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Abstract

Compressive Sensing (CS) is a new technique for the effigiequisition of signals, images, and
other data that have a sparse representation in some brasiee,for dictionary. By sparse we mean
that the N-dimensional basis representation has jiSt« N significant coefficients; in this case,
the CS theory maintains that jud/ = O (K log N) random linear signal measurements will both
preserve all of the signal information and enable robustadigeconstruction in polynomial time. In this
paper, we extend the CS theorypalse streandata, which correspond t8-sparse signals/images that
are convolved with an unknowR'-sparse pulse shape. Ignoring their convolutional stregta pulse
stream signal i = SF sparse. Such signals figure prominently in a number of agipdies, from
neuroscience to astronomy. Our specific contributions lameefold. First, we propose a pulse stream
signal model and show that it is equivalent to an infinite arod subspaces. Second, we derive a lower
bound on the number of measuremehfsrequired to preserve the essential information presentlisep
streams. The bound is linear in the total number of degredseetiomsS + F', which is significantly
smaller than the naive bound based on the total signal $pdtsi= SF'. Third, we develop an efficient
signal recovery algorithm that infers both the shape of thyeulse response as well as the locations and
amplitudes of the pulses. The algorithm alternativelyneates the pulse locations and the pulse shape
in a manner reminiscent of classical deconvolution algarg. Numerical experiments on synthetic and

real data demonstrate the advantages of our approach ewetastl CS.
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I. INTRODUCTION

Digital signal processing systems face two parallel chaks. On the one hand, with ubig-
uitous computing power, memory and communication bandwitite pressure is cacquisition
devices, such as analog-to-digital converters and digi¢éaheras, to capture signals at ever
increasing sampling rates. To date, signal acquisitiorbeas governed by the Shannon/Nyquist
sampling theorem, which states that all the informationt@imed in a signal is preserved if it
is uniformly sampled at a rate twice as fast as the bandwitlitsd-ourier transform. On the
other hand, to counter the resulting deluge of Nyquist-satmples, DSP systems must utilize
efficient compressiorschemes that preserve the essential information contaméue signals
of interest. Transform compression of a discrete-time aignc R” involves representing the
signal in a suitable basis expansior= Va, with ¥ an N x N basis matrix, and storing only
the K largest basis coefficients. The number of large coefficiants is known as thesparsity
K of the signal in the basi¥. For many classes of interesting signal§,< N, and hence
efficient signal compression can be achieved.

An intriguing question can thus be asked: can a system samediusly attain the twin goals of
signal acquisition and compression? Surprisingly, thevansn many cases iges This question
forms the core of the burgeoning field of Compressive Senfl®) [3, 4]. A prototypical CS
system works as follows: a signalof length N is sampled by measuring its inner products with
M < N vectors; the output of the sampling system is thus given by#ttory = bz = dVq,
where® ¢ RM*¥ is a non-invertible matrix. The CS theory states that witghhprobability,z
can be exactly reconstructed franprovided that4) the elements ob are chosen randomly from
subgaussian probability distributions, and) the number of sampled/ is O (K log(N/K)).
Further, this recovery can be carried out in polynomial tinséng efficient greedy approaches
or optimization based methods [5, 6].

For some applications, there exist more restrictive signatiels than simple sparsity that
encode various types of inter-dependencies among theidasabf the nonzero signal compo-
nents. Recent work has led to the development of CS theoryalyadithms that are based on
structured sparsitynodels that are equivalent to a finite union of subspaced.[ByBexploiting

the dependencies present among the nonzero coefficightsan be significantly reduced; for



certain structured sparsity models, with high probabtligy number of measuremenis required
for exact recovery is merel§ (K) (without the additional logarithmic dependence on the align
length ).

Despite the utility of sparsity models, in many real-woréhsing applications the assumption
of sparsity itself is an oversimplification. For example, lacophysiological recording of a
neuron is often approximated as a series of spikes but caretber bmodeled as a series of
more elongated pulses, the pulse shape being charactéoighe particular neuron. As another
example, a high-resolution image of the night sky consi$ta teld of points (corresponding
to the locations of the stars) convolved with the point spreanction of the imaging device.
Such signals can be modeled as &sparsespike streanthat have been convolved with an
unknown F’-sparseimpulse responseo that the resulting overall sparsity = SF. We call
such a signal gulse streamsFor the compressive sensing and recovery of a pulse stitbam,
number of measuremenid would incur a corresponding multiplicative increase by etda of
F when compared to sensing merely the underlying spike ssg#ms can be prohibitive in
some situations. Thus, it is essential to develop a CS franrlethat can handle not just sparse
signals but also more general pulse streams.

In this paper, we take some initial steps towards such a CSemiteam framework. First,
we propose a deterministic signal model for pulse streanmesskiéw that our proposed model
is equivalent to annfinite union of subspaceSecond, as our main theoretical contribution, we
derive a bound on the number of random linear measureménesquired to preserve the essen-
tial information contained in such signals. The proof rel@n the particular high-dimensional
geometry exhibited by the proposed model. Our derivati@wstthat) = O ((S + F)log N);
i.e., M is proportional to the number of degrees of freedom of theai§ + F' but sublinear
in the total sparsityx’ = SF'. Third, we develop algorithms to recover signals from ourdeio
from M measurements. Under certain additional restrictions enstgnals of interest, one of
the algorithms provably recovers both the spike stream hadmpulse response. We analyze
its convergence, computational complexity, and robustrtesvariations in the pulse shape.
Numerical experiments on real and synthetic data sets demade the benefits of the approach.
As demonstrated in Figure 1, we obtain significant gains ogaventional CS recovery methods,

particularly in terms of reducing the number of measureseaquired for recovery.
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Fig. 1. (a) Testsignal of lengt = 1024 obtained by convolving a spike stream with= 6 with an impulse response

of lengthF = 11, so that the total signal sparsilyy = SF = 66. (b) Profile of one pulse . Signal reconstruction from

M = 100 random Gaussian measurements performed using (c) a $ttite-art CS recovery algorithm (CoSaMP [9],

MSE = 13.42), and (d) our proposed Algorithm 2 (MSE = 0.0028).

This paper is organized as follows. In Section Il, we revié tudiments of standard and

structured sparsity-based CS. In Section Ill, we proposetarphinistic signal model for pulse

streams and discuss its geometric properties. In Sectipmwé&/derive bounds on the number of

random measurements required to sample signals belorgog fproposed model. In Section V,

we develop an algorithm for stable signal recovery and aeaiis convergence and robustness

to model mismatch. Numerical results are presented in &edfi, followed by a concluding

discussion in Section VII.



