
A Two-Dimensional Click Model for Query Auto-completion

Yanen Li1, Anlei Dong2, Hongning Wang1, Hongbo Deng2, Yi Chang2, ChengXiang Zhai1
1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{yanenli2, wang296, czhai}@illinois.edu
2Yahoo Labs, Sunnyvale, CA 94089, USA

{anlei, hbdeng, yichang}@yahoo-inc.com

ABSTRACT
Query auto-completion (QAC) facilitates faster user query input
by predicting users’ intended queries. Most QAC algorithms take
a learning-based approach to incorporate various signals for query
relevance prediction. However, such models are trained on simulat-
ed user inputs from query log data. The lack of real user interaction
data in the QAC process prevents them from further improving the
QAC performance.

In this work, for the first time we collect a high-resolution QAC
query log that records every keystroke in a QAC session. Based
on this data, we discover two user behaviors, namely the horizontal
skipping bias and vertical position bias which are crucial for rele-
vance prediction in QAC. In order to better explain them, we pro-
pose a novel two-dimensional click model for modeling the QAC
process with emphasis on these behaviors.

Extensive experiments on our QAC data set from both PC and
mobile devices demonstrate that our proposed model can accurate-
ly explain the users’ behaviors in interacting with a QAC system,
and the resulting relevance model significant improves the QAC
performance over existing click models. Furthermore, the learned
knowledge about the skipping behavior can be effectively incorpo-
rated into existing learning-based models to further improve their
performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query formulation

General Terms
Algorithms, Performance, Experimentation

Keywords
Query Auto-completion, Two-Dimensional Click Model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGIR’14, July. 6-11, 2014, Golden Coast, Australia
Copyright c©2014 ACM 978-1-4503-0757-4/11/07 ...$15.00.

1. INTRODUCTION
Query auto-completion (QAC) is one of the most important com-

ponents of a modern web search engine which facilitates faster us-
er query input by predicting the users’ intended queries. It is of-
fered by most of the search engines, e-commerce portals and major
browsers. With the prevalence of mobile devices, it becomes more
critical because typing takes more effort in mobile devices than in
PCs. Previous studies addressed the QAC problem in different per-
spectives, ranging from designing more efficient indexes and algo-
rithms [4, 10, 21, 11], leveraging context in long and short term
query history [3], learning to combine more personalized signals
such as gender, age and location [19], suggesting queries from a
mis-spelled prefix [7].

The query auto-completion process starts when a user enters the
first character into the search box. After that, she goes through
a series of interactions with the QAC engine until she clicks on
an intended query. Such interactions include examining the sug-
gested results, continuing to type, and clicking a query in the list.
Although previous approaches model the relevance ranking with
many features, these models usually only rely on the final submitted
query, ignoring the entire user interactions from the first character
she types to the final query she has clicked.

One difficulty for improving the QAC quality is the lack of data
about fine-grain user interactions in QAC. Recent works have at-
tempted to leverage all prefixes of a submitted query [3, 19]. How-
ever the only available data is the submitted query; while the pre-
fixes are simulated from all possible prefixes of the query. Lack
of associated information, such as the suggested list, user typing
speed and other real user interactions prevents such methods from
further improving their performance.

For this purpose, we have collected a high-resolution QAC dataset
from both PC and mobile phones, in which each keystroke of a user
and the system response are recorded. As far as we know, this is
the first dataset with this level of resolution specifically for QAC.
Extensive researches have already demonstrated the importance of
query log for web document retrieval [16, 12, 1, 13, 18]. Therefore,
itąŕs reasonable to believe this new kind of QAC log could poten-
tially enable a full spectrum of researches for QAC, such as user
behavior analysis, relevance ranking, interactive system design for
QAC, just to name a few.

Given many possibilities for mining this new data, in this pa-
per we focus on leveraging it for understanding users’ behavior in
QAC. Specifically based on our QAC log, we have observed a phe-
nomenon that in QAC users frequently skip several suggestion lists,

even though such lists contain the final submitted query. The exact
reason why this happens and how frequent it happens is largely un-
known. Besides, we also observed that most of the clicked queries
are concentrated in top positions. Better understanding of these
behaviors has a strong implication to the relevance modeling. For
instance, we assume that a user does not click a suggested query
because of lack of relevance; however the skipping behavior com-
plicates this hypothesis. If we know the positions such skipping
behavior happens, we could improve the candidate ranking in QAC
by taking into account the examples in the positions where they are
more likely to be examined. Despite its importance, little research
has been done in explaining such behaviors.

The QAC process shares similarities with the web document re-
trieval: in QAC people look for intended queries with a prefix,
while in document retrieval people look for relevant documents
with a query. And in document retrieval, click models are wide-
ly used to model the users’ examination and clicking behavior [17,
6, 8, 15, 23, 5]. Thus we could potentially adopt an existing click
model to shed light on the QAC user behavior. However, there
are major differences between the QAC process and document re-
trieval. For example, in document retrieval a user usually exam-
ines one result page before she lands on a click, while in QAC she
usually types in a series of prefixes and examines multiple lists of
suggestions before landing on a click. Due to this difference, most
current click models canąŕt be applied to the QAC problem without
significant modification.

Therefore in this paper we propose a novel two-dimensional click
model for understanding the user behaviors in QAC. This click
model is consisted of a horizontal component that captures the
skipping behavior, a vertical component that depicts the vertical
examination bias, and a relevance model that reflects the intrinsic
relevance between a prefix and a suggested query.

We have performed a set of experiments on our QAC datasets
from PC and mobile phones. Results show that our proposed mod-
el can effectively model the user behavior in QAC. The resulting
relevance model significant improves the QAC performance over
existing click models. We also show that the learned knowledge
about users’ behavior, especially the probability of skipping a col-
umn of suggestion candidates, could serve as unsupervised labeling
information to improve the performance of existing learning-based
approaches. Furthermore, with the learned model we demonstrat-
ed some interesting insights of the user behaviors in QAC on both
platforms.

We summarize our contributions as follows:

• We have collected the first set of high-resolution query log
specifically for the QAC process, which could enable many
researches on deeper understanding of QAC.

• Based on the new QAC log, we analyze two important user
behaviors in QAC, namely the horizontal skipping bias and
vertical position bias. The horizontal skipping bias is unique
to QAC and is formally introduced here for the first time.

• We propose a novel Two-Dimensional Click Model to model
these user behaviors. Our model outperforms the state-of-
the-art click models on relevance modeling. We also utilize
our model to derive interesting insights about the QAC user
behaviors on PC and mobile devices.

2. RELATED WORKS
Query Auto-Completion. The query auto-completion is the

search process of preferred queries given the issued prefix of a us-
er. Most of the existing works focus on relevance ranking. For this
purpose, traditional QAC engines rely on query popularity counts.
However it’s impossible to return queries matching a user’s specif-
ic preference such as location and freshness in time etc. Recent
QAC models employ learning-based strategy that incorporates sev-
eral global and personal features [3, 19]. But there is no consensus
of how to optimally train the relevance model.

The QAC process is very personal in nature, so it’s almost im-
possible to obtain a labeled dataset by third-party annotation. Ex-
isting methods use the clicks as a relevance surrogate, and train a
model trying to maximize the clicks. The straightforward way is
to only utilize the data in the last prefix, and use the skip-above as
well as the skip-next hypothesis to obtain a set of labels. Then we
could use the learning-based algorithms to train a model that lin-
early combines a set of features. Most recently [19] introduces a
different strategy, which exploits all suggested queries for all sim-
ulated prefixes of the clicked query. However, this automatic la-
beling strategy might be problematic, since it may introduce many
false negative examples where the user skips looking down the list.
If she had to examine the list, she would have clicked a query. So
there is a lot of uncertainty in the labeled examples introduced by
this method.

Besides relevance modeling, there are previous works address-
ing different aspects of QAC. For example, [4, 10] studied the s-
pace efficiency of index for QAC. [21, 11] investigated the efficient
algorithms for QAC. [7] addressed the problem of suggesting query
completions even if the prefix is mis-spelled. And [2] studied the
context-sensitive QAC for mobile search.

The QAC is a complex process where a user goes through a se-
ries of interactions with the QAC engine before clicking on a query.
Deciphering the user behavior in QAC is an interesting and chal-
lenging task. Despite of its importance, little research is done on
this direction, mainly because of the lack of suitable QAC log. It is
in this work we first collect a high-resolution QAC log and attempt
to model the user behaviors.

Click Models. In the field of document retrieval, the main pur-
pose for modeling a user’s clicks is to infer the intrinsic relevance
between the query and document by explaining the positional bias.
The position bias assumption was first introduced by Granka et al.
[9], stating that a document on higher rank tends to attract more
clicks. Richardson et al. [17] attempted to model the true rele-
vance of documents in lower positions by imposing a multiplica-
tive factor. Later examination hypothesis is formalized in [6], with
a key assumption (Cascade Assumption) that a user will click on
a document if and only if that document has been examined and it
is relevant to the query. Later, several extensions were proposed,
such as the User Browsing Model (UBM) [8], Bayesian Browsing
Model [15], General Click Model [23] and Dynamic Bayesian Net-
work model (DBN) [5]. Despite the abundance of click models, no
existing click models can directly apply to QAC without consid-
erable modification. The click model most similar to our work is
[22], which models users’ clicks on a series of queries in a ses-
sion. However because of the main difference between QAC and
document retrieval, our model structure is very different from [22].

To the best of our knowledge, our work is the first click model for
modeling the QAC process.

3. DATA AND USER BEHAVIOR ANALYSIS
In this section we will introduce the high-resolution query log

for QAC and the user behavior analysis based on this new kind of
data.

3.1 A High-Resolution QAC Log
As mentioned above, the QAC process is under-explored be-

cause there is no appropriate dataset. Previous research relies on
query log in which only the submitted query and associated infor-
mation are recorded. In order to analyze the subtle user behavior of
a whole QAC process we need to record system response and user
interactions for each keystroke leading to the final clicked query.
With this motivation we have collected a large set of QAC sessions
with real user interactions from a major commercial search engine.
This QAC log contains millions sessions on PC and mobile phone
platforms. The dataset in this study is a random sample of the orig-
inal QAC log dating from Nov. 2013 to Jan. 2014.

As illustrated in Table 1, the recorded information in each QAC
session includes the final clicked query, every keystroke a user has
entered, timestamp of a keystroke, corresponding top 10 suggested
queries to a prefix, and the anonymous user ID. It also records the
user’s submitted query in previous session. Table 2 lists the basic s-
tatistics of the dataset studies in this work. In PC platform each ses-
sion contains 11.80 prefixes in average; while the average clicked
query length is 19.68, which is substantially larger than the aver-
age prefix length, indicating the usefulness of QAC for facilitating
faster user query input. We observe similar statistics on the Iphone
5 platform, with lower average prefixes in one session (9.43), sug-
gesting that users rely even more on mobile devices where typing
takes more effort.

Table 1: High-resolution QAC Log
Data Type Example
anonymized user id 9qtfnj195p5ta
session id rFzqRUgeurCd
time stamp 11/02/2013 23:02
prefix oba
final submitted query obama care
previous query charm and charlie’s
clicked URL https://www.healthcare.gov/
top 10 suggested queries obama care|obama|oba|

obamacare|obama approval rating|...

Table 2: Dataset Basic Statistics
Platform # Sessions Ave Prefixes Ave Clicked # Unique

Qry Len User IDs
PC 125,392 11.80 19.79 111,783
Iphone 5 31,227 9.43 16.98 17,331

Significance: With this QAC log, for the first time we have op-
portunity to look into the real user interactions at the level of ev-
ery keystroke. Such high-resolution dataset, when combined with
traditional query log about user demographics and query history,
could enable many new researches on QAC. For example, we could

potentially utilize all lists of suggested queries to improve the QAC
relevance ranking. Also, we could leverage this data to get better
understanding of user behavior in a QAC process.

