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Abstract—This work presents an investigation and assessment
framework, which, supported by realistic data, aims at pro-
visioning operators with in-depth insights into the consumer-
perceived Quality-of-Experience (QoE) at public Electric Vehicle
(EV) charging infrastructures. Motivated by the unprecedented
EV market growth, it is suspected that the existing charging
infrastructure will soon be no longer capable of sustaining the
rapidly growing charging demands; let alone that the currently
adopted ad hoc infrastructure expansion strategies seem to be far
from contributing any quality service sustainability solutions that
tangibly reduce (ultimately mitigate) the severity of this problem.
Without suitable QoE metrics, operators, today, face remarkable
difficulty in assessing the performance of EV Charging Stations
(EVCSs) in this regard. This paper aims at filling this gap through
the formulation of novel and original critical QoE performance
metrics that provide operators with visibility into the per-EVCS
operational dynamics and allow for the optimization of these
stations’ respective utilization. Such metrics shall then be used
as inputs to a Machine Learning model finely tailored and trained
using recent real-world data sets for the purpose of forecasting
future long-term EVCS loads. This will, in turn, allow for making
informed optimal EV charging infrastructure expansions that
will be capable of reliably coping with the rising EV charging
demands and maintaining acceptable QoE levels. The model’s
accuracy has been tested and extensive simulations are conducted
to evaluate the achieved performance in terms of the above-
listed metrics and show the suitability of the recommended
infrastructure expansions.

Index Terms—Charging, EV, Infrastructure, Metrics, Perfor-
mance, QoE.

I. INTRODUCTION

A. Preliminaries:

As the Electric Vehicle (EV) market continues to experience
significant growth, there is a pressing need to expand the
EV charging infrastructure accordingly. This infrastructure
should ensure that the increasing demand for charging stations
(CSs) is fulfilled while maintaining a satisfactory quality of
experience (QoE) for users. In 2021 alone, global EV sales
have doubled, bringing the total number of EVs on the road
to approximately 24 million, which is three times higher than
the number in 2019. The number of available public charging
stations has also tripled to approximately 2 million. It is clear
that the future growth of the EV market will depend on the
affordability and accessibility of public or private EV charging
infrastructure to the general public.

Indeed, the exponential rise in the number of EVs on the
road is accelerated by efforts and investments by countries
worldwide and incentives offered by governments to phase out
Internal Combustion Engine (ICE) vehicles by 2050. However,
there is a global disparity in EV charging network growth
rates, even between different cities and regions of the same

country. The International Energy Agency (IEA) [1] uses
the EV-per-Charger Ratio (EVCR) and per-EV charger power
(EVCP) to assess the adequacy of charging networks. From
2015 to 2021, the EVCR for China, Korea, and the Netherlands
showed a quasi-constant trend of just under 10 EVs/charger,
indicating that their charging infrastructure deployment kept
pace with the growing number of EVs. This was not the case
for the United States, where the EVCR was recorded at a high
of 18 EVs/charger in 2021. Norway’s EVCR was low until
2013 but rapidly grew to 34 EVs/charger in 2021. The Alter-
native Fuel Infrastructure Directive (AFID) [2] recommended
EU member states achieve an EVCR of 10 EVs/charger and an
EVCP of 1 kW/EV by 2020. However, the EU’s 2020 average
EVCR was 11, increasing to 14 in 2021, with some countries
such as Italy and the Netherlands outperforming others through
a wide, on-demand, slow charger deployment plan. In Canada,
Quebec currently has an EVCR of 13 [3], of which only 10% is
covered by public chargers using both slow and fast chargers.
The EVCR is expected to increase rapidly to 17 in 2025 and
29 in 2030, given Quebec’s target of one million EVs on the
road by 2030 and a complete ban on ICE vehicle sales in 2035.
Numerous third-party initiatives, such as the Zero Emission
Transportation Association (ZETA) and its members, including
Uber and Tesla, support the proliferation of EVs.

While the growth of the EV market has increased the need
for a reliable public EV charging infrastructure, the current
ad hoc approach to deploying additional charging stations
cannot ensure proper long-term control of critical QoE metrics
or instill confidence in the infrastructure. Proper tracking of
events and occurrence times is necessary to provide operators
with visibility into the EV charging system dynamics, allowing
for accurate forecasting and optimal infrastructure expansion
strategies [11] to meet the rising demand and maintain ac-
ceptable QoE levels. Indeed, the challenges above are only
a part of the many obstacles hindering the development and
expansion of a reliable public EV charging infrastructure
and this paper focuses on designing and developing such a
framework. However, before delving into the framework, it is
important to discuss first the limitations of the currently used
QoE evaluation methods.

B. Current QoE Metrics, Problem Statement and Motivation:

Ever since 2010, the worldwide achieved average EVCR
has been fluctuating at slightly under 10 EVs/charger [1],
though, despite its globally recognized eloquence, several
countries, as indicated in Section I-A have alarmingly scored
two-to-three-fold this value. Keep in mind here that the main
objective, now, is to show the inadequacy of the employed EV
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Fig. 1. EV market penetration in Quebec.

charging infrastructure expansion strategies in the majority of
countries around the globe as well as the inappropriateness of
the metrics that have been globally adopted to measure and
indicate whether or not such expansions are being capable
of coping with the rapid growth in EV market penetration
rates. For this purpose, real-world data is required to ensure
the correctness and credibility of the provisioned insights.
Hence, following a legal agreement and officially approved
research collaboration with Hydro-Quebec (HQ) 1, this work
taps into HQ’s complete database encompassing realistic daily
records (overall 6 million) of a wide range of EV charging-
related measurements pertaining to comprehensive aspects of
EV charging stations’ dynamics (e.g., start time and duration
of each charging session, per-session average drawn power and
total drawn energy, initial installation date pertaining to each
EVCS, per-EVCS nominal charging rate and geographical
location)2 for the various sites within Quebec (i.e., around
7, 454 stations distributed over 3, 878 different locations) and
spanning the past five years from 2018 to 2022. With access to
such a panoptic database of EV charging records, it becomes
easy to evaluate and graphically visualize (as shown hereafter
in Figures 1 through ) the evolution of Quebec’s EV charging
infrastructure using the same metrics adopted by the IEA.
Curves illustrated in these figures shall serve as tangible proofs
of the inappropriate QoE evaluations and, hence, the ill-suited
EV charging infrastructure expansions they inspire.

Figure 1 shows a steadily increasing total number of EVs
over the entire road network of Quebec starting from year
2017 until this present time. This induces expectations of
further expansion of the EV charging infrastructure at least
at a rate that can ensure such an infrastructure copes with
the increasing EV market penetration rate; hence, maintaining
proper consumer-perceived QoE levels. In addition, Figure
1 also shows that starting from year 2019, the number of
fully Battery-powered EVs (BEVs) started to overshadow that
of Plug-in Hybrid EVs (PHEVs). This is a major change

1HQ owns/operates, through a subsidiary, around 80% of the public EV
charging infrastructure in Quebec, Canada.