II. BACKGROUND ON COMPRESSIVESENSING
A. Sparse signal models

A signalz ¢ RY is K-sparsein the orthonormal basi& ¢ RV*" if the corresponding basis
representationy = U7z contains no more thai' nonzero elements. Without loss of generality,
we assume the sparsity badisto be the identity matrix foR”™. The locations of the nonzeros
of z can additionally be encoded by a binary vector of lenfjthwith a 1 indicating a nonzero;
this vectoro(z) is called thesupportof 2. Denote the set of all{-sparse signals iiRY asX.
Geometrically, S can be identified as the union ¢f) subspaces aR”, with each subspace
being the linear span of exactlif canonical unit vectors oR". For a generak ¢ R", we

define its best-sparse approximation; as
Tx = arg min ||z — ul|s.
UEX

Many signals of interest exhibit more complex dependenci¢srms of their nonzero values
and locations. For instance, signals that permit only a lsmainber of admissible support
configurations can be modeled by a restricted union of suespaonsisting only of ;- canonical
subspaces (so thdt is typically much smaller thar{lY)). Thus, if ¥ = {o1,0,...,07,}

denotes the restricted set of admissible supports, th&truatured sparsity modgV] is the set

Mg ={z:0(x) € X}. Q)

B. Signal acquisition via nonadaptive linear measurements

Suppose that instead of collecting all the coefficients otetarz € R, we merely record
M inner products (measurements)ofvith M < N pre-selected vectors; this can be represented
in terms of a linear transformatiop= ®x, ® € R**N, & is called thesampling matrixit is at
most rankd/ and hence has a nontrivial nullspace. The central resultoimZessive Sensing
(CS) is that despite the non-invertible naturelgfif x is sparse then it can be exactly recovered
from y if ® satisfies a condition known as the restricted isometry ptpd®IP):

Definition 1: [10] An M x N matrix & has theK-RIP with constant if, for all x € X,

(1= dx)l2ll3 < | ®ll3 < (1+ dx) 3. @



A matrix ® with the K-RIP essentially ensuresséable embeddingf the set ofall K-sparse
signalsXx into a subspace of dimensialW. The RIP requiresb to leave the norm of every
sparse signal approximately invariant; alfomust necessarily not contain any sparse vectors in
its nullspace. At first glance, it is unclear if a matdxthat satisfies the RIP should even exist
if M < N;indeed, deterministic design of a sampling matrix havimg RIP is an NP-complete
problem. Nevertheless, it has been shown [10] that provided O (K log(N/K)), a matrix®
whose elements are i.i.d. samples from a random subgawdistabution possesses the RIP with
high probability. Thus M can be linear in the sparsity of the signal $étandonly logarithmic
in the signal lengthV.

An analogous isometry condition holds for structured spamodels containing., canon-
ical subspaces [7,8,11]. This is known as thedel-based RIRnNd is defined thush satisfies
the M -RIPif (2) holds for allz € M. It can be shown [11] that the number of measurements
M necessary for a subgaussian sampling matrix to haveé\iheRIP with constant and with
probability 1 — e~* is bounded as

M > 5_62 (ln(QLK) +Kln %2 + t) . (3)

We can make two inferences from (3). First, the number of oremsents)M is logarithmic in
the numberof subspaces in the model; thus, signals belonging to a nmreise model can be
sampled using fewer random linear measurements. Seddnid,at least linearin the sparsity

K of the measured signal.

C. Recovery methods

Given measurementg = ®x, CS recovery methods aim to find the “true” sparse signal
that generateg. One possible method is to seek the sparsdbiat generates the measurements
Y, i.e.,

T = arg H}CIIH |2'||o subject to y = ®x'. 4)

where the/, “norm” of a vectorz’ denotes the number of nonzero entries/inThis method can
be used to obtain the true solutienprovided M > 2K . However, minimizing th&, norm can

be shown to be NP-complete and is not stable in the presenuas# in the measurements [10].



If the sampling matrixd possesses the RIP, then tractable algorithms for CS recoeer
be developed. These broadly follow two different approachée first approach entails solving

a convex relaxation of (4), e.g.,
T = argmin [|2']|; subject to y = &z, (5)

which corresponds to a linear program and hence can be swiygalynomial time. A common
variant of this formulation includes accounting for noigebounded magnitude in the measure-
ments [6]. The second approach entails an iterative, greefiyction of the support(x) of the
true solutionz. This approach is employed by several algorithms such d®gonhal matching
pursuit (OMP) [5], compressive sampling matching purs@o$aMP) [9], and iterative hard
thresholding [12].

Both kinds of approaches provide powerful stability guéeas in the presence of noise while
remaining computationally efficient. Given noisy measuzata of any signak ¢ R" so that
y = ®x +n, if & possesses the RIP, then the signal estimatbtained by these algorithms has
bounded error:

[z =Zl2 < Cille — axll2 + &Hx — okl + Csllnll2, (6)

VK

wherezx is the besti-sparse approximation te and C, C, are constants. Furthermore, with
a simple modification, algorithms like CoSaMP and iteratiaed thresholding can be used to
reconstruct signals belonging to any structured sparsageah[7].

To summarize, at the core of CS lie three key concepts: alsigodel exhibiting a particular
type of low-dimensional geometry in high-dimensional spa& low-rank linear mapping that
provides a stable embedding of the signal model into a lowaedsional space, and algorithms

that perform stable, efficient inversion of this mapping.

[1l. SIGNAL MODELS FORPULSE STREAMS

Our objective is to extend the CS theory and algorithms tegstream signals. The conven-
tional sparse signal model, does not take into account the dependencies between thesvalu
and locations of the nonzeros in such signals. Indeed, tdependencies cannot be precisely
captured by any structured sparsity modefl, that merely comprises a reduced subset of the
subspaces i ;. This necessitates richer models that capturectimvolutionalstructure present

in the nonzero coefficients of pulse streams.
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A. General model

Consider the following deterministic model for signalsttban modeled by the convolution
of an S-sparse spike streamec R”" with an F-sparse impulse respongec RY.

Definition 2: Let Mg C RY be a union ofS-dimensional canonical subspaces, as defined
in (1). Similarly, let M c RY be a union ofF’-dimensional canonical subspaces. Consider the
set

tri={z€RY:z=uxh, suchthatr € Mg andh € Mp}, (7)

wherex denotes the circular convolution operator. Thén . is called apulse stream model
We make two immediate observations:
1) Commutativity:Owing to the commutative property of the convolution operaan ele-

mentz in M% . can be represented in multiple ways:
z=xxh=hxx=Hx=Xh, (8)

where H (respectively,X) is a square circulant matrix with its columns comprisingcglarly
shifted versions of the vector (respectively,z). Therefore, Definition 2 remains unchanged
if the roles ofx and h are reversed. We exploit this property during signal repp¥yeom CS
measurements in Section V.

