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Abstract

We investigate the achievable error probability in commation over an AWGN discrete time memoryless
channel with noiseless delay-less rate-limited feedbkok.the case where the feedback rétg; is lower than
the data rateR transmitted over the forward channel, we show that the detaye probability of error is at
most exponential in blocklength, and obtain an upper bowundrfcrease in the error exponent due to feedback.
Furthermore, we show that the use of feedback in this casétges an error exponent that is at ledst; higher
than the error exponent in the absence of feedback. For the where the feedback rate exceeds the forward
rate Rr > R), we propose a simple iterative scheme that achieves a Ipilitpaf error that decays doubly
exponentially with the codeword blocklength More generally, for some positive integer we show that alt”
order exponential error decay is achievableRif, > (L — 1)R. We prove that the above results hold whether
the feedback constraint is expressed in terms of the avdesgack rate or per channel use feedback rate. Our
results show that the error exponent as a functio®pf has a strong discontinuity &, where it jumps from a
finite value to infinity.

I. INTRODUCTION

While feedback cannot increase the capacity of a pointiotpnemoryless channel, it can decrease
the probability of error as well as the complexity of the es®oand decoder. For an AWGN channel
without feedback, it is known [1] that the decay in the prabighof error as a function of the blocklength
n is at most exponential in the absence of feedback (i.e. twedbachievable probability of error has
the general formP, = exp(—O(n)))ﬂ However, when a noiseless delay-less infinite capacitybiaeki
link is available, a simple sequential linear scheme (theatkevijk-Kailath schemel[2]) can achieve the
capacity of this channel with a doubly exponential decayha probability of error as a function of
the blocklength (i.e. it has the general forfh = exp(—exp(€2(n)))). This shows the significant role of
feedback in reducing the probability of error.

The Schalkwijk-Kailath scheme requires a noiseless feddliak with infinite capacity. In fact, the
Schalkwijk-Kailath scheme does not provide the best ptessdéoror decay rate given such an ideal
feedback link. In particular, it is shown inl[3] that in theegence of an ideal noise-free delay-less
feedback link, the capacity of the AWGN channel can be adudewith a probability of error that
decreases with an exponential order which is linearly iasiregy with blocklength (i.e. it has the general
form P, = exp(—exp o ... o exp(€2(n)))) @ However, once the feedback channel is corrupted with some

Q(n) times
noise, the benefits of feedback in terms of the error proibalmlecay rate can drop. In fact, when this
corruption corresponds to an additive white Gaussian nors¢he feedback channel, the Schalkwijk-
Kailath communication scheme (or any other linear scherad$ to achieve any nonzero rate with
vanishing error probability[ [4]. Furthermore, in this casike achievable error decay for any coding
scheme can be no better than exponential in blocklengtts{Biilar to the case without feedback [1].
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In this work, we consider a case where the feedback link iseless and delay-less but rate-limited.
The advantages of rate-limited feedback in reducing thengocomplexity are investigated inl[6]. In this
paper, we study the benefits of rate limited feedback in terihaecreasing the error probability. Assuming
a positive and feasible (below capacity) r&tes to be transmitted on the forward channel, we characterize
the achievable error decay rates in two cases: the case wherfeedback rateR;;, is lower thanR,
and the case wherg,., > R. For the first scenario, we show that the best achievable prabability
decreases exponentially in the code blocklengtfi.e. P, = exp(—O(n))) and provide an upper bound
for the error exponent. For the second scenario, we propo$erative coding scheme which achieves a
doubly exponential error decay (i.€. = exp(—exp(£2(n)))). Since a feedback rate equal to the data rate
is sufficient for achieving a doubly exponential error decaye might suspect that further increasing the
feedback rate may not lead to a significant gain. We dispsl ghspicion by generalizing our proposed
iterative scheme to show that#f,, > (L — 1)R, an L order exponential decay is achievable. The latter
result is consistent with [7], in which the achievable enpoobabilities are characterized in terms of the
number of times the (infinite capacity) feedback link is used

Interestingly, our results show that the error exponent &mation of the feedback rate has a strong
discontinuity at the pointk., = R; it is finite for R.; < R and infinite for R, > R (due to the
achievability of a doubly exponential error decay).

Although only R > R can lead to a super-exponential error decay, even for snfakelback rates,
we expect to have a strictly higher error decay rate as comddarthe case with no feedback. In particular
we show that forR,.; < R, the error exponent is at leaBt.; higher than the error exponent in the absence
of feedback.

The problem of communication over the AWGN channel with tedi feedback has been previously
considered assuming different types of corruption on tlelll@ck channel. In particular, the corruption
on the feedback channel has been modeled as additive Gaussse in [4] and[[5] and as quantization
noise in [8]. Another type of feedback corruption has beemsmtered in[[9] where only a subsequence
of the channel outputs can be sent back noiselessly to themigter. A fundamental distinction between
our model and the ones considered above is that in our modekteiver has “full control” over what is
transmitted and received on the feedback link. This is dubeédact that under the rate-limited feedback
scenario, the feedback link is assumed to be both noisetesa@ive in the sense that at each time, the
feedback message is allowed to be an encoded function dieaihformation available at the receiver at
that time. Communication with imperfect feedback has alsenbinvestigated in_[10][ [11] and [12] for
variable-length coding strategies. Our model on the otl@dicaptures a scenario where the blocklength
and therefore the decoding delay is fixed.

The rest of this paper is organized as follows: In Sectiondlpgesent the system model and the problem
formulation. In Section Il we consider the case where thedbBack rate is higher than the forward rate.
Specifically, using a simple iterative coding scheme we sti@iachievability of an.*” order exponential
error decay wherR,; > (L — 1)R. In Section IV we consider the case whe®e, < R and show that
in this case the decay in probability of error is at most exgmaial (finite first order error exponent).
Although a feedback rate less thdh cannot provide super-exponential error decay, we will shiow
Section V that it increases the error exponent by at légast Section VI shows that the necessary and
sufficient conditions for super-exponential error decayai the same even if we express the feedback
limitation as a constraint on the per channel use feedbdeknatead of the average feedback rate. Finally,
Section VII concludes the paper.

Notation. Throughout this paper we represent fienorm operator by|.|| and the expectation operator by
E[.]. The notation log” is used for the natural logarithm, and rates are expressedts. The complement
of a setA is denoted byA4¢c. We denote the indicator function of the eve#tby 1 4. Given a function
h(.), h(n) = o(1) is equivalent tdim,,~, |h(n)| = 0. Given a functionk(.) and a positive integet, the
k™ iterate of the function, i.eb o ... o h(.), is denoted byn*(.).
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Fig. 1. AWGN channel with rate-limited feedback

[l. SYSTEM MODEL

We consider communication over a block of lengtithrough an AWGN channel with rate-limited
noiseless feedback. The channel outputt time: is given by

where{N;}?_, is a white Gaussian noise process with~ N (0, 1) and X; is the channel input at time

7. The finite-alphabet feedback signal at time denoted byU; € U; and is assumed to be decoded at
the transmitter (of the forward channel) without any errodelay. We will denote the feedback sequence
alphabet/; x ... x U, by U. The message: to be transmitted (on the forward link) is assumed to be
drawn uniformly from the seMm = {1, ..., |M|}.

An encoding strategy is comprised of a sequence of funct{cfgﬁ@}g‘:1 Wherefi(”) M x U x X
U;_1 — R determines the inpuk’; as a function of the message and the feedback signals rddeafere
time 4,

X; = fz‘(n)(m> Ui, ..., Uis1).
The feedback strategy consists of a sequence of funcﬁg:fﬁé}?:l wheregi") : R" — U, determines the
feedback signal as a function of the channel outputs up te jm

The decoding functiow : R* — M gives the reconstruction of the message after receivindpalchannel
outputs
m =™ (Y™).

The probability of error for message is denoted byP.(m), where
P.(m) = Pr{m # m|m is transmitted}.

The average probability of error is defined as
P > P.(m)
e ‘M‘ m:1 e .
Given the above setup, a communication scheme with forwatel #, feedback ratekR,., and power

level P is comprised of a selection for the feedback sequence atphtihe encoding strategyf"} ,,
the feedback strategfy™}™_, and the decoding function™(.), such that

|M| Z 6nR’
|u| < 6TLRF}37
n ‘ 9
B (£ m v )] < wp

i=1



where the expectation is with respect to the messages amdbige Over all such communication schemes,
we represent the one with minimum average probability adrewith the tuple(n, R, R, P) and denote
the corresponding minimum error probability BY(n, R, R, P). In the case where the feedback rate is
zero, we simply drop the feedback rate term and se?, P) and P.(n, R, P) to represent the optimal
non-feedback code and the corresponding error probabikpectively. The capacity of the AWGN
channel is denoted bg', where

C= %log(l + P).

For the communication system described above, the firstr @der exponent or simply the error
exponent is defined as

 _1logP P
Ei(R, R, P) = Timy_yo0——8 e(n, 1, R, ), 1)

n

where a positive value of the error exponent implies thatetiier decay rate is at least exponential. We
also define higher order error exponents. In particulagmiv> 2, the L'* order error exponent is defined
as
— log" ' (~log P.(n, R, Rpp, P
Er(R, Rpp, P) = Tim,_ 02 (= log Fe(n, R, Brp, P)) )
n
Given the above definitions, a communication system witictstrpositive L order error exponent has
an L™ order exponential error decay (i.B.(n, R, Ryp, P) = exp(—expZ~1(Q(n)))).

1. R.; > R: SUPER-EXPONENTIAL ERRