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ABSTRACT
The emergence of standards for programming real-time systems in
Java has encouraged many developers to consider its use for sys-
tems previously only built using C, Ada, or assembly language.
However, the RTSJ standard in isolation leaves many important
problems unaddressed, and suffers from some serious problems in
usability and safety.

As a result, the use of Java for real-time programming has con-
tinued to be viewed as risky and adoption has been slow.

In this paper we provide a description of IBM’s new real-time
Java virtual machine product, which combines Metronome real-
time garbage collection, ahead-of-time compilation, and a com-
plete implementation of the RTSJ standard, running on top of a
custom real-time multiprocessor Linux kernel.

We will describe the implementation of each of these compo-
nents, including how they interacted both positively and negatively,
and the extensions to previous work required to move it from re-
search prototype to a system implementing the complete seman-
tics of the Java language. The system has been adopted for hard
real-time development of naval weapons systems and soft real-time
telecommunications servers. We present measurements showing
that the system is able to provide sub-millisecond worst-case garbage
collection latencies, 50 microsecond Linux scheduling accuracy,
and eliminate non-determinism due to JIT compilation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection); D.4.7 [Operating Systems]: Organiza-
tion and Design—Real-time systems and embedded systems

General Terms
Experimentation, Languages, Performance
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1. INTRODUCTION
Real-time systems have reached a critical inflection point in both

their breadth of use and the complexity of their design. The small
stand-alone real-time applications of the past are giving way to a
new type of networked real-time system incorporating many indi-
vidual components across numerous machines, whose timeliness
requirements range from microseconds to seconds, and whose ag-
gregate size is in the tens of millions of lines of code. Examples
of such systems include integrated battleship management, VOIP-
based telecommunications systems, stock arbitrage, and automo-
tive systems.

Because of the size, complexity, and longevity of these systems,
there has been increasing desire (and pressure) to implement them
in Java. However, until now this had not been practical.

Some pieces to the puzzle existed: our Metronome system [5]
demonstrated that it was possible to build a truly real-time garbage
collector, eliminating the largest obstacle to using standard Java
code for real-time programming. The Real-Time Specification for
Java (RTSJ) standard [9] provided much-needed real-time schedul-
ing APIs. Unfortunately it incorporated non-standard memory man-
agement (Scopes) and was oriented towards J2ME-based unipro-
cessor embedded devices. The RTSJ also left key issues such as
class loading and JIT compilation completely unaddressed.

In this paper we describe our design and implementation of the
first production Java virtual machine to solve these issues in a com-
prehensive manner. The IBM Real-time Java virtual machine com-
bines

• real-time garbage collection,
• ahead-of-time compilation,
• a complete implementation of the RTSJ standard,
• pre-loading of classes,
• customized standard libraries,
• sub-microsecond vertical instrumentation,
• full J2SE support,
• multiprocessor capability, and
• co-existence of multiple real-time JVMs on a single host.

It runs in guaranteed real-time mode on top of a real-time Linux
kernel developed by IBM and the open source community, and in
soft real-time mode on top of a standard Linux kernel.
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The integration for the first time of all these real-time technolo-
gies into a single system provided unique challenges and required
considerable extensions and adaptations of existing techniques.

Because of the large number of components, we will of necessity
be unable to treat any one of them in detail. Instead we will focus
on the novel aspects of the system which were required to make all
of the different components work together, and to have each piece
of technology implement the complete semantics of both the com-
plete Java 5 language as well as the complete RTSJ specification.
This includes the aspects of the underlying operating system that
were developed collaboratively (with the IBM Linux Technology
Center) to provide the necessary features for the JVM.

The cumulative effects are shown in an experimental evaluation
of the system across a number of different benchmarks.

The resulting product has been adopted by Raytheon to produce
the software for DDG 1000, the next-generation U.S. Navy de-
stroyer. It is also being used by others in the government, financial,
and telecommunications sectors.

In its guaranteed real-time mode, worst-case garbage collection
latencies of 2 ms and worst-case Linux context-switching latencies
of 50 µs are contractually guaranteed to customers. In this paper,
we have avoided the use of the term “hard real-time” due to the po-
tentially different interpretations of that term: in particular, whether
the worst-case guarantees have been mechanically proven (as with
abstract interpretation), manually proven (as with a pen-and-paper
proof), certified via codified “best practices” (as with DO-178B),
guaranteed contractually (as with our system), or evaluated based
on test coverage. Some aspects of our system have been dealt with
more formally, as we describe below.

Real-time Java is being used in environments where a new gen-
eration of real-time systems are being built, whose complexity is
vastly greater than traditional real-time systems that provide local-
ized control of single systems. Such systems have the property that
their complexity level precludes the use of techniques like model
checking for all but the smallest “kernels” of the system. Java is
compelling for such systems since its higher level of abstraction
reduces the likelihood of both bugs and security vulnerabilities.

2. THE J9 VIRTUAL MACHINE
The IBM Java Virtual Machine (JVM) is called J9. The core

components in the JVM are the interpreter, Just-In-Time (JIT) com-
piler, garbage collector, class loader and stack walker. There are
interfaces between all of these components. For example, when
a class is loaded, the class loader updates structures used by the
garbage collector, interpreter, and JIT compiler, as well as code
generated by the compiler. Similarly, when the garbage collector
unloads a class, the JIT is notified so that it can update it’s internal
structures. The code generated by the JIT is dependent on the type
of garbage collector that is present.

The J9 JVM is designed to be portable, and runs on dozens of
variants of operating systems and hardware combinations. The way
we can achieve this high level of portability is through a very small
portability layer. This portability layer provides a mapping from
the general services needed by the JVM, such as acquiring memory,
writing files, etc., to the underlying operating system and hardware.

