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Abstract

We present a distributed full-text index for big data applications in a distributed environment. Our index
can answer different types of pattern matching queries (existential, counting and enumeration). We perform
experiments on inputs up to 100 GiB using up to 512 processors, and compare our index with the distributed
suffix array by Arroyuelo et al. [Parall. Comput. 40(9): 471-495, 2014]. The result is that our index answers
counting queries up to 5.5 times faster than the distributed suffix array, while using about the same space.
We also provide a succinct variant of our index that uses only one third of the memory compared with our
non-succinct variant, at the expense of only 20% slower query times.

1 Introduction

Index data structures are one of the most powerful tools for coping with large data sets. Among the index data
structures for texts are suffix arrays, suffix trees and related structures that allow full-text search of patterns in
time independent of the size of the text corpus. Consequently, there are thousands of papers on such suffix data
structures. However, when you look at truly large data sets that do not fit on a single machine, there is very
little work yet. We found that very surprising since the biggest inputs are those where the index has the biggest
impact. Refer to § [[.2] for a more detailed discussion of related work. You can easily adopt the approach from
commercial search engines (which use inverted index data structures) to distribute your corpus over the machines
and then use a local index on each machine. However, then the amount of work and energy you invest in a query
grows proportional to the number of machines and thus, linearly with the corpus size — you have (asymptotically)
thrown away the huge advantage of a powerful index data structure.

Our contribution is the development of a truly distributed full-text index data structure that supports typical
queries by exchanging only a constant number of messages whose length is proportional to the length of the search
pattern.

1.1 Overview. Our construction algorithm starts from a distributed input text T and a distributed suffix
array (SA) together with information on the longest common prefix of subsequent entries in the SA, the so called
LCP-array. In § [2| we formally introduce the SA, LCP-array, and other prerequisites. By scanning the SA and
LCP-array, we then construct a two-level trie data structure. Using succinct data structures we can reduce the size
of the trie to 15 bits per character of the text. In our scenario, a processing elements (PE) denotes a processor on
a compute node in the cluster. A small top-level trie GT (see § for more details) is sufficient to decide which
PEs are involved in answering a query. GT is replicated over all PEs so that queries can arrive anywhere and get
forwarded to those PEs that hold the relevant part of the SA. The search in the local part of a SA is facilitated
by a succinctly represented Patricia trie on that part. After this local search, a single remote access to the text
suffices to locate the pattern in the SA. Refer to §[3.1] for a more detailed explanation of our data structure.

1.2 Related Work. Multi-level full-text indices have been considered for external memory. The String B-
Tree |6] utilizes Patricia tries at each level to reduce the I/O volume. There exists also theoretical work by
Ferragina and Luccio [7] that discusses a distributed Patricia trie. Their approach is only good when answering
long queries, for example, existential queries “does the pattern occur in the text?” of length m > ¢, where c is
the number of PEs. Those queries can be answered optimally with respect to computation and communication.
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Figure 1: m Succinct representations of the tree shown in

For real world applications this does not provide a satisfactory solution, as the average length of natural queries
is shorter (18 AOL [27] and 21 TREC [26] on average) than the number of PEs we want to utilize.

A complementary (theoretical) approach is described by Mékinen et al. [21] and is good for short patterns.
Using backwards search, a query can be answered using m communication steps. The problem is that at most o
PEs can be used and, in the worst case, some PEs might need space Q(n).

Arroyuelo et al. [1] consider a large variety of distributed suffix array data structures with various tradeoffs
between replication, number of remote data accesses, and load balance. However, they always use explicit binary
search in the suffix array, leading to logarithmically higher costs than our approach. Our index can be viewed as
an improvement of the global approach presented in [1], where we add two levels of tries that allow us to answer
each query exchanging only a constant number of messages. We show that our index scales better especially for
larger text sizes and a larger number of PEs.

Russo et al. [28] (theoretically) describe distributed compressed indices. Their approach partitions the text
between the PEs and works with local indices. The consequence is that queries have to be processed on every
PE, contrary to our goal to have total work independent of c.

It is known that the suffix array can be computed efficiently in parallel [17}/18]. Flick et al. [11] give the only
distributed algorithm for computing both the SA and LCP-array; their approach is within a factor of O(logn)
from the optimal. We use the SA and LCP-array as the starting point for our index construction and we do not
study their construction in this paper. Note that none of these papers [11L{17,|18] discuss how to actually use the
resulting data structure for a distributed query.

There are several results that assume that the input text is replicated over all PEs (e.g. [5]). This makes
index construction and search much easier but severely limits scalability, so we do not consider them further.

2 Preliminaries

2.1 Suffix Arrays. Let T= T[1] T[2]...T[n] be a text of length n over an alphabet ¥ of size |X| = 0. T[i..j]
denotes the substring T[i]...T[j] for all 1 <4 < j < n. Also, P, = T[1..4] is i-th prefiz of T and S; = T[i..n] is
the i-th suffiz of T for all 1 <4 < n. The longest common prefix (Icp) denotes the maximum size of a common
prefix of two suffixes of the text, i.e., lep (4,7) = max{k > 0: T[i.i+ k-1 =T[j.j+k—1]} forall 1 <i,j <n.

The suffiz array [22] SA of a text T with |T| = n is a permutation of [1, n] such that it enumerates the starting
positions of the suffixes of T in lexicographical order. Hence, Ssa[j <iex Ssafj) for all 1 <@ < j < mn. The longest
common prefir array (LCP-array) enhances the SA and contains the size of the longest common prefix of two
lexicographically consecutive suffixes, i.e., LCP[1] = 0 and LCP[i] = lcp (SA[i — 1], SA[]) for all 2 < i < n.

The SA and LCP-array are the foundation of the indices considered in this paper, i.e., the index we present
and the index we compare our results with. Not only can they be simulated using these two arrays, but they can
also be constructed using only the SA, LCP-array and T. As already mentioned in the introduction, there exists
a distributed algorithm for constructing the SA and LCP-array |11], which is a distributed variant of Larsson and
Sadakane’s algorithm [19]. Using ¢ PEs it can compute the SA in O(tsort (7, ¢) lgn) time, where tsort (7, ¢) denotes
the time required to sort n elements that are uniformly distributed over ¢ PEs. The LCP-array construction



requires (’)((% + c) Ig n) additional time. Another distributed SA construction algorithm is the pDC3 |18], which
is a distributed variant of the DC3 algorithm |17], can compute the SA in time O ("1% + 1g? c), i.e., a log-factor

better than [11]. For our experiments we use the implementation of the latter, as it is the only available distributed
SA and LCP-array construction algorithm.

2.2 Tries. Given a labeled tree G = (V| E) with root r € V| we denote the label of a node or an edge by label(-)
and the concatenation of all edge labels on the path from the root to a node v by pathlabel(v). The out-degree of
a node v is denoted by 6T(v). The leaf rank of a leaf £ € V is the number of leaves visited before £ in a preorder
traversal of the tree.

Let R = {Ry,Rs,..., R} be a set of strings over the alphabet ¥ such that all strings are distinct and no
string is the prefix of another string in R. The trie of R is an ordered tree with root r, where the edge labels are
characters and the leaves represent string numbers from [1, k] such that:

1. for each node v € V, the labels of the outgoing edges label((v,-)) € ¥ are distinct,
2. for each string R; € R, there is a leaf £ € V with R; = pathlabel(¢) and label(¢) = i and
3. for each leaf ¢ € V there is a string R; € R such that R; = pathlabel(¢) and label(¢) = i.

The compressed trie is a trie where each path ej,es,...,e; with £ > 1 consisting only of nodes with out-
degree 1 is replaced by a single edge e such that label(e) = label(e;) label(es) . . . label(e,). Still, all outgoing edges
of a node v start with a different character. The string depth of a node v is sd(v) = |pathlabel(v)|, i.e., the
length of the longest common prefix of all strings represented leaves below v. To find all occurrences of a pattern
P in a compressed trie, we start at the root r and follow the edge e such that label(e) = PJ[1..|label(e)|]. At
each node v, the length of the pattern matched up to this point equals sd(v). We then follow the edge e with
label(e) = Plsd(v) + 1.. |label(e)| + sd(v)]. This process is repeated until we have matched the whole pattern at
the edge (-,v). Then, all leaves that are successors of v correspond to strings in R that are prefixed by P. If at
any point, there is no edge to follow, the pattern P does not occur in the trie.

The Patricia trie (or blind trie) [23] of a text T is a compressed trie for all suffixes of T, where each node v just
stores the first character and the string depth sd(v). Due to this limitation, finding all occurrences of a pattern
requires two steps — a blind search followed by a comparison to a substring of T (which has been determined by
the blind search):

For the blind search, we start at the root and follow the edge matching the pattern at the position
corresponding to the string depth, i.e., at a node v we follow the edge e with label label(e) = P[sd(v)]. We
repeat this until we have reached a node v such that sd(v) > |P| or there is no feasible edge to follow. In the first
case, we retrieve a prefix of length |P| of a suffix corresponding to any leaf w that is a successor of v and compare
that prefix with our pattern P. In the second case (there is no edge to follow) P does not occur in T.

Next, we compare P and T[i..i + |P| — 1] where ¢ is the label of the leaf w (that has been identified during
the blind search). If the strings are equal, then all leaves that are below v correspond to an occurrence of P in T.
Otherwise, P does not occur in T.

The Patricia trie can be constructed from the SA, LCP-array and T in linear time, i.e., scanning the SA and
LCP-array once and considering each entry at most twice. T is required for the edge labels and each position
is accessed at most once. In § [3.1] we give a detailed description of the construction algorithm and in § [41] we
compare the construction time for the tries needed by our index with the time required for the construction of
the SA and LCP-array.

2.3 Succinct Data Structures. We can represent a tree containing ¢ nodes using a bit vector B € {0, 1}%.
The bits represent parentheses; a 1 represents an open parenthesis “(” and a 0 represents a closing parenthesis
“)”. To navigate in the tree, we require additional operations on the bit vector: rankg(i) asks for the number of
0’s in B up to position ¢ — 1, selecty(¢) returns the position of the i-th 0 in B, and find_close(¢) gives the position
of the matching closing parenthesis for an open parenthesis at position é. The operations rank;(-) and select; (-)
work analogously for 1’s in the bit vector. All these operations can be answered in constant time [4,[15]. The
level ordered unary degree sequence (LOUDS) [15] represents a tree level-wise, i.e., starting at the root, we visit
all nodes v of a level from left to right and add d*(v) 1’s followed by a 0 to the bit vector. The position of the i-th
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Figure 2: The first level of the DPT is a trie (GT) over the smallest and largest suffix stored by the local suffix
array at each PE. It is the same at each PE. The lower level at PE i is the local Patricia trie PT; over SA;. A
query @ is answered in four supersteps. First, the PEs that are responsible for the query are determined (using
the trie GT at the first level). Then the query is sent to those PEs. In the second superstep, a blind search in the
Patricia trie PT; (second level of PE i) is executed. The substring corresponding to the result of the blind search
is retrieved and in the third superstep the query is answered using that substring.

child of the node at position z is identified by selecto(ranky(z) +¢ — 1)+ 1 in constant time. The depth first unary
degree sequence (DFUDS) (2] is obtained by traversing the tree in preorder and (like in LOUDS) append §(v)
1’s followed by a 0 whenever we visit a node v for the first time. To make the sequence balanced, we prepend a 1.
The position of the i-th child of the node at position z is identified by find_close(selectg(rank; () +1) +1) + 1 in
constant time. Last, the balanced parenthesis (BP) representation [24] is also constructed by traversing the tree
in preorder: We add a 1 to the bit vector whenever we visit a node for the first time and we add a 0 to the bit
vector whenever we visit a node for the last time. In theory, BP also allows an access of the i-th child in constant
time [29]. However, in the implementation used by us (see § 4| for more details), BP does not support a direct
access to the i-th child. Instead, one has to access the first child of the node at position x (position z + 1) and
then go to the next child (find_close(z) + 1) until the i-th child is reached in O(4) time. In our implementation,
the first two representations allow an access of the i-th child in in constant time, whereas it takes O(4) time in
BP. See Figure[1] for an example of these succinct tree representations.

2.4 Model of Computation. In the bulk-synchronous parallel (BSP) model |31], each computation is a
sequence of supersteps. Each superstep is split into three parts. First, the PEs can perform any number of
operations based on local data. This is followed by a communication phase, where the PEs can send data to
other PEs. After the communication, all PEs are synchronized, i.e., all PEs wait until the last PE has finished all
operations on local data and communication. There is no synchronization between the first and second part, PEs
can start communicating as soon as they have finished working on the local data (the results of the communication
are not available during the superstep). Then at the beginning of the next superstep, each PE can use the data
retrieved during the last superstep. The total running time of a BSP program is the cost of all its supersteps,
where the cost of one superstep is w + hG + L. Here,

e w is the maximum time used for computation by each PE (excluding communication),

e h is the maximum of machine words communicated by each PE, with G being the running time required
for the communication of one machine word, and

e L is the cost of the barrier synchronization.

BSP has been considered as the model for other distributed indices [1},/7]. Also, we will see that the BSP model
suits our setting well, as we have well defined phases where communication is required during construction and
query processing — see § Whenever we retrieve data we refer to direct remote memory access (DRMA) that is
supported by the BSP model [30].



3 Distributed Patricia Trie

Let T= T[1]T[2]...T[n] be a text of length n. The PEs are numbered from 1 to ¢. We assume that n is
divisible by c¢. Then we distribute the SA and LCP-array in a consecutive fashion, such that the i-th PE holds
SA; = SA[l + (i —1) %..i%] and LCP; = LCP[1 4 (i — 1) Z..i2]. In addition, each PE holds a part of the text as
described in the next section.

Our proposed data structure, the distributed Patricia trie (DPT), is a two level index consisting of an index
GT for query distribution (first level) and several indices PT; that can find all occurrences of a pattern P that
starts at text positions held by the local SA; on PE i (second level). In this case we say that the PE i is responsible
for P. The index GT is replicated at every PE. This allows queries to arrive at arbitrary PEs and then to be sent
to the responsible PEs in the next step. There, the query is processed utilizing PT;. This index is unique for each
PE - see also Figure

3.1 Construction. In this section we show how to construct the DPT in linear time. We start with the
construction of the local PTs as we use the information about their smallest and greatest element for the
construction of GT.

Local Tries. The construction is the same at each PE. Our construction algorithm is the extension of an
algorithm to compute the suffiz tree, i.e., a compressed trie of all suffixes of a text T. We modified the suffix
insertion algorithm presented in 20 p. 143] such that the Patricia trie can be constructed by scanning the SA
and LCP-array from left to right. The pathlabel of the rightmost path in a (Patricia) trie is the lexicographically
largest pathlabel in the trie. Since all suffixes in SA are in lexicographical order, each suffix that is added to
the Patricia trie is lexicographical greater that all previously inserted suffixes and will form the new rightmost
path. Therefore, at each point of time during the construction, only nodes on the rightmost path can be changed.
All other nodes are considered as final. The inner nodes on the rightmost path, i.e., the nodes that can still be
changed, are kept on a stack. Since we compute a Patricia trie, each node v knows its string depth sd(v).

Initially, we have a stack containing a node with string depth 0 and no children. We start by adding the
first inner node v, with sd(v) = LCP[2], two children (the left child represents SA[1] and the right child represents
SA[2]) with edge labels T[SA[1] + LCP[2]] and T[SA[2] + LCP[2]], resp. If sd(v) = 0, the node replaces the initial
one that has been on the stack. Otherwise, v will be a child of the initially created node. We now continue to scan
the SA and LCP-array from left to right. Whenever we read a new position 4 in the LCP-array, we remove nodes
from the stack until the node v on top of the stack has sd(v) < LCP[é]. If sd(v) < LCP[i], we create a new inner
node w with sd(w) = LCPJ[i], i.e., we branch below node v. The left child of w (edge label T[SA[i — 1] 4+ LCP[i]])
is the former rightmost child of v, and the right child of w is a new leaf referring to SA[i] and has edge label
T[SA[i] + LCPJ[i]]. Next, w becomes the new rightmost child of v and is put on the stack. If sd(v) = LCP[i], v just
gets a new rightmost child (edge label T[SA[{] 4+ LCP[i]]) referring to SA[d], i.e., v gets a new leaf. Following these
operations, we can compute each local PT in O(%) time.

With respect to practical application, we also want to construct succinct representations of the tries. It is
possible to compute a succinct representation using its pointer based representation. Using the approach described
above, we can also compute a succinct trie representation directly, i.e., reducing the required memory peak for
the construction. We compute the DFUDS representation of a trie by storing all final nodes and their subtrees
in DFUDS representation. Whenever we remove a node from the stack, we add it and its subtree at the end of
the already computed DFUDS representation of the previously removed final nodes. This is possible because we
construct the trie in the same order as a depth first search traversal visits all nodes (which is the order in which
the nodes are represented in DFUDS).