3.2 QAC User Behavior Analysis
Given the new QAC log, there are many possibilities to mine

valuable knowledge. In this paper we aim at leveraging the data
for user behavior modeling in QAC. When a user clicks on a sug-
gested query with the help of a QAC engine, she undergoes a series
of interactions with the search engine before she finally selects a
preferred query. Such interactions are of great value for improving
the quality of the QAC service. In this section we have conducted
two experiments to verify the need of modeling user behaviors in
QAC.

The first important user behavior in a QAC process is the skip-
ping behavior. We have observed that a user frequently skips sev-
eral intermediate lists of candidates even though these lists contain
her final submitted query. Table 3 illustrates this skipping behavior
from a real user-interaction sample. In this example, even though
the query obamacare healthcare bill is listed within top 3 positions
in each of the suggestion list, the user has skipped all of them but
the last appearance. Clearly this query is preferred by the user. A
plausible explanation for the skipping behavior is that the user did-
n’t examine it due to some reasons, such as fast typing speed, too
deep to look up the query, et al.

We’ve done an experiment on the dataset described in Table 2 to
verify how often this behavior happens. In this experiment we de-
fine that a skipping behavior happens when the final clicked query
is ranked within top 3 in the suggestion list of any of the prefixes
except the final prefix. Results in Table 4 show that this behavior is
frequent: it happens in 60.7% of all sessions in PC platform. Fur-
ther, this behavior is consistent in all session groups with different
final prefix length (57.6%, 64.8%, 59.1% and 60.2% respective-
ly), indicating its prevalence in all queries. This result suggests a
common skipping behavior in the QAC process. We observe very
similar phenomenon in the Iphone 5 platform.

Table 4: Frequency of the Skipping Behavior
Category # Sessions % Sessions Having

Skipping Behavior
All Sessions 125,392 60.7%
Sess with FPL in [1, 5] 39,405 57.6%
Sess with FPL in [6, 10] 39,882 64.8%
Sess with FPL in [11, 15] 22,892 59.1%
Sess with FPL in [16, 50] 23,213 60.2%

Note: FPL means Final Prefix Length.

In another experiment, we have investigated the vertical exami-
nation bias in QAC. Using the same set of QAC sessions, we have
computed the distribution of clicks according to their positions in
the final suggestion list and the final prefix length. Figure 3 shows
the 2-dimensional click distribution on both PC and Iphone 5 plat-
forms. Similar to the findings in the traditional click models, most
of the clicks concentrate on top positions. In fact, 75.4% of clicks
is located within the top 2 positions on PC and 77.5% on Iphone
5. Such vertical positional bias suggests that we should boost the

Table 3: An Example of the Skipping Behavior
Prefix obamacar| ⇒ obamacare| ⇒ obamacare | ⇒ obamacare h|

q1 obamacare glitches obamacare glitches obamacare glitches obamacare healthcare bill
√

q2 obamacare obamacare obamacare healthcare bill
√

obamacare healthcare insurance
q3 obamacare healthcare bill

√
obamacare healthcare bill

√
obamacare facts obamacare health plan 2014

q4 obamacare facts obamacare facts obamacare rates 2014 obamacare hotline
q5 obamacare fines obamacare fines obamacare fines obamacare health exchanges

Note: query with a
√

mark is the final clicked query by the user.

relevance estimated of queries if they are clicked on lower ranks.
Compared to PC, the clicks on Iphone 5 distribute more evenly
with-in positions from 1 to 3. In addition, Figure 3 also indicates
that most of the clicks are located in prefix length ranging from 3
to 12 on both platforms. Interestingly, the click probability at short
prefix length (1 and 2) is very low, suggesting that users tend to
skip the suggested queries at the beginning.

Figure 1: Distribution of the Clicks. The red color corresponds
to high click probability, while blue corresponds to low click
probability.

The reason why we focus on these two behaviors is their impor-
tant implications to relevance ranking. Recent research attempts to
improve the relevance model by training on all simulated columns
(lists) of suggestions [3, 19]. However, not all of columns are ex-
amined by the user. In that case, it might introduce many false neg-
ative examples that hurt the performance. To validate this claim,
we have conducted an experiment on our QAC dataset from PC
platform (see 5.1 for detailed description) in which we adopt the
same training strategy as [19]. For the learning-to-rank algorithm,
we use the RankSVM [12]. We also adopt very similar features
as [19] (see Table 6). MostPopularCompletion (MPC) is used as a
baseline. Another baseline is to train RankSVM only by the last
column (suggestion list corresponding to the last prefix). We also
add the third baseline, which is also RankSVM, but trained by last
2 columns. Same as [19], we evaluate MRR across all columns
where the final submitted query is within the candidates. Results in
Table 5 indicate that training on all columns is inferior to the same
model trained on last column. And it’s even inferior to the MPC
baseline. It might be because the noise in all columns overweighs
the useful signals. Interestingly, the same model trained on only the
last 2 columns achieves slightly better result than using only using
last column, suggesting that adding more (useful) columns might
be beneficial. We hypothesize that columns that are likely to be ex-
amined are useful for training. This hypothesis could be tested by
modeling the two user behaviors we focus on.

Table 5: A Pilot Experiment on Relevance Training
Method MRR@All
RankSVM - trained by all columns 0.436
RankSVM - trained by last column 0.514
RankSVM - trained by last 2 columns 0.518
MPC 0.447

4. MODELING CLICKS IN QUERY AUTO-
COMPLETION

Based on the results of the above experiments, we demonstrate
that the skipping behavior and vertical click position bias are preva-
lent and important for the improving QAC quality. How to mod-
el these behaviors is a new research problem. Given the similari-
ty between QAC and document retrieval, first we sought to apply
the existing click models to this problem. But we found most of
these click models are not appropriate for the following reasons:
(1) most existing click models only model a single query at a time.
But in QAC, a session contains a series of prefixes that are cor-
related. (2) traditional click models are unable to model unseen
query-document pairs. However in QAC a large portion (67.4% in
PC and 60.5% in Iphone 5) of the prefix-query pairs are unseen.
Therefore we propose a new click model for QAC, with emphasis
on modeling these two types of user behaviors. We first formally
define the assumptions on these two types of bias; then we will ful-
ly describe our click model in detail. After that we will discuss the
parameter estimation via Expectation Maximization.