The Real Time JVM is built using this same philosophy. We in-
troduce a new garbage collector called Metronome, along with a
new set of interfaces that the JIT and interpreter must implement.
We extend some of the core services to support the RTSJ class li-
braries, in particular, priority threads, scopes and immortal memory
areas, and we modify our optimization strategy to support Ahead-
of-Time compilation along with conservative code generation that
is optimized for predictability instead of pure throughput.

3. REAL-TIME LINUX
IBM Real-Time Java runs in two modes: soft real-time on a stock

Linux kernel and guaranteed real-time on a real-time Linux kernel.
In order to provide a Linux kernel which meets the real-time re-
quirements of the RTSJ and the Real-Time JVM, the IBM Linux
Technology Center (LTC) developed a customized kernel in close
association with the developers of the Real-Time Java virtual ma-
chine, and the open source Linux community. The kernel modifi-
cations are available as open source [23].

While the mainline Linux OS provided some real-time features
such as the SCHED_FIFO scheduler policy and partial kernel pre-
emption, it required changes to three key areas before it could pro-
vide the capabilities required by the real-time JVM to support the
Real Time Specification for Java (RTSJ) and Metronome garbage
collection. The community driven PREEMPT_RT patch provided
much of the needed functionality, but was in need of some re-
finement and hardening. The current real-time Linux OS provided
by the Linux Technology Center consists of Linux 2.6.16 and the
2.6.16-rt22 PREEMPT_RT patch, with additional bug fixes, hardware
enablement patches, and RTSJ compliance features.

3.1 Locking
Locking mechanisms are a prime source of latencies. Laten-

cies can arise due simply to lock contention, the need to enter ker-
nel space to acquire frequently accessed locks, or from something
more critical, like a priority inversion. The mainline kernel used
spinlocks internally for several structures. The real-time kernel has
replaced nearly all kernel spinlocks with mutexes (or sleeping spin-
locks) which allow what would otherwise be a busy spin loop to be
preempted to allow needed work to get done. Early in the devel-
opment cycle, the LTC worked closely with the community to help
guide a third generation fast userspace mutex implementation. This
enabled the acquisition of uncontended locks to occur completely
in userspace, reducing the number of times a task must enter the
kernel. Lastly, priority-inheritance-enabled mutexes ensure high
priority tasks block on needed locks for as little time as possible.

3.2 Scheduling
Even with a fully preemptable kernel, scheduling real-time tasks

on an SMP system is a difficult problem. On a uniprocessor sys-
tem, there is only one scheduler run queue, and selecting the next
highest priority task to run is trivial. For performance reasons, the
Linux scheduler maintains a separate run queue per CPU, which re-
duces lock contention and takes advantage of cache locality. When
scheduling real-time tasks however, it is required that the N CPUs
on the systems be running the N highest priority runnable real-
time tasks at any given point in time. The LTC authored and pub-
lished test cases that highlighted problems in scheduling corner
cases that have since been resolved and incorporated back into the
PREEMPT_RT patch. When a new real-time task becomes runnable
and preempts the task running on the current CPU, the priority of
the running tasks on all the remaining CPUs must be evaluated to
see if the preempted task should preempt one of them. While costly,
this approach ensures that strict real-time scheduling is preserved,
even on an SMP system.

Interrupt handlers also contribute significantly to system latency.
They typically run in kernel context, preventing anything else from
using the CPU executing the handler. The real-time kernel converts
the handlers to threads which can be prioritized and scheduled as
a regular process. This approach provides ultimate priority control
to the system designer, allowing them to specify a critical thread to
run as needed even at the expense of the interrupt handlers.
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Traditionally, tasks blocked on a lock or a condition variable
would be woken up and scheduled in FIFO order. In a real-time
system, the tasks’ relative priorities must be considered as well,
and given more weight. The real-time kernel wakes tasks from
these states first by priority, and then in FIFO order.

3.3 Time and Timers
Early 2.6 Linux kernels relied on the periodic timer tick to track

time. The timer tick is an interrupt handler that would increment
jiffies by one unit somewhere between 250 and 1000 times a sec-
ond, depending on the configuration of the running kernel. Time
was then calculated by multiplying the jiffies value by the expected
duration of a jiffy and then interpolating time that had elapsed since
the last tick. This method was error prone, subject to missed inter-
rupts, variations in the system clock frequency, and abrupt NTP
adjustments. Time would at times even appear to go backwards!

Real-time applications require highly accurate timekeeping in
order to schedule events and track their own deadlines, which led
us to rewrite the kernel timekeeping code, now also present in re-
cent mainline kernels [32]. Most of the actual timekeeping code is
moved into generic code, requiring only a small amount of architecture-
specific code to define a counter, frequency, and value ranking for
each clocksource, enabling the system to select the best available
clocksource at boot time. This clocksource abstraction replaces the
timer tick as the underlying mechanism for measuring time. Not
only does this new approach avoid error-prone interpolation, but it
also allows for smooth frequency-based NTP adjustments.

In parallel with the development of the new generic timekeep-
ing subsystem, Gleixner et al [21] authored a new subsystem with
support for high-resolution timers (hrtimers). This new system
makes a distinction between timers (which are expected to expire)
and timeouts (which typically only expire in an error condition).
Timeouts don’t require higher resolution and continue to use the
traditional tick-granular Linux timer wheel. New nanosecond-resolution
hrtimers were separated from the traditional timer system and
stored in a more appropriate time-ordered red-black-tree, to be pro-
cessed independently from the timer tick.