Up to now, we have simply named the characters that correspond to the edge labels. Since all local PTs are
on different PEs, we cannot assure that the text position required for an edge label is locally available. We have
to retrieve all edge labels during one communication phase. The number of characters stored at each PE is ©(2).
During the construction of the local Patricia trie PT;, we scan the arrays SA; and LCP; to determine the first
mismatching text positions of two lexicographically consecutive suffixes. These characters will then be used for
the edge labels later on. If we create a new leaf, we only require one edge label.

For a simpler and more realistic analysis of the costs for constructing our local indexes, we assume that all
mismatching characters are stored at the same PE where the corresponding suffix starts, i.e., we assume that
T[SA[d].. SA[i] + max(LCP[i], LCP[i 4+ 1])] is stored on one PE for all 1 < ¢ < n. This is usually the case if the text
T is composed of a number of smaller documents such that all documents reside on a single PE, but all PEs still



have © (%) characters. (If this is not the case, one could still replicate parts of the text on each PE such that
the PEs hold overlapping parts of the text.) Under this assumption, each PE needs to send (’)(%) characters as
edge labels. Further, each PE also receives at most (’)(%) characters, as the local Patricia trie has less than 22
edges. Finally, we note that the construction takes one superstep (construct the tree and store the text positions,
then retrieve the characters at those positions). This leads to the following Lemma (where the claim about space
follows easily because the local Patricia tries store the edge labels, the SA-values at the leaves, and the skip values
at the edges).

LEMMA 3.1. Given that all mismatching characters are stored at the same PE where the corresponding suffiz
starts, the SA, and the LCP-array, constructing the Patricia tries costs O(% +2G + L). Each PT; requires
|tree structure| + O (2 (Ign +1g o)) bits of space.

Global Trie. Next, we consider the construction of the global trie GT, which allows us to distribute queries
without accessing the text. GT is the same at every PE, which allows arbitrary PEs to initially process any query.
To identify all PEs that are responsible for a pattern, we require the smallest and largest suffix that is represented
by each PE and their Icp-values. Using this set of suffixes S = {SSAIM,SSAI[%], o5 SsaL] SSAC[%]} to construct
GT, we can use the following observation to identify all PEs that are responsible for a pattern.

OBSERVATION 3.2. PE i is responsible for a pattern P if and only if T[SA;[1]..SA;[1] + [P| — 1] <jex P and
P <lex T[SAz[%]SAZ[%] + |P| - 1]

Obviously, there can be pattern for which multiple PEs are responsible. Depending on the type of query, we need
to use the second level index of at most two PEs to answer a query. Communication with more PEs may be
necessary — see § for more details.

The global trie can be constructed similar to the local Patricia trie construction described above. The suffixes
required for the construction are known (all suffixes in §). We still require the size of the longest common prefixes
of those suffixes. For two lexicographically consecutive suffixes the size is in the LCP-array. The size of the
longest common prefix of the other suffixes is the string depth of the root of the corresponding local PT. We
can propagate all these values during one communication phase, where each PE sends the two text positions and
Icp-values to all other nodes, sending O(c) messages of constant size. At the end of the phase each PE has a
temporary SA and a temporary LCP-array each of size 2c. Using these arrays we use the algorithm described
above, only handling edge labels differently.

The task of the global trie GT is to distinguish all elements in S without accessing T. Therefore, the edge
labels may consist of more than one character. The first character of an edge (v, w) is the same character we
would store if we constructed a Patricia trie. Let the text position of this character be i. Instead of storing only
this character and the string depth, we now need to store the substring T[i..i + sd(w)] as the edge label of (v, w).
Hence, it is not necessary to store the string depth at the nodes. In addition, we construct the trie with respect
to a maximum pattern size |P| . . We can usually assume that |P| . is constant (chosen during construction)
such that the size |P| of each pattern P is at most |P| ... Thus, the total size of all edge labels is bounded
by 2¢|P| ... During the construction, we store references to the edge labels, i.e., the text position and length.
Therefore, at each PE it is known which substrings need to be communicated (as edge labels). The edge labels
are distributed among the PEs in two supersteps. First, each PE sends an equal amount of different labels to
each PE. The cost for this superstep (including the construction of the tree structure) is O(c + ¢|P|,.. G+ L).
In the next superstep, each PE distributes the received labels to each other PE, costing O(c¢|P|,,.. G+ L).

To prevent that a requested substring spans over more than one PE we pad the locally stored text with the
next |P|_ . characters. Since we build the trie for 2c¢ substrings, this requires O(c) time, which leads to the
following Lemma.

LEMMA 3.3. Given the SA and LCP-array, constructing the global trie costs O(c+ c|P]
requires |tree structure| + O(c|P|,.. 1g o) bits of space.

G+ L). The trie

max

max

Reducing the Memory Overhead. Now we show how we can reduce the memory overhead by increasing
the number of supersteps required during construction. The whole index is kept in main memory, therefore, we
want the overhead during the construction to be as small as possible. First, note that we can stream the SA



and LCP-array, since we just need to scan them once for the construction. Second, we look at the size of the
indices, as usually a text position requires more space than a character. Since we need characters but obtain
text positions, we need to store them until the next communication phase. Usually lgn > lgo (i.e., factor
of five to ten in practice), thus the text positions consume more memory than the labels will later on. If we
only compute s required text positions during a superstep and then retrieve them, we need O(i) supersteps.
Thus, we can decrease the memory overhead by increasing the number of supersteps that are required during the
construction. This yields the following space-time trade-off (regarding the maximum amount of memory required
during construction).

COROLLARY 3.1. Given the SA and LCP-array, the cost of constructing the Patricia trie is (9(% +2G + ﬁL) if
we only allow slgn bits additional space.

3.2 Querying. The global trie GT is constructed for the set & = {Ssa, 1], Ssay [z - .,SSAC[1]7SSAC[%]} and a
maximum pattern length of |P|_ . . For any i € [1,¢] the 2i-th leaf corresponds to the lexicographically smallest
suffix and the 2 4 1-th leaf corresponds to the greatest suffix represented by PE i. Querying GT is different from
querying a trie as we do not want to find all occurrences of a pattern P, but want to find all PEs that represent
P. We still follow the edges according to their label and the corresponding position in P until we have matched
P at a node u or have a mismatch with the label of an edge (v, w).