4.1 QAC Click Bias Assumptions
Here we define two basic assumptions for the QAC problem.

One is to address the click bias due to the skipping behavior, and
the other is to address the click bias on vertical positions.

• SKIPPING BIAS ASSUMPTION: A query will not re-
ceive a click if the user didn’t stop and examine the suggested
list of queries, regardless of the relevance of the query.

This assumption explains why there are no clicks to intermediate
prefix even though a relevant query is ranked at the top of the list,
and all of the clicks are concentrated on the final prefix.

• VERTICAL POSITION BIAS ASSUMPTION: A query
on higher rank tends to attract more clicks regardless of its
relevance to the prefix.

Similar to the click modeling for document retrieval, this as-

Table 6: Features of the H, D and R Models
Category Feature Feature Group Description

CurrPosition Prefix Ratio of length between current prefix and the final prefix
IsWordBoundary Prefix Binary indicator, whether the end of current prefix is at word boundary

H Model NbSuggQueries Query Number of suggested queries
ContentSim Query Content similarity of suggested queries
TypingSpeed User Typing speed at this keystroke
QueryIntent User Whether the final submitted query is a navigational query

D Model Is@Depth d Query Binary indicators, whether the query candidate is at depth d, d = {1, ..., 10}
MPC Query Candidate frequency computed based on past popularity
TimeSense Query Candidate popularity measure in one day
GeoSense Query Candidate popularity measure at the city where the query is issued
QryHistFreq User The number of times the candidate is issued as query by the user in the past

R Model SameGenderFreq Demographics Candidate frequency over queries submitted by users of the same gender
SameGenderLikelihood Demographics SameGenderFreq normalized by MPC
SameAgeGroupFreq Demographics Candidate frequency over queries submitted by users of same age group
SameAgeGroupLikelihood Demographics SameAgeGroupFreq normalized by MPC

sumption explains why relevant queries receive fewer clicks if they
are ranked in lower positions.

4.2 Model Formulation
Based on the assumptions defined above, in this section we pro-

pose a Two-Dimensional Click Model (TDCM) to explain the ob-
served clicks. This click model is consisted of a horizontal model
(H Model) that explains the skipping behavior, a vertical model (D
Model) that depicts the vertical examination behavior, and a rele-
vance model (R Model) that measures the intrinsic relevance be-
tween the prefix and a suggested query. Figure 2 is a flowchart of
user interactions under the TDCM model. The user interacts with
the QAC engine horizontally and vertically according to the H , D
and R models. Because in every QAC session, there is no click
before the user leaves the process, we employ the Cascade Model
assumption [6] that constraints the relations between the H , D and
R models. We list the notations of TDCM in Table 7. According
to the TDCM, the generative process of observing a click in a QAC
session is described as follows (see Figure 2 also):

1. For a QAC session, let’s assume the user has entered sev-
eral characters and she is at prefix i, then she will decide
whether to stop and look down to examine the list of suggest-
ed queries at ith column. This whether-to-look-down event
is governed by a hidden random variable Hi, Hi = 1 means
stop and examine, Hi = 0 means skip and continue to type.
The task of the horizontal model (H Model) is to estimate
the distribution of H: P (H).

2. Once the user decides to examine vertically, following the
cascade model assumption she will examine one query at a
time from top to bottom. The depth of the examination is
determined by another hidden random variable Di. Di = j

means the user examines the query at position j at ith col-
umn. While being equivalent to introducing a set of binary
variables at each depth, this formulation is more convenient
in parameter estimation. The task of the vertical model (D
Model) is to estimate the distribution of D: P (D).

3. If a query candidate is examined and it is relevant, according
to the cascade model assumption, the user will click it. The

probability a query being relevant to the given prefix is de-
termined by the relevance model: P (Cij = 1|Hi = 1, Di ≥
j). The task of the relevance model (R Model) is to estimate
the distribution of P (Cij = 1|Hi, Di).

4. If the depth Di is reached and no relevant queries are found,
she will go back to Step 1 and continue to type another char-
acter.

5. Once a click event happens, she will end the auto-completion
session, which implies there will be always no more than
once click observed in a session.

Figure 2: TDCM Flowchart

4.3 Click and Conditional Probabilities
Based on the above generative process, the probability of observ-

ing a click C in a session can be formulated as:

P (C) =
∑
H,D

P (C,H,D) (1)

Table 7: Major Notations
Symbol Description
pi Prefix at ith column.
qi,j Query at position (i, j).
n Number of columns in a QAC session.
Hi Whether the user stops to examine the column i.
H A vector of variables: H = {H1..., Hn}.
Di Depth of examination at column i.
D D = {D1..., Dn}.
Ci,j Whether the query at (i, j) is clicked.
Ci A vector of variables: Ci = {Ci,1..., Ci,Mi

}.
C The click matrix: C = {C1, ..., Cn}.
Mi # queries in the suggestion list at column i.
wH , wD, wR Feature weights of the H, D and R model.
xH , xD, xR Features of the H, D and R model.

Figure 3: TDCM Model Structure

Where H = {H1..., Hn}, D = {D1..., Dn} is a set of hidden
variables respectively. C = {C1, ..., Cn} is the click observation
matrix in which only one click is observed: Cn,J = 1, n is the num-
ber of columns in the QAC session. Figure 3 depicts the relation of
the hidden and observed variables. According to the Cascade Mod-
el assumption and the real observations of a QAC session, there
is always only click observed, which implies other columns don’t
receive any click:

Cn,J = 1⇔ {C1 = 0, ...Cn−1 = 0, Cn,J = 1, Cn,j = 0, j 6= J},

So:

P (Cn,J = 1) = P (C1 = 0, ...Cn−1 = 0, Cn,J = 1, Cn,j = 0, j 6= J).