2It is worthwhile noting here that HQ’s database contains no information
about the per-EV arrival time and waiting time until it starts receiving
service. Such are vital QoE metrics that shall be intelligently derived herein
using the available records. Such metrics will allow for individual per-EVCS
performance evaluation as explained hereafter.
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Fig. 2. Number of deployed chargers in Quebec

that promotes an increased need for more frequent per-EV
charging activities as well as the need for additional energy
supply to cope with this increased energy demand. This is not
to mention that BEV owners would surely highly appreciate
faster charging processes with less waiting; this being an
expectation originating from an innate desire of QoE equity
with ICE vehicles’ drivers. As such, intuitively, one’s thoughts
get immediately directed to an increase in the deployment
of advanced Level 3 (L3) fast chargers concurrently to the
expansion of existing EVCSs through the addition of more of
the typical Level 2 (L2) chargers. To this end, Figure 2 presents
the EV charging infrastructure expansions observed over the
past five years in Quebec; those being mainly characterized by
the total numbers of L2 and L3 chargers that have been de-
ployed and became operational and accessible by EV drivers.
Here, observe that the number of L2 chargers increased by
almost 300% from 2018 to 2022 whereas the number of
L3 fast chargers shows a relatively shy ten-fold increase.
Regardless though, one cannot deny that major efforts and
investments have been and continue being made to improve
the availability and accessibility to a QoE-acceptable EV
charging infrastructure. Unfortunately however, such efforts,
are mislead to go in the wrong direction. This is especially true
since they are unable to throttle down and control Quebec’s
continuously increasing EVCR with rising slopes as shown in
Figure 3. AS a matter of fact, Quebec’s EVCR today scored
21 EVs/charger. Factoring in the chargers deployed by other
operators would slightly bring down the province’s EVCR
to 17; this being way above the world’s global average. In
parallel, look at the achieved EVCP in Quebec; this being
computed, following IEA’s guidelines, as the ratio of the
total average per-EV charging power for all available public
chargers to the total number of EVs on the road. Here, note that
the globally achieved EVCP amounts to 2.4 kW/EV. Figure
3 shows how Quebec’s EVCP has been drastically decreasing
over time for it to stabilize at around 0.73 kW/EV towards
the end of 2022. At this point, also, when factoring in the
contributions of the chargers pertaining to other operators in
Quebec, the province’s EVCP would only rise to 0.91 kW/EV.

The above constitutes a tangible proof that the above-
adopted metrics and EV charging network expansion strategies
are ill-developed and that there is urgent need to establish
and implement new plans for expanding this infrastructure
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Fig. 3. Quebec’s achieved EVCP v.s. EVCR.

in such a way for it to, first, fill in the gap and cope with
the remarkable rise in EV adoption and, second, steadily
parallel this (expected) long-term rise and meet the increasing
EV charging demands both in terms of frequency and QoE-
driven performance. Obviously, in light of the ealier-presented
discussion, EVCR and EVCP cannot serve the general purpose
of assessing the suitability of the existing infrastructure and its
state-of-the-art expansion schemes as they hide from operators
the factors underlying: i) the non-homogeneous variations of
EV adoption trends corresponding to different areas within the
same country or province (as revealed by thorough analysis
of realistic data), ii) the contrasted location-restrictive EVCS
deployment feasibility, as well as, iii) the disparity in charging
demand levels experienced in different locations. For instance,
the number of EVCSs deployed in a certain touristic area
might appear to be satisfactory. Keep in mind though that in
such an area, often, a large proportion of the EVs requesting to
charge at that area’s local EVCSs may happen to be incoming
from other areas. IEA’s adopted metrics, namely EVCR and
EVCP, do not account for these EVs when evaluated for
their areas of origin. It is, therefore, of notable importance
to develop adequate real-world-data-driven and location-aware
EVCS QoE performance metrics that can provision insights
into the suitability of existing location-dependent EV charging
networks and appropriate such networks’ expansion schemes.

This paper proposes a new set of critical EVCS QoE
performance metrics, namely: i) the per-EVCS achieved maxi-
mum and average waiting times, ii) the per-charger occupancy
and iii) the per-EVCS blocking probability. The design and
quantification of all of these metrics is based on HQ’s com-
prehensive database of realistic EV charging-related records.
Truly, the proposed metrics herein prevail where their existing
counterparts fail at provisioning operators with visibility and
insights into event dynamics of EVCSs; thus, guiding them
in formulating and implementing adequate well-informed EV
network sizing and charger deployment plans coupled with
optimal scheduling algorithms that aiming at improving the
end-consumer-perceived EV charging QoE in any particular
location. To gauge their merit, a charging load forecast model
adopting these new metrics is presented hereafter to predict
the future charging demand per EV charging site. The next
subsection highlights this paper’s fundamental novel contribu-
tions and summarizes its organization.

C. Novel Contributions and Paper Organization:

This paper aims at filling the identified literature gap con-
sisting of the non-existence of proper QoE evaluation metrics,
and the lack of accurate long-term EV charging demand
forecast tools. Its contributions are briefed as follows:
1) To the extent of the authors’ awareness, this current work

is the first to present a comprehensive data-driven framework
targeting the per-EVCS QoE assessment. A number of metrics
are formulated for the purpose of aiding the EVCS infrastruc-
ture operator gain a deeper understanding of their charging
infrastructure utilization. These metrics shall provision EVCS
infrastructure operators with in-depth visibility into the event-
driven system dynamics pertaining to any particular EVCS
deployed at any arbitrary location; hence, promoting opera-
tors’ understanding of their charging infrastructure utilization
allowing them to optimize additional chargers’ deployment,
and charging network sizing.

2) Comprehensive EV-charging-related historical data is
exploited and fed into a newly developed Machine Learning
(ML) based algorithm for long-term EV charging demand
forecast. Measurement values pertaining to the number of
requests in addition to external factors impacting the charging
demand are fed as inputs to this algorithm allowing it to
accurately predict up to one year of future per-EVCS EV
charging demand.

The remaining of the paper is organized as follows. The
related work is surveyed in Section II and data pre-processing
is done in Section III. Section IV is dedicated to the formu-
lation of the new QoE performance metrics as well as the
presentation of the ML-based forecast model. The methodol-
ogy is presented in Section V and Section VI lays out results
and discussions on the state of utilization of 14 sites based on
the developed QoE metrics herein together with the charging
demand forecasts. Finally, Section VII concludes the paper.

II. RELATED WORK

EV charging demand forecasting has been a subject that
has recently received significant attention; this being attested
by the increasing number of published studies presenting
different approaches and shedding the light on the goodness
of the resulting forecasts. Unfortunately, however, inputs to
these existing forecasting models consist of simulated data
generated by restrictive simulation frameworks that cannot
really account for comprehensive real-world dynamics (e.g.,
housing stock, area/location characteristics, EV characteristics,
actual travel distances, population growth rates, among so
many others) affecting EV charging processes. In addition,
a few publications do rely on some realistic data sets that,
alas, happen to be quite limited in terms of the number of
recorded samples corresponding to a very limited number of
attributes characterizing such processes. A prime selection of
these studies is surveyed hereafter. Howbeit, it is important to
keep in mind that the distinguishing features that differentiate
this present work from these existing publications are: i) the
exploitation of a large database of realistic records provision-
ing in-depth insights into actual EV charging processes taking
place all over the entire Quebec province, ii) beyond EV
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charging demand, this work presents a whole new set of QoE
performance metrics and an accurate model to forecast future
values of these metrics with such predicted results serving as
guidelines for optimal EV charging infrastructure expansion
and EV-to-charger assignment and scheduling.

In [4], the authors surveyed existing EV charging infras-
tructure planning methodologies that targeted the resolution
of specific challenges addressed from either a transportation
system perspective or that of a distribution network or, also, a
combination of both. Most of these studies were theoretical
in nature or based on custom-built simulation frameworks
focusing on a limited subset of EV charging aspects while
overlooking a large number of important factors due to the
lack of visibility into them. For instance, the vast majority of
these studies commonly limited their scope to the charging in-
frastructure itself with a focus on installation cost optimization
while neglecting end-user QoE.