Finally, a new clock events system was added to manage the var-
ious global and per-CPU interrupt sources. Similar to the clock-
source, these clock event devices are small architecture-specific
drivers that are managed by architecture generic code. By combin-
ing high-resolution timekeeping with high-resolution timer struc-
tures, the clock events are used to fire interrupts as needed to expire
the hrtimers. This provides lower latencies without affecting the
existing periodic tick and timeout infrastructure.

4. REAL-TIME GARBAGE COLLECTION
Metronome [5] is a real-time garbage collector that provides highly

predictable latencies down to the millisecond level. The technology
is different from earlier approaches to “real-time” collection in sev-
eral fundamental ways.

First, Metronome’s approach to collection allows virtually all of
the collection work to be done asynchronously by the collector.
This is in contrast to previous approaches, which often required
the application threads to perform work (like copying objects or
updating pointers) on behalf of the collector, causing uneven and
unpredictable performance of the application threads.

Second, Metronome takes advantage of this decoupling and uses
time-based scheduling of garbage collector work, where the col-
lector (when it is active) runs at regularly scheduled intervals of
regular sizes. This makes the impact of the collector on the appli-
cation highly predictable and reliable. By contrast, previous ap-
proaches typically performed work-based collection, where a unit

of collector work was performed in response to application activity,
for instance for every 4KB of memory allocated. Since allocation
is typically unevenly distributed, work-based scheduling results in
uneven interruptions of the application.

Third, Metronome is engineered in such a way that its individual
work quanta are extremely small, both in the average and worst
case, to the point where its resolution is sufficiently high for the
vast majority of real-time applications.

Metronome is able to guarantee its bound on both time and space
usage [5] provided that the user can provide bounds on the maxi-
mum amount of live memory, and the maximum long-term allo-
cation rate. Mann et al [24] describe a technique for computing
worst-case allocation rates in the compiler.

Metronome was originally implemented as a research prototype
in the Jikes RVM [1] virtual machine at IBM Research. In that
system, we only addressed real-time garbage collection, but not
the other features required for a complete system solution, that are
described in the subsequent sections of this paper. It also did not
implement certain Java language features, like weak/soft/phantom
references. Most importantly, it was designed for uniprocessor sys-
tems with the assumption that the real-time application would have
full control of the CPU.

In the process of implementing a production-quality Metronome
collector, we discovered a number of issues that arise from sup-
porting the complete language semantics and from interaction with
RTSJ features. We also made some significant improvements to
the original system, supporting SMPs and driving down worst-case
latencies by another order of magnitude.

4.1 Overclocked Scheduling
Metronome’s time based scheduler operates by providing a min-

imum mutator utilization or MMU [12]. The MMU specifies a
time window and a percentage of the CPU time within that window
which must be allocated to the application (a.k.a. the mutator). For
instance, an MMU of 70% with a 10 ms time window means that
for any 10 ms time period, the application will receive at least 70%
of the CPU time (i.e., at least 7 ms).

The original Metronome scheduler worked by always trying to
perform a collection quantum that was exactly the size allocated to
it in the MMU time window (using the example above, 3 ms). This
led to two problems: first of all, those quanta were large enough
that they caused uneven distributions for certain kinds of opera-
tions, and second, if the collector made mistakes in its estimate of
how long a piece of work would take, it would overshoot its quan-
tum size, and violate its MMU contract. This then required com-
pensation by shortening the collector quantum to include the jitter,
leading to a slowdown of the collection process.

In the production system, we solved these problems by over-
clocking the collector scheduler. The collector runs at a nominal
quantum size of 500 µs, and those quanta are spread out over the
MMU window. Thus for the example above, we would nominally
perform 6 separate quanta to perform the 3 ms of collector work.
Those quanta are evenly spread, so that the application experiences
less and more evenly distributed collector-induced jitter. Further-
more, the scheduler is able to do a much better job of guaranteeing
the MMU target, since if a single quantum is larger than expected,
it can simply either delay the next quantum slightly, or else perform
a shorter quantum the next time.

4.2 Stop-the-Worldlet SMP Scheduling
Metronome was originally designed for a uniprocessor, since we

expected it to be used primarily for small embedded systems. This
turned out to be advantageous, because it forced us to solve the real-
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time scheduling problems without relying on an extra processor
(which might not have been properly provisioned).

To our surprise, the early customers for the technology were
building real-time systems on blade-based 4-way SMP servers. This
necessitated adapting the technology significantly. However, be-
cause our fundamental real-time scheduling approach was sound,
we were able to apply it in an SMP environment as well: all proces-
sors simply perform their collector quanta in a synchronized man-
ner.

For the relatively small multiprocessors we targeted, the over-
head of barrier synchronization is sufficiently small that it does not
appreciably impact the amount of collector work that can be per-
formed.

In order to scale properly we then had to adapt the collection al-
gorithm to operate in parallel, especially for the long phases such as
marking live data and sweeping free objects. While this constituted
a significant amount of engineering work, we were able to employ
mostly previously known techniques.

4.3 Root Processing
In garbage collection, roots are those pointers that form the ini-

tial set of pointers that are scanned to find live objects. These are
primarily pointers in local variables on thread stacks and in global
variables, but also include other types discussed below. The orig-
inal Metronome prototype scanned all roots in a single collector
quantum to obtain a correct initial snapshot. Otherwise, the as-
sumptions of its snapshot-at-the-beginning approach would have
been violated. In the production implementation root processing
is considerably more complex because of the need to support very
large numbers of threads and to implement the full Java language
semantics which include several special types of pointers. As a re-
sult, processing all of the roots in a single collector quantum was
not a viable option and various extensions were required to support
incremental root scanning.