In the first case and if v is an internal node, we need to identify the leftmost and rightmost leaves below v.
Let k and ¢ be the leaf ranks of those leaves, resp. Then all PEs j with j € [| 4], | £]] contain positions where the
pattern occurs, as the PEs cannot be distinguished by P. If (in the first case) v is a leaf with leaf rank k&, then
PE Lg] can be responsible for P. In this case we cannot be sure, as pathlabel(v) may be a prefix of P. Therefore,
we send P to PE ng and use the local Patricia trie PTng to determine whether P occurs.

In the second case (there was a mismatch), P can still occur. Let a and § be the mismatching characters of
the label and the pattern, resp. If o >)ex 8 we look at the leftmost leaf below w. If the leaf rank k is even, P does
not occur in any PE, as it is smaller than the lexicographically smallest suffix represented by PE LgJ and greater
than the lexicographically greatest suffix represented by PE LgJ — 1 because otherwise another edge would be
followed in the beginning. If the rank is odd, P may occur in PEs LgJ In the other case (a <jex 3), we need to
get the rightmost leaf below w and check the leaf rank. There may be an occurrence if the leaf rank is even and
there cannot be an occurrence if the leaf rank is odd (with the same type of argumentation given before). All
PEs that are responsible for a pattern P form a consecutive interval that we denote by GT(P) = [¢, r].

LEMMA 3.4. Given GT and a pattern P. Let GT(P) = [(,7], if £ # r then P occurs at least once in PEs { and r
and 2 times in PEs j for all j € (£,r).

Now we take a look at how to answer pattern matching queries in the local Patricia tries. First, we look at
the processing of a single query. Later, we show how the index can be used to answer a batch of queries.
Pattern Matching Queries. There are three types of pattern matching queries that the DPT supports:

Existential: Given a pattern P, we want to know whether the pattern P occurs in the text T.
Counting: Given a pattern P, we want to know how often the pattern P occurs in the text T.
Enumeration: Given a pattern P, we want to know all text positions in T where P occurs.

First, we look at an existential query P that arrives at PE i. We can answer the query in three supersteps (see
also Figure :

1. At PE 4, we identify all PEs that are responsible for P, i.e., all PEs j with j € GT(P). If ¢ # r we know
that P occurs in T (see Lemma, else we send P to PE /(.

2. Next, we perform a blind search in PT,. If the blind search fails, we know that P does not occur in
T. Otherwise, the blind search returns a text position g. During the communication phase we retrieve
Tlq..q +|P] — 1].



3. Using T[q..q + |P| — 1] we can verify the existence of P in T in the third superstep. When a query can be
answered at a PE, we do not send it somewhere else, as the target depends on the application the index is
used for.

The cost of an existential query is the following. During the first superstep we identify all PEs that can answer
the query and send it to one PE costing O(tiic(P) + |P|G + L). We let ¢450(P) denote the time required to search
for P in a trie. Depending on the implementation this requires O(|P|lg o) time (binary search) or O(|P| +1glgo)
time [9]. In the second superstep we perform a blind search and retrieve a substring of length |P|. This costs
O(trie(P) + |[P| G + L). During the last superstep we just compare two strings of length |P| in O(|P|) time.

Counting all occurrences of a pattern can be seen as an extension of the existential query and can be answered
similarly (requiring four supersteps). Let P be a counting query arriving at PE i.

1. First, we identify all PEs that are responsible for P, i.e., all PEs j with j € GT(P). Let all PEs j with
J € [¢,7] be responsible for P. If ¢ # r we know that P occurs in all those PEs (see Lemma . During
the communication phase we send two queries (J; and @, to PE £ and r, resp. The former asks for
the lexicographically smallest occurrence of P in PT, and the latter asks for the lexicographically largest
occurrence of P in PT,.

2. In the next step, we perform one blind search in PT, and one blind search in PT,. If ¢ # r we know
that the blind searches will return two text positions g, and ¢, that are the lexicographically smallest and
largest occurrences of P in T. If one of the blind searches fails we know that the PE is not responsible for
P and we can send that there are no occurrences at the PE. During the communication phase, we retrieve
Tlqe..q¢ + |P] — 1] and T[g,..q¢ + |P| — 1].

3. Using Tlgs..q¢ + |P| — 1] and T[gy..qr + |P| — 1] we can verify the existence of P in T (only necessary if £ # r)
and also find the number of occurrences at PEs ¢ and r using the leaf ranks. We send the number to PE i.

4. We know the number of occurrences occ, and occ, of P in PEs ¢ and r, resp. We also know that
P has to occur % times at each PE j for j € ({,r). Thus the total number of occurrences of P is
occg + occ, +max (0,7 — £ — 1) 2.

The first superstep costs O(tiie(P) + |P|G + L) as we need to identify the PEs that are responsible for the
pattern and send it to two PEs. In the second superstep we perform a blind search at two PEs and retrieve
two substrings of length |P|. This costs O(tie(P) + |P|G + L). The third superstep consist of comparing the
retrieved substrings with the pattern and send the number of occurrences of the pattern to the PE where the
pattern arrived initially, i.e., PE 4. This costs O(|P| + G + L). During the last superstep we need to compute the
total number of occurrences at PE ¢ which costs O(1 + L).

Last, we consider enumeration queries. Let P be a enumeration query arriving at PE 4. During the first two
supersteps answering an enumeration query does not differ from answering a counting query. The remaining steps
are changed as follows.

3. Using Tlgs..q¢ + |P| — 1] and Tlg,..q, + |P| — 1] we can verify the existence of P in T (only necessary if £ # r)
and also find all positions where the pattern occurs. We send all these positions to PE i.