2) Geometry:ltis useful to adopt the following geometric point of viewrfa fixedh € Mp,
the set{h xz : x € Mg} forms a finite union ofS-dimensional subspaces, owing to the fact
that it is generated by the action afon Lg canonical subspaces. Denote this sethioy1).
Then, the pulse stream model in (7) can be written as

g,F = U h(MS)-
heMp
Thus, our signal model can be interpreted agndinite union of subspacédNote that (3) cannot
be applied in this case since it only considers finite unidnsubspaces. However, Ié& = SF
denote the maximum sparsity of the signals in Definition 2effht is clear that the se¥(5
is a very small subset ofx, the set of allSF-sparse signals. We exploit this property while

proving our main sampling results in Section IV.

A general theory for sampling signals from infinite unionssabspaces has been introduced in [13].
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Note that the exact definition of convolution operator clemgdepending on the domain of
the signals of interest. For one-dimensional (1D) time donsignals of lengthV, the square
matrix H is formed by allN circular shifts of the vectoh; for 2D images of sizeV pixels, H

is formed by all 2D circular shifts ok, and so forth.

B. Special case: Disjoint pulses

The model proposed in Definition 2 is general and applicableneo signals in which
successive pulses overlap with each other. In Section IV exeldp a lower bound on the
number of samples required to preserve the essential iattymcontained in an arbitrary pulse
stream. However, feasible recovery of such general pulsamsts from CS measurements is
rather difficult; we examine this in detail in Section V. Tafare, we will also consider a more
restrictive model where the pulses are assumed to not gverla

For concreteness, consider 1D time domain signals as sxedifi (8). Note that/ and x
need not be unique for a given any ordered paifaH, x/«) satisfies (8), and so doé&l’, '),
where H' is generated by a circularly shifted version lofby a time delay+7 and 2’ is a
circularly shifted version of: by —7. To eliminate these ambiguities, we make the following
two assumptions:

1) the impulse respondeis concentratedi.e., all the nonzero coefficients afare contigu-

ously located in its first” indices. Thus, the structured sparsity modéel- for the vector
h consists of the lone subspace spanned by the Airsanonical unit vectors.

2) the spikes are sufficiently separated in time. In pardiGgudny two consecutive spikes in the
vectorx are separated at least By locations, where\ > F'. A structured sparsity model
for such time-domain signals with sufficiently separatedhzevos has been introduced
in [14].

The notion of disjoint pulses can be immediately generdlipesignals defined over domains
of arbitrary dimension. Considef-sparse spike streamsdefined over a domain of dimension
n. Suppose that at most one spikeritan occur in a hypercube R with side A. This defines
a special structured sparsity model for the spike streamistefest; denote this model as(<.

Further, let theF’ nonzero coefficients itk be concentrated within a hypercube centered at the



domain origin whose side length is no greater tlanThen, a deterministic model for sums of
non-overlapping pulses of arbitrary dimension can be pgegdas follows.
Definition 3: Let M%< be the structured sparsity model for spike streams as defihede.

Let M be the subspace of concentrated impulse responses oftgparddefine the set
M(S,F,A) ={z € RV : 2 = 2 « h,such that: € M% andh € My}. (9)

Then, M(S, F, A) is called thedisjoint pulse stream model

This model eliminates possible ambiguities that arise du¢hé shift-invariant nature of
convolution; i.e., the locations of the nonzero spikes theterate a disjoint pulse stream are
uniquely defined. This property proves to be essential in developmd) analyzing a feasible
method for signal recovery (Section V). See Figure 1(a) foegample stream of disjoint pulses
in 1D.

IV. SAMPLING THEOREMS FORPULSE STREAMS

Pulse streams can be modeled as an infinite union of low-difoeal subspaces. The next
ingredient in the development of a CS framework for suchagis a bound on the number of

linear samples required to preserve the essential infaomaff this signal set.

A. General pulse streams

We derive a sampling theorem for signals belonging to theehdd? . proposed in Def-
inition 2. Suppose thak’ = SF'. As mentioned aboveM5 . is a subset of the set of all
K-sparse signal& . On the other hand, only a small fraction of &l-sparse signals can be
written as the convolution of afi-sparse spike stream with dftsparse impulse response. Thus,
intuition suggests that we should be able to compressivaatypte signals from this set using
fewer random linear measurements than that required fos¢hef all K-sparse signals. The
following theorem makes this precise.

Theorem 1:SupposeMy . is the pulse stream model from Definition 2. liet- 0. Choose

an M x N i.i.d. subgaussian matrig with

M>0 G ((S +F)ln (%) +log(LsLr) + t)) . (10)

10



Then, ® satisfies the following property with probability at ledst e~*: for every pairz, 2, €

5P
(1 =)z — 223 < @21 — P2oll; < (1 +0)l|21 — 2ll3. (11)

The proof of this theorem is presented in Appendix A. An intaot consequence of the

theorem is that, by definition\1 is a subset of the set of alldimensional canonical subspaces.

S
Ls < (ﬁg):w (fgf) . (12)

Similarly, Ly < (%)F Therefore, the logarithmic term in the expression idrin (10) scales

In particular,

as.
log(LsLp) < S+ Slog(N/S)+ F + Flog(N/F) <2(5+ F)log N (13)

Thus, (10) indicates that the number of measuremé&htequired for the sampling of signals in
5 Is proportional to(S + F). Therefore,M is sublinearin the total sparsity of the signals
K = SF. In contrast, conventional structured sparsity modelsldvoequire at leasR K = 25 F
linear measurements to ensure a stable embedding of thel sigi{11]. In addition, the number
of degrees of freedom of each signal can be considered 0 (#+ F), corresponding to the
positions and locations of the coefficients of the sparseatignd impulse response. Therefore,

the bound in Theorem 1 is essentially optimal for the sigm@sAM% 1.

B. Special case: Disjoint pulse streams

Theorem 1 is valid for signals belonging to the general modg| ... In the case of disjoint
pulse streams, we can derive a more stringent lower boundddinition, the F' nonzero
coefficients ofh are concentrated in a hypercube around the domain origierefdre,h lies
in a lone subspace spanned Bybasis vectors ofRY, and hencel.» = 1. Further, a simple

modification of Theorem 1 of [14] states that the number ofspalses in the structured sparsity

N—-SA+S5-1
LS:< . ). (14)

model M5 is given by
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Thus, for the disjoint pulse stream modegl (.S, F, A), we obtain the following easy corollary
to Theorem 1.

Corollary 1: If ¢ > 0 and

M>0 (% ((S + F)n (%) + Slog(N/S — A) + t)) | (15)

then an)M x N i.i.d. gaussian matrixp will satisfy (11) with probability at least — et for
any pair of signals;, z; belonging to theM (S, F, A) model.

Note that the parameteh can be at mostV/S, since S spikes must be packed inty
coefficient locations with at leagk locations separating any pair of spikes. A higher value of
A implies that the mode/M% admits a smaller number of configurations; thus, (15) insplie
that fewer measurements are needed to sample pulse streantsch the pulses are widely

separated.