4.3.1 Incremental Thread Stack Scanning
In making the scanning of threads incremental, our goal was to

deal with large numbers of threads rather than to support very deep
stacks in a single thread. Proposals to deal with the latter problem
exist [13], but for the expected workloads it was necessary and suf-
ficient in practice to scan some integral number of threads in each
collector quantum. To support scanning only a subset of the threads
in each quantum, we employed a conservative (overinclusive) ap-
proximation of snapshot called fuzzy snapshot. It works as follows.

In the very first quantum of a garbage collection, root process-
ing begins. In a program with a small number of threads, it may
complete within that first quantum. In this case, a standard Yuasa
write barrier [33], which causes all overwritten object references to
be remembered, remains in effect until the end of the tracing phase
of collection. Thus, the scanned threads and the mutable heap state
(including class statics) are part of the snapshot.

If it is not possible to scan the roots of all threads in the first
quantum, an additional write barrier is enabled. This barrier records
object references that are stored rather than the references that they
overwrite (which are recorded by the Yuasa barrier), and is turned
off individually for each thread once its roots are scanned.

The second barrier ensures that no as-yet-unscanned root can
pass into an already-scanned thread and thereafter become the sole
path to a live object. It works because all objects must pass through
some mutable heap location to reach another thread. We call this
combined barrier the double barrier because it remembers both
overwritten and newly stored pointers for unscanned threads (as
well as just overwritten ones for scanned threads).

A fuzzy snapshot is a safe approximation of a snapshot even
though it may omit roots that the snapshot would have included.
These lost roots are precisely the ones that the unscanned threads
discarded before they could either be scanned or recorded by the
double barrier. But, since these roots no longer exist in the original
thread and were never exposed to any other thread, they cannot be
the sole means of keeping any objects live and so can be ignored.

4.3.2 Other Roots
The original Metronome implementation, like many other im-

plementations of low-latency collectors, assumed that roots consist
only of stack variables and static variables. The full Java language
has several additional categories of roots, all of which have specific
data structures and access patterns in the language, and some of
which (finalizable objects, soft references, weak references) imply
special semantics that the garbage collector must impose.

Each of these types of roots must be handled individually in
terms of (1) how they must behave in relation to the double bar-
rier, (2) how to incrementalize processing of the data structures that
contain them, and (3) for the roots that have special semantics, how
to preserve those special semantics while processing the roots in-
crementally. In practice, issue (2) is pure engineering and we do
not go into detail about it here.

As a relatively simple example of the first issue, consider JNI
global references. These may be created and destroyed through the
action of JNI functions but are never overwritten in place. Despite
that fact, we must model both creation and destruction as write
operations: conceptually, the former replaces null with non-null
and the latter does the opposite. Thus, the double barrier applies to
these operations. JNI reference creation remembers the just-created
root if the operation is performed by an unscanned thread while
the barrier is active. JNI reference destruction remembers the just-
destroyed root if it happens when the barrier is active.

Soft and weak references present much more complex problems.
These “roots” are only scanned after all objects reachable from the
starting root set have been marked. Java requires that if a weak
reference points to an unmarked object, then the weak reference
should be cleared. For soft references, the virtual machine is ex-
pected to clear a subset of the references in the event that there is
memory pressure (but the remaining soft references and anything
reachable from them must be marked live).

Because soft and weak references are scanned late, the Refer-
ence.get() method is intercepted by the virtual machine with what
amounts to a special-purpose barrier. During a collection, up until
clearable reference roots are scanned, any object that is returned by
this method is also remembered as a root.

When the time comes to scan the clearable references, the soft
references are scanned twice. In the first scan, a subset of the soft
references are chosen for preservation. These become roots in a
continuation of tracing (i.e., all objects reachable from those roots
are marked). Because Java has a consistency requirement for soft
reference clearing, it is not sufficient just to mark the immediate
referents.

After the first scan of soft references, we commit the set of live
reference types by setting a global flag indicating that marking of
special reference types has completed. The Reference.get() opera-
tion has been modified to return null when this flag is set and the
underlying reference has not been marked by the collector. In this
manner, we avoid the need to clear all of the references atomically,
and are able to incrementalize clearing. In the second scan of soft
references and the sole scan of weak references, those references
that point to unmarked objects are actually cleared, after which the
bit may be reset.
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(a) Pure form: spine points to out-of-line arraylets

. . .

Array Elements

Elements

Array Elements

(b) Mixed form: short final arraylet
is stored inside the spine

. . . Elements

(c) Short form: all
elements inside spine

Figure 1: Supported variants of arraylet object model

4.4 Arraylets
In order to bound the work of scanning or copying an array (one

aspect of bounding collector pauses), and also to bound external
fragmentation caused by large objects, Metronome relies on ar-
raylets, a technique for breaking large arrays into chunks that can
be processed in bounded time. The implementation of arraylets in
a production JVM was one of the more difficult engineering tasks
that we faced.

In the arraylet object model, all arrays consist of two parts: a
spine, which contains the object header and pointers to arraylets,
which are fixed-size chunks1 of memory that contain the array’s
data elements. If the last arraylet is smaller than the arraylet chunk
size minus the spine header size, then it is allocated contiguously
with the spine itself. This leads to three basic array organizations,
as shown in Figure 1. Unlike a traditional array object model, with
arraylets it is not the case that the data portion of an array is a single
contiguous piece of memory.

In addition to the obvious changes in the interpreter and JIT com-
piler to perform the extra indexing calculations and indirection for
Java-level array access, a number of other parts of the JVM and
class libraries needed to be changed as well. Array manipulation,
especially manipulation of byte and char arrays, is ubiquitous,
and the assumption that array data was always contiguous had in-
fluenced the design of many internal APIs.