The work of [5] presented a multi-stage EVCS deployment
planning framework in an attempt to achieve an acceptable
trade-off between investment costs and peak distribution grid
demands. Precisely, the authors attempted to balance between
EV drivers’ convenience and investors’ revenues without com-
promising capacity constraints imposed by operators over a
certain pre-determined time horizon. It appears that the key
driver to this framework’s business succcess is the actual
phase-like expected growth of the EV traffic volume, which
dictates the per-stage needed additional investments targeting
EV infrastructure resizing and revenues thereof originating
from EV consumers’ satisfaction; all this being subject to
power system constraints. However, unfortunately, the pro-
posed mathematical model in [5] was, contrary to the authors’
claims, quite restrictive as, first, it was based on a relatively
old and non-realistic EV traffic model proposed in [6] and its
restrictive assumptions leading to fictitious and non-accurate
simulated distributions of the number of EVs on the road.
Second, that model adopted traffic parameter values that do not
conform to EV traffic in particular but rather to the vehicular
mobility of all kinds of vehicles on the roads as described by
the authors’ traffic data source in [7]; let alone, the fact that the
collected data dates since 2016 (quite outdated) and that it does
not incorporate any observations pertaining to the utilization
and performance of deployed charging infrastructure back
then. Last but not least, the model was too simplistic, stochas-
tic in nature and aimed at separately optimizing individual
non-related metrics; hence, failing to reach an even acceptable
sub-optimal trade-off among these metrics that should have
been jointly optimized.

The work of [8] presented one among the very few data-
driven methodologies targeting the optimization of EVCS
deployment within a given geographical area. Therein, the
authors leveraged the PageRank algorithm (refer to [9]), Graph
Theory, geographical aspects and trip data to estimate the
spacial distribution of EV charging demands. More precisely,
a considered study area was subdivided into cells and each cell
received a PageRank score that described that cell’s appeal to
EV drivers. Next, a Regression Model (RM) was adopted for
the purpose of mapping the PageRank scores to actual charging
demands using data from existing EVCS. This RM’s results

were fed as input to a Capacitated Maximal Coverage Location
Model (CMCLM) for the purpose of optimizing EVCS deploy-
ments with the objective of maximizing coverage. Unarguably,
this presented methodology in [8] is ingenuous reflecting the
authors’ remarkable technical skills in combining trajectory
data (provided by Inrix3 partially extracted using probing
sensors (e.g., cell phones and automated vehicle location
sensors) blending that using Google Place API with Point
of Interest (PoI) data that reflected urban context and infers
executed trip purposes and finally integrating socioeconomic
data and land-use information (provided by Wasatch Front
Regional Council4) used as features of people’s parking be-
haviors that could impact the EV charging demand. However,
one concern, at this point, is the fact that the majority of
the used data (e.g., transportation-related data) is outdated
(since it dates from 2016 and 2018); let alone that such
data was not solely restricted to EVs but rather an entire
fleet of vehicles of different types, among which are EVs.
Consequently, such data may not accurately reflect current and
future trends in EV adoption and EV charging demands. This
is especially true given the rapid evolution of EV adoption and
charging behavior patterns. Second, it is not clear how trip
purposes have been linked to EV charging demand impact. It
is understandable that trajectories do indicate traffic flows in
and out of specific regions, of which those experiencing high
traffic flows are more likely to also exhibit high EV charging
demands and, hence, may constitute good locations for new
charging stations. Accordingly, regardless of its purpose, an
executed trip will contribute to traffic flow variations of its
outbound origin and its inbound destination. In this sense,
regional clusters with high connectivity and traffic flows may,
to a certain extent be considered as appropriate locations for
further EVCS deployments. Third, the authors presented a
complex chain of interconnected machine learning models to
capture the argued multifaceted nature of EV charging demand
and optimal placements of new charging stations based on a
variety of factors. While, to this end, the complexity of this
model appears to be a point of strength, it can also set to be a
limitation of this study when it comes to interpretability, trans-
parency, credibility and utility of generated results; let alone
their accuracy. The lack of knowledge and visibility into of the
existing charging stations’ dynamics and, hence, the per station
achieved QoE performance, in a way or another, truncates
future demand expectations and, hence, alters the optimality of
the charging infrastructure resizing. This drawback could not,
however, be worked around by the authors of [8] given not just
the difficulty but, often, the rather impossibility of accessing
public EV charging stations utilization information without
due authorization from such stations’ operators/owners. This
is an issue that this present work does not suffer from given
our pre-authorized access to such information.

The work of [10] presents a data-driven management frame-
work for EV charging stations with the objective of allowing
operators/consumers to plan for peak charging times and,
hence, avoid congestion. Although the authors criticize some

3https://inrix.com/
4https://wfrc.org/
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existing short-term EV demands forecasts, their work does
not serve the purpose of filling such a gap. This is espe-
cially true since their deep and supervised machine learning
framework only allows for only up to one-week forecasts,
which, is truly far from being long-term. Also, the utilized
models therein only predict the overall energy consumptions
per station. Although, the authors do consider some nice
features (e.g., weather conditions, distinction between regular
weekdays, weekends, and holidays, etc), such are not enough
to give operators/consumers an indication of a station’s load,
the waiting-in-line delay to receive service, the chargers’
utilization and the possibility of blocking (i.e., inability to
provide service to an arriving EV to the station). All such gaps
are accounted for in this present work whereby the presented
model herein is capable of providing one full year of forecasts
(extendable to two years ahead) not just in terms of energy
consumption but also in terms of all of the above-listed crucial
metrics as a function of the expected EV penetration rate.

In [11], a Charging Station Dimensioning and Placement
(CSDP) framework was presented with the objective of pro-
visioning minimum-cost fast charging infrastructure targeting
the accommodation of growing EV charging demands in a
metropolitan area powered by a single power grid. Through
CSDP, the authors jointly accounted for EVCS placement and
capacity as well as the EV charging workload distribution
among available EVCS to minimize EV waiting times and
reduce range anxiety. They also factored in the power distribu-
tion network’s voltage sensitivity, the possible need for voltage
regulators (for maintaining voltage stability) and transformers
with proper rating (for supporting peak demand). The above
CSDP problem was formulated into an Integer Linear Program
(ILP) characterized by its remarkable complexity that the
authors worked around through the development of two heuris-
tics. The efforts invested in developing CSDP were, indeed,
seminal; especially that very little information was present at
that time about EV integration, charging demands, available
EVCS and their underlying functional and operational dynam-
ics. It was, truly, an epoch of assumptions and visions that
researchers attempted to concretize through the development
of theoretical models and approximations that they strived to
bring as close as possible to reality. Today, available real-
world data continues to rule out these assumptions (e.g.,
truncated Normal distribution associated to energy demands
in [12], the Normally distributed EV batter State-of-Charge
(SoC) in [13], the exponential EV charging time in [11], [14],
among others). Now, although the authors of [11] presented
enough evidence of the feasibility of modelling an EVCS
as a multi-server queueing system, their CSDP Workload
Assignment (CSDP-WA) and sizing ILP formulations were
founded on top of a highly restrictive approximation of that
EVCS model using multiple single-server queues that was later
shown to reflect overly pessimistic EV waiting time perfor-
mance. Consequently, forecasting future demands and EVCS
performances based on such allocated workload and sizing
policies can surely not serve for proper charging infrastructure
expansion planning.