V. RECOVERY OFPULSE STREAMS

The final ingredient in our extended CS framework for pulseashs consists of new algo-
rithms for the stable recovery of the signals of interesimfroompressive measurements. This

problem can be stated as follows. Suppese M .. If w are given the noisy measurements
y=®z4+n=>0Hr+n=>Xh+n,

then we aim to reconstruct from y. The main challenge stems from the fact thath «
(respectively,X) and h (respectively,HH) are unknown and have to be simultaneously inferred.
This problem is similar to performing sparse approximatrdth incompleteknowledge of
the dictionary in which the target vector (eitheror h) is sparse. This problem has received
some interest in the literature [15-17]; the common apgrdsas been to first assume that a
training set of vectorgz; } exists for a fixed impulse responaethen infer the coefficients df
using a sparse learning algorithm (such as LASSO [18] orsh@asisuit [6]), and then solve for
the coefficientz;}. In the absence of training data, we must infer both the Sipikations and
the impulse response coefficients. Therefore, our tasksssmilar toblind deconvolutiorf19];
the main differences are that we are only given access toatigom linear measurementsas
opposed to the Nyquist rate samplesand that our primary aim is to reconstrucas faithfully

as possible as opposed to merely reconstructing
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Our general approach will be to fix an estimatehgfobtain the “best possible” estimate of
x, update our estimate df, and iterate. This is commonly known aliernating minimization
(AM) and has been shown to be suitable for blind deconvatusiettings [20]. As demonstrated
below in the proof of Theorem 2, we require that the best piss&stimate of the spike stream
x and the impulse respongeat each iteration are unique. For this reason, we will assiinaie

our target signat belongs to the disjoint pulse stream model(S, ', A).

A. Alternating minimization with exhaustive search

Consider: € M(S, F,A), so that: = xxh. This implies that the spikes inare separated by
a minimum separation distance and that the impulse responkeas concentrated. Suppose first
that we are given noiseless CS measuremgnrtsdz. We fix a candidate support configuration
o for the spike stream (so that containsS nonzeros.) Then, we form the circulant matfix
from all possible shifts of the current estimate of the inspuiesponsé (denote this operation
as H = C(h)). Further, we calculate the dictionadyZ for the spike streanx, and select
the submatrix formed by the columns indexed by the assumik@ $pcationso (denote this
submatrix as(@?[)g). This transforms our problem into an overdetermined systehich can
be solved using least-squares. In summary, we use a simptex paseudoinverse to obtain an
estimate forz:

T =(PH)ly.

This gives us an estimate of the spike coefficientior the assumed support configuration
We now exploit the commutativity of the convolution operato We form the circulant matrix
X, form the dictionary®X for the impulse response and select the submafbix ), formed
by its first I columns. Then, we solve a least-squares problem to obtagstimatel for the
impulse response coefficients:

h=(2X)y.

Then, we form our signal estimate = 7 * h. The above two-step process is iterated until a
suitable halting criterion (e.g., convergence in norm foe estimated signal). This process is

akin to the Richardson-Lucy algorithm for blind deconvaut[21].

13



Algorithm 1 Alternating minimization with exhaustive search

Inputs: Sampling matrixb, measurementg = ®x, model parametera, S, F, thresholde
Output:z € M(S, F, A) such thaty — ¢z is small

7=0h=(1%,0,...,00/VF;i=0 {initialize}

for o0 € M% do
1.H= (C(ﬁ), d, = (PH), {form dictionary for spike streai
2.3+ dly {update spike stream estimgte
3. X =C(3),d, = ((I))?)f {form dictionary for impulse responke
4.1 iy {update impulse response estinjate
5.2« Txh {form signal estimate

if ||y — ®z]2 <e {check for energy in residugl

return z
end if
end for

The overall reconstruction problem can be solved by repgdhis process for every support
configurations belonging to the structured sparsity modei5 and picking the solution with
the smallest norm of the residual= y — ®Z. The procedure is detailed in pseudocode form
in Algorithm 1. Thus, Algorithm 1 consists of performing exihating minimization for a given
estimate for the support of the underlying spike streanand exhaustively searching for the
best possible support. Under certain conditions on the Baghmatrix ¢, we can study the
convergence of Algorithm 1 to the correct answelas encapsulated in the following theorem.

Theorem 2:Let = € M(S, F, A) and suppose that satisfies (11) with constantfor signals
belonging toM (S, F, A). Suppose we observwe= ®z and apply Algorithm 1 to reconstruct
the signal. Letz; be an intermediate estimate ofat iterationi of Algorithm 1. Then:

1) The norm of the residudly — ®z;||» monotonically decreases with iteration count

2) If at any iteration:

ly — @Zif|2 <,

14



then we are guaranteed that

|z — Zi]l2 < ce,

wherec depends only on.
The proof of this theorem is provided in Appendix B. The firstrtpof the theorem implies
that for any given support configuratien Steps 1 through 4 in Algorithm 1 are guaranteed to
converge to a generalized fixed point [22]. The second pattie@theorem provides a condition
on the detection of the true support configuratioin the following weak sense: if the energy

of the residual of the signal estimate is small, then thealigas been accurately reconstructed.

B. Model mismatch

In practical situations, we would expect to have minor \aies in the shapes of th8
pulses in the signal. In this case;z can no longer be expressed ds where H is a circulant
matrix. Let {hy, ho, ..., hs} be length#' vectors corresponding to each of thepulses in the
signal, and let the length-spike streamz = (a4, an, ..., ag). Further, letS; be the circular

shift operator that maps th& pulse shape:; into its corresponding vector iRY. Then, we

have g
Z= Zai8i<hi>> (16)
1=1
or equivalently,
z= [:jf,
whereH = [S;(h1), . ..,Ss(hs)] is anN x S matrix. Assuming that the spikes inare separated

by at leastA locations, the matrix? is quasi-Toeplit423], i.e., the columns off are circular
shifts of one another with no more than one nonzero entry @ryexow. An attractive property
of quasi-Toeplitz matrices is that there exist analyticgbressions for their pseudo-inverses.
Suppose the measurement matbixequals the identity, i.e., we are given Nyquist-rate sasple
of z. Then the matrice®, and®,, in Step 2 of Algorithm 1 are also quasi-Toeplitz, and hence
<I>Il and®! can be computed in closed form. Thus, given an estimate opulse shap@zo, we
can derive closed-form expressions for the next impulserreg estimate.