Arraylets also interacted with user and class library native code.
Although the JNI functions GetArrayElements and GetPrimitive-
ArrayCritical include an isCopy parameter to indicate whether
or not the JVM has returned a direct pointer or a copy of the argu-
ment arrays data, a common programming error is to write incorrect
JNI functions that do not check this value. We discovered several
such bugs in our own class libraries.

Finally, and unlike the JNI API, the two array-related functions
in sun.misc.Unsafe, arrayBaseOffset and arrayIndexScale,
implicitly assume contiguous arrays. To adapt this class to ar-
raylets, we allowed the user to compute array “offsets” as if the
array data was contiguous but then in the various native methods
that used the offsets on array objects we first reconstruct the actual
index and then do the arraylet indexing calculation. This is a sub-
optimal solution, but the best option available within the flaws of
the established API.

1Using 2n sized chunks allows the indexing calculation to be done
with shift and mask operations. WRT currently uses 2 KB chunks.

5. RTSJ AND REAL-TIME COLLECTION

5.1 NHRT null Stores
The goal of RTSJ’s No-Heap Real-Time Threads (NHRTs) is to

provide a restricted programming model in which tasks can be writ-
ten that can be run without interaction with or interference from
the garbage collector. The NHRTs and the GC are intended to be
completely decoupled. However, in the process of implementing
NHRTs and Metronome, we determined that the existing specifica-
tion of NHRTs has a somewhat simplistic view of potential inter-
actions based on stop-the-world garbage collection algorithms.

NHRTs are only allowed to access immortal or scoped memory.
Immortal memory is a region in which allocated objects are never
collected; scopes are stacked regions whose lifetime must be man-
ually managed by the programmer.

Although NHRTs are not allowed to read any heap references,
they are allowed to overwrite memory locations (in class statics,
immortal memory area, etc.) that contain heap references. This
impacts the root set used for garbage collection. In the context of
an incremental collector such as Metronome, the act of overwrit-
ing such a pointer incurs an obligation to notify the collector that a
root has been destroyed by adding it to a write buffer. To preserve
the integrity of the write buffer data structure, when the collector
is removing entries from the buffer it holds a mutex. If an NHRT
needs to add an entry to the buffer, it must acquire the mutex and
may be delayed until the GC finishes manipulating the write buffer.
This window of potential interaction can be made fairly small, and
only applies to NHRTs which actually overwrite heap references,
which is arguably not a common operation in well-written NHRT
code. However, given that the specification allows NHRTs to over-
write heap references, we do not believe it is possible to completely
avoid NHRT/collector interactions except under fairly simple GC
algorithms (which are not well suited to real-time JVMs).

5.2 GC Priority and Thread Priorities
As is commonly done, Metronome utilizes dedicated GC worker

threads to perform collection work. Our real-time Linux implemen-
tation uses priority-based scheduling. Therefore, the priorities at
which the GC worker threads are allowed to run must be carefully
chosen to achieve the desired scheduling of GC activities both with
respect to other threads within the JVM and with respect to other
JVMs and other real-time processes running on the machine.

The main constraints are: (1) GC threads must run at a strictly
lower priority than NHRTs to prevent interference with an NHRT’s
execution, (2) GC threads must run at a priority at least as high
as any heap-allocating thread (both normal Thread and Realtime
Thread) in the same JVM to prevent them from being starved by the
application threads whose heap allocation they are supporting and
(3) it must be possible to run multiple real-time JVMs on a single
processor and reason about whole-system scheduling properties.

We believe the best solution is to dynamically vary the priority
of each JVM’s GC worker threads such that they are marginally
higher than the priority of any active heap-allocating thread within
that JVM. In effect, this makes the GC threads (and thus the JVM)
have the same relative priority to other processes on the system as
the realtime threads within in JVM. When mapping RTSJ priorities
onto Linux priorities, alternating OS priorities are reserved for Java
threads and GC worker threads respectively.

Although assigning priorities in a system comprising multiple
JVMs remains a complicated task, we believe that by having the
JVM dynamically match its GC thread’s priorities to those of its
heap-allocating theads reduces the problem to “simply” assigning
priorities to the Java threads.
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5.3 Dual Barriers
Both Metronome and RTSJ rely on read and write barriers for

correct operation. These barriers represent checks and actions that
must be performed before and/or after reads or writes of object
fields, array elements, and global roots. In the realtime JVM, we
must execute a combined barrier that performs all of the operations
of the two logically distinct barriers in an appropriate order. The
resulting barrier sequences are complex enough that it is infeasible
to inline the entire sequence everywhere; instead just the most com-
mon short-circuit operations are done inline. A detailed discussion
of the barrier sequences and some of our initial work on optimizing
the common cases can be found in [19].

6. RTSJ AND CLASS LIBRARIES
The addition of RTSJ into a JVM adds several complications for

the standard class libraries because the existing libraries were not
designed with the RTSJ concepts in mind. Some areas of con-
cern encountered during our implementation were global objects,
caching, lazy initialization and consumption of immortal memory.

The class libraries provide direct or indirect access to a number
of objects which are accessible to all threads within the vm. Exam-
ples include class objects, Security Managers, system properties,
annotations, the default ThreadGroup and so on. Since NHRTs
cannot access objects allocated from the Heap, additional work is
required within the class libraries to ensure that these objects are
either allocated in Immortal so that they can be directly accessed,
or that there is some other way to provide the equivalent in a trans-
parent manner. While the RTSJ identifies some of these objects
(for example class objects and system properties) and mandates that
they be allocated from immortal, we found that there are others that
had to be identified and addressed. To identify these issues system-
atically we started with an analysis of static fields within our class
library objects and the set of objects accessible through them.