The work of [15] presented a big-data driven EV charging
demand forecasting model accounting for vehicular traffic

volume data for both vehicles and busses as well as weather
conditions in addition to other variables typically considered
in other existing models (e.g., initial battery SoC, battery type,
charging power classifications, etc). Compared to older studies
(e.g., [16]–[19]) the authors of [15] also fed their model with
the per-vehicle starting time of the charging process and initial
battery SoC, which they assumed to be accurately drawn from
Gaussian distributions with distinct parameters. Despite the
interesting technically insightful features of the work of [15],
it suffered from major drawbacks, first, pertaining to the non-
realistic and inaccurate distributions the authors used to model
the majority of their above-listed model’s variables. Second,
the work restricted the charging processes to take place in
residential and workplaces for regular consumer EVs and
in parking stations for busses. Third and most importantly,
the historical traffic volume data used to train their model
pertained to all types of vehicles on highways, national routes
and local roads rather than just EV data. Regardless of the
fact that such data dated since 2014 (i.e., non-representative of
today’s current traffic states), the authors clearly mentioned the
fact that EV traffic volume at that time was much less than that
pertaining to other conventional vehicles. Yet, because of their
ill-paused assumption that such vehicular traffic patterns may
conform to future EV-exhibited patterns due to the expected
significant EV penetration growth, their reported forecasting
results seriously lack accurracy. This is especially true since
the EV penetration growth patterns are way different than
those of conventional vehicles (as attested by currently avail-
able data); let alone, the fact that today’s EV traffic patterns
continue to be affected by those pertaining to typical ICE
vehicles. As a matter of fact, realistically today, roads are being
populated by both EV and non-EV vehicles concurrently and
the presence of various publically accessible charging stations
incurs significant changes in the charging demand trends. Of
course such newly impactful factors did not exist back at the
time when the work of [15] was published; hence, could not
be considered back then.

In [20], the authors proposed a hybrid LSTM neural net-
work with the objective of merging heterogeneous features
pertaining to EV charging processes and, hence, accurately
predict the discrete EV charging occupancy over a well defined
time horizon. The reported results therein gauged the merit
of the proposed algorithm and evidence its superiority over
select existing benchmarks (e.g., hyper-parameter search [21],
logistic regression [22], SVM [23], random forest [24] and
Adaboost [25]). The work of [20], indeed, aims at quantifying
one fundamental metric, namely, the per-charger occupancy,
proposed hereafter in this present paper. As much as it is
quite insightful on a technical aspect, it suffers from several
drawbacks, among which, the most important is the adopted
restrictive public data that describes EV charging sessions in
terms of a limited number of variables allowing the designed
complex forecast model to only generate relatively accurate
results for only very short-term predictions ranging from 10
minutes to only almost 4 hours. Beyond that, the model’s
complexity exponentially overshoots in terms of the number
of features to be considered as well as run-time only to
exhibit incremental improvement over existing benchmarks.
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Of course, such a model would not be suitable nor insightful
aiming at planning infrastructure expansion for months (let
alone a minimum of a year) ahead. The forecast models
presented in [28] and those surveyed by [29] suffer from
exactly the same issue despite their elevated accuracy of the
predicted station utilization and EV charging demands for a
period of time that does not bypass three days. Those models
and deep-learning-based algorithms, obviously, cannot be of
any utility when it comes to long-term EV infrastructure
expansion planning and provide only marginal insights into
the per-EVCS QoS performance.

III. DATA PRE-PROCESSING AND PREPARATION

As already mentioned in Section I-B, the work presented in
this paper is driven by a comprehensive database of 6 million
realistic charging session records pertaining to 7, 454 EVCSs
deployed in 3, 878 locations. This data has been collected
from the various EVCSs over the past 5 years starting from
January 2018 until December 2022. Each charging session
record encompasses the session’s starting time, ending time,
outlet ID, station ID, station postal code, and the amount
of energy drawn from each outlet, among numerous other
parameters that are of less interest to the work presented in
this paper. Nonetheless, a major drawback of this data set
is that it lacks any information about EV arrival times to
the different EVCSs as well as the amount of time spent
at the station waiting to start charging. Consequently, in
the absence of such crucial information, the per-EVCS QoE
performance evaluation becomes quite challenging. This is
carefully addressed in the remaining sections hereafter. At this
point though, it is quite important to mention that after closely
observing the available records, some of them can be identified
as invalid. For instance, all records pertaining to sessions that:
i) lasted less than 3 minutes or more than 2 hours, ii) have no
recorded payments associated with them, and, iii) show that
no energy has been drawn from the corresponding outlet, are
assumed to be invalid records, and, hence, have been removed.
Following this cleaning phase, the remaining records have
been, first, arranged in ascending order of their corresponding
postal codes, and then, for each station, records are ordered
according to the starting times of each session. To this end, a
careful examination of the postal codes and site IDs pertaining
to each station reveals the operator’s attempt to cluster regions
based on the postal code. Consequently, all stations having the
same postal code are considered as belonging to the same site
and, hence, associated with the same site ID.

IV. EVCS QOE PERFORMANCE METRICS

This section presents two sets of novel metrics for assessing
the quality of service (QoS) provided by public electric vehicle
charging stations (EVCS) in Quebec, Canada. The first set
of metrics includes the number of charging requests, per-
site utilization, per-site occupancy, idleness, and blocking
probabilities, which are based on a comprehensive database of
realistic measurements taken at different times and pertaining
to various EV charging process variables. These metrics are

subsequently used as inputs to a forecast model developed for
predicting future EV charging loads. They are as follows:
• Number of Charging Requests, NR, represents the number
of unique charging requests experienced by an EVCS during
a given time period. The provided data reveals that some EVs
stop but then resume charging within a few seconds. In what
follows, such short charging interruptions are neglected (i.e.,
the continuation of charging is not considered as a new request
placed by the same EV but rather the same request identified
using the account credentials of the user who initiated the
charging session). Also, all charging sessions with only a few
seconds durations are discarded.
• Charging Site Utilization, U , determines if a site is being
underutilized or over-utilized. Through the observation of the
variations of a site’s daily instantaneous utilization, an operator
can determine the exact EV charging demand at that site at any
particular point in time. Also, U ’s long-term variations reveal
the direct impact of EV consumers’ socio-economical habits
on EV charging requirements. Consequently, U provides op-
erators with insights into the load experienced per site, which
cannot be provided by NR alone as this latter contains no
information about the different charging sessions’ durations.
By discretizing time into mini slots of duration 1 minute each:

U =
1

T

∑
i

ki
n

(1)

where T is the total number of time slots within an observation
period, i ∈ N used for indexing each time slot within T , ki
is the number of occupied EVCSs during time slot i and n is
the number of per-site EVCSs.
• Site Occupancy, Ω, represents the probability that at least
one of a given site’s EVCSs is occupied (i.e., the probability
of that charging site being utilized):

Ω =
1

T

∑
i

Zi where Zi =

{
0 if ki = 0

1 if ki ≥ 1
(2)

• Site Idleness Probability, PI , represents the fraction of
the total observation duration T during which all EVCSs
pertaining to a given site are idle. This metric quantifies the
possibility of an EV arriving at a given site and finding all
EVCSs available. As the complement of Ω:

PI = Pr [ki = 0] = 1− Ω (3)

• Site Blocking Probability, PB , represents the proportion
of T during which all of a given site’s EVCSs are found to
be completely busy (i.e., the probability of an EV arriving
at a given site and finding all EVCSs occupied and, hence,
suffering from immediate denial of service):

PB =
1

T

∑
i

Xi where Xi =

{
1 if ki = n

0 if ki ≤ n
(4)

Beyond a certain QoE threshold, PB indicates the failure of
the existing charging infrastructure to sustain the growing EV
charging demands experienced by the given site.

