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Abstract—The ad hoc network is composed of multiple sensor 

nodes to serve various applications, such as data collection or 

environmental monitoring. In many applications, the sensor 

nodes near the boundary of the deployment region provide 

biased or low-quality information because they have limited 

number of neighboring nodes and only partial information is 

available. Hence, the boundary recognition is an important issue 

in the ad hoc networks. By the statistical approach in high node 

density networks, Fekete’s pioneer work identified the boundary 

node by number of neighboring nodes and using a specific 

threshold. By exploiting the number of nodes in the two-hop 

region, our proposed algorithm has significant improvement of 

boundary recognition contrasted with Fekete’s algorithm in the 

low-density network. Given the information topology and the cost 

function, the analyses provide a framework to obtain the optimal 

threshold for boundary recognition. Besides, the simulation 

results reveal the proposed algorithm has greater than 90% 

detection rate and lower than 10% false alarm rate. 

Keywords-ad hoc networks, boiundary recognition, decision, 

optimal algorithm 

I.  INTRODUCTION 

The ad hoc networks are composed of numerous low-cost 
wireless nodes. The nodes with limited accuracy sensors, 
battery lifetime, and computing power are used to monitor the 
region of interest (ROI). Certain applications also use sensors 
to measure or detect the interesting events, such as animal or 
human motions. Due to the limitation of the hardware, the 
researchers developed energy-efficient and distributed 
algorithms to solve many specific applications in the ad hoc 
networks. Through the cooperation of sensor nodes, the nodes 
perform specific application in distributed schemes, such as the 
fusion of data measurement or the event detection. However, 
the performance of the applications degrades in the boundary 
region of ROI. Because the nodes in the boundary have fewer 
neighboring nodes, the nodes obtain only partial information 
related to the goal of the application. Therefore, the recognition 
of boundary nodes becomes an important issue in the ad hoc 
networks. 

The related works can be classified into three categories: 
the geometrical scheme, statistical scheme and topology 
scheme. 

In the geometrical scheme, the geometrical information is 
available to the sensor nodes. Fang et al. [1] transform the 

greedy geographical routing into a local minima problem. The 
geographical localization is assumed available in the algorithm, 
and the boundary nodes route through longer path. 
Localization-aware devices cause the extra energy cost to a 
sensor node and reduce the lifetime of the sensors. 

In the topology scheme, the algorithms utilize the 
connectivity information among the nodes and the topology 
constraints to detect the boundaries and holes in ROI. S.Funke 
et al. [2] constructed ios-lines from selected nodes. If the ios-
line is broken at both edges, the node is recognized as the 
boundary node or near boundary node. The algorithm [3] 
improves the Funke’s work by iteratively collecting the 
information of 2-hop neighbor ios-lines. Every node checks 
whether the ios-line is broken by itself. By Y. Wang et al. [4], 
an root node is selected to build a shortest path tree for 
checking the holes. However, the process of network floods 
requires the synchronization of nodes. The algorithm proposed 
by Kroller et al. [5] recognizes a topological structure called 
flowers and augmented cycle to detect the boundary. O.Saukh 
et al.[6] also search a special pattern of geometric structure. 
The researchers [7] partition the network into clusters, the 
algorithm searches the boundary nodes in the overlapping 
regions of the clusters. 

In statistical scheme, the nodes are identified as the 
boundary nodes or interior nodes by the characteristic of the 
networks, such as distribution of the nodes. Fekete et al.[8] 
assumes that nodes on the boundaries have lower average 
number of neighboring nodes than the other nodes in the 
interior of network. The algorithm requires high node density, 
e.g., 100 nodes in one communication range. Fekete et al.[9] 
designed a threshold depending on the area of boundary node 
and interior nodes, and then classified the nodes as boundary 
and interior nodes. The algorithm also requires high node 
density. Another issue in [9] is that the decision by one-hop 
information has higher variance, so Bi. et al. [10] improved the 
threshold by averaging the number of one-hop neighboring 
nodes in the two-hop region. The algorithm proposed by Ghrist 
et al. [11] detects the hole via homology. In order to construct 
the homology in mathematics, the sensing and communication 
range must be carefully regulated. G. Destino et al. [12] 
constructed clusters to recognize the boundary nodes and the 
interior nodes. 

In this paper, we propose a novel boundary recognition 
scheme in the uniformly and randomly deployed ad hoc 
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networks. By using the number of nodes in two-hop region, our 
algorithm achieve high detection rate for the boundary 
recognition in low node density compared with [8]. The main 
contribution of this work is to transform the boundary 
recognition problem into the binary hypothesis test problem, 
and analyze the detection rate and false alarm rate. Given the 
topology information of the network and the cost function, our 
proposed approach provides a framework for designing the 
optimal threshold of the binary hypothesis test problem.  

II. THE BAIC CONCEPT AND OUR ALGORITHM 

We assume the distribution of the nodes in the ad hoc 
network follows a Poisson point process (PPP) with the 
intensity   , and all nodes are equipped with the same 
communication range (CR) in the ROI F. Let      represent the 
function of a boundary of a network, e.g. the borders of a 
network. Whether a node D is a boundary node or not is 
transformed into a binary hypothesis test problem written as 

  {
                   

                   
 (1) 

where         is the shortest Euclidean distance between a 
boundary and a node. If a node is not a boundary node, we say 
the node is an interior node.  

The average number of nodes is    over a unit area, so the 
average number of nodes is          over the circle with 
radius CR. In the PPP constructed nodes, we define      
| |   as the average number of nodes in the region   where | | 
is the area operation. Therefore, we define the        as the 
average number of nodes in the circle C centered an interior 
node with radius CR. For a boundary node, we define the      
as the average number of nodes in the intersection region 
     . As in [8], the authors employed the relation 
          and a threshold to classify the boundary node 
and interior node. We extends the relation,          , to 

two-hop region. The two-hop region      is defined as the 

region covered by a node and its neighboring nodes. Let 
        denote the average number of nodes in      of an 

interior node and         denote the average number of nodes 

in two-hop region of a boundary node. The relation  (    )  
        still holds if      is available, but      is an irregular 

area and is difficult to be calculated. Hence, we derive the 
approximate circular area called two-hop circle to serve as the 
equivalent area for the     . In [13], the excepted distance from 

a source node to a destination node per hop is derived as 

       (      ∫ 
 
 
(         √    )  

 

  

)  (2) 

The distance           is taken as the radius of the 

equivalent two-hop circle where 1<   , and the number of 
nodes in the two-hop circle is expected to be close to the 
number of nodes in     . Fig. 1 demonstrates the highly 

accurate approximation between the number of nodes in the 
equivalent two-hop circle and the number of nodes in the true 
    . Let    denote the average number of nodes in the two-

hop circle of an interior node, and    denote the average 
number of nodes in the two-hop circle of a boundary node. The 
result in Fig. 1 also reveals the circular area of diameter    

approximates the area constructed by two-hop neighboring 
nodes. Because   is greater than   , a node decides whether 

itself is a boundary node or not by setting a specific threshold 
on the number of nodes in its two-hop circle, and the threshold 
is related to    and   . Given a cost function and the 

information of the topology of the network, the threshold can 
be designed to achieve the optimal cost. The design of the 
threshold is discussed in the section III. The rationale of our 
algorithm is shown in Fig. 2. Because we have         
        , our algorithm can easily find a threshold to 
classify a node as a boundary node or an interior node. Since 
   is greater than  , our algorithm is more suitable to sensor 

deployment with low node density than the algorithm in [8]. 

 

Fig. 1. The average number of nodes in two-hop circle and two-hop region 

 

 

Fig. 2. The concept of the proposed algorithm 

 

The value   is the prior knowledge available to every node, 

or a packet with   is broadcasted to the whole network after 

the nodes deployment process. Our algorithm of a node 

classification is simplified into three steps: 

1) Collecting the number of nodes in the     ; 

2) Estimating the radius of two-hop circle; 

3) Classifying the node as a boundary node or not by the 

number of nodes             in      with a threshold T, 

where T is an positive integer and the decision rule is 

written as 

   

  

  

The area covered 

by two hop nodes

The approximation

area with radius    

The pdf(s) of two 

Poisson distributions 

with different means
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III. THE ANALYSIS OF DETECTION RATE  