4. We have received all occurrences of P from the PEs ¢ and r. Next we need to retrieve all occurrences, i.e.,
the local SA from all PEs j for j € (¢,r).

The first two supersteps are the same as for a counting query. Therefore, the costs of the first two supersteps are
the same. The third superstep is very similar to the third superstep for answering a counting query. The only
difference is that we need to send the text positions of all occurrences to the PE where the query arrived initially.
This costs O(|P| + occ - G + L), where occ denotes the number of occurrences of P at PE ¢ and PE r. Last, we
need to retrieve the text positions of all occurrences of P in PEs j with j € (¢,7), which costs O((r — £)2G + L)
if ¢ <r+1.

Answering any type (existential, counting or enumeration) of query has (asymptotically) the same cost
for the first two supersteps, as we send at most twice as many queries to the second level (for counting and
enumeration queries). To answer counting queries we send the leaf ranks during third superstep yielding a cost



of O(JP| + G + L). In the last superstep we just need to add up the number of occurrences in O(1) time. When
we consider enumeration queries, we need to report all text positions where P occurs. Let occ be the maximum
number of occurrences of P in a PE j for j € [¢,r], then the cost of the third superstep is O(|P| + occ- G + L). In
the fourth superstep we need to retrieve all positions from the PEs j for all j € (¢, r) costing O(1 4+ ¢ occ- G + L).
All in all we get the following costs.

LEMMA 3.5. Given a pattern P answering an existential query costs O(tyi(P) + |P| G 4+ L), answering a counting
query costs O(tyie(P) + |P|G + L), and answering an enumeration query costs O(tyie(P) + (|P| 4+ occ) G+ L),
where occ denotes the total number of occurrences of P.

Batched Queries and Load Balancing. When we process a batch of g queries at once rather than a single
query, the number of supersteps does not increase, i.e., we can amortize the startup latencies of the BSP model
over a large number of queries. Moreover, if the local work and communication volume is well balanced over the
PEs, the query throughput scales linearly with ¢. On the one hand, we can measure empirically how well balanced
the computation is — see also §[d On the other hand, we can see to what extent good balance can be enforced.

Balancing the queries itself can be achieved using any standard load balancing technique, i.e., assuming that
O(q/c) queries arrive at each PE is unproblematic.

Balancing how many queries get directed at each local trie is more difficult, since certain patterns might be
more popular than others. However, we can use “virtualization” — we split the corpus into ¢’ > ¢ pieces and
distribute them randomly to the actual PE.

Similarly, some documents might be more popular than others. However, by randomly permuting the
documents in the corpus, we can at least ensure that it is unlikely that many popular documents are assigned to
the same PE.

When all these balancing conditions are fulfilled, a batch @ of queries can be completed in time

Z toie(P) + (IP| + 0cc(P))G | + L | ,
PeQ

where occ(P) denotes the number of occurrences of P for an enumeration query (and 0 else).
Comparison to the Distributed Suffix Array. Using the (multiplexed) distributed suffix array (DSA) [1],
a batch @ of ¢ counting queries can be answered in time

Zth P\lg +1gc)G —Hg%L ,

PeQ 1

where tgin(P) denotes the time to identify the occurrences of the pattern P in the SA, i.e., |P|lgn. Distributing

the queries costs O(ZPGQ IP| +|P| G+ L) and is dominated by the costs of answering the batch of queries.
Comparing the costs of the DSA with our DPT we get the following result: The maximum time used for

computation by each PE is O( (ZPEQ tme(P))> using the DPT since we look in GT and at most two local PTs

for each query. The computation time required by the DSA is (’)( (ZPGQ th(P))> and results from the binary

searches (local and inter-PE). Hence, the time used for computation by each PE differs with respect to the time
required for searching the corresponding suffix array interval for each pattern using a trie and using binary search.
Usually, we can assume that t4i0(P) is smaller than tgi,(P).

The cost of communication is O(% (ZPGQ(\P\)) G) using the DPT, as we just send each pattern to at most
two PEs and retrieve a substring of the length of the pattern. For the DSA the cost of communication is higher,
ie. (’)( (ZPEQ |P] lg +1g c) G) because more substrings need to be retrieved during the binary search. This

effect can be moderated by storing pruned suffixes for each position of SA — see § Still, the DPT requires only
a constant number of substrings to be retrieved for each query.
Last, the synchronization using DPT is constant, i.e., O(L), but using the DSA synchronization costs

O(lg %L). Due to the constant number of messages being sent using the DPT, the synchronization cost is

optimal and a logarithmic factor worse using the DSA.



Therefore, if we assume an optimal distribution of the queries and of the documents, the DPT is theoretically
faster than the DSA. This difference in cost can also be seen in practice — see § [l However, the multiplexed DSA
is very strong against query bias, whereas the DPT can be affected by query bias resulting in a load imbalance.

4 Experiments

We implemented the distributed Patricia trie using C++ (g++ 6.1 with flags -03 -march=native). The
communication is handled by the Message Passing Interface (MPI, Open MPI 1.10.3) with each MPI process
representing a PE of our algorithm. For the representation of bit vectors and the operations rank(), select()
and find_close(), we use the succinct data structure library (sdsl-lite, 2.0.1) [12]. In particular we used the
RANK_SUPPORT_V5 for rank(), SELECT_SUPPORT_MCL for select() and BP_SUPPORT_SADA for find_close(). We
computed the SA and LCP-array using the implementation of Flick et al. [11]. The source code of our
implementation and data required to reproduce our results are available from https://github. com/kurpicz/dptl

For our experiments we use the common crawl corpus as inputE| It provides world wide web crawl data and
contains raw content, text only and metadata of the crawled websites from about 1.23 billion web pages. In total
the corpus has a size of 541 TB (as of 27.07.2016). We use the WET files that contain only the text without any
tags or other meta information. (We removed all additional data added by the common crawl corpus.)

The data we use for queries comes from the following sources:

Text Retrieval Conference (TREC) Containing all published test queries of the Million Query Track, which
contains 60k queries in total [26].

AOL Query Log (AOL) Contains around 20M web queries collected from roughly 650k users that have been
collected over three months [27].

To the best of our knowledge, the distributed suffix array (DSA) presented by Arroyuelo et al. [1] is the
only other (available) implementation of a distributed full-text index. Hence, we compare our results with the
fastest variant of the DSA, the multiplexed distribution of the SA. The implementation of the DSA only supports
counting queries. Therefore, in § we only compare the time for counting queries. We adapted the (non-public)
source code such that it works with texts of size greater than 4 GiB.

All experiments were conducted on the InstitutsCluster II (IC2) at KITE| The cluster has compute nodes
consisting of two Octa-Core Intel Xeon E5-2670 processors with 64 GB main memory and 2 TB external memory.
The nodes are connected using InfiniBand QDR. Up to 32 nodes at a time were available for our measurements.
Each node runs 16 MPI processes and in this section PE refers to MPI process.

4.1 Construction. As noted before, the construction of the SA and LCP-array are not part of this paper —
we start the timer as soon as each PE holds its local share of the SA, LCP-array and T. Still, the construction
of the SA and LCP-array are the bottleneck of our data structure. Figure |3 shows the construction time of the
distributed Patricia trie using a weak scaling plot, i.e., for each curve the amount of input data per PE is fixed.
In this case we used up to 100 GiB of text which translates to 200 MiB of text per PE and constructed the DPT
for |P|, .. = 30. We could not run bigger experiments as we were only able to compute the SA and LCP-array
for texts up to that size using the available resources and the only distributed construction algorithm that can
compute both arrays, i.e., [11].

The construction time for the SA and LCP-array is two to three times greater than the time required for the
construction of the DPT. Hence, we can say that our construction time is reasonable and practical.

We compare two different variants of implementation: Using the collective communication operation
MPI_ALLTOALLV and using a large batch of remote direct memory access operations (RDMA, operation
MPI_GET). Preparing the requests and constructing the tree topology are the most time consuming tasks
during the construction of the DPT. One-sided communication turns out to be somewhat faster since it does not
need to send text positions first, but can directly access the text. The amount of messages sent and received by
all PEs is (with a few small exceptions) homogeneously distributed among all PEs — see Figure [5| (left).

The space consumption of our index can be seen in Table [1} where we compare the different representations
of the local Patricia tries. Since we need to keep track of the nodes on the stack, the memory usage is higher

Thttp://commoncrawl . org/
%https://www.scc.kit.edu/dienste/ic2. php
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Figure 3: Construction times of the DPT for 100 MiB (CC100 and 0S100) and 200 MiB (CC200 and 0S200) of text
per PE, utilizing collective communication (CC) and one-sided communication (OS). SA200 is the construction
time of the SA and LCP-array for 200 MiB text per PE.

Pointer BP DFUDS LOUDS
peak 46n 19n  18n 18n
size 42n 16n 16n 15n

Table 1: Bits needed to store the local tries during construction (peak) and querying (size) using 40-bit text
positions.

during the construction. In the following, we omit a detailed analysis of DFUDS and BP, as LOUDS is better
with respect to size and speed.

The multiplexed distributed suffix array by Arroyuelo et al. [1] requires preprocessing of SA and T. During
the preprocessing, the multiplexed SA for each PE is constructed and pruned suffixes for each text positions are
stored accordingly (see § for the effect of pruning in practice). We refer to this preprocessing as construction
time. However, the process is not distributed; one PE prepares all required files. Therefore, we omit a comparison
of the construction time with DPT as it does not scale.

A standard question for a parallel algorithm is about its speedup with respect to the best sequential algorithm.
This is important for understanding how much overhead is involved in going to a distributed environment. Since
the SA and LCP-array construction dominates index construction time and since there is no tuned sequential
implementation of DPT construction itself, we make this comparison only for the SA and LCP-array construction.
The fastest sequential algorithm we are aware of is divsufsort, which computes the SA (but not the LCP array)ﬁ
Running the 64-bit version of divsufsort 2.0.1 for 50 GiB on a machine with 512 GB RAM and 4 Intel Xeon E5-
4640 processors takes 42 247 seconds. Extrapolating this to 100 GiB gives 84 494 seconds — about 100 times more
than the algorithm from [11]. Note that divsufsort is much slower when extrapolating from traditionally small
inputs as we need a 64-bit version, due to NUMA effects, and because for really large inputs a logarithmic term
in virtual address translation becomes noticeable [16]. There exists also a parallel variant of divsufsort, where
one of its two sorting steps is parallelized. Hence, not the whole algorithm is executed in parallel. Therefore, on
50 GiB and using 32 cores, it is only about 25% faster than sequential divsufsort.

Another interesting comparison is with a state of the art general purpose external memory algorithm [3].
Here, the algorithm from [11] on 512 processors is about 280 times (using somewhat faster processors but on
larger inputs than [3]).

Shttps://github.com/y-256/1ibdivsufsort
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4.2 Query Time. In this section we focus on pattern matching queries. Once more, we perform a weak scaling
experiment to compare the times required to answer batches of queries. This time, both the input size per PE
(200 MiB) and the number ¢ of queries arriving at each PE (20k, 40k and 80k) are fixed. Thus, we build an index
on up to 100 GiB of text, and want to answer a batch of at most 41M queries. If the number of queries exceeds
the available number of queries (60k and 20M for TREC and AOL queries, resp.), we replicate the set of queries
accordingly. Also, we stop the timing as soon as the result for a query is known at any PE. For example, if we
have a counting query that can be answered by a single PE, we do not send the result to the PE where the query
arrived initially.
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Figure 4: Query times of the DPT for 200 MiB of text per PE. Each PE receives 20k (DPT20), 40k (DPT40) and
80k (DPT80) queries. LOUDS20 is the query time for 20k queries using LOUDS as succinct trie representation
and DSA20 is the query time for the distributed suffix array, also asking for 20k queries per PE.

