξ+k (k + 1)

ξ−k γc(ru)
.

Based on the bound on D(ru) and c(ru) given by inequalities (A.4) and (A.1a), we get:

D(ru)
αuPu,V>k (r) ≤

(
2k+1ξ+k k2+k

ξ−k
n

)αu

·
ξ+k (k + 1)

ξ−k γ
ξ
−

k

2k+1k
nε

≤
(ξ+k )αu+12(k+1)(αu+1)k(k+2)αu+1(k + 1)

(ξ−k )αu+2γ
nαu−ε

≤
(ξ+k )αu+12(k+1)(αu+1)+1k(k+2)αu+2

(ξ−k )αu+2γ
nαu−γ .

(A.6)

We now examine the payoff of player u from players in V=k. In this case, the upper bound
for the reciprocity is:

P (ru, k) =

∑nD
j=1 bu(j) · j

−ru · j−k

c(ru)c(k)
≤ ξ+k

nD∑

j=1

jε−1−k

c(ru)c(k)
.
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Notice that ε ≤ k, we have:

P (ru, k) ≤
ξ+k

c(ru)c(s)

(

1 +

∫ nD

j=1

jε−1−s

)

≤







ξ+
k
(1+k−ε)

(k−ε)c(ru)c(k)
≤

2kξ+
k

γc(ru)c(k)
if ε < k,

2ξ+
k

ln(2kn)

c(ru)c(k)
if ε = k,

The inequalities in the cases above use the facts γ ≤ ε ≤ k and k − ε ≥ γ when ε < k.
Combining the the above bounds on reciprocity with bounds given by inequalities (A.4),

(A.1a) and (A.1b), we have the payoff of node u getting from V=k:

D(ru)
αuPu,V=k(r) ≤ D(ru)

αuP (ru, k)

≤







(
2k+1ξ+

k
k2+k

ξ−
k

n

)αu

·
2kξ+

k

γ
ξ
−

k
nε

2k+1k
·
ξ
−

k
lnn

2

if ε < k,

(
2k+1ξ

+
k
k2+k

ξ−
k

n

)αu

·
2ξ

+
k

ln(2kn)

ξ
−

k
nε

2k+1k
·
ξ
−

k
lnn

2

if ε = k,

≤







(ξ+
k
)αu+12αu(k+1)+k+3kαu(k+2)+1

γ(ξ−
k

)αu+2

nαu−γ

lnn
if ε < k.

(ξ+
k
)αu+12αu(k+1)+k+3kαu(k+2)+1 ln(2kn)

(ξ−
k

)αu+2 lnn
nαu−γ ≤

(ξ+
k
)αu+12αu(k+1)+k+4kαu(k+2)+1

(ξ−
k

)αu+2
nαu−γ if ε = k.

(A.7)

The last inequality in the case of ε = k requires n ≥ 2k.
Adding up results in Eq.(A.5), (A.6), (A.7), we obtain that

π(ru, r−u) ≤
(ξ+k )αu2(k+1)(αu+1)k(k+2)αu+1

(ξ−k )αu+1
nαu−γ +

(ξ+k )αu+12(k+1)(αu+1)+1k(k+2)αu+2

(ξ−k )αu+2γ
nαu−γ+

(ξ+k )αu+12αu(k+1)+k+4kαu(k+2)+1

(ξ−k )αu+2
nαu−γ

≤
3(ξ+k )αu+1 · 2αu(k+1)+k+4kαu(k+2)+2

γ(ξ−k )αu+2
nαu−γ

≤
(ξ+k )αu+1 · 2αu(k+1)+k+6kαu(k+2)+2

γ(ξ−k )αu+2
nαu−γ ,

(A.8)
when n ≥ max{e4, 2k}.

Payoff of ru > k. Let ε = ru − k (ε ≥ γ). For this case, we can relax the reciprocity
Pu(ru, r−u) to one and only consider the upper bound on link distance D(ru). Applying
bounds given by inequalities (A.2c), (A.2d) and (A.1a), we obtain:

π(ru = k + ε, r−u) ≤ D(ru)
αu ≤







(
ξ+
k
k

2γξ−
k

n1−γ

)αu

if ε < 1,
(

ξ
+
k

ξ−
k

ln(2kn)

)αu

if ε ≥ 1.

≤







(
ξ+
k
k

ξ
−

k
γ

)αu

nαu(1−γ) if ε < 1,
(

ξ+
k

ξ−
k

)αu

ln(2kn)αu ≤

(
ξ+
k

ξ−
k

)αu

2nαu(1−γ) if ε ≥ 1.
(A.9)

The last inequality in the above case of ε ≥ 1 holds when n ≥ 2k and γ ≤ 1/2.
Finally, the lemma holds when we combine Eq.(A.8) and (A.9)
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Lemma A.4. In the k-dimensional DRB game, for sufficiently large n, the payoff of any
node u ∈ V with αu > 0 in the navigable small world r ≡ k has the following bounds:

(ξ−k )αu+1

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
≤ π(ru = k, r−u ≡ k) ≤

23+αu(ξ+k )αu+1

(ξ−k )2+αu
·

nαu

ln2+αu n
. (A.10)

Proof. We have the lower bound for the reciprocity:

P (ru, k) ≥

∑n/2
j=1 bu(j) · j

−2k

c2(k)
≥

ξ−k
c2(k)

.

Combining the above inequality with bounds (A.2b) and (A.1b), we get.

π(ru = k, k) = D(ru)
αuP (ru, k) ≥

(ξ−k )αu+1nαu

2cαu+2(k)
=

(ξ−k )αu+1

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
.

The upper bound on the reciprocity is:

P (ru, k) =

∑nD
j=1 bu(j) · j

−2k

c2(k)
≤

ξ+k
c2(k)

(

1 +

∫ nD

j=1

j−k−1

)

≤
2ξ+k
c2(k)

Combining the above inequality with bounds (A.2b) and (A.1b), we get the upper bound
on the payoff:

π(ru = k, r−u ≡ k) = D(ru)
αuP (ru, k) ≤

2(ξ+k )αu+1nαu

cαu+2(k)
≤

2αu+3(ξ+k )αu+1

(ξ−k )2+αu
·

nαu

ln2+αu n
.

B. PROOF OF LEMMA 3.1

Lemma 3.1. In the k-dimensional DRB game, for any constant δ, there exists n0 ∈ N

(may depend on δ), for any n ≥ n0, for any non-zero strategy profile r 6≡ 0, if a node w
satisfies rw ≥ k or rw = maxv∈V rv, then for any node u within δ grid distance of w (i.e.
dM (u,w) ≤ δ), u has the unique best response of ru = k.

Proof. For a given node w, define the set of nodes with distance of δ to w as: Nw,δ =
{u|u ∈ V ∧ dM (u,w) ≤ δ}.
In the case of rw ≥ k, for any u ∈ Nw,δ, if u chooses the strategy ru = k, we have:

P (ru, r−u) > pu(w, ru)pw(u, rw) ≥
dM (u,w)−2k

c(k)2
≥

δ−2k

c(k)2
.

Combining the above inequality with the bounds in (A.2b) and (A.1b), we get:

π(ru = k, r−u) ≥ D(ru)
αuP (ru, r−u) ≥

(
ξ−k n

2c(k)

)αu

·
δ−2k

c(k)2
≥

(ξ−k )αuδ−2k

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
. (B.1)

However, if node u chooses ru 6= k, by Lemma A.3 we know that there is a constant κ
such that for all sufficiently large n, π(ru, r−u) ≤ κnαu−min{1,αu}γ . We see that the lower
bound (B.1) for ru = k is in strictly higher order in n than the upper bound of ru 6= k, thus
there exists n0 ∈ N (n0 may depend on δ), such that for all n ≥ n0, ru = k is the unique
best response to r−u for any u ∈ Nw,δ.
In the case of rw = maxv∈V rv, if rw ≥ k, from the above analysis we know that ru = k

is the unique best response to r−u for any u ∈ Nw,δ.
Otherwise, given rw < k, we know V = V<k. In this case, we further partition the nodes

V<k into two sets: V>0 = {v ∈ V | k > rv > 0} and V=0 = {v ∈ V | rv = 0}. So we know
that:

πu(r) = D(ru)
αu (Pu,V>0(r) + Pu,V=0(r)) . (B.2)
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Let rmin be the minimum value among the strategies of users in the set of V = V>0.
Clearly, γ ≤ rmin ≤ rw < k.

Payoff of ru < k. For any node u ∈ Nw,β, if it chooses ru < k, let ε = k− ru (γ ≤ ε ≤ k).
Notice that c(v) ≥ c(rw) for any node v ∈ V \ {u}, so we have:

Pu,V>0(r) =
∑

v∈V>0

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑

v∈V \{u}

dM (u, v)−ru−rmin

c(ru)c(rw)
≤

∑nD
j=1 ξ

+
k jε−1−rmin

c(ru)c(rw)
.

If rmin + 1 ≤ ε, we have:

Pu,V>0(r) ≤ ξ+k

∫ nD+1

j=1

jε−rmin−1

c(ru)c(rw)
≤

ξ+k (nD + 1)ε−rmin

(ε− rmin)c(ru)c(rw)
≤

ξ+k (kn)ε−rmin

c(ru)c(rw)
.

If rmin + 1 > ε, we have:

Pu,V>0(r) ≤
ξ+k

c(ru)c(rw)

(

1 +

∫ nD

j=1

jε−1−rmin

)

≤







ξ+
k
((kn)ε−rmin+ε−rmin−1)

(ε−rmin)c(ru)c(rw)
if rmin 6= ε,

ξ+
k

ln(kn)

c(ru)c(rw)
if rmin = ε.

Combining the above bounds on reciprocity with bounds in inequalities (A.4) and (A.1a),
we have the payoff of node u gets from V>0:

D(ru)
αuPu,V>0(r) ≤







D(ru)
αu ·

ξ+
k
(kn)ε−rmin

γc(ru)c(rw)
, if ε > rmin,

D(ru)
αu ·

ξ+
k

ln(kn)

c(ru)c(rw)
, if ε = rmin,

D(ru)
αu ·

ξ+
k

γc(ru)c(rw)
, if ε < rmin.

≤







(ξ+
k
)αu+12(k+1)(αu+2)k(k+2)(αu+1)

(ξ−
k

)αu+2γ
nαu+rw−γ−k, if ε > rmin,

(ξ+
k
)αu+12(αu+2)(k+1)k(k+1)αu+2

(ξ−
k

)αu+2
nαu+rw−γ−k ln(kn), if ε = rmin,

(ξ+
k
)αu+12(αu+2)(k+1)k(k+1)αu+3

(ξ−
k

)αu+2γ
nαu+rw−γ−k, if ε < rmin.

(B.3)

We now consider the payoff of a node u from the set V=0. We have:

Pu,V=0(r) =
∑

v∈V=0

dM (u, v)−ru

c(ru)c(0)
≤

∑

v∈V \{u}

dM (u, v)−ru

c(ru)c(0)
=

1

c(0)
. (B.4)

It is easy to get:

c(0) = nk − 1 ≥ nk/2. (B.5)

Thus, combining with bound (A.4), we have the payoff of node u gets from V=0:

D(ru)
αuPu,V=0(r) ≤

(
2k+1ξ+k k2+k

ξ−k
n

)αu

·
nk

2
≤

2(k+1)αu+1k(2+k)αu(ξ+k )αu

(ξ−k )αu
nαu−k. (B.6)

Combining the above bounds in Eq.(B.3) and Eq.(B.6) with Eq.(B.2), we see the payoff of
ru < k in r is at most O

(

nαu+rw−γ−k ln(kn)
)

.

Payoff of ru > k. If node u chooses ru > k, let ε = ru − k ≥ γ. We have:

Pu,V>0 =
∑

v∈V>0

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑

v∈V>0
dM (u, v)−ru−rv

c(ru)c(rw)
<

∑

v∈V \{u} dM (u, v)−ru

c(ru)c(rw)
=

1

c(rw)
.
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Combining the above inequality with bounds (A.2c), (A.2d), (A.1c) and (A.1a) on D(ru),
c(ru) and c(rw), respectively, we have the payoff of node u gets from V>0:

D(ru)
αuPu,V>0 ≤







(
ξ+
k
k

2γξ−
k

n1−γ

)αu

· 2k+1k

ξ−
k

nk−rw
=

2k+1−αukαu+1(ξ+
k
)αu

(ξ−
k

)1+αuγαu
nαu+rw−k−αuγ if ε < 1,

(
ξ+
k

ξ−
k

ln(2kn)

)αu

· 2k+1k

ξ−
k

nk−rw
=

2k+1k(ξ+
k
)αu

(ξ−
k

)1+αu

lnαu (2kn)

nk−rw
if ε ≥ 1.

(B.7)

Combining the bounds (A.2c), (A.2d), (A.1c) and with bounds Eq.(B.4) and Eq.(B.5), we
have the payoff of node u gets from V=0:

D(ru)
αuPu,V=0 ≤







(
ξ+
k
k

2γξ−
k

n1−γ

)αu

· 2
nk = 21−αu

(
ξ+
k
k

ξ−
k

γ

)αu

nαu−k−αuγ if ε < 1,
(

ξ+
k

ξ
−

k

ln(2kn)

)αu

· 2
nk = 2

(
ξ+
k

ξ
−

k

)αu
lnαu (2kn)

nk if ε ≥ 1.
(B.8)

Combining the above bounds in Eq.(B.7) and Eq.(B.8) with Eq.(B.2), we see the payoff of
ru > k is at most O

(

nαu+rw−k−αuγ
)

.

Payoff of ru = k. However, if the node u chooses the strategy ru = k, we have:

P (ru) > pu(v, ru)pw(u, rw) >
d(u,w)−k−rw

c(k)c(rw)
>

δ−2k

c(k)c(rw)
.

Combining the above inequality with the bounds (A.2b), (A.1b) and (A.1a) on D(ru), c(k)
and c(rw), we get:

π(ru = k, r−u) = D(ru)
αuP (ru) >

(
ξ−k n

2c(k)

)αu

·
δ−2k

c(k)c(rw)
=

(ξ−k )αuδ−2knαu

2αuc1+αu(k)c(rw)

≥
(ξ−k )αu−1k21+k−αuδ−2k

(ξ+k )1+αu

nαu+rw−k

ln1+αu(2kn)
. (B.9)

We see that the payoff of ru = k is in strictly higher order in n than the payoff of ru < k
or ru > k, thus there exists n0 ∈ N (which may depend on δ but do not depend on rw since
nαu+rw−k is a common term), for all n ≥ n0, ru = k is the best response to r−u for any
u ∈ Nw,δ.

C. PROOF OF RANDOM SMALL WORLD EQUILIBRIUM

Theorem 3.1. For the DRB game in a k-dimensional grid, the following is true for
sufficiently large n: 4 For every node u ∈ V , every strategy profile r, and every s ∈ Σ, if
r−u ≡ s, then u has a unique best response to r−u ≡ s:

Bu(r−u ≡ s) =

{

k if s > 0,

0 if s = 0.

Proof for Bu(r−u ≡ s) = 0 if s = 0. When other players choose strategy r−u ≡ 0,
the reciprocity of the player u is constant:

Pu(ru, r−u ≡ 0) =
∑

∀v 6=u

pu(v, ru)pv(u, rv = 0) =
∑

∀v 6=u

pu(v, ru)

|V | − 1
=

1

|V | − 1
. (C.1)

4Technically, a statement being true for sufficiently large n means that there exists a constant n0 ∈ N that
may only depend on model constants such as k, γ and αu, such that for all n ≥ n0 the statement is true in
the grid with parameter n.
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Thus, the payoff of the player u is only determined by the link distance D(ru). Let X(ru)
be the random variable denoting the grid distance from u’s long-range contact to u. Then
we have D(ru) = E[X(ru)]. We want to show the following intuitive claim:
Claim 1. For any ru < r′u, X(ru) strictly stochastically dominates X(r′u), i.e., for all

1 ≤ ℓ < nD, Pr(X(ru) ≤ ℓ) < Pr(X(r′u) ≤ ℓ).
Proof of the claim. Let q(ru, j) be the probability that u’s long-range contact is a par-

ticular node v at grid distance j from u. By definition, q(ru, j) = j−ru/c(ru). Then we

have q(ru,j+1)
q(ru,j)

=
(

j+1
j

)−ru
. Thus q(ru, j) is non-increasing in j, and the decreasing ratio

is faster when ru is larger. Since we know that
∑n

j=1 q(ru, j)bu(j) = 1, it must be that

q(ru, 1) < q(r′u, 1), q(ru, nD) > q(r′u, nD), and there exists a j̄ such that for all j ≤ j̄,
q(ru, j) ≤ q(r′u, j), and for all j > j̄, q(ru, j) > q(r′u, j).

By the definition of X(ru), we have Pr(X(ru) ≤ ℓ) =
∑ℓ

j=1 q(ru, j)bu(j). Thus, for any

1 ≤ ℓ ≤ j̄, Pr(X(ru) ≤ ℓ) =
∑ℓ

j=1 q(ru, j)bu(j) <
∑ℓ

j=1 q(r
′
u, j)bu(j) = Pr(X(r′u) ≤ ℓ).

For any j̄ < ℓ < nD, Pr(X(ru) ≤ ℓ) =
∑ℓ

j=1 q(ru, j)bu(j) = 1 −
∑nD

j=ℓ+1 q(ru, j)bu(j) <

1−
∑nD

j=ℓ+1 q(r
′
u, j)bu(j) = Pr(X(r′u) ≤ ℓ). Therefore, we have the claim that X(ru) strictly

stochastically dominates X(r′u).
With this claim, we immediately have E[X(ru)] > E[X(r′u)]. As a consequence, D(0) =

E[X(0)] > E[X(r′u)] = D(r′u) for any r′u > 0. Therefore, ru = 0 is the player u’s unique
best response to r−u ≡ 0.

D. PROOF OF THEOREM 3.3

Theorem 3.3. For the DRB game in the k-dimensional grid, the navigable small-world
network (r ≡ k) is a strong Nash equilibrium for sufficiently large n.

Proof. We actually prove a slightly stronger result: any node u in any strategy profile r
with ru 6= k is strictly worse off than its payoff in the navigable equilibrium, when n is large

enough. With the Lemma A.4, we see that a player u has the payoff at least Ω
(

nαu

ln2+αu (2kn)

)

before derivation. Suppose that a coalition C deviates, and the new strategy profile is r.
Then some node u ∈ C must select a new ru 6= k. By Lemma A.3, there is a constant
κ such that for all sufficiently large n, π(ru, r−u) ≤ κnαu−min{1,αu}γ . Thus we see that
the payoff of u before the deviation is in strictly higher order in n than its payoff after
the deviation. Therefore, for all sufficiently large n, u is strictly worse off, which means no
coalition could make some member strictly better off while others not worse off. Hence,
navigable small-world network (r ≡ k) is a strong Nash equilibrium.

E. PROOF OF THEOREM 3.4

Theorem 3.4. For the DRB game in a k-dimensional grid, the random small-world
NE r ≡ 0 is not a 2-strong Nash equilibrium for sufficiently large n.

Proof. Given a pair of grid neighbors (u, v), if they both choose the strategy k, we
have:

P (ru, r−u) > pu(v, ru)pv(u, ru) ≥
dM (u,w)−2k

c(k)2
≥

1

c(k)2
.

Combining the above inequality with the bounds (A.2b) and (A.1b), we get:

π(ru = k, r−u) = D(ru)
αuP (ru, r−u) >

(
ξ−k n

2

)αu
1

c2+αu(k)
≥

(ξ−k )αu

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
. (E.1)

However, if node u chooses ru 6= k, by Lemma A.3 we know that there is a constant κ such
that for all sufficiently large n, π(ru, r−u) ≤ κnαu−min{1,αu}γ . We see that the payoff of
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ru = k is in strictly higher order in n than its original payoff. Notice that the proof for the
increase of node v’s payoff is similar to that of node u, so both colluding nodes get strictly
higher payoff. The theorem is proved.

F. PROOF OF THEOREM 3.6

fact 1. (Chernoff bound). Let X be a sum of n independent random variables {Xi},
with E[Xi] = µ; Xi ∈ {0, 1} for all i ≤ n. For any 0 < ǫ < 1,

P r[X ≤ (1− ǫ)µ] ≤ e−
µǫ2

2 , P r[X ≥ (1 + ǫ)µ] ≤ e−
ǫ2

2+ǫµ.

Based on the Chernoff bound, we have the following lemma. Let Yu(j, s) be the number
of players with grid distance j to u and a strategy of s.

Lemma F.1. In the k-dimensional DRB game (k > 1), for any η > 0, if each player
chooses a strategy s independently with probability ps ≥ η from a finite strategy set S ⊆ Σ,
then for all n ≥ |S|, with probability 1− 1/n, the following property holds:

Yu(j, s) >
ηbu(j)

2
, ∀u ∈ V, ∀s ∈ S, ∀j ∈ N ∩

[

ρ

(

lnn

η

)
1

k−1

,
n

2

]

,

where ρ =
(

24+8k
ξ−k

)
1

k−1

is a constant.

Proof. Since individual players choose strategy of s independently with probability ps,
E[Yu(j, s)] = psbu(j) ≥ ηbu(j). Based on the Chernoff bound, we have:

P (Yu(j) ≤ (1− ǫ)E[Yu(j, s)]) ≤ exp

(

−
ǫ2E[Yu(j, s)]

2

)

≤ exp

(

−
ǫ2ηbu(j)

2

)

.

Note that bu(j) ≥ ξ−k jk−1 for 0 < j ≤ ⌊n⌋/2. Let m = |S|. Let ̺ =
(

(16+8k) lnn+8 lnm

ηξ−k

)
1

k−1

For ̺ ≤ j ≤ ⌊n⌋/2, we have:

P

(

Yu(j) ≤
ηbj(u)

2

)

≤
1

mnk+2
.

Since there are nk players in the k dimensional grid, by union bound, we have ∀u, ∀s, for
any ̺ ≤ j ≤ ⌊n⌋/2,

P

(

Yu(j) >
ηbj(u)

2

)

≥ 1−
1

n
,

As m is a constant, we can rewrite ̺ as:

̺ =

(
(16 + 8k) lnn+ 8 lnm

ηξ−k

) 1
k−1

≤

(
24 + 8k

ξ−k

) 1
k−1

(
lnn

η

) 1
k−1

,

holds for all n ≥ m.

Theorem 3.6. Consider the navigable small-world equilibrium r ≡ k for the DRB
game in a k-dimensional grid (k > 1). Suppose that with probability pu each node u ∈ V
independently perturbs ru to an arbitrary strategy r′u ∈ Σ, and with probability 1−pu r′u = ru.
Let αmin = minu∈V αu, then for any constant ε with 0 < ε < min{1, αmin}γ/4, there exists
n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0, if pu ≤ 1 − n−ε, with probability
at least 1 − 1/n, the perturbed strategy profile r′ moves back to the navigable small world
(r ≡ k) in one synchronous step, or as soon as every node takes at least one asynchronous
step in the best response dynamics.
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Proof. Given a deviation probability pu ≤ 1 − n−ε for node u, we know that node u
still uses the original strategy k with a probability of 1−pu ≥ n−ε. By Lemma F.1 we know
that, with probability 1− 1

n , the following property holds:

Yu(j, k) >
n−εbu(j)

2
,∀u ∈ V,∀j ∈ N ∩

[

ρ

(
lnn

n−ε

) 1
k−1

,
n

2

]

. (F.1)

When the above property holds, we fix any node u and examine its payoff. In the case of
ru = k, the reciprocity that u gets from those still choosing strategy of k is:

Pu,V=k(r) ≥
n−ε

2

∑n/2

j=ρ
(

lnn
n−ε

) 1
k−1

bu(j) · j
−2k

c2(k)
≥

ξ−k n−ε

2

∑n/2

j=ρ
(

lnn
n−ε

) 1
k−1

j−k−1

c2(k)

≥
ξ−k n−ε

2

ρ
−(k+1)

k−1
(

lnn
n−ε

)−(k+1)
k−1

c2(k)
≥

ξ−k n−4ε

2c2(k)ρ3 ln3 n
.

The last inequality holds as k ≥ 2.
Combing with the above bound with bounds (A.2b) and (A.1b), we get:

πu(ru = k, r) ≥ D(ru)
αuPu,V=k(r) ≥

(
ξ−k n

2c(k)

)αu

·
ξ−k n−4ε

2c2(k)ρ3 ln3 n

≥
(ξ−k )αu+1

2αu+1(ξ+k )αu+2ρ3
nαu−4ε

ln2+αu(2kn) · ln3(n)
≥

(ξ−k )αu+1

2αu+1(ξ+k )αu+2ρ3
nαu−4ε

ln5+αu(2kn)
. (F.2)

By Lemma A.3, there is a constant κ such that for all sufficiently large n, π(ru 6= k, r−u) ≤
κnαu−min{1,αu}γ . Comparing with Eq. (F.2), since αmin ≤ αu for any node u and ε <
min{1, αmin}γ/4, the payoff of u with strategy ru = k is in strictly higher order in n
than its payoff after the deviation. Therefore, when the property Eq. (F.1) holds, for all
sufficiently large n, u get strictly better payoff than any other strategy choice by choosing
ru = k after the deviation.
Therefore, when the property Eq. (F.1) holds, the perturbed strategy profile r′ moves

back to the navigable small world (r ≡ k) in one synchronous step, as every player u moves
from its current strategy to its best response ru = k. Also, it is clear that the property
Eq. (F.1) consistently holds as any player takes one asynchronous step. This is because the
asynchronous move only increases the number of nodes choosing the strategy of k, so the
best response of every player is always k after every asynchronous step. Thus, the perturbed
strategy profile moves back to the navigable small world as soon as every node takes at least
one asynchronous step. Notice that the property Eq. (F.1) holds with a probability of 1−1/n,
so the theorem is proved.

G. PROOF OF THEOREM 3.7

Theorem 3.7. For the DRB game in a k-dimensional grid (k > 1) with the initial
strategy profile r ≡ 0 and a finite perturbed strategy set S ⊂ Σ with at least one non-zero
entry (0 < maxS ≤ β), for any constant ε with 0 < ε < γ/2, there exists n0 ∈ N (depending
only on k, γ, and ε), for all n ≥ n0, if for any u ∈ V , with independent probability of

p ≥ n− (k−1)ε
k+β , ru ∈ S \ {0} after the perturbation, then with probability at least 1 − 1/n,

the network converges to the navigable small world in one synchronous step, or as soon as
every node takes at least one asynchronous step in the best response dynamics.

Proof. Fix any node u ∈ V . Let r be the strategy profile after perturbation. We par-
tition nodes in V \ {u} into sets Vs, s ∈ S ∪ {0}, where Vs = {v ∈ V \ {u} | rv = s}. Let
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Pu,Vs(r) be the reciprocity u obtained from subset Vs. Then we have

π(ru, r−u) = D(ru) ·
∑

s∈S∪{0}

Pu,Vs(r). (G.1)

For any node u and any given s ∈ S ∪ {0}, we now compare the payoff it gets from Vs

when using ru = k and ru = s′ 6= k, respectively.

(
D(ru = s′)

D(ru = k)

)αu

·
Pu,Vs (r)

Pu,Vs (r)
=

(
D(ru = s′)

D(ru = k)

)αu

·

∑

v∈Vs

d(u,v)−s′−s

c(s′)c(s)
∑

v∈Vs

d(u,v)−k−s

c(k)c(s)

.

For a given node u and a subset of nodes Γ, let define dmin,Γ and dmax,Γ be the minimum
and maximum grid distances between node u and any node v ∈ Γ, respectively. In other
words, dmin,Γ ≤ dM (u, v) ≤ dmax,Γ, ∀v ∈ Γ. With this definition, for any v ∈ Vs, we have:

d(u,v)−s′−s

c(s′)c(s)

d(u,v)−k−s

c(k)c(s)

=
c(k)

c(s′)
d(u, v)k−s′ ≤

{
c(k)
c(s′)

dk−s′

max,Vs
if s′ < k,

c(k)
c(s′)

dk−s′

min,Vs
if s′ > k.

.

Combing the above inequality, we have:

(
D(ru = s′)

D(ru = k)

)αu

·
Pu,Vs (r)

Pu,Vs (r)
≤







(
D(ru=s′)
D(ru=k)

)αu

· c(k)
c(s′)

dk−s′

max,Vs
if s′ < k,

(
D(ru=s′)
D(ru=k)

)αu

· c(k)
c(s′)

dk−s′

min,Vs
if s′ > k.

. (G.2)

We first show that π(ru = k, r−u) > π(ru = s′, r−u) when s′ > k. In the case of s′ > k,
as dmin,Vs ≥ 1, combining the above inequality with the bounds (A.2c), (A.2b), (A.1c) and
(A.1b) on D(s′), D(k), c(s′) and c(k), we get:

(
D(ru = s′)

D(ru = k)

)αu

·
Pu,Vs(r)

Pu,Vs(r)
= O

((
n1−γ

n

)αu

· c(k)αu+1

)

= O

(
lnαu+1(2kn)

nαuγ

)

. (G.3)

Therefore, we can find a constant σ such that:

π(ru = k, r−u)− π(ru = s′, r−u) =
∑

s∈S∪{0}

[
D(ru = k)αuPu,Vs(r) −D(ru = s′)αuPu,Vs(r)

]

=
∑

s∈S∪{0}

D(ru = k)αuPu,Vs (r)

(

1−
D(ru = s′)αuPu,Vs(r)

D(ru = k)αuPu,Vs(r)

)

≥
∑

s∈S∪{0}

D(ru = k)αuPu,Vs (r)

(

1−
lnαu+1(2kn)

nαuγ

)

> 0, (G.4)

for sufficiently large n.
We next show that π(ru = k, r−u) > π(ru = s′, r−u) when s′ < k. Note here we require the

constant ε < γ/2 in the theorem. We first find a distance threshold to partition nodes into
nodes nearby to u and nodes far away from u. We want to prove that π(ru = k, r−u)−π(ru =
s′, r−u) is dominated by the nearby nodes.

In the case of s′ < k, we can find a constant ν = 1 − γ−2ε
2k such that, for any s ∈ S, the

set Vs can be partitioned into two subsets: (i) V −
s = {v ∈ V | rv = s ∧ dM (u, v) ≤ nν}, and

(ii) V +
s = {v ∈ V | rv = s∧ dM (u, v) > nν}. Notice that dmax,V −

s
is at most nν . Combining

the above inequality Eq. (G.2) with the bounds (A.2a), (A.2b), (A.1a) and (A.1b) on D(s′),
D(k), c(s′) and c(k), we get:

(

D(ru = s′)

D(ru = k)

)αu

·
Pu,V −

s
(r)

Pu,V −
s
(r)

= O

(

c(k)αu+1

n(k−s′)(1−ν)

)

= O

(

lnαu+1(2kn)

n(1−ν)γ

)

, (G.5)
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where ν < 1.
Notice that Pu,Vs = Pu,V −

s
+ Pu,V +

s
. Based on the bound in Eq. (G.5), we can find a

constant σ′ such that:

π(ru = k, r−u)− π(ru = s′, r−u)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V −

s
(r)−

∑

s∈S∪{0}

D(ru = s′)αuPu,Vs (r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V −

s
(r)

(

1−
D(ru = s′)αuP

u,V −
s
(r)

D(ru = k)αuP
u,V −

s
(r)

)

−
∑

s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V −

s
(r)

(

1−
σ′ lnαu+1(2kn)

n(1−ν)γ

)

−
∑

s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V −

s
(r)

2
−

∑

s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r) (G.6)

for sufficiently large n.
We now give the lower bound of the first term D(ru = k)αuPu,V −

s
(r). Let Uj = {v |

dM (u, v) = j ∧ rv > 0}. By Lemma F.1, with probability 1− 1/n,

|Uj | >
ηbu(j)

2
,∀u ∈ V,∀j ∈ N ∩

[

ρ

(
lnn

η

) 1
k−1

,
n

2

]

. (G.7)

For j =

⌈

ρ
(

lnn
η

)
1

k−1

⌉

, we have:

Pu,Uj (r) =
∑

v∈Uj

pu(v, ru) · pv(u, rv) =
∑

v∈Uj

j−k

c(k)
·
j−rv

c(rv)
≥
∑

v∈Uj

j−k

c(k)
·
j−β

c(γ)
≥

η · bu(j) · j
−k−β

2c(k)c(γ)

≥
η · ξ−k jk−1 · j−k−β

2c(k)c(γ)
≥

ηξ−k ρ
−(β+1)

k−1

(
lnn
η

)−(β+1)
k−1

2c(k)c(γ)
.