AND FALSE ALARM RATE IN THE SQUARE FIELD 

A. The two-hop regions of the network 

The system detection rate is related to the ratio of the 
boundary region and the non-boundary region of the ROI. In 
other words, the system detection rate is topology dependent. 
In order to analyze the system detection rate and false alarm 
rate, we consider the ROI of a     square area and assume 
CR=1 without loss generality. The ROI is partitioned into 
certain regions shown in Fig. 3. The boundary regions are 
divided into two kinds. For a node in black region or gray 
region, the |    | of this node is constructed by the two-hop 

circle and a boundary. For a node in the slash line region or dot 
region, the |    | of this node is constructed by the two-hop 

circle and two boundaries. For a node D in the black or gray 
region of the top in the network, the shortest distance from the 
node to a boundary is             as shown in Fig. 4. The 
difference between the dark region and gray region is the range 
of y. For a node in the dark region, the y is in      . For a node 
in gray region, the y is in      . 

 

Fig. 3. The partitions of the ROI. 

 

 

Fig. 4. The area constructed by the two-hop circle and the boundary. 

 

After triangular manipulations, the area constructed by 

tow-hop circle and a boundary can be written as 

       (      (
 

 
))    √         (4) 

The average number of nodes in the two-hop circle in the black 
or gray region is written as 

   
       

 
  (5) 

If a node A falls into slash line region at the upper and left 
corner of the square field, the distances to two boundaries are 
denoted as x and y where         respectively. We have 
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Therefore, the area constructed by the two-hop circle of A and 
the boundaries can be written as 

         
             

 
  

(
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(7) 

The average number of nodes in the area constructed by the 
two-hop circle of A and the boundaries is written as 

   
         

 
  (8) 

 

 

Fig. 5. A node in the corner region 

B. Detection rate and false alarm rate 

Given the threshold  , the detection rate can be obtained by 
computing the cumulative distribution function of PPP 
conditioned on the average number of nodes in two-hop region 
          . Therefore, the detection rate of a boundary node 

can be written as 

     |    ∑
  

 

  
    

 

   

  (9) 

where    is the number of nodes in the area constructed by the 
boundary and the two-hop circle. In PPP, a boundary node in 
any coordinate of the boundary region is        ). We 
consider the detection rate in the upper black region, which is 
written as 
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  (10) 

Considering the slash lines region at the upper and left corner 
of the square field, the detection rate of the nodes is written as 

boundary corner
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(11) 

Since the detection rates of all black regions are the same and 
the detection rates of all gray regions are the same, the overall 
system detection rate is written as 

   
       

    
     

       

    
      (12) 

With the growth of  ,      and      are converged to an upper 

bound. In addition,   is close to 2. When   and b are large e.g. 
     and b=10, the    is dominated by the first term of (12). 
The result indicates that system detection rate is independent of 
the network scale with large   and b. 

Similarly, the false alarm rate equals the sum of false alarm 
rate in corner region of the gray regions, the dot regions and the 
white regions. The false alarm rate in white region is 

           
 

      
 (   |  )  (13) 

The false alarm in the gray region is 

           
 

    
∫ ∫  (   |  )    

   

 

   

 

  (14) 

The false alarm rate in the dot region is 

           
 

      
∫ ∫      |       

   

 

   

 

  (15) 

Hence, the system false alarm rate is written as 

    
      

      
      

            

      
     

 
      

      
       

(16) 

With the growth of  ,       and       are converged to a lower 

bound and       is close to zero. When   and b are large,     is 

dominated by the second term of (16). The result indicates that 
system false alarm rate is independent of the network scale 
with large   and b. With the growth of  , the    increases and 
    decreases. 