(2)
Our model also follows a set of conditional probabilities:

P (Cij = 1|Hi = 0) = 0 (3)

P (Cij = 1|Hi = 1, Di < j) = 0 (4)

P (Cij = 0|Hi, Di) = 1− P (Cij = 1|Hi, Di) (5)

P (Di > d|qd : Cn,d = 1) = 0. (6)

The TDCM assumption 1 (SKIPPING BIAS ASSUMPTION) is
modeled by 3 and 6. The assumption 2 (VERTICAL POSITION
BIAS ASSUMPTION) is modeled by 4 and 6. Equation 6 states
that if a relevant query is ranked in depth d, the examination depth
at ith column must not exceed d.

4.4 The Forms of Distributions

Now we introduce the forms of distributions for H,D and R
model. Different from most of the click models and similar to [20],
we define the distributions via logistic functions:

P (Hi = 1) = σ(wH
T · xH), (7)

where σ(z) is a logistic function: σ(z) = 1
1+e−z .

So

P (Hi = 0) = 1− σ(wH
T · xH), (8)

Similarly, for Di, we have:

P (Di = j) =
ewD

T ·xDj∑Mi
l=1 e

wD
T ·xDl

, (9)

where j ∈ {1, ..,Mi}, Mi is the number of queries in the sug-
gestion list at ith column.

And for the R model, we have:

P (Cij = 1|Hi = 1, Di ≥ j, θ) = σ(wR
T · xRi,j), (10)

P (Cij = 0|Hi, Di) = 1− P (Cij = 1|Hi, Di) (11)

In the above formulations, xH , xD, xR are features characteriz-
ing the H,D,R distributions. And θ = {wH , wD, wR} are the
corresponding weights for the features. As stated in [20], using
this form of distribution has the advantage of incorporating more
useful signals from diverse sources. And it also make it feasible for
predicting the unseen prefix-query pairs.

4.5 Features
Table 6 summarizes the features used in the H,D and R mod-

els. Specifically, for the H model, we adopt these features for the
following reasons. TypingSpeed: an expert user is less likely to use
QAC than a slow user. CurrPosition: a user tend to examine the
queries at the end of typing. IsWordBoundary: a user is more likely
to lookup queries at word boundaries. NbSuggQueries: it’s more
likely to be examined if the list of of queries is short. ContentSim:
a user may be more likely to examine the list if all queries are co-
herent in content. QueryIntent: a user tends to skip the list more
when searching for navigational queries.

The feature for D model are the positions a query candidate is
ranked. The purpose of using this feature is that we want to use the
D model to measure the pure vertical position bias. Note that the
form of D model allows us to incorporate more complex features
in the future.

For the R model, we have designed 8 features in total, reflect-
ing diverse aspects of the relevance model. It includes the query
popularity counts, which is widely used in the current search en-
gines, the long term query history query counts, geo-location and
time related query frequencies, and 4 other demographics features.
Similar features are reported in [19], therefore comparing our mod-
el to that in [19] is meaningful.

4.6 Model Estimation via E-M Algorithm
In this section we discuss the estimation of model parameters

θ = {wH , wD, wR}. A straightforward way is to take the log of
Equation 1 and estimate θ by Maximum Likelihood. However since
Equation 1 involves the summation of the H and D vectors, the

estimation is quite complicated. Based on the form of distribution
and the choice of features, we make some independent assumption
of variables at different columns in order to simplify the model
estimation:

P (Hi|Hj , i 6= j, θ) = P (Hi|θ) (12)

P (Di|Dj , i 6= j, θ) = P (Di|θ) (13)

P (Ci|Hi, Di, Hj , Dj , i 6= j, θ) = P (Ci|Hi, Di, θ) (14)

This assumption breaks the interdependency between columns.
And the likelihood of different columns are still related because
they share common parameters. Under these assumptions, the log
likelihood of observing a click given the model parameters θ is:

logP (C|θ) =
n∑

i=1

log
∑

Hi,Di

P (Ci, Hi, Di|θ) (15)

Model parameters θ = {wH , wD, wR} can be estimated by
maximizing Equation 15. However, direct estimation of the model
parameters θ is still hard because of the summation inside the loga-
rithm. Instead, we sought to maximize the lower bound of Equation
15:

logP (C|θ) =
n∑

i=1

log
∑

Hi,Di

P (Ci, Hi, Di|θ)

≥
n∑

i=1

∑
Hi,Di

P (Hi, Di|Ci, θ
old) · logP (Ci, Hi, Di|θ)

= Q(θ, θold) (16)

After fully formulating the Q function, model parameters can be
updated iteratively by the E-M algorithm. In the E step, we aim at
calculating the posterior distribution:

P (Hi, Di|Ci, θ
old)

=
P (Ci|Hi = l,Di = j, θold) · P (Hi = l,Di = j|θold)∑1

l=0

∑Mi
j=1 P (Ci|Hi = l,Di = j, θold) · P (Hi = l,Di = j|θold)

(17)

And in the M step, we maximize the expectation of the com-
plete data probability in Equation 16 by gradient descent. Since the
forms of distributions inH,D,R are all convex, the E-M algorithm
is guaranteed to converge. And each QAC session is independen-
t, therefore the above E-M algorithm for parameter estimation can
be easily expanded to the whole set of sessions. Here we skip the
detailed formulations due to the space limitation.