Next, the second set of metrics includes the longest per-site
busy period and average EV waiting time, which are evaluated
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Fig. 4. Sample service time data distribution.

and reported by a custom-built simulator. These metrics aim
to quantify the quality of perceived service by EV consumers
at different public EVCSs and can be used by EV charging
infrastructure operators worldwide to assess the performance
of any charging site and plan EV charging network expansions
as needed. They are:
• Number of Delayed EVs, ND, represents the number of
EVs that have experienced a certain delay at a given site
waiting to receive service (i.e., start charging). Any EV that
starts charging within at most t minutes (e.g., t ≤ 5minutes)
from the end of a preceding charging session at a blocked site
is considered to be a delayed EV. The value of t is not fixed
and is empirically estimated and recorded by the operator on
a per-site basis given the fact that it is affected by numerous
uncontrollable factors that are external to the charging process
(e.g., parking lots’ availability close to rest areas and shopping
malls and their proximity to EVCSs, in-proximity services,
etc). In the future, several solutions may be adopted to increase
the accuracy of t’s values (e.g., the installation of cameras to
provide video footage showing the advancement of a waiting
EV into service position and, hence, the start of a new session).
• Average Waiting Time, W , is the average queueing delay
experienced by EVs waiting at a given site to start charging.
W is generated using a custom-built PHYTON-based discrete-
event simulator that models each site as an M/G/k queue.

V. QOE EVALUATION METHODOLOGY

The adopted per-site QoE-oriented performance analysis
methodology is presented. First, although the above-presented
metrics may provide per-EVCS performance insights for the
chosen site, it is observed that performance trends notably
vary for different observation period categories (e.g., regular
weekdays, weekends, holidays, etc). As such, to capture such
variations, QoE performance evaluations shall be conducted on
daily basis spanning any required duration (i.e., week, month,
year). Precisely, the examined days throughout the analysis
period shall be grouped based on their different categories.
Then, for each one of these days, each of the above-listed
metrics shall be evaluated. This will indicate the frequency
whereby each of these metrics’ respective values signaled a
red flag for each one of these days’ categories; this being of
utmost importance to operators when developing EV charging

infrastructure expansion plans. For instance, in touristic areas,
the achieved QoE might be misleadingly perceived as good
whenever values of the U , Ω, PB , ND, and W , do not bypass
a given threshold when evaluated for one whole month or
year in one shot. The operator, here, may be deluded to trust
a site’s operational normality whereas, truly, these metrics’
daily values may reveal an overall site under-utilization during
normal work days and an over-utilization (i.e. low QoE) during
weekends and holidays.

A. Simulation Framework:

A custom-built discrete-event PYTHON-based simulator is
developed herein for the purpose of modelling any EVCS
pertaining to any charging site as an M/G/k queueing system.
This simulator’s input parameters’ values are set according
to simulated EVCS’s information extracted from the given
dataset. Precisely, EV arrivals are assumed to follow a Poisson
process with a parameter λE = NE · T−1 EVs/s with NE

being the number of observed EVs arriving to the simulated
EVCS within the observation period T . NE is dictated by
HQ’s recorded data. The per-EV service time is drawn from
an empirically evaluated Erlang-k distribution that fits HQ’s
service time records for the simulated sites. Due to space
limitation, only one such distribution example is illustrated
herein in Figure 4 where the Root Mean Square Error (RMSE)
between the realistic distribution and its theoretically fitted
counterpart is of the order of 10−8 indicating a highly ac-
curate fit. Finally, the simulated EVCS’s number of outlets
is k and is also provided by the operator. The fundamental
objective of this developed simulator is to generate ND and
W . Furthermore, future EV arrival forecasts are going to be
generated hereafter. Such arrival forecasts may then serve as
inputs to the above-mentioned simulator, which, then, shall
return forecasts for future ND and W values pertaining to a
simulated EVCS.

B. Filling the Gap in the Dataset Created by COVID-19:

In an attempt to combat the proliferation of COVID-19,
governments around the Globe and, particularly in Quebec,
imposed numerous and lengthy curfews, lockdowns and border
closures. In addition, remote work and schooling policies were
implemented all over the province. All these have remarkably
affected the province-wide transportation sector. Precisely, dur-
ing 18 months (from January 2020 to June 2021) the number
of vehicles on the road decreased by almost 60% including the
number of EVs. The decrease in this latter reflected itself in
an abnormal decrease in EV charging demands as illustrated
in Figure 5(a); hence, the reason behind referring to this time
period hereafter as the ”gap period”. For all purposes of proper
QoE performance forecasting, proper charging demand trend
corrections (data augmentation) need to be applied to this gap
period in order for it to appear as a smooth quasi-normal
continuation to its predecessor and successor periods; that is,
as if the pandemic never occurred. This is achieved as follows:

1) Among the 5 years data records pertaining to a given site,
disregard all those corresponding to the gap period.
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Fig. 5. Five year charging requests (a) including the COVID-19 data and (b)
requests after filling the gap caused by COVID-19

2) Compute an M days weighted moving average whereby,
the number of requests for each target day of the gap period
becomes equal to the average number of requests observed
during the M−1

2 past and future days. As such, the target day
is that M th day that appears at the center of the M days period.
This mathematically translates to:

NR,d =
1

M − 1

d+M−1
2∑

j=d−M−1
2

NR,j (5)

where d is the index of the targeted gap day and NR,j is the
actual number of requests.

3) Compute the relative daily charging request difference
∆NR =

(
NR,d −NR,d

)
NR,d

−1
. Use all relative differences

over the entire 42 months before and after the gap to generate
∆NR’s empirical probability distribution, D.

4) Finally, to each computed NR,d over the 18-month gap
period, add a random ∆NR value drawn from D.

Figure 5(a) (M = 30) concurrently plots NR,d and NR,d

pertaining to one selected site over the entire 5-year period.
The trend anomaly is clear during the gap period compared
to its normal counterparts appearing before and after the gap.
Most importantly, Figure 5(a) tangibly proves NR,d’s potency
in capturing the seasonal/annual trends of NR,d while smooth-
ing out its randomness. Figure 5(b) shows the reconstructed
number of charging requests values corresponding to the
gap period following the above-elaborated procedure. These
results assert the suitability of the utilized approach since the
reconstructed trend appears clearly as a smooth quasi-normal
bridge connecting its predecessor to its successor curves.

TABLE I
TIME STAMP FEATURES

Feature Name Range of Values
Weekday (Monday→Sunday) [0; 6]
Day of the month [1; 31]
Day of the year [1; 365]
Month of the year [1; 12]
Week of the year [1; 53]
Week of the month [1; 4]
Quarter of the year [1; 4]
Recorded year [2018; 2022]
Working Day [0: Weekend/Holiday; 1: Business day]

TABLE II
CHARGING SERVICE FEATURES

Feature Name Range of Values
Charging requests weighted rolling average Float
Province-wide number of available public EVCSs Integer
Province-wide number of registered EVs Integer
Region-specific number of available public EVCSs Integer
Region-specific number of registered EVs Integer

C. Long-Term Forecast Model:

As anticipated, the EV charging demand is expected to grow
at an increasing pace in the coming years. This stresses the
importance of creating a long-term forecast model that can
accurately predict the EV charging load in terms of served
request counts over an entire year while taking the load’s
seasonality into consideration.
• Data Pre-Processing and Feature Engineering: The first
pre-processing step consists of chronologically arranging the
charging records to create a continuously evolving time series
and then extract from them the required features, the funda-
mental one of which are the timestamps listed in Table I. Here,
timestamp differentiation and proper interpretation are impor-
tant especially because of the differential characteristics of reg-
ular weekdays’ charging requests and their weekends/holidays
counterparts. Table II lists additionally extracted categorical
features constituting external factors that impact the charging
demand. All of these features are then encoded using the mean
encoding method described in [30] and [31] to reveal a logical
correlation between them and their corresponding label ( i.e.,
NR,d). Consequently, during the training phase, the model
determines the relationship between the predicted value and
the mean features’ encoding instead of the actual NR,d.
• Forecast Model: A Seasonal Auto-Regressive Integrated
Moving Average with eXogenous factors (SARIMAX) statis-
tical learning model (e.g., [32]) is presented hereafter. This
model takes as input a time series rendering it capable of
accurately predicting future NR,d values while concurrently
capturing its real-world historical data inputs’ seasonality and
patterns. In the sequel, it is proven that SARIMAX is capable
of: i) accurately capturing and representing this seasonality for
1-year forecasts, and, ii) integrating multiple external variables
and deduce their impact on the charging demand’s behavior.