Figure [d|shows the query times for existential, counting and enumeration queries. DPT20 represents the times
required to answer a batch of 20k queries per PE, DPT40 and DPT80 denote the times for 40k and 80k queries,
using the pointer-based representation of the tries. The labels DSA20 and LOUDS20 denote the times for 20k
queries using the DSA and the succinct LOUDS representations of the DPT. We augment the DSA with pruned
suffixes of size 5 — see § for more details. All query types scale reasonably well with the number of PEs.
Existential queries can be answered the fastest, as they only require a single blind search (including the retrieval
of a substring). They can be answered up to twice as fast as the counting queries.



Counting queries require more work at each PE, as we need to compute the number of occurrences, which
translates to two traversals from one node to a leaf at the local PT. Comparing our implementation with the DSA
we see that we scale better as we can send our queries to the PE that can actually answer them. This allows us
to answer queries up to 5.5 times faster. The implementation of DSA only supports counting queries, therefore,
DSA only appears for counting queries in Figure [4, When utilizing more than 32 PEs, DSA becomes significantly
slower than DPT. This is probably due to the increasing number of messages sent by the index that are necessary
during the binary search, whenever the pattern must be compared with the text. For larger texts, there are fewer
text positions that correspond to text that is locally available. This effect can be reduced by pruning (see §.

Last, we have enumeration queries, which are the hardest to answer as we have to compute all text positions.
They can take up to 1.5 times as long as counting and 3 times as long as existential queries.

The TREC queries are generally harder to answer as there are fewer and we have duplicates as soon as we
require more than 60k queries. Duplicates lead to a higher imbalance regarding the query distribution, i.e., query
bias — see Figure |5 (right) for the query distribution among the PEs.

The succinct tree representations are reasonably fast compared with the pointer based implementation — see
again Figure [4l LOUDS is the fastest of the three tested succinct tree representations, being only 10% to 20%
slower than the pointer based implementation but using only about a third of the space. This means that succinct
data structures allow us to use 2.5 times less memory to build the DPT for the same text as a pointer based
implementation. Counting and enumeration queries are more expensive when it comes to succinct tree structures,
as we need to traverse the trie multiple times if the pattern occurs.

4.3 Distributed Suffix Array — Pruning. In addition to the local multiplexed SA, the (multiplexed) DSA
also holds pruned suffizes, i.e., for each position in the multiplexed SA, the first £ characters of the corresponding
suffix are stored. Since the text corresponding to a suffix may not be available locally, this speeds up the query
time (by increasing the size of the index). We tested different sizes ¢ for the pruned suffixes, using 200 MiB of
text per PE and asking for 20k AOL queries per PE, i.e., the same configuration as in our experiments for the
query times. The speedup is listed in Table

PEs ¢ speedup PEs [/ speedup

2 0 1 8 0 1
) 1.04 5 1.13
10 1.20 10 1.51
15 1.28 15 1.54
20 1.33 20 1.71
4 0 1 16 0 1
S 1.33 ) 1.05
10 1.42 10 1.67
15 141 15 1.75
20 1.45 20 1.92

Table 2: Speedup of the query time in the DSA with respect to the size £ of the pruned suffixes.

Since the average size of an AOL query is 18, pruned suffixes of size greater than 20 do not provide any more
significant speedup. In our experiments we used pruned suffixes of size 5, as this adds 40 bytes to the DSA per
text position, which corresponds to the size of our pointer based DPT representation. Choosing larger pruned
suffixes can speedup the DSA such that it is faster than the DPT on 32 PEs. However, this also results in an
index that is larger than our DPT.
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Figure 5: Work imbalance between different PEs. For each PE, we give the percentage of requests sent and
received during construction of the DPT and percentage of queries received during querying by each PE. Here,
the DPT is constructed for 200 MiB of text per PE and we ask for 20k AOL queries per PE.



5 Conclusion and Future Work

We presented a distributed full-text index that supports existential, counting and enumeration queries. All queries
can be answered using a constant number of messages with length proportional to the queries. Our implementation
scales well regarding the query processing and is faster than the DSA when run on more than 32 PEs. For 512
PEs our index can answer a batch of counting queries up to 5.5 times faster than the DSA. Also, we use succinct
data structures, resulting in lower space requirements by a factor of 2.5 at only about 20% slowdown.

Still, there are optimizations that may lead to better performance in the future. One important issue is to
further develop and implement the load balancing measures outlined in §[3.2] An orthogonal issue is to consider a
stream of queries, i.e., instead of a batch of queries arriving at each PE at the same time, we assume that queries
can arrive at any PE at any time. This is a real world problem, as for many applications, queries do not arrive in
a batch. For this setting, we need asynchronous communication between the PEs. In this scenario, an interesting
question is at which amount of queries batched query processing becomes more efficient than the streaming mode.

In addition, our index can be extended to also answer document retrieval queries |25], where the text is
composed of a number of (short) documents, and one wishes to count or enumerate all documents containing a
given query pattern (documents containing the pattern multiple times should only be counted/enumerated once).
For document counting, one could use the preprocessing by Hui [14], while for optimal document listing, the
technique of Hon et al. [13] could be adapted. This latter technique relies on a data structure for fast range
minimum queries [10], which has to be transformed into a distributed environment.

Another interesting direction is the usage of compressed cache-oblivious tries as shown by Ferragina and
Venturini [8]. Further improvements should also be possible using hybrid parallelism, i.e., to exploit that PEs on
the same compute node can quickly interact using shared memory.
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