Given   and b, the system detection rate and false alarm 
rate are derived in the (12) and (16). The results can be solved 
by the numeric methods even though (12) and (16) are not in 
the close form. Moreover, the optimal threshold is derived by 
the (12) and (16). According to the maximum a-posteriori 
(MAP), the area of boundary region is assumed to be known, 
and then the optimal threshold can be derived. Taking the 
square as an example, the probability of nodes in the boundary 
region is              and the probability of nodes in 
interior region is             . Besides, we assume the 
cost of false negative is    , and the cost of false positive is    . 
With the parameters,   ,   ,    ,     , the cost of function is 
defined as 

                           (17) 

Since the    and     are functions of  , the minimum cost can 

be obtained by 

      
 

                        (18) 

IV. SIMULATION AND EVALUATION 

In order to evaluate the detection rate and false alarm rate 

of our algorithm, there are N nodes deployed in a square with 

the square area         (m
2
) or         (m

2
) by 

following PPP. The N varies from 1000 to the 3000 with step 

500 for b=100 and varies from 4000 to 12000 with step 2000 

for b=200. Every node has the same communication range 

      (m), so the parameter   varies from 31 to 94. Every 

node exchanges information with neighboring nodes for 

calculating the number of nodes in     , and then every node 

makes a binary decision by itself with the specific threshold T. 

The average detection rate and false alarm rate are calculated 

by averaging values from 100 different topology simulations. 

The receiver operation curves (ROCs) of simulation results 

are shown in the Fig. 6, and it is noted that the x-axis is in the 

log scale. For clarity of presentation, the data lines of Fekete’s 

algorithm in         (m
2
) are not plotted in Fig. 6. Our 

algorithm has high detection and lower false alarm compared 

with the Fekete’s algorithm. Besides, the threshold can be 

designed to achieve the detection rate greater than 90% and 

the false alarm rate lower than 10% except    31.  

The rectangle of Fig. 6 points out the similar detection 

rates of our algorithm. The result indicates the detection rate is 

close when   and b are large, and the result is also consistent 

with the analysis in the section III. In addition, the false alarm 

rates are similar, too. Because of the different ratio of the gray 

and dot regions, the small difference of the false alarm rates 

between b=200 and b=100 comes from the second and third 

terms of (16). 

 

Fig. 6. The ROCs of the square ROI 

 

We evaluate the impact of different ratios of gray, dot and 

white regions in the topology of a network. The topology of 

the simulations is shown in Fig. 7, and the square of grid lines 

with width d is removed in the field. The topology is similar to 

the form of a character C. The values of d are 40 (m) and 80 

(m) in the         (m
2
) and 2       (m

2
) respectively. 
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In order to keep the node density in the C shape topology, the 

N is varied from 840 to 2520 in         (m
2
) and N is 

varied from 5040 to 10080 in         (m
2
). The ROC 

curves of the C shape topology are shown in the Fig. 8. The 

thresholds in the square and the thresholds in the C shape are 

set as the same. The average detection rate and false alarm rate 

are calculated by averaging values from 100 different topology 

simulations, too. 

The detection rate in the square field is little higher than 

the detection rate in the C shape topology, because two 

different networks have different ratio of the boundary regions. 

However, the similar detection rates still occur in the C shape 

topology when   and b is large. The result is congruent with 

the analysis section III again. Let                denote the 

false alarm rate with specific parameters in the C shape 

topology and                denote the false alarm rate with 

specific parameters in the square field. Since the ratio of gray 

regions of (16) in the C shape topology is greater the ratio in 

the square field, the difference of                and 

               is greater the difference of                

and               .  

 
Fig. 7. The C shape topology 

 

 

Fig. 8. The ROCs of the C shape topology 

 

The overall results reveal that the detection rate and false 

alarm rate is relative to the topology. Moreover, the detection 

rate and false alarm rate are independent to the scale of the 

networks under different topology when   and b is sufficiently 

large. 

V. CONCLUSION 

We propose a novel self-detection scheme for the boundary 

recognition by utilizing the two-hop information. With the aid 

of two-hop circle, the simulations reveal that the algorithm has 

high detection rate and low false alarm rate in the lower node 

density network. In the case where the topology information is 

available, our analyses enable the end users to choose the 

optimal threshold to minimize the cost function. Besides, the 

analysis also reveals the relations among the detection rate, 

false alarm rate, the topology and the scale of network size. 

Our algorithm can be easily extended to utilize multi-hop 

circle. However, the amount of the information collected by 

multi-hop nodes needs to be balanced with the energy cost in 

collecting the multi-hop information. 
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