We now fix η = 1/n
(k−1)ε
k+β (0 < ε < γ/2), and have:

Pu,Uj (r) ≥
ξ−k

2ρ
β+1
k−1 c(k)c(γ)

·
1

(lnn)
(β+1)
k−1 nε

. (G.8)

Note that Uj ⊆ ∪s∈S\{0}V
−
s , since j =

⌈

ρ
(

lnn
η

)
1

k−1

⌉

=
⌈

ρ ln
1

k−1 n · n
ε

k+β

⌉

< n
k−γ/2+ε

k =

nν for sufficiently large n. Combining with the bounds (A.2b), (A.1a) and (A.1b) on D(k),
c(γ) and c(k), we get:

D(ru = k)αu
∑

s∈S\{0}

P
u,V

−
s

≥ D(ru = k)αuPu,Uj (ru = k, r−u)

= Ω

(

nαu

lnαu(2kn)
·

1

ln(2kn) · nk−γ
·

1

(lnn)
(β+1)
k−1 nε

)

= Ω

(
nαu−k−ε+γ

lna(2kn)

)

,

(G.9)

where a = αu + 1 + β+1
k−1 is constant.
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We next give the upper bound of the second term D(ru = s′)αuPu,V +
s
. Notice that

dM (u, v) > nν for any v in V +
s , so for any s, we have:

P
u,V +

s
(r) =

∑

v∈V +
s

dM (u, v)−s′−s

c(s′)c(s)
≤
∑

v∈V +
s

n−ν(s′+s)

c(s′)c(s)
. (G.10)

In the case of s < k, combining the above inequality with the bound (A.1a) on c(s′) and
c(s), we get:

P
u,V +

s
(r) ≤

∑

v∈V +
s

22k+2k2

(ξ−k )2
n(s+s′)(1−ν)−2k ≤

∑

v∈V +
s

22k+2k2

(ξ−k )2
n2k(1−ν)−2k = |V +

s |
22k+2k2

(ξ−k )2
n−2kν .

(G.11)

In the other case of s ≥ k, combining the inequality Eq. (G.10) with the bounds (A.1a),
(A.1c) on c(s′) and c(s), respectively, we get:

P
u,V +

s
(r) ≤

∑

v∈V +
s

n−ν(s′+k)

c(s′)ξ−k
≤
∑

v∈V +
s

2k+1k

(ξ−k )2
n(1−ν)s′−(1+ν)k ≤

∑

v∈V +
s

2k+1k

(ξ−k )2
n(1−ν)k−(1+ν)k

= |V +
s |

2k+1k

(ξ−k )2
n−2kν . (G.12)

Combining the above inequalities Eq. (G.11) and Eq. (G.12) with the bound (A.2b) on
distance D(s′), we know that for any s:

D(ru = s′)αuP
u,V +

s
= O

(

|V +
s |nαu−2kν

)

. (G.13)

We are now ready to combine the above bounds and show that π(ru = k, r−u) > π(ru =
s′, r−u) when s′ < k. More specifically, combining the inequalities in Eq. (G.6), Eq. (G.9)
and Eq. (G.13), we get:

π(ru = k, r−u)− π(ru = s′, r−u)

≥
∑

s∈S\{0}

D(ru = k)αuP
u,V −

s

2
−

∑

s∈S∪{0}

D(ru = s′)αuP
u,V +

s
,

≥
ρnαu−k+γ−ε

2 lna(2kn)
− ρ′| ∪s∈S∪{0} V

+
s | · nαu−2kν ≥

ρnαu−k+γ−ε

2 lna(2kn)
− ρ′nk · nαu−2k+γ−2ε

≥
ρnαu−k+γ−ε

2 lna(2kn)
− ρ′nαu−k+γ−2ε, (G.14)

where σ, ρ, ρ′, a are all constants.
As 0 < ε < γ/2, the first term in Eq. (G.14) is in strictly higher order in n than the second

term in Eq. (G.14), we know that for sufficiently large n, π(ru = k, r−u) > π(ru = s′, r−u)
for any s′ < k.
Therefore, when the property in Eq. (G.7) holds, the perturbed strategy profile r moves

to the navigable small world (r′ ≡ k) in one synchronous step, as every player u moves
from its current strategy to its best response r′u = k. Also, it is clear that the property
Eq. (G.7) consistently holds as any player takes one asynchronous step. This is because
the asynchronous move only increases the number of nodes choosing a non-zero strategy,
so the best response of every player is always k after every asynchronous step. Thus, the
perturbed strategy profile moves to the navigable small world as soon as every node takes at
least one asynchronous step. Notice that the property in Eq. (G.7) holds with a probability
of 1− 1/n, so the theorem is proved.
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H. PROOF OF THEOREM 4.1

Theorem 4.1. In the k-dimensional homogeneous DRB game, the optimal social wel-

fare is Θ
(

nα+k

lnα+1 n

)

for sufficiently large n.

Proof. Given the strategy profile r, we partition the nodes V into three sets: V<k =
{v ∈ V | rv < k}, V>k = {v ∈ V | rv > k}, V=k = {v ∈ V | rv = k}. So we have:

πu(r) = D(ru)
α (Pu,V<k (r) + Pu,V>k(r) + Pu,V=k(r)

)
. (H.1)

For any node u ∈ V=k, we have:

Pu,V<k (r) =
∑

v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑

v∈V<k

dM (u, v)−ru

c(ru)c(k − γ)
≤

∑

∀v 6=u dM (u, v)−ru

c(ru)c(k − γ)
=

1

c(k − γ)
.

Combining the above inequality with bounds (A.2b), (A.1b) and (A.1a) on D(k), c(k) and
c(k − γ), we get the upper bound on the payoff obtained from the set V<k:

D(ru = k)αPu,V<k(r) ≤ (
2ξ+k n

ξ−k lnn
)α ·

2k+1k

ξ−k nγ
≤

(ξ+k )α2k+1+αk

(ξ−k )α+1

nα−γ

lnα n
. (H.2)

For the set V>k, we have:

Pu,V>k (r) =
∑

v∈V>k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑nD
j=1 bu(j) · j

−ru · j−k−γ

ξ−k c(ru)
=

ξ+k
∑nD

j=1 j
−1−ru−γ

ξ−k c(ru)

≤
ξ+k (1 +

∫ nD

1
x−1−ru−γdx)

ξ−k c(ru)
≤

ξ+k (1 + ru + γ)

ξ−k (ru + γ)c(ru)
≤

ξ+k (k + 1)

ξ−k γc(ru)
.