5. EXPERIMENTS AND RESULTS
In this section, we conduct a series of experiments to validate

our major claims to the TDCM model. Firstly, due to the differ-
ence between document retrieval and QAC, we claim that most of
the existing click models are not effective in modeling the QAC.
We will compare our model with the state-of-the-art click model-
s on the relevance modeling. Besides testing on PC and Iphone 5
datasets, we also experiment on a random bucket dataset which pro-
vides an unbiased evaluation of the relevance ranking. Secondly, as
we have mentioned, for training a QAC relevance model, previous
researches either use the last column as training data which might

not have enough examples, or use all columns as training examples
[19] which might introduce too much noise. We will demonstrate
that our model can be leveraged to improve existing learning-based
methods by providing more appropriate examples. Further, we will
investigate the vertical position bias via our model on a side-by-side
comparison of such bias on PC and Iphone 5 platforms. Finally we
discuss some interesting insights about user behaviors on both plat-
forms.

5.1 Datasets and Metrics
We use the same datasets for evaluation as in user behavior anal-

ysis (Section 3.2). The whole dataset is divided evenly into a train-
ing set and a test set. See Table 8 for statistics. In order to pro-
mote reproducibility of methods, we will consider anonymizing the
datasets and make the data as well as necessary source codes avail-
able to the public.

Table 8: Training and Test Sets
Platform Dataset # Sessions Ave Prefixes

All 125,392 11.80
PC Training 62,534 11.77

Test 62,858 11.83
Iphone 5 All 31,227 9.43

Training 15,394 9.46
Test 15,833 9.40

Random Bucket Test 21,154 16.15

As reported in previous research [3, 19], manual labeling of rel-
evance for QAC is very difficult since it’s hard to find consensus
between individuals on the preferred queries given the same pre-
fix. Instead a common practice of evaluating the QAC performance
is to measure the prediction accuracy of the users’ clicked queries
[3]. In this work we adopt this evaluation strategy. In addition, be-
cause the user clicks are a biased estimate of relevance, we also set
up a random bucket to collect clicks from a small portion of traf-
fic during the same period. In this random bucket, for every prefix
top-10 ranked queries are randomly shuffled and displayed to the
users. By doing so, it’s able to reduce the vertical position bias and
the collected user clicks can be used as the unbiased relevance of
queries [14].

For evaluation metrics, we employ the Mean Reciprocal Rank
(MRR) as the main measurement of relevance. It is the standard
practice in measuring QAC performance [3, 19]. Specifically, for a
QAC session, the list of candidates are generated from a commer-
cial search engine and recorded in our dataset. Columns (suggested
queries associated with a prefix) in which the final submitted query
does not appear among the top-10 candidates are removed from the
analysis. This treatment will not change the relative performance
between models because in these columns MRR is zero before and
after the re-ranking. Then we compute the average MRR across all
these columns. In addition, we also report the MRR of the last col-
umn since this is the column where real user click happens. Paired
T-test is adopted for testing the statistical significance with p-value
cutoff 0.05.

For baselines, MostPopularCompletion (MPC) is used as a base-
line. Despite its simplicity, MPC has been reported as a very com-
petitive baseline and widely used as a main feature in the QAC

engines. We also compare our approach to three state-of-the-art
click models, including User Browsing Model (UBM)[8], Dynam-
ic Bayesian Network model (DBN) [5] and Bayesian Sequential
State model (BSS) [20]. The UBM and DBN rely on the counting
of prefix-query pairs thus they are unable to predict unseen prefix-
query pairs. On the other hand BSS is a content-aware method and
it can predict unseen prefix-query pairs. We adopt the source code
of these approaches from [20]. Since our model makes use of all
columns of data, to make a fair comparison, we train these click
models on the last column as well as all columns. All baselines and
their description are listed in Table 9.

Table 9: Baselines for Comparison
Model Description Training Data
MPC Most Popular Completion no training is needed
UBM-last User Browsing Model last column
UBM-all User Browsing Model all columns
DBN-last Dynamic Bayesian Network model last column
DBN-all Dynamic Bayesian Network model all columns
BSS-last Bayesian Sequential State model last column
BSS-all Bayesian Sequential State model all columns
TDCM Our model all columns

5.2 Evaluating the Relevance Model
Normal Bucket test. We first investigate whether our click mod-

el has advantage over existing click models on improving the QAC
relevance ranking. For this purpose, we compare our model to the
MPC baseline and other click models on normal buckets from both
PC and Iphone 5 platforms. The results are summarized in Ta-
ble 10. Firstly, counting-based click models (UBM and DBN) are
generally not effective for modeling the relevance in QAC. For ex-
ample, the UBM-last and DBN-last methods under-perform the M-
PC baseline on both PC and Iphone 5 datasets. Although UBM-
all DBN-all perform a little better than UBM-last and DBN-last,
training on all columns of data still doesn’t give an edge to these
methods over MPC baseline. This is not surprising because UBM
and DBN rely on counting the prefix-query pairs. However, in the
dynamic enjoinment of QAC, users constantly change the prefix.
Thus the percentage of unseen prefix-query pairs is large (67.4%
in PC and 60.5% in Iphone 5), which is very different from that
in document retrieval. Presumably, training on all columns will
add more seen prefix-query pairs, which leads to the improved M-
RR. However, since these models are not designed to model the
whole QAC process, they are unable to capture useful signals in all
columns and thus unable to improve the performance much.

In addition, the BSS model performs better then UBM and DB-
N. For example, when trained on last column, it achieves 0.515 on
MRR@All and 0.543 on MRR@Last on the PC dataset, indicating
its effectiveness of capturing relevance by content-based modeling
of relevance. One advantage of content-based modeling is that it’s
able to interpolate the relevance model to unseen prefix-query pairs,
which is critical in QAC. But training on all columns doesn’t boost
its performance, suggesting the importance of modeling the while
QAC process. We also note that BSS is not stable on both platform-
s: for example, it doesn’t work well in the Iphone 5 dataset (0.510
on MRR@All on 0.537 on MRR@Last by BSS-last).

On the other hand, our TDCM model achieves significant bet-

ter results on both platforms. For example it achieves 0.525 on
MRR@All and 0.573 on MRR@Last on the PC dataset. And on
Iphone 5 dataset, it gets 0.580 on MRR@All and 0.668 on MR-
R@Last. All of these results are statistically significant better than
MPC. Compared to UBM and DBN, our model overcomes their
limitation by adopting the content-aware relevance model. And
compared to BSS, our model takes advantage of all columns of data
by properly modeling the user behavior in the whole QAC process,
leading to much better and stable results on both platforms.