Additionally, we can obtain an intermediate estimate fag #pike streamx. Suppose the

innermost loop of Algorithm 1 converges to a fixed point estiet. Since the least-squares
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eguations are homogenous, we may assume||@1ﬁt: 1 without loss of generality. We dub
the anchor pulsefor the set of pulse shapds, hs, ..., hs}. The following theorem provides
an expression relating the anchor pulse to the componesé @hapes.
Theorem 3:Considerz as defined in (16). Let be the anchor pulse for the set of pulse
shapes{hi, ha, ..., hs}. Definec; = (hi,ﬁ> fori=1,...,5. Then, we have that
7 > cath

) 17
Zf:l C?O‘? a7)

The proof of this theorem is provided in Appendix C. Equatidr) implies that the anchor pulse
his a weighted linear combination of the component pulsesi = 1, ..., .S, with the weights
defined by the corresponding spike coefficientsand the inner products. The anchor pulse
remains unchanged if the spike coefficient vectas multiplied by any constant’. Therefore,
the anchor pulse can be viewed ascaale-invariant averagef the component pulse shapes.
Theorem 3 applies to Nyquist-rate samples of the signaln the case of low-rate CS
measurementy = ®z, the convergence analysis of Algorithm 1 for the generakcassS
different pulse shapes becomes more delicaté. piossesses the RIP only fere M (S, F, A),
then it could be that two different pulse streamsz, (each with varying shapes across pulses)
are mapped by to the same vector iR, i.e., ®z; = ®z,; thus, the unique mapping argument
employed in the proof of Theorem 2 cannot be applied in thie c®ne way to analyze this case
is to recognize that by allowing arbitrary pulse shapks hs,...,hs}, our space of signals of
interest is equivalent to a special structured sparsityehtitht consists of all{-sparse signals
whose non-zeros are arrangeddnblocks of sizeF' and the starting locations of consecutive
blocks are separated by at ledsiocations. As discussed in Section Il, stable CS recontstmic
for signals from this model requires at ledgt = 25 F = 2K measurements; thus, Algorithm 1
converges in the general case given thatis proportional toKX. Thus, in the case of arbitrary
pulse shapes, the number of measurements required by tigoti is on the same order as the

number of measurements required for conventional stredtaparsity-based CS recovery.

C. lterative support estimation

Algorithm 1 involves iteratively solving a combinatoriabmber of estimation problems.

This becomes infeasible for even moderate valued/ ofA simpler method can be proposed as
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follows: instead of cycling through every possible supmmmfigurations; for the spike stream
x, we instead retain aestimateof the support configuration, based on the current estimates
of the spike stream@ and impulse responsf%, and update this estimate with each iteration. In
order to ensure that the support estimate belongstp, we leverage a special CS recovery
algorithm for signals belonging t814 that is based on CoSaMP [9]. We provide an outline of
the algorithm here for completeness; see [14] for details.

At each iteration, given an estimate of the spike coeffigentwe need to solve for the best
M -approximation tac. Letx = (1, 7o, ..., zy)T. Given any binary vectot = (sq, s, ..., sn)T
of length N, let:

T)s = (5121, S22, . . ., SNTN ),

so thatz|, is the portion of the signat lying within the supports. Our goal is to solve for
the choice of support so thatz|, belongs toM% and ||z — z,||» is minimized. The following

constraints on the support vecterfollow from the definition of M%:

S1+ 89+ ...+ SN

IN

o (18)

S§j+ Sj11--- T Sjra-1 < 1, fOI’jzl,...,N, (19)

where the subscripts are computed moddiloThe first inequality (18) specifies that the solution
contains at mos$ nonzeros; the othel inequalities (19) specify that there is at most one spike
within any block of A consecutive coefficients in the solution.

It can be shown that minimizingz — z,||» is equivalent to maximizing”s wherec =
(2, 2% ... 2%), i.e., maximizing the portion of the energy ofthat lies withins. DefineW e
RWV+DXN as a binary indicator matrix that captures the left hand sfdke inequality constraints
(18) and (19). Next, define € RV*1 = (S,1,1, ..., 1); this represents the right hand side of the
constraints (18) and (19). Thus, we can represent (18) a®dbil the following binary integer
program:

s* = argmin s, subject toWs < u.

Next, we relax the integer constraints o obtain a computationally tractable linear program.

Denote this linear program B(-). In [14], it is shown that the solutions to the integer progra
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Algorithm 2 Iterative support estimation

Inputs: Sampling matrixp, measurementg = ¢z + n, model parametera, S, F.
Output: M(S, F, A)-sparse approximation to true signalz
Initialize 7 =0, h = (1%,0,...,0), i =0

while halting criterion falsedo

l.i<—1i1+41

2.2« Fxh {current pulse stream estiméate
{estimate spike locations and amplitules

3.H= (C(ﬁ), O, = dH {form dictionary for spike strea

4. ¢+ O (y — &)7) {residua}

5w+ o(D(e)) {obtain model-approximation of residyal
6.0« wUo(Z;_y) {merge supporis

7. 2]y < (P)ly, 2|,c =0 {update spike stream estimate

8.7 + D(x) {prune spike stream estimate

{estimate impulse resporise

9. X =C(2), 0, = (0X); {form dictionary for impulse response
10. h + iy {update impulse response estinjate
end while

return 2 <z xh

and its relaxed version are identical. Thus, we have a ccatiputlly feasible method to obtain
an estimate of the support of the best5-approximation tar.

Once an updated support estimate has been obtained, we &ippa 2, 3 and 4 in Algo-
rithm 1 to solve for the spike streamand impulseh. This process is iterated until a suitable
halting criterion (e.g., convergence in norm for the estedapulse streant.) The overall
algorithm can be viewed as an iterative sparse approximaiiocedure for theM5 model
that continually updates its estimate of the sparsifyingidinary. The procedure is detailed in

pseudocode form in Algorithm 2.
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D. Stability and convergence

Like many other algorithms for blind deconvolution, the lgses of Algorithm 2 is not
straightforward. The dictionarieBX and® are only approximately known at any intermediate
iteration, and hence the proof techniques employed for tiadyais for CoSaMP do not apply.
In principle, given access to a sufficient number of measargs) we may expect similar
convergence behavior for Algorithm 2 as Algorithm 1. Enmgaily, Algorithm 2 can be shown
to be stable to small amounts of noise in the signal as welhathe CS measurements and
to minor variations in the pulse shape. We demonstrate tlits tiwe help of various numerical

experiments in Section VI.

E. Computational complexity

The primary runtime cost of Algorithm 2 is incurred in solgithe linear prograni(-). For
a length#V signal, the computational complexity of solving a lineaogmam is known to be
O (N35). The total computational cost also scales linearly in theiper of measurement®/
and the number of iteratiorg of the outer loop executed until convergence; thus, ovénall

algorithm runs in polynomial time.

VI. NUMERICAL EXPERIMENTS

We now present a number of results that validate the utifityuw proposed theory and meth-
ods. All numerical experiments reported in this sectionenbgen performed using Algorithm 2

for recovery of disjoint pulse streams.