Combining the above inequality with the bounds (A.2b), (A.1b) on D(k), c(k), we get
the upper bound on the payoff obtained from the set V>k:

D(ru = k)αPu,V>k(r) ≤ (
2ξ+k n

ξ−k lnn
)α ·

2ξ+k (k + 1)

(ξ−k )2γ lnn
≤

2α+2(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
. (H.3)

For the set V=k, by Lemma A.4 we know that:

D(ru = k)Pu,V=k\{u}(r) ≤ π(ru = k, r−u ≡ k) ≤
2α+3(ξ+k )α+1

(ξ−k )2+α
·

nα

lnα+2 n
(H.4)

Then, for any node u ∈ V=k and sufficiently large n, we have

πu(r) = D(ru)
α (Pu,V<k (r) + Pu,V>k(r) + Pu,V=k\{u}(r)

)

≤
(ξ+k )α2k+1+αk

(ξ−k )α+1

nα−γ

lnα n
+

2α+2(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
+

2α+3(ξ+k )α+1

(ξ−k )2+α
·

nα

lnα+2 n

<
2α+3(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
. (H.5)

By Lemma A.3, for any node u /∈ V=k, there is a constant κ such that for all sufficiently
large n, π(ru, r−u) ≤ κnα−min{1,α}γ .
So we have, for sufficiently large n, the social welfare of the profile is:

SW (r) =
∑

u∈V

π(ru, r−u) < |V |

(
2α+3(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
+ nα−min{1,α}γ

)

<
2α+4(ξ+k )α+1k

γ(ξ−k )α+2

nα+k

lnα+1 n
. (H.6)
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The above inequality shows that the social welfare of the profile is at most O
(

nα+k

lnα+1 n

)

.

Next, we construct the profile r as follows: for any node with location (i, j), we set its
strategy as k if j mod 2 = 0, otherwise, we set its strategy as k + γ.
Notice that for any node u with ru = k, it has at least one neighbor v with rv > k. We

get:

Pu,V > pu(v, ru)pv(u, rv) >
1

c(k)c(k + γ)
. (H.7)

Combining with bounds in (A.2b), (A.1b) and (A.1c) on D(k), c(k) and c(k+ γ), for any
node u with ru = k,

πu(r) > D(ru)
αPu,V (r) >

(ξ−k )αγ

2α(ξ+k )2+α(1 + γ)

nα

lnα+1(2kn)
>

(ξ−k )αγ

22α+1(ξ+k )2+α(1 + γ)

nα

lnα+1(kn)
.

(H.8)

So we have, for sufficiently large n, the social welfare of the profile is:

SW (r) =
∑

u∈V

π(ru, r−u) >
|V |

2

(ξ−k )αγ

22α+1(ξ+k )2+α(1 + γ)

nα

lnα+1(kn)
>

(ξ−k )αγ

22α+2(ξ+k )2+α(1 + γ)

nα+k

lnα+1(kn)
.

(H.9)

The above inequality shows that the optimal social welfare is at least Ω
(

nα+k

lnα+1 n

)

. Com-

bining the results of Eq.(H.6) and Eq.(H.9), the theorem is proved.

I. PROOF OF THEOREM 4.2

Theorem 4.2. In the k-dimensional homogeneous DRB game, for sufficiently large n,

the PoS is Θ(lnn) and the PoA is Θ
(

nk

lnα+1 n

)

.

Proof. According to Lemma A.4, the payoff of each player in navigable NE r ≡ k

is π(ru = k, r−u ≡ k) = Θ
(

nα

lnα+2 n

)

, so the social welfare of navigable NE is Θ( nα+k

lnα+2 n
).

Combining with Theorem 4.1, the price of stability (PoS) is Θ(lnn).
For random small world r−u ≡ 0, we have:

Pu(ru, r−u ≡ 0) =
∑

v∈V

dM (u, v)−ru

c(ru)c(0)
=

1

c(0)
. (I.1)

It is easy to get:

c(0) = nk − 1 ≥ nk/2. (I.2)

Thus, combining the above inequality with the distance bound (A.2a), we have the payoff
of node u gets from V=0:

π(ru, r−u ≡ 0) ≤
2(k+1)α+1kα(2+k)(ξ+k )α

(ξ−k )α
nα−k. (I.3)

According to the above inequality, it is easy to get that the social welfare of r ≡ 0 is at
most O(nα). We now examine its lower bound. To do so, we first get the lower bound on
distance.

D(ru = 0) ≥

∑n/2
j=1 bu(j) · j

c(0)
≥

ξ−k
∫ n/2

1
xkdx

c(0)
≥

ξ−k (n/2− 1)1+k

(1 + k)c(0)
>

ξ−k (n/4)1+k

(1 + k)c(0)
, (I.4)
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Combining the above inequality with Eq.(I.2) and Eq. (I.1), so we can get

π(ru = k, r−u ≡ 0) >
(ξ−k )α

4α(1+k)2α−1k
nα−k. (I.5)

Therefore, the social welfare of the random small-world network (r ≡ 0) is Θ(nα). Com-

bining with Theorem 4.1, the price of anarchy (PoA) is Θ
(

nk

lnα+1 n

)

.
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