To conserve resources, the class libraries sometimes defer ini-
tialization/creation of objects until the first time they are required.
This can cause problems once RTSJ support has been added, as the
current allocation context when objects are initialized/created may
not be suitable. This lazy initialization can result in global objects
being created from the heap such that they can later not be accessed
by NHRTs, failure to store the object created if the current alloca-
tion context is a scope and the object would be stored into an object
allocated from Immortal, and so on. We had to adjust a number
of places within the class libraries to move the initialization/cre-
ation so that it occurred during vm initialization or so that if lazy
initialization was used,the objects were created in the appropriate
memory area regardless of the current allocation context.

Caching is used in the class libraries to reduce resource usage
and to enhance performance. We saw several different problem
with respect to caches. The first had to do with "polluted objects" in
which a heap object was added to a cache by a non-NHRT and sub-
sequently NHRTs would get a MemoryAccessError trying to use
the cache. In this case NHRT access to the cache might or might
not succeed depending on the objects that it needed to access from
the cache. The second case was related to "polluted containers"
which occurred when the expansion or reallocation of internal con-
tainers for the cache occurred in heap and all subsequent attempts
by an NHRT to use the cache would fail with a MemoryAccessEr-
ror. Variations of these two problems occurred when the current al-
location context was a scope and IllegalStoreExceptions occurred
when new objects were being added to the cache or the internal
containers for the cache were being reallocated. It was necessary
to either modify the operation of the caches to be safe regardless

of the callers allocation context, or to disable the use of caches for
NHRTs and/or threads using scopes.

6.1 Consumption of Immortal Memory
The Immortal Memory Area is necessary as it provides an area

into which objects that need to be accessed by all threads can be
allocated. However, since objects in this area are never collected it
also acts as an engineered memory leak. Further, the RTSJ speci-
fies that class objects and objects created during static initialization
come from the immortal area. This ensures that Immortal is con-
sumed even if only regular Java code is executed. It is important
to consider the functionality within the class libraries such as class
loading and the code executed in static initializers to minimize the
use of immortal memory and, when possible, limit it to a one time
hit. For example, if an object in Immortal was required so that it
could be accessed by an NHRT it would often be possible to cache
this object instead of creating a new copy each time.

7. CLASS LOADING
One of the features of Java is that it loads and initializes classes

late, keeping the footprint of applications smaller and ensuring that
only what is absolutely required is loaded into memory.

The notion of late binding combined with reflection and JNI
makes it very challenging for Real Time Java programmers to en-
sure that there will be no unexpected delays due to class loading or
class initialization along a particular path of code.

There are several ways to address this problem, but in practice,
programmers tend to take the brute force approach of manually
building a list of classes to preload, based on the classes they think
are required for critical sections of their application. This is error
prone and unportable, since a programmer may not have access to
the source code of a particular library they want to use, and there-
fore may not be able to determine exactly what classes it actually
depends on. Even if they do have access to the source of a par-
ticular implementation, when they move to a new version of code,
or change to a new vendor, the list of classes required by a critical
region could change dramatically.

An easier approach to the problem is to process all the jars, zips,
and classes accessible on the command-line and pre-load all of
them. This is likely to eliminate class loading from critical sections,
but can take a significant amount of time and memory to process all
these classes. Furthermore, there is no easy way to pre-initialize the
classes that are loaded since there can be circular dependencies and
hidden orderings that are required to initialize the classes correctly.

A better approach is to identify each of the critical regions of the
application and apply static analysis to conservatively approximate
the classes that could be referenced on any path through the region.
The results of static analysis can be overly conservative because of
imprecision introduced by virtual and interface method calls. The
system relies on the programmer to model the affects of reflection
and JNI.2 The analysis detects classes that use reflection or have
native methods and require a proxy method in these cases. The
proxy method mimics the methods and fields that could be reached
from the original code. The static analysis code also detects which
methods update static data and flag whether it has side effects. For
those classes with no side effects, initialization is performed as part
of class loading. The handful of classes that have side effects are
not pre-initialized, but are grouped separately, in case the program-
mer wants to manually initialize those few classes, or, preferably,
modify the code to remove the side effects.

2Programmer help is required because the only conservative as-
sumption is that a native method could load any available class.
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By using the static analysis approach, either as part of deploying
the application or at startup of the application, the programmer no
longer needs to maintain a fragile set of classes to preload and in-
stead can focus on the handful of proxy methods and classes with
side effects. We provide this Real Time Class Analysis Tool (RaT-
CAT) through our alphaworks technology as a pure Java implemen-
tation that can be used with any JVM.

8. NATIVE CODE COMPILATION
To enable Java programs to perform at levels comparable to or

better than languages like C++ or Ada while still preserving plat-
form neutrality, Java methods are typically compiled to native pro-
cessor instructions dynamically by a Just-In-Time (JIT), compiler.
Although JIT compilation is well-known to be effective in in many
domains, it has two major drawbacks in the context of a real-time
JVM. First, because JIT compilation occurs during program execu-
tion, compilations compete with the application for CPU resource
at unpredictable times. Second, JIT compilers often employ specu-
lative optimizations that rely on facts that are true when the compi-
lation occurs but that might be invalidated by later program actions
(thus requiring corrective actions such as patching or regenerating
the compiled code). The WebSphere Real Time product includes
two compilation strategies, adapted JIT compilation and Ahead-
Of-Time(AOT) compilation, that mitigate or eliminate these non-
deterministic performance effects. In the remainder of this section,
we present the key ideas of these two strategies; a more detailed
description can be found elsewhere [31, 19].

8.1 JIT Compilation in a Real-time System
The JIT compiler in the IBM WebSphere Real Time product

compiles asynchronously on a separate compilation thread. To
prevent it from interfering with real-time tasks, the compilation
thread is given the highest non-real-time priority. The RT Linux
job scheduler therefore guarantees that JIT compilations will only
occur whenever there are no higher priority real-time tasks that
need to be performed. Context switching times are very low in
RT Linux, so this arrangement can be effective for a wide variety
of real-time applications. The JIT compiler has also been modi-
fied to reduce the number of speculative optimization it performs.
Only high-benefit/low-risk speculative optimizations such as spec-
ulative devirtualization and method inlining are performed. This
optimization yields tremendous performance benefit, and can only
be invalidated by class load events (which will be avoided during
the mission-phase of a well-designed real-time application).

8.2 Ahead-of-Time Compilation
The RT JIT compiler should be suitable for a wide range of softer

real-time applications, but there are always situations where even
the RT JIT compiler will introduce too much nondeterminism to
achieve the goals of a particular application. The RT AOT com-
piler can generate native code for methods before the program exe-
cutes, which means that no JIT compiler is needed at run-time. This
allows applications to achieve higher levels of deterministic perfor-
mance than would be possible with simple interpretation. However,
due to the dynamic nature of the Java language, code compiled
ahead-of-time may not perform as well as the code generated by
the RT JIT compiler. For example, class references are resolved as
the program executes, so the RT AOT compiler cannot rely on the
structure of a class at compile-time matching the structure of that
class at run-time. A class may have a completely different imple-
mentation from one execution to the next, depending on the class
path used to invoke the JVM. Alternatively, the class or a superclass
may be changed between JVM invocations. For these reasons, the

(a) Stock Linux (2.6.16)

(b) IBM Real-time Linux (2.6.16 RTJ12-SMP)

Figure 2: Thread Scheduling Accuracy

RT AOT compiler cannot use information about fields, methods, or
classes while generating code as effectively as the RT JIT compiler
can. In particular, the AOT compiler cannot perform aggressive
inlining and must generate all static, field, method, and class ref-
erences as unresolved. The unresolved references can be patched
by the resolution process that is tiggered the first time they execute,
but the significant reduction in inlining opportunities cannot be so
easily overcome.

9. EVALUATION
IBM Real-time Java provides contractually guaranteed real-time

performance on a number of AMD-based IBM platforms. All data
was collected on an IBM LS20 blade (model 8850) with two dual-
core 2GHz AMD Opteron 270 processors, each with 1 MB of L2
cache.

9.1 Operating System Performance
Figure 2 shows the effectiveness of our modifications to the Linux

kernel to provide a basis for the real-time virtual machine. The his-
tograms show the accuracy of scheduling a high-priority thread at a
5ms period. 10000 iterations were run on a heavily loaded system
building a new Linux kernel. The stock kernel (a) is as much as
4032µs late, with peaks at millisecond intervals corresponding to
the 1ms timer quantum. On the other hand, the real-time kernel (b)
is always within 50µs of the scheduled time.

9.2 Native Code Compilation
To evaluate the impact of native code compilation on application

throughput performance, we ran the traditional raw performance
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Figure 3: Interpreted (INT), Just-in-time (JIT), and ahead-of-
time compiled (AOT) performance for SPECjvm98

Benchmark Max. Pause MMU
201.compress 650 µs 72.2%
202.jess 952 µs 69.6%
209.db 770 µs 69.7%
213.javac 738 µs 69.4%
222.mpegaudio 0 µs 100.0%
227.mtrt 868 µs 70.0%
228.jack 706 µs 69.3%
SPECjbb2000 920 µs 67.6%

Table 1: Real-time performance of garbage-collected applica-
tions. MMU is for a 10ms time window

benchmarks SPECjvm98 as shown in Figure 3. There are three sets
of bars for interpreter-only, JIT native code execution, and AOT
native code execution. In each set, there are two overlapping bars
for each benchmark. The low bar for each benchmark shows the
fastest time for any execution of the test across 5 runs with 6 iter-
ations in each run. The highest bar shows the slowest time, typi-
cally one of the first executions from one of the 5 runs. All times
are normalized to the slowest interpreter run for each benchmark.
As Figure 3 shows, native code compilation provides a strong per-
formance benefit. JIT compilation provides the best improvement
from 2X to almost 26X faster than the interpreter, averaging about a
9.5X speedup. AOT compilation provides a more modest 6.6X per-
formance improvement ranging from 2X to almost 16X. By com-
paring the difference between the bars for any one benchmark, one
can see that the JIT compiler’s stronger throughput performance
certainly incurs a penalty in determinism. Some benchmarks, such
as compress and jack, improve tremendously because over time the
JIT compiler can greatly accelerate the key methods. The AOT gen-
erated code, however, provides more steady performance although
there are still several benchmarks we believe can be improved (db
and mtrt have the most variable performance).

9.3 Real-time Garbage Collection
The Metronome real-time garbage collector makes use of many

of the underlying real-time Linux features, including real-time pri-
orities, high-resolution timers, high-resolution clocks, and priority
inheritance. Table 1 shows the worst-case latencies and achieved
MMU for standard Java benchmarks. While these are not real-time
applications, they are in fact far more allocation intensive than most
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Figure 5: Collector Pause Distribution (SPECjbb2000)

such applications and thus provide a good stress test of the real-time
collector. They also allow comparison with previous work [5, 14].

Worst-case pause times across all eight applications is 920µs
(note that the mpegaudio benchmark triggers no collections). This
is a 13-fold improvement over the original Metronome implemen-
tation in Jikes RVM [5], 23 times shorter than those reported for the
hardware-assisted Azul system [14], and 163 times shorter than the
times reported for BEA’s “real-time” JVM [7]. Pizlo and Vitek [26]
have implemented a real-time collector based on Metronome in the
Ovm virtual machine with worst-case pauses of 1.8ms.