Table 10: Click Models Comparison on Normal Bucket
PC PC Iphone 5 Iphone 5
MRR@All MRR@Last MRR@All MRR@Last

MPC 0.447 0.534 0.542 0.646
UBM-last 0.416 0.449 0.409 0.432
UBM-all 0.445 0.452 0.431 0.432
DBN-last 0.418 0.437 0.405 0.427
DBN-all 0.454 0.442 0.435 0.423
BSS-last 0.515‡ 0.543 0.510 0.537
BSS-all 0.495 0.523 0.480 0.479
TDCM 0.525‡ 0.573‡ 0.580‡ 0.668‡

Note: ‡ indicates p-value<0.05 compared to MPC

Random Bucket test. Using normal traffic to evaluate the rele-
vance model might be biased because a model could be optimized
by chasing the clicks rather than the intrinsic relevance/utility. To
make an unbiased evaluation we also test all the methods on a ran-
dom bucket dataset containing 21,154 QAC sessions. We summa-
rize the results in Table 11. Overall the MPC baseline performs
worse than that in normal bucket. It’s expected because as the po-
sition bias is reduced, users have more change to click on queries
that are not the most popular. Similarly, UBM and DBN models fail
to outperform MPC baseline and the BSS model achieves reason-
able results compared to MPC. Again, our model achieves the best
results on both MRR@All (0.493) and MRR@Last (0.508) metric-
s, which is statistical significant compared to MPC. These results
are consistent with that observed in normal traffic, confirming the
superiority of our TDCM model on relevance modeling.

Table 11: Click Models Comparison on Random Bucket
MRR@All MRR@Last

MPC 0.429 0.485
UBM-last 0.381 0.402
UBM-all 0.397 0.393
DBN-last 0.373 0.391
DBN-all 0.388 0.391
BSS-last 0.471‡ 0.488
BSS-all 0.460 0.469
TDCM 0.493‡ 0.508‡

Note: ‡ indicates p-value<0.05 compared to MPC

5.3 Relevance Model Performance by Query
Length

In order to investigate whether our model is robust in all sectors
of queries, we break the relevance results into 5 groups according

to their clicked query length. MPC results are also shown for com-
parison. Results on Figure 4 reveal that on both PC and Iphone 5
datasets, our model’s performance decreases gradually as the sub-
mitted query length increases. There is no abrupt drop of perfor-
mance in a sector of queries, indicating that our model is robust to
queries with different length. In addition, the MPC baseline has
similar trend as our model. This common trend suggests the im-
portance of the query popularity count because the shorter queries
generally have higher popularity counts. In the random bucket, the
MRR of our model drops when the query length increase, and starts
to increase again when the query length becomes larger. This trend
suggests that in random bucket, MPC feature becomes less impor-
tant than in normal bucket; thus longer queries will still have good
MRR even though their MPC scores are smaller.

Figure 4: MRR Evaluation by Query Length. All sessions are
aligned to groups based on the submitted query length. Perfor-
mance is measured by MRR@All

5.4 Validating the H Model: Automatic La-
beling by TDCM

Another advantage of our model over existing click models is
that we can utilize the learned user behavior in QAC to enhance
other learning-based methods. In the pilot experiment in Section
3.2, we have shown that even though RankSVM is a state-of-the-
art ranker, when trained by all columns, its performance doesn’t
even beat MPC (-2.46% on MRR@All). The reason is probably
because while we are sure that a user has viewed and examined the
last column, it’s uncertain that she has viewed other columns; so
the information in previous columns is not reliable. The noise in
all columns may outweigh the useful information they bring about.
So by simply training on all columns it is generally not effective.
In this experiment, we test whether the user examination behavior
inferred by our model can be used to improve other methods. In
order to achieve this, we first run TDCM on the training dataset,
obtain all P (H) probabilities for each session. After that, we keep
the columns with high P (H = 1) (>0.7). Finally we use these
columns to train the corresponding models again. The labeling cri-
teria is simple: if the candidate equals the final submitted query, we
label it as positive, and other candidates are all labeled as negative.
Results of this experiment are drawn in Figure 5. Interestingly,
using this simple automatic labeling strategy, RankSVM achieves
better MRR@All across three datasets. For example, on PC dataset
RankSVM achieves 0.523 on MRR@All, compared to 0.514 by
training on last column only. Similar improvements are observed
in Iphone 5 and Random Bucket. These results suggest that the us-
er behavioral information inferred by our model can be applied to
other models, especially the information whether a query has been
examined is very useful for improving other models’ performance.

Figure 5: Model Training on Selected Columns. Viewed
columns: columns whose P (H = 1) > 0.7. Performance is
measured by MRR@All

5.5 Validating the D Model
Here we seek to evaluate the accuracy of the D model, that is

the vertical examination distribution. Intuitively the probability of
examining a position should be correlated to the clickthrough rate.
In our feature instantiation, all features for theD model are vertical
positions. So it is possible to draw the distribution of D according
to the feature weights wD , which corresponds to the probability of
examining a position. In this experiment we run the TDCM mod-
el on the both PC and Iphone 5 dataset, and draw the distribution
along with the real click through rate (CTR) in Figure 6. From Fig-
ure 6 we see that the shape of the D model distribution is similar
to the real CTR. Both distributions are very steep, attracting more
probabilities in top positions. Our estimation of the D model is a
little flatter than the real CTR. For example, on PC platform, at the
top 1 position our model estimates the examination probability to
be 0.397, while the real CTR is 0.500. And in the 2nd position we
predict more probability (0.314) than the real CTR (0.254). Com-
pared to PC platform, in Iphone 5 platform both the real CTR and
our estimated examination distribution are flatter. This suggests an
interesting conclusion that in mobile devices people tend to exam-
ine deeper down the suggestion list.

Figure 6: The D distribution VS real CTR. Positions

5.6 Understanding User Behavior via Feature
Weights

An additional benefit of our proposed model is that the learned
feature weights reveal the influence of different factors on user-
s’ behavior in the QAC process, which is not available in most
of the existing click models. To explore this, we list a subset of
learned weights in Table 12. Although the absolute number of these
weights don’t reflect exactly the importance of features because s-
cales of the features are different, we can still tell their relative
importance by comparing them on PC and Iphone 5 side by side.

Firstly, in the H model related features, TypingSpeed is the most
important feature both on PC and Iphone 5. TypingSpeed is reverse-
ly proportional to P (H) = 1. Interestingly, the absolute weight of
TypingSpeed is larger in PC than in Iphone 5, suggesting that
people tend to skip more when using QAC in PC because they type
faster in PC. Another important feature is IsWordBoundary. Intu-
itively it makes sense since people tend to stop and look for query
completions when they are typing at word boundaries. The Query-
Intent feature also plays a role, indicating that people tend to skip
more when looking for navigational queries; while they need more
help from the QAC engine when they are seeking information and
uncertain how to formulate the queries.

Secondly, the features of the D model is examination probabili-
ties. As mentioned in the previous experiment, these probabilities
are higher at the top positions. In PC, the estimated examination
probabilities concentrate more on the 1st position. On Iphone 5 the
2nd and 3rd positions receive more examination probabilities than
PC. This suggests that in mobile devices people will look deeper
down the suggestion list.

Thirdly, for the R model, people pay more attention on the long
query history in Iphone 5 than in PC. This might be because typing
is harder in mobile devices people rely on the QAC engine to store
and retrieve their past queries. Another interesting finding is that
geo-location related signals and time-sense signals are both impor-
tant, which reveals that people emphasize on location-relevant and
fresh queries.

Table 12: Feature Weights Learned by TDCM

wH TypingSpeed IsWordBoundary CurrPosition QueryIntent

-0.86 0.55 0.32 -0.20
wD Position@1 Position@2 Position@3

PC 0.397 0.314 0.152
wR MPC QryHistFreq GeoSense TimeSense

1.790 0.973 0.962 1.115
wH TypingSpeed IsWordBoundary CurrPosition QueryIntent

-0.57 0.50 0.20 -0.28
wD Position@1 Position@2 Position@3

Iphone 5 0.3782 0.334 0.171
wR MPC QryHistFreq GeoSense TimeSense

4.139 3.918 0.947 1.595

6. CONCLUSION AND FUTURE WORK
The QAC problem is under-explored because of the lack of suit-

able query logs. In this paper we have collected a large set of QAC
sessions with fine-grained user interaction information, which en-
ables us to analyze and model the user behavior in QAC. Based
on two key observations, namely the horizontal skipping bias and
vertical examination bias, we propose a novel TDCM model for
modeling the QAC process. Extensive experiments on our datasets
demonstrated that our TDCM model can accurately explain the us-
er behaviors in QAC. The resulting relevance model significantly
outperforms all existing click models. In addition, user behavior
information learned by our model can be incorporated into other
learning-based methods to further improve their performance. Us-
ing our model, we also discover some interesting user behaviors on
PC and mobile devices.

As the first click model for QAC, our TDCM model could be ex-
tended in several ways in the future. For example, the independent
assumption between different columns can be relaxed to capture
multi-column interdependency. In addition, more complex click
models can replace the D model to better explain the vertical posi-
tion bias.

7. ACKNOWLEDGMENTS
We would like to thank Georges Dupret from Yahoo Labs and X-

iaolong Wang from the University of Illinois at Urbana-Champaign
for their discussion and advice.

8. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking

by incorporating user behavior information. In SIGIR’06
[2] M. Arias, J. M. Cantera, J. Vegas, P. de la Fuente, J. C. Alonso, G. G.

Bernardo, C. Llamas, and Á. Zubizarreta. Context-based
personalization for mobile web search. In PersDB

[3] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In WWW’11

[4] H. Bast and I. Weber. Type less, find more: fast autocompletion
search with a succinct index. In SIGIR’06

[5] O. Chapelle and Y. Zhang. A dynamic bayesian network click model
for web search ranking. In WWW’09

[6] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental
comparison of click position-bias models. In WSDM’08

[7] H. Duan and B.-J. P. Hsu. Online spelling correction for query
completion. In WWW’11

[8] G. E. Dupret and B. Piwowarski. A user browsing model to predict
search engine click data from past observations. In SIGIR’08

[9] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of
user behavior in www search. In SIGIR’04

[10] B.-J. P. Hsu and G. Ottaviano. Space-efficient data structures for
top-k completion. In WWW’13

[11] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword
search. In WWW’09

[12] T. Joachims. Optimizing search engines using clickthrough data. In
KDD’02

[13] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In WWW’06

[14] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article recommendation
algorithms. In WSDM’11

[15] C. Liu, F. Guo, and C. Faloutsos. Bayesian browsing model: Exact
inference of document relevance from petabyte-scale data. ACM
Trans. Knowl. Discov. Data, 2010.

[16] F. Radlinski and T. Joachims. Query chains: learning to rank from
implicit feedback. In KDD’05

[17] M. Richardson. Predicting clicks: Estimating the click-through rate
for new ads. In WWW’07

[18] M. Sahami and T. D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In WWW’06

[19] M. Shokouhi. Learning to personalize query auto-completion. In
SIGIR’13 2013.

[20] H. Wang, C. Zhai, A. Dong, and Y. Chang. Content-aware click
modeling. In WWW’13

[21] R. W. White and G. Marchionini. Examining the effectiveness of
real-time query expansion. Information Processing & Management

[22] Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click modeling for
understanding and predicting search-behavior. In KDD’11

[23] Z. A. Zhu, W. Chen, T. Minka, C. Zhu, and Z. Chen. A novel click
model and its applications to online advertising. In WSDM’10