As a matter of fact, the accessible data sets related to the
addressed problem in this paper enclose data sample points
that constitute a time series. This is especially true since
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TABLE III
CHARGING SITE DESCRIPTION AND NUMBER OF EVCSS PER SITE

Site # Location Number of EVCSs/Site
1 City 1 Downtown 2
2 City 1 Residential Area 2
3 City 2 Residential Area 2
4 City 2 Mall Parking Lot 2
5 City 3 Downtown 1
6 Suburb 1 1
7 Suburb 2 2
8 Rural Area 1 1
9 Rural Area 2 2
10 Touristic Area 1 2
11 Touristic Area 2 1
12 Highway 1 2
13 Highway 2 2
14 Highway 3 4

these samples represent the magnitude of changes in the EV
charging load as a function of time. The objective here is to
forecast future metric values (and their variations as a function
of time as well) according to what can be learned from the
past history embedded in the above-said time series. As such,
given that such data exhibits seasonality patterns and given the
availability of a strong exogenous factor in the time series,
SARIMAX would be the best forecasting model fit in this
case.

SARIMAX is defined by three main parameters, p, d, and q,
respectively denoting the number of auto-regressive terms, the
order of differentiation, and the order of moving averages. The
determination of seasonal variations is required to establish a
Seasonal Auto-Regressive Function (SARF) in addition to a
Non-seasonal Auto-Regressive Function (NARF) [34]. Addi-
tionally, the set of exogenous variables is fed into the model
in an array-like parameter exog. Proper tuning SARIMAX’s
parameters allows for the generation of accurate forecasts
based on the detected patterns and the exogenous features. The
recorded daily per-site number of charging sessions and their
corresponding exogenous variables are aggregated weekly to
overcome NR,d’s randomness. This kind of aggregation is
acceptable and rather preferred for objectives similar to those
adopted in this paper (i.e., forecasting a charging site’s QoE
future evolution).

Initially, the Box-Jenkins approach is used to estimate
the most appropriate range for the d parameter. Then the
Partial Auto-correlation function was used to determine an
appropriate range for p and the Auto-correlation function
was used to determine q. Augmented-Dickey-Fuller tests are
executed to verify the existence of non-stationary conditions.
A close examination of these tests’ results reveals that the
best model is one to which correspond fractional parame-
ters’ values. In fact, Fractional ARIMA is used when the
data patterns exhibit long-range dependencies that cannot be
captured using integer parameters. The interpretation of the
fractional parameters becomes different than the interpretation
of the integer parameters. Fractional differencing with d < 1,
is used to smoothen out very long-term data dependencies
while simultaneously preserving the short-term dependencies.
A value of 0.5 < d < 1 would indicate the presence of a
strong historical dependence in the data. Additionally, using

a fractional d eliminates the issue of over-differencing which
might add white noise when large values greater than 1 are
used. Additionally, it is favorable to choose low values of
the p and q when using fractional values of d to learn
the long-term dependencies of the data while simultaneously
preserving the short-term fluctuations and dependencies. As
a result, low values of the fractional auto-regressive term
p are used to capture the short-term dependencies of the
data. Finally, low values for the moving average order q are
used to capture the short-term fluctuations and noise in the
data. As a result, grid search is performed here to tune the
parameters of the SARIMAX model adopted herein with low
range of p and q and a fractional d. Additionally, the choice
of exogenous variable is extremely important to improve the
model’s accuracy significantly. This is the number of EVs in
the region (scaled by the average charging demand of a typical
EV) was selected as an exogenous variable.

The model is trained and optimized against the data extend-
ing from 2018 to 2021 based on the above-described approach.
Then, it is tested against non-training data (i.e., pertaining to
year 2022), to validate its ability to forecast an entire year
accurately. Several accuracy metrics are used to evaluate the
model’s accuracy such as RSME, MSE, MAE, and MAPE.

The SARIMAX model proposed herein forecasts the weekly
average number of requests with 99% confidence. This allows,
at this point, to utilize this model to forecast the charging
requests for the selected sites throughout the entire next year
2023. Note that the model requires re-training using the data
of each individual site for accurate forecasts to be generated.
Additionally, a second year forecast is generated to guide
the operator with some longer-term forecasts. However, it
is important to highlight that the farther future forecasts are
generated with a reduced results’ confidence. Yet, every new
year of data that is added to the data set enables longer and
more accurate the forecasts.

Now, indeed, there are so many different prediction and
forecasting models. It is quite interesting to compare the
performance of the adopted SAIMAX model with fractional
parameters to other models such as LSTM, ETS, ARIMA, and
SARIMA. This is done in Section VI below.

VI. ANALYSIS AND FORECAST RESULTS

This section presents an evaluation of the performance of
14 selected charging sites in terms of the presented metrics in
Section IV. Moreover, 4 of these sites are selected to showcase
the prediction accuracy of the developed SARIMAX. The re-
ported results also illustrate the average waiting time evolution
between 2021 and 2022 as well as the predicted waiting time
for 2023 highlighting the impact of the increasing EV charging
demand on the user-perceived QoE.

A. Occupancy, Utilization and Idle Probability:

The number of EVCSs varies from one to another of the 14
sites selected from diverse province-wide locations to capture
EV charging load variability. For privacy reasons, these sites’
actual locations are replaced with generic names as listed in
Table III. Note that a site with 1 EVCS, yields Ω = U .
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TABLE IV
CHARGING SITE OCCUPANCY IN 2021 AND 2022

# Days 10%≤ Ω ≤30% # Days Ω ≥ 30%
Site Location 2021 2022 2021 2022

City 1 Downtown 239 131 107 232
City 1 Residential Area 182 192 8 13
City 2 Residential Area 247 233 14 20
City 2 Mall Parking Lot 178 245 20 67
City 3 Downtown 139 206 6 12
Suburb 1 127 190 3 10
Suburb 2 160 229 84 34
Rural Area 1 170 198 52 113
Rural Area 2 145 159 70 161
Touristic Area 1 154 85 110 263
Touristic Area 2 187 230 21 41
Highway 1 91 147 5 6
Highway 2 31 107 0 1
Highway 3 220 111 88 252

TABLE V
CHARGING SITE UTILIZATION IN 2021 AND 2022

# Days 10%≤ U ≤30% # Days U ≥ 30%
Site Location 2021 2022 2021 2022

City 1 Downtown 267 303 12 38
City 1 Residential Area 69 70 0 0
City 2 Residential Area 108 116 0 0
City 2 Mall Parking Lot 91 186 0 0
City 3 Downtown 139 206 6 12
Suburb 1 127 190 3 10
Suburb 2 149 127 17 0
Rural Area 1 170 198 52 113
Rural Area 2 135 187 17 63
Touristic Area 1 165 210 27 123
Touristic Area 2 187 230 21 41
Highway 1 29 47 0 1
Highway 2 1 21 0 1
Highway 3 63 220 0 0

Table IV presents a summary of the number of days where
the per-site occupancy belonged to the normal range of 10%
to 30% as well as the number of days where that occupancy
exceeded 30%. Table V on the other hand presents the number
of days where the per-site utilization belonged to similar
intervals. Ω and U are presented for both 2021 and 2022
to demonstrate the evolution of PCI utilization. Observe that
13 out of the 14 sites, witnessed an increase in Ω and U .
Particularly, Touristic Area (TA) 2 and Suburban Area (SA) 1
exhibited an Ω > 30% for more than double the days. Another
insight that can be extracted from Table IV and V is that
the charging sites next to the Highways 1 and 2 are being
lightly underutilized with a U > 30% on zero and one day
respectively in 2021 and 2022. This could indicate the user’s
tendency to charge at their origin or destination points rather
than spending time charging en route. Also, the charging site
on Highway 3 suffers an Ω > 30%. However, its U < 30%
throughout all of 2021 and 2022. A third observation can be
made regarding the charging site in City 2’s Mall Parking Lot.
Even though the number of days where 10% ≤ U ≤ 30%
doubled, it has never been over-utilized as the number of days
where its U > 30% remains zero. However, this serves as an
indicator that another EVCS should be added to that site.

On the other hand, PI indicates whether or not a charging
site is being underutilized. Table VI presents the number of

TABLE VI
NUMBER OF DAYS THE CHARGING SITES EXPERIENCED PI > 90%.

2021 2022
City 1 Downtown 19 2

City 1 Residential Area 175 160
City 2 Residential Area 104 112

City 2 Mall 167 53
City 3 220 147

Suburb 1 235 165
Suburb 2 121 102

Rural Area 1 143 54
Rural Area 2 150 45

Touristic Area 1 101 17
Touristic Area 2 157 94

Highway 1 269 212
Highway 2 334 258
Highway 3 57 2
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Fig. 6. Number of Days with PI = 100%.

days where the 14 charging sites experienced a PI > 90%.
This means that on those days the charging site was vacant
and remained idle for 90% of the time; thus, indicating a very
low utilization on that day. Table VI that charging sites at
Highways 1 and 2 are severely underutilized. As such, no
new EVCSs need to be added at these locations in the near
future. However, one important observation is that all sites
experienced a drop in PI including Suburb 2. This means
that, even though the overall utilization of these sites decreased
from 2021 to 2022, it became less likely to find them idle. The
shaded bars in Table VI represent the percentage of the year
during which PI > 90%.

Finally, Figure 6 presents the number of days during which
the charging sites were not used at all (i.e. PI = 100%). This
figure can give us three very important observations. The first
is that even though certain sites have a high possibility of being
idle, the number of days during which no charging occurred
on these sites is relatively low. The second observation is
on the site at Highway 2 that had a PI > 90% for 258
days of the year but only had 32 days during which it was
not used. This means that although such charging sites will
experience low utilization, they are indeed needed almost
every day by EV drivers. The third observation was seen at the
charging site in City 3. Although this city experienced higher
utilization and occupancy in 2022, the number of days during
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TABLE VII
BLOCKING PROBABILITY EVOLUTION FROM 2021 TO 2022.

𝑷𝑩 0% 0%-10% 10%-20% >20% 

Year 2021 2022 2021 2022 2021 2022 2021 2022 

City 1 

Downtown 66 43 268 246 29 69 2 7 

City 1 

Residential Area 227 229 138 134 0 2 0 0 

City 2 

Residential Area 175 185 189 176 1 4 0 0 

City 2 Mall 209 108 153 242 3 14 0 1 

City 3 34 17 186 130 103 145 42 73 

Suburb 1 20 10 215 155 104 149 26 51 

Suburb 2 173 191 152 164 34 10 6 0 

Rural Area 1 34 6 109 48 106 105 116 206 

Rural Area 2 181 83 143 185 37 59 4 38 

Touristic Area 1 179 45 136 161 43 104 7 55 

Touristic Area 2 17 10 140 84 123 153 85 118 

Highway 1 295 256 69 108 1 1 0 0 

Highway 2 334 297 31 68 0 0 0 0 

Highway 3 347 295 18 70 0 0 0 0 

 

which it experienced an NR of zero slightly increased. This
type of anomaly represents a trend of more centralized EV
charging. It can possibly mean that although user demand on
this site increased, this demand was concentrated on certain
days. This clearly demonstrates the importance of examining
these metrics per day instead of aggregating entire months or
entire years together.

B. Blocking Probability:

Another important metric studied at these 14 sites is the
blocking probability, PB . Due to the sensitivity of this metric,
it is presented in Table VII in steps of 10%. PB = 0 means
that a site was not blocked on a given day. A close inspection
of Table VII evides that the charging site next to Highway 1
was never blocked for 295 and 256 days in 2021 and 2022
respectively; hence, confirming that EV drivers were less likely
to use this specific site. Also, the number of days during which
PB = 0 for most of the 14 sites decreased between 2021 and
2022. This goes in line with the results reported in Table IV
and Table V indicating an increase in these sites’ U and Ω
respectively in 2022. Unexpected, however, is PB pertaining
to Rural Area 1’s site. While in 2021 this site had a PB ≥ 20%
for 116 days, this number almost doubled to reach 206 days
in 2022. That is, an arriving EV at this site had a 20% chance
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Fig. 8. SARIMAX testing accuracy for charging site at Touristic Area 1.
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Fig. 9. SARIMAX testing accuracy for charging site at City 1 Downtown.

of not finding an available EVCS on 206 out of 365 days that
year. This is a clear indication that an additional EVCS needs
to be added within that site’s region. While the charging site in
City 1 Downtown also had a low chance of having PB = 0,
its performance was still acceptable in 2022 as most of the
days experienced 0% ≤ PB ≤ 10%. These results are also
reflected by ND as discussed below.

C. Delayed EVs:

Recall that ND represents the number of EVs that had to
wait at a blocked charging site; hence, the direct relationship
between the PB and ND. This is revealed in Figure 7, which
illustrates the evolution of ND between 2021 and 2022 at the
14 sites. The figure indicates that the site in Touristic Area
1 experienced an increase in ND by 67% meaning that the
service will quickly deteriorate at this site in the coming year
if the PCI in that area is not properly expanded. The results
pertaining to Highway 1’s charging site are consistent with
their counterparts for U , Ω and PB reported in their above-
indicated respective tables. In confirmation of this site’s low
U and PB , only 9 and 12 EVs had to wait to receive service
there for during the entire years 2021 and 2022 respectively.
Another important observation is the decrease in ND in the
Suburban Area 2 from 134 EVs in 2021 to 41 EVs in 2022.
This result is consistent with the drop in this site’s PB .

D. SARIMAX Model Testing and Forecast:

The SARIMAX model presented earlier in Section V-C is
now used to predict future values of NR for 4 of the 14 sites
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TABLE VIII
TABULATED QUARTERLY FORECAST RESULTS.

Quarter Touristic Area 1 City 1 DownTown Rural Area 1 City 2 Mall
2023 Q1 1539 1452 526 1098
2023 Q2 2263 1709 811 895
2023 Q3 2841 1772 1278 1008
2023 Q4 2339 1898 801 1178
2024 Q1 2382 2260 795 1655
2024 Q2 3267 2444 1206 1202
2024 Q3 3927 2462 1740 1422
2024 Q4 2979 2500 1010 1526
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Fig. 10. SARIMAX Touristic Area 1’s weekly forecasts during 2023.
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Fig. 11. SARIMAX City 1 Downtown’s weekly forecasts during 2023.

examined in this manuscript, namely, Touristic Area 1, City
1 Downtown, Rural Area 1, and City 2 Mall. The model is
trained using the 2018 through 2021 data pertaining to each
of these charging sites individually and then tested against
the 2022 data. The grid search algorithm is then utilized
to evaluate the best parameters that would achieve the most
accurate results when validated against the 2022 data. The p,
q, and d parameters of these models are presented in Table
IX for the reader’s convenience. Figures 8 and 9 constitute

TABLE IX
TABULATED MODEL PARAMETERS.

Site Location p d q P D Q Model MAPE
Touristic Area 1 0 0.6 1 0 1 1 12.12%

City 1 Downtown 1 1 0.8 1 0 1 1 8.15%
City 2 Mall 1 1 0.8 0 1 1 0 14.28%
Rural Area 1 0 0.4 1 0 1 1 10.83%

tangible proofs of the model’s forecast accuracy for the sites
at Touristic Area 1 and City 1 Downtown. The SARIMAX
model was able to accurately forecast the charging demand
while very closely following the behavior of the actual time
series. The shaded region in the figure also indicates that future
demands are predicted with 99% confidence. The fine-tuned
models are now used to forecast the demand for the entire
year of 2023 for these 4 sites. textcolorblueAdditionally, these
models were also used to generate a forecast for the weekly
number of requests for a second year, 2024. Due to space
limitation, only the forecast results of textcolorbluethe year
2023 of 2 sites are presented in Figure 10 and Figure 11.
However, the total quarterly number of requests for the 4
sites for the entire 2-year period is presented in Table VIII.
Additionally, the accuracy evaluation metrics pertaining to the
adopted model herein are presented in Table X. For the sake of
completeness, the accuracy of this model is compared to those
of 5 other counterparts proven in the literature to outperform
the presently suggested SARIMAX model with fractional
parameters. Precisely, the results of the SARIMAX model
presented above are compared with two ETS models, with
and without seasonality, an LSTM model, an ARIMA model
without seasonality, and finally with an SARIMA model with-
out an exogenous variable. Table X clearly demonstrates the
superiority of the presented SARIMAX model with fractional
parameters in terms of forecast accuracy. Here, it is very inter-
esting to observe the relatively poor performance of the LSTM
model despite notable efforts to optimize its performance as
well as the inclusion of the exogenous parameter as a feature
for the LSTM’s NN. This is a consequence of the relatively
young age of the charging infrastructure, which would severely
limit the success of training a Deep Learning algorithm due
to the limited number of training samples in a 4-year period
(201 weekly values per site). Also, traditionally, such forecasts
rely on extensive historical information spanning tens of years
(such as stock market forecasts).

E. Waiting Time Evolution:

After forecasting the number of charging requests for 2023
the M/G/k simulator presented in Section V-A is used to
study the evolution of the waiting time on the 4 selected sites
throughout the years 2021 (including the filled Gap), 2022,
and 2023 (forecasts). The daily number of requests is first
extracted from the weekly forecast values. Then, these values
are used to determine the EV arrival rates to the charging
site. Subsequently, extensive simulations are performed with
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Fig. 12. Evolution of W ’s distribution during 2021 (left), 2022 (center), and 2023 (right) for the site at Touristic Area 1.

TABLE X
PERFORMANCE METRICS FOR DIFFERENT MODELS.

Site Model MSE RMSE MAPE MAE
ETS Without Seasonality 754.32 27.46 21.04% 21.53

ETS With Seasonality 530.74 23.04 17.65% 18.67
LSTM 690.50 26.28 19.11% 19.10

Touristic Area 1 ARIMA 486.29 22.05 17.28% 17.71
SARIMA 621.69 24.93 18.78% 19.40

SARIMAX 423.76 20.59 12.12% 15.06

ETS Without Seasonality 688.89 26.24 22.82% 21.77
ETS With Seasonality 276.84 16.79 12.55% 11.78

LSTM 375.68 19.38 17.56% 15.39
City 1 Downtown ARIMA 187.39 13.69 11.55% 10.84

SARIMA 189.44 13.76 11.33% 10.60
SARIMAX 90.04 9.49 8.15% 7.57

25, 000 EV arrivals per simulation round generated using the
determined arrival rates for all of the 365 days corresponding
to each year. This guarantees the achievement of at least 95%
confidence interval and reduces the impact of any outliers.

The results of the three years’ simulations for Touristic Area
1 are presented in Figure 12. This figure demonstrates how
the probability of low waiting times is decreasing while the
probability of experiencing high waiting times is increasing
year after year. This is demonstrated by the bulkier tale of the
distribution and the more frequent W values above 60 minutes.
To put things into perspective, the probability of experiencing
a waiting time of zero is 20.4% and 9.3% in 2021 and 2022
respectively. This value drops to 3.8% in 2023. Additionally,
the average waiting time in 2021 was 3.49 minutes and rises to
6.73 minutes and 14.68 minutes in 2022 and 2023 respectively.
Additionally, 99% of the anticipated waiting times are within
30 minutes, 40 minutes, and 110 minutes in 2021, 2022, and
2023 respectively. The statistics related to the W results of
the 4 analyzed sites are presented in Table XI.

F. Case Study: Charging Site at Touristic Area 2:

Finally, a case study related to Touristic Area 2 is consid-
ered. By the end of 2021, this site contained a total of 9 Level
2 EVCSs and 2 Level 3 EVCs. The site under study contains
1 of these Level 3 EVCSs. This region experienced a rapid
deployment of Level 2 EVCS rising to reach a total of 33
Level 2 EVCSs by the end of 2022. However, no new Level
3 EVCSs were added in 2023 to this region. Based on the
earlier conducted analysis, the utilization of the specific site
of interest kept increasing in 2023 despite the addition of 24
new Level 2 EVCSs within a very short distance. This site’s

TABLE XI
WAITING TIME STATISTICS FOR 2021, 2022, AND 2023

2021 Average Probability W = 0 99% Interval
City 1 Downtown 2.22 min 26% 6 min

City 2 Mall 1 min 50% 2 min
Rural Area 1 19.95 min 0% 36 min

Touristic Area 1 3.49 min 20.4% 30 min
2022 Average Probability W = 0 99% Interval

City 1 Downtown 3.68 min 10.5% 10 min
City 2 Mall 1.3 min 44% 3 min

Rural Area 1 24.98 min 0% 43 min
Touristic Area 1 6.73 min 9.3% 40 min

2023 Average Probability W = 0 99% Interval
City 1 Downtown 11.32 min 4.9% 24 min

City 2 Mall 2.9 min 22.6% 7 min
Rural Area 1 35.36 min 0% 85 min

Touristic Area 1 14.68 min 3.8% 110 min

PB and W also increased. This confirms the fact that, even
though the Level 2 PCI was greatly expanded in this region, it
failed to catch up with the increasing EV charging demands;
hence, the extreme importance of utilizing the herein presented
methodology to determine the sites worthy of new Level 3
EVCS deployments for the purpose of maintaining adequate
QoE performance and supporting the growing number of EVs
and their charging demands.

VII. CONCLUSION

This is the first data-driven study that develops a
comprehensive set of metrics to evaluate the EV PCI
performance of future smart cities. Also, the herein-developed
forecast model accurately predicts the evolution of charging
requests at a given site. The performance pertaining to 14
representative sites was analyzed through a close examination
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of the evolution of the occupancy, utilization, blocking
probability, and the number of waiting EVs. A custom-built
simulator is then used to estimate the average waiting time
experienced by EVs during 2021 and 2022 as well as the
predicted waiting time given the 2023 predicted charging
demand. This study demonstrates the necessity of expanding
the EV PCI in order to satisfy the ever-increasing charging
demand and maintain acceptable consumer-perceived QoE
levels.
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