Minimum mutator utilization is never below 67.6% (computed
over a 10ms time window, with a target of 70%). By comparison
the Jikes RVM Metronome prototype only achieved 45% MMU at
10 ms, and the Azul collector’s MMU at 10ms is 0, since it suffers
20ms pauses.

Figure 4 shows the MMU behavior of SPECjbb2000 in detail,
and reveals the benefits of over-clocked scheduling of the collector.
A usable portion of the CPU (40%) is already available at 2.5ms,
reaching 50% at 5ms and 67.6% at 10ms. By contrast, the Jikes
RVM-based Metronome system could only achieve 45% MMU at
22.2ms, while the Azul system does not execeed 50% MMU until
it reaches a 200ms time window.

Figure 5 shows the distribution of pause times of collector quanta,
which are tightly clustered around the nominal 500µs quantum, but
show some jitter due to a combination of inaccuracies in the col-
lector’s work estimator, occasional longer atomic quanta, and mi-
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nor jitter in the underlying operating system scheduling (as evalu-
ated above). However, the pauses never exceed 1ms, and the over-
clocked scheduling is able to smooth out the jitter at the quantum-
level and provide predictable MMU.

9.4 End-to-end Transaction Time
We now show how real-time operating system features, real-time

garbage collection, thread priorities, and ahead-of-time compila-
tion combine to produce increasingly improved real-time behav-
ior. SPECjbb2000 transaction times are used an end-to-end metric.
While such a transactional system is not representative of tradi-
tional periodic real-time systems like avionics, it is representative
of many of our customer applications such as radar target tracking,
financial trading, and SIP processing. We have achieved similar
results for more traditional periodic real-time applications such as
music synthesis and flight control.

The progression is shown in Figure 6, where the distribution of
transaction times is shown up to 10ms, with larger outliers summa-
rized at the right in the grey region. The y-axis is log-scaled. Fig-
ure 6(a) shows the distribution of transaction times on the standard
IBM J9 JVM running on a stock 2.6.16 Linux kernel. Through-
put is high with only a few outliers between 2 and 6 ms, but there
are several hundred outliers above 10ms. These are due mostly to
garbage collection, but also to JIT compilation. With a standard
JVM on top of real-time Linux (b), the distribution up to 10ms is
tighter, but the number of very long outliers is not much different.

Beginning with (c) we see dramatic improvements when using
the real-time virtual machine. There are now only 3 outliers above
10ms, and 8 outliers between 2 and 10ms – these are due to JIT
compilation, as can be seen in (d), where the application is run with
AOT compilation and worst-case transaction time drops to 1.8ms.

Interestingly, all of these measurements are without resorting to
using real-time priorities for the application threads. The ability
to do so is important because many applications in areas such as
financial trading are developed in environments where reliance on
the RTSJ extensions is not acceptable to users, who only wish to
rely on standard Java APIs. However, we have extended our virtual
machine with flags that allow the user to control the default priority
for standard java.lang.Threads. Doing so further reduces the worst-
case transaction time to about 1.6ms. Obviously, in heavily loaded
environments this improvement will be more dramatic.

10. RELATED WORK
We have already compared our system quantitatively to existing

Java virtual machines which provide some level of real-time behav-
ior in the previous section. Azul [14] and BEA [7] are production
systems that implement standard Java but not RTSJ, and provide
timing 1-2 orders of magnitude worse than our system. Ovm [26]
combines real-time collection and RTSJ into a single virtual ma-
chine, but is a research prototype and does not implement the com-
plete Java language and run-time environment.

Other previous work has typically involved implementation of
various components of a real-time virtual machine in isolation.

Work on real-time garbage collection began with Baker [6] and
was followed by a a variety of implementations with differing levels
of timeliness, among them [25, 17, 3, 28, 33, 22]. Cheng [11] intro-
duced the notion of minimum mutator utilization and built a multi-
processor collector with high observed MMU. The Metronome col-
lector [5] upon which our system is based provided the first guaran-
teed MMU in concert with a strict bound on memory consumption.

A number of systems have explored static (AOT) compilation for
Java. The Quicksilver project [27] persisted optimized JITed code
from a training run for use in subsequent executions. Vortex [15]
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(b) Standard IBM J9 JVM on real-time Linux
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(c) Real-time JVM on real-time Linux
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(d) Real-time JVM on real-time Linux with AOT
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Figure 6: Progressive Kernel and JVM Impact on Distribution
of SPECjbb2000 Transaction Times
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and Marmot [18] applied static whole program optimization Java.
The GCJ project [20] has built an optimizing static compiler for
Java as part of the GNU Compiler Collection. However, none of
these systems were fully Java compliant.

Meanwhile work on implementing RTSJ [9] has focused on how
to avoid high overheads for special checks required for its memory
region checks [4, 8] or avoiding the cost and unreliability through
various kinds of static type systems and analysis [2, 16, 10]. The
difficulties of using Scopes has also led to investigation of alter-
native programming models capable of pre-empting the garbage
collector [29, 30].

11. CONCLUSIONS
We have presented the IBM Real-time Java virtual machine, which

is the first system to combine all of the features required for the con-
struction of large-scale real-time systems in Java: real-time garbage
collection, ahead-of-time compilation, and RTSJ support, and to do
so in the kind of environment that the new generation of large-scale
real-time systems require: full J2SE environments running on mul-
tiprocessors with multiple JVMs per host.

The resulting system achieves excellent real-time behavior and
very tight bounds, which has led to its adoption for highly demand-
ing complex real-time systems across a variety of industries.
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