A. Synthetic 1D pulse streams

Figure 1 demonstrates the considerable advantages thatithig 2 can offer in terms of the
number of compressive measurements required for relisgdenstruction. The test signal was
generated by choosingj = 8 spikes with random amplitudes and locations and convolting
spike stream with a randomly chosen impulse response ofHefig= 11. The overall sparsity
of the signalK’ = SF' = 88; thus, standard sparsity-based CS algorithms would reaiifeast
2K = 176 measurements. Our approach (Algorithm 2) returns an arestimate of both the

spike stream as well as the impulse response using méfely 90 measurements.
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Fig. 2. Normalized reconstruction MSE v&{/ K for different reconstruction algorithms averaged over 28@iple
trials. Signal parametersdi = 1024, S = 8, F' = 11. Algorithm 2 outperforms standard and structured spatsityed
methods, particularly whehl / K is small.

Figure 2 displays the averaged results of a Monte Carlo sitimn of Algorithm 2 over
200 trials. Each trial was conducted by generating a samgtelkbelonging toM (S, F, A),
computingM linear random Gaussian measurements, reconstructingdifdrent algorithms,
and recording the magnitude of the recovery error for diffiervalues of\// K. It is clear from
the figure that Algorithm 2 outperforms both conventional @8overy (CoSaMP [9]) with
target sparsityx’ = SF' as well as block-based reconstruction [7] with knowledgehef size
and number of blocks (respectively and S). In fact, our algorithm performs nearly as well as
the “oracle decoder” that possesses perfect prior knowl@dghe impulse response coefficients
and aims to solve only for the spike stream.

We show that Algorithm 2 is stable to small amounts of noisthasignal and the measure-
ments. In Figure 3, we generate a length= 1024 signal from a disjoint pulse stream model
with S = 9 and FF = 11; add a small amount of Gaussian noise (SNR = 13.25dB) to sall it
components, comput&/ = 150 noisy linear measurements, and reconstruct using Algari2h

The reconstructed signal is clearly a good approximatiotheforiginal signal.

B. Neuronal signals

We test Algorithm 2 on a real-world neuronal recording. Feggd(a) shows the temporal

electrochemical spiking potential of a single neuron. Thape of the pulses is characteristic of
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Fig. 3. (a) Synthetic noisy signal (SNR = 13.25dB). (b) Recoveryrfrbl = 150 random measurements using
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Fig. 4. CS recovery of a real-world neuronal signal. (a) Originaloreling. (b) Recovered signal using = 150

random measurements. (c) Estimated anchor pulse shapel(l ).

the neuron and should ideally be constant across differelsep. However, there exist minor
fluctuations in the amplitudes, locations and profiles of ghéses. Despite the apparent model
mismatch, our algorithm recovers a good approximation &dtginal signal (Figure 4(b)) as

well as an estimate of the anchor pulse shape (Figure 4(c)).

C. Synthetic 2D pulse streams

Theorem 1 and Algorithm 2 can easily be extended to higheredsional signals. For
instance, suppose that the signals of interest are 2D imidgeésan be modeled by a sparse
sum of disjoint 2D pulses. We test Algorithm 2 on a synthetiage (Figure 5(a)) of size
N = 64 x 64 = 4096 that comprisess = 7 spikes blurred by an unknown 2D impulse response
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Fig. 5. Example CS recovery of a sum of 2D pulses. (a) Syntheticteagé:N = 4096, S = 7, F = 25. Images are

recovered fromMl = 290 random Gaussian measurements using (b) CoSaMP (MSE = 16érébjc) Algorithm 2
(MSE = 0.07).

of sizeF = 5 x5 = 25, so that the overall sparsity = SF = 175. We acquire merely/ = 290
random Gaussian measurements (approximately 7% the sitee afmage/N) and reconstruct
the image using CoSaMP as well as Algorithm 2. We assume thtat digorithms possess an
oracular knowledge of the number of spiké€sas well as the size of the impulse resporse
Figure 5 displays the results of the reconstruction proeesiusing CoSaMP and Algorithm 2.
It is evident both perceptually and in terms of the MSE valokthe reconstructed images that

our proposed approach is superior to traditional CS regover

D. Astronomical images

Finally, we test Algorithm 2 on a real astronomical imager @st image is av = 64 x 64
region of a high-resolution image of V838 Monocerotis (a arike variable star) captured by
the Hubble Space Telescope [24] (highlighted by the greerarsqin Figure 6(a)). Note the

significant variations in the shapes of the three large puisehe test image (Figure 6(b)). We

measure this image using = 330 random measurements and reconstruct using both CoSaMP

and Algorithm 2. For our reconstruction methods, we assuaredracular knowledge of the
signal parameters; we use= 3, F = 120, K = 360 and A = 20. As indicated by Figure 6,
conventional CS does not provide useful results with thduced set of measurements. In

contrast, Algorithm 2 gives us excellent estimates for theations of the pulses. Further, our
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Fig. 6. (a) Black-and-white image of V838 Monocerotis, a nova-kkar, captured by the Hubble Space Telescope

on February 8, 2004 [24]. (b) Test image is a zoomed in-varsfahe region highlighted in green (resolutidh =
64 x 64 = 4096). Reconstruction of test image is performed frafn= 330 random Gaussian measurements using

(c) CoSaMP and (d) Algorithm 2.

algorithm also provides a circular impulse response eséirttaat can be viewed as the anchor

pulse of the three original pulses.

VIlI. DIscussiION ANDCONCLUSIONS

In this paper, we have introduced and analyzed a new frankeiwothe compressive sampling
of pulse streams. Our signals of interest are modeled asfemitenunion of subspaces which
exhibits a particular geometric structure. This structemables us to quantitatively deduce the
number of random linear measurements needed to sample sywiss We have proposed

two methods for signal recovery. Our first method (Algoritiinis relatively easy to analyze,
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but suffers from combinatorial complexity. Our second moetlfAlgorithm 2) is a feasible, if

suboptimal, algorithm and formed the basis for our numéggperiments. While our framework
is applicable to signals defined over domains of arbitrametision, we have illustrated its
benefits in the context of 1D time signals and 2D images.

There are several avenues for future work. We have discugsmde signals and images as
represented in the identity basis; our method can be extiiodeavelet-sparse and Fourier-sparse
signals. While our results are promising, we still do notgess a complete characterization of
the convergence properties of Algorithm 2 as well as itsisigitg to factors such as noise and
model mismatch under random projections. Additionallys tinclear how to deal with situations
where the pulses in the signal of interest are allowed tolapeifo the best of our knowledge,
the issue of robust recovery of signals convolved with annomkn arbitrary impulse response
is an open question even for the case of Nyquist-rate sameslefer these challenging open
guestions to future research.

The framework developed in this paper can be related to warexisting concepts in the
literature such as best basis compressive sensing [15)iltaineous sparse approximation and
dictionary learning [25], and the classical signal procegproblem of blind deconvolution [19].
Compressive sensing of time-domain pulse streams has hadired by Nainiet al. [17].
However, in their setting the impulse response is assumedaet&nown, and hence the CS
measurement system can be viewed as a modification of randoneF subsampling.

Our framework is related to recent results on compressed leconvolution by Saligrama
and Zhao [26]. As opposed to pulse streams, their signalatefast consist of sparse signals
driven through an all-pole auto-regressive (AR) lineartays They propose an optimization-
based algorithm for recovery of the signal and impulse neaspdrom CS measurements. How-
ever, their measurement system is tailored to impulse resgsocorresponding to AR linear
models; our approach can handle arbitrary impulse resgofsether, our main theoretical result
indicates that the number of measurements to compressaeiple a pulse stream is linear only
in the number of degrees of freedom of the signal and thus enssan open question (Remark
3.1) posed by the authors in the affirmative.

Finally, the main approach in this paper can be related tentework by Asifet al. [27,

28], who propose channel coding methods to combat the effieanknown multipath effects
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in a communication channel that can be described by a spasglse response. Their coding
strategy follows the one advocated by Candes and Tao [B®]r thannel code consists of
a random matrixd € R*YN where M > N, so that the linear mapping = ®x is now
not undercomplete, but overcomplete. Thus, their obsenstconsist of an unknown sparse
channel responsk convolved with the transmitted signaland their objective is to reconstruct
the original signal:. The main aspects of our theoretical analysis could coabgnbe modified

to quantify system performance in this setting.
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APPENDIX A

We prove Theorem 1. By Definition 2, the mod#( . is generated via the convolution
operation by the structured sparsity modalss and M. Recall that both structured sparsity
models are themselves defined in terms of canonical subsmdd@” and their convolution
results in a low-dimensional geometrical structure thdiast described by an infinite union of
subspaces. Thus, if € Mg lies in a particular subspade andh € My lies in a particular
subspace\, then every signat € M5 - can be identified with at least one infinite union of
subspace$/y 5. The overall approach is as follows: we first construct a rigtaints @ in RY
such that

i — <0
rqnelgHz qll <6,

for all z € Uga with ||z|| = 1 and some constat We then apply the Johnson-Lindenstrauss
Lemma [30] for stable embedding of point clouds to this firsét of points(), and extend the
stable embedding to all possible signals U, 5. Finally, we derive our main result through a
union bound over all possible choices of subspdeemdA.

Consider a fixed vectdt € A. Suppose the coefficients bfare normalized so tha|| = 1.

By virtue of its circulant nature, the spectral norm of theresponding matrix| H || < 1. Now,
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consider a fixedS-dimensional subspade € Mg. It is easy to see that
O ={2=Hz | 2ze}

also forms anS-dimensional subspace ®". Thus, by Lemma 5.1 of [31], we can find a finite
set of pointsQq, C O, with cardinality |Qq..| < (3/8")° such that

min ||[Hzx —q| <&, V|z|| <1,z €.
9€Qq,n

This is an upper bound on the size @f,,; assuming a worst-case scenario, we may list out

the points in this set so that

Qan =1{q,q; - qapnst = {Hry, Hry, ..., Hr (355}

Select anyz; € {x1,...,73/5)s} and anF'-dimensional subspacé € Mpy. Form the

circulant matrixX;; as above|| X;|| < 1. Therefore,
Q,, ={z=Xh | heA}

forms an F-dimensional subspace. Correspondingly, we can find a sebiofts (), » C €2,
with cardinality |Q., | < (3/&")F such that

min | X;h —q|| <&, V[h| <1,h€A.

quwl,A

Using this process, defin@,, , for I =1,2,...,(3/§)". Then, we have
Qo = U Quy -
l

Thus, we have identified a finite set of poirdk, o in the infinite union of subspacd$ .
Observe that the cardinality of this s@t, » = (3/8")°(3/8")F". Then, every vector it/ 5 with
magnitude less than 1 lies ‘close’ to at least one poinQi,, i.e., Qqa is ad”-net for Ug y.
Suppose) = 2§”. By the Johnson-Lindenstrauss Lemma®it R <Y with the elements of
drawn from a random gaussian distribution, then for eveny phivectors z;, 2z, € Uq s, (11)

will hold with failure probability

3\7 /3\" _
ma=2(3) (5) <
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This is for a fixed pair of subspacg®, A) € Mg x Mp. There areLgs x Lr such pairs of
subspaces. Applying a simple union bound over all possihiespwe obtain the overall failure
probability as
3 S+F
p < Z paor < LsLp (5) e=0(6/2M
@A)
Rearranging terms, we have that for a suitably chosen aon&tdthat depends on,) and for

anyt > 0, if

J

the failure probability for the sampling bound is smallearire~t. The theorem follows easily

M>C (log(LsLF) +(S+ F)log (5) + t) ,

from this result.

APPENDIX B

We prove Theorem 2. Let;, = 7; * ﬁi be any intermediate estimate of Algorithm 1. Let
H, = (C(E-). Suppose that our candidate configuration for the suppott &f given by the
sparsity patternr belonging to the structured sparsity model4. Then, if (-), indicates the
submatrix formed by the columns indexed dythe dictionary for the spike stream is given by
(®H;), = ®(H;),. By virtue of the least-squares property of the pseudorse@perator, the

subsequent estimaf&,; according to Step 2 is given by
Tir1 = argmin |y — S(Hy)oz|3, (20)

wherex belongs to the-dimensional subspace defined by the support configuratiddince
we are minimizing a convex loss function (squared error) suldspace iRY, the minimum
Z;41 is unique. Therefore, we may view Step 2 of the algorithm asigue-valuedinfimal
map f from a givenﬁi € Mpr to a particularz;; € M%. Similarly, we may view Step 4 of
Algorithm 1 as another unique-valued infimal magrom M4 to M. Therefore, the overall
algorithm is a repeated application of the composite nfiapg. From a well-known result on
single-valued infimal maps [22, 32], the algorithm is styighonotonic with respect to the loss

function. Thus, the norm of the residugl— ®Z; decreases with increasing iteration count
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Further, any intermediate estimatg also belongs to the model1(S, F, A). We know from
(11) that
ly — ®Zi|5 = [|[ @2z — ®Z[l; > (1 - 9)[|z — Z]5.

Therefore, if|jy — ®Z|| <, ||z — Z| < e€/V/1—0.

APPENDIX C
We prove Theorem 3. Suppose the target signial composed of5 pulses{h,...,hs}, SO
that
» = HE,
where H = [S;(hy),...,Ss(hs)] is an N x S matrix andz = (o, as, . . ., ag). Assume we are

given access to the Nyquist samplesi,e., ® = Iy, y. Suppose the estimate of the impulse
response at an intermediate iteration is giverﬁbyet H be the matrix formed by the operator
C(-) acting onh and leto be the candidate support configuration for the spike stresanthat

the dictionary®,, in this case is given by the submatrﬁa. Note thatf]a is quasi-Toeplitz,
owing to the assumption that the separatibris at least as great as the impulse response length

F. Thus, Step 2 of Algorithm 1 can be represented by the |lepsires operation
T=Hlz
Due to the quasi-Toeplitz nature df,, the pseudo-inversél! = (HIH,)"H] essentially

reduces to a scaled version of the identity multiplied by tia@spose off (the scaling factor

is in fact the squared norm 511‘) Thus, the spike coefficients are given by

F- L ATHE
IR
Simplifying, we obtain the expression for the estimatédspike coefficienty; as
_{hi,h)
s

If h is normalized, we may writ&; = c;«;, wherec; = (h;, h).
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Once the spike coefficients8 = (¢4, ...,csag) have been estimated, we can form the
dictionary ®, by considering the quasi-Toeplitz mattiX formed by the operatio€ (7). In the

same manner as above, an updated estimate of the pulsefsﬁmga/en by

h=Xie= L 3T
25:1 cja;
Writing out X andz in terms of(hy,...,hs) and(ay,...,as) and simplifying, we obtain

ﬁ _ Zf:l cioth
Zf:l cjaf 7
wherec; = <hj,ﬁ). Thus, we have a closed-expression for the updated estmhdbe impulse
response coefficiené in terms of the previous estimafe In the event that the algorithm

converges to a fixed point, we can repldcéy &, thus proving the theorem.

REFERENCES

[1] C. Hegde and R. G. Baraniuk, “Compressive sensing ofasiseof pulses,” inProc. Allerton Conference on Comm.,
Control and Sig. Prog.Sept. 2009.

[2] C. Hegde and R. G. Baraniuk, “Compressive sensing of @&mgsition of pulses,” inEEE Intl. Conf. on Acoustics,
Speech and Sig. ProgdMar. 2010.

[3] D. L. Donoho, “Compressed sensindBEE Trans. Info. Theoryvol. 52, pp. 1289-1306, September 2006.

[4] E. J. Candes, J. Romberg, and T. Tao, “Robust unceytgininciples: Exact signal reconstruction from highly ingolete
frequency information,1EEE Trans. Info. Theoryvol. 52, pp. 489-509, Feb. 2006.

[5] J. Tropp and A. C. Gilbert, “Signal recovery from partiaformation via orthogonal matching pursuitEEE Trans. Info.
Theory vol. 53, pp. 4655-4666, Dec. 2007.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic deposition by basis pursuit,SIAM J. Sci. Comp.vol. 20,
p. 33, 1998.

[7] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Mibdased compressive sensinFEE Trans. Info. Theory
vol. 56, pp. 1982-2001, April 2010.

[8] Y. Eldar and M. Mishali, “Robust recovery of signals frommunion of subspaces/EEE Trans. Info. Theoryvol. 55,
pp. 5302-5316, Nov. 2009.

[9] D. Needell and J. Tropp, “CoSaMP: lterative signal remgvfrom incomplete and inaccurate samplesgpl. Comp.
Harmonic Analysisvol. 26, pp. 301-321, 2008.

[10] E. J. Candés, “Compressive sampling,” Fmoc. International Congress of Mathematiciangl. 3, (Madrid, Spain),
pp. 1433-1452, 2006.

[11] T. Blumensath and M. E. Davies, “Sampling theorems fgnals from the union of finite-dimensional linear subspdce
IEEE Trans. Info. TheoryDec. 2008.

[12] T. Blumensath and M. E. Davies, “lterative hard thrddimy for compressed sensing®ppl. Comp. Harmonic Analysis
vol. 3, pp. 265274, 2009. Preprint.

29



[13] Y. M. Lu and M. N. Do, “Sampling signals from a union of sgaces,|EEE Sig. Proc. Mag.vol. 25, pp. 41-47, Mar.
2008.

[14] C. Hegde, M. F. Duarte, and V. Cevher, “Compressive isgnecovery of spike trains using a structured sparsity ehdd
in SPARS(Saint Malo, France), April 2009.

[15] G. Peyre, “Best-basis compressed sensitigEE Trans. Sig. Pro¢.2010. To appear.

[16] K. Herrity, R. Raich, and A. O. Hero, “Blind reconstriat of sparse images with unknown point spread function,” in
Proc. SPIE vol. 6814, 2008.

[17] F. Naini, R. Gribonval, L. Jacques, and P. Vanderghgyi@ompressive sampling of pulse trains: spread the spedft
in IEEE Intl. Conf. on Acoustics, Speech and Sig. Rrpp. 2877-2880, 2009.

[18] R. Tibshirani, “Regression shrinkage and selectiantkie Lasso,J. Royal Stat. Society, Series B (Methodologicad). 58,
no. 1, pp. 267-288, 1996.

[19] S. Haykin, “Blind deconvolution,” 1994. Prentice Hall

[20] T.F. Chan and C. K. Wong, “Convergence of the altermatiminimization algorithm for blind deconvolutionl’in. Algebra
and Its Appl, vol. 316, no. 1-3, pp. 259 — 285, 2000.

[21] J.-L. Starck, E. Pantin, and F. Murtagh, “Deconvolntia astronomy: A review,Publication of the Astronomical Society
of the Pacifi¢ vol. 114, pp. 1051-1069, 2002.

[22] J. A. Tropp, “An alternating minimization algorithm fmon-negative matrix factorization.” Preprint, 2003.

[23] R. Baraniuk and P. Steeghs, “Compressive radar imdgindEEE Radar Conferencepp. 128-133, April 2007.

[24] http://heritage.stsci.edu/gallery/bwgallery/bt0B/about.shtml, “NASA online archive.”

[25] M. Yaghoobi, T. Blumensath, and M. E. Davies, “Dictiopdearning for sparse approximations using the majordrati
method,”IEEE Trans. Sig. Prog.vol. 57, no. 6, pp. 2178-2191, 2009.

[26] V. Saligrama and M. Zhao, “Compressed blind deconvoiubtf filtered sparse processes,” Oct. 2009. Preprint. |Akbs
at http://arxiv.org/abs/0910.0239.

[27] M. S. Asif, W. E. Mantzel, and J. Romberg, “Channel potin: Random coding meets sparse channels|EEBE Info.
Theory WorkshopOct. 2009.

[28] M. S. Asif, W. E. Mantzel, and J. Romberg, “Random chdmoeling and blind deconvolution,” iRroc. Allerton Conference
on Comm., Control and Sig. Proc2009.

[29] E. J. Candés and T. Tao, “Near optimal signal recoveoynfrandom projections: Universal encoding strategieleEE
Trans. Info. Theoryvol. 52, pp. 5406-5425, Dec. 2006. Preprint.

[30] W. B. Johnson and J. Lindenstrauss, “Extensions of dligg maps into a Hilbert spaceContemp. Math.vol. 26,
pp. 189-206, 1984.

[31] R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. B. WakfA simple proof of the restricted isometry property for
random matrices,Const. Approx.vol. 28, pp. 253-263, Dec. 2008.

[32] J.C. Fiorot and P. Huard@Composition and union of general algorithms of optimizatiol. 10, pp. 69-85. Springer-Berlin,
Heidelberg, 1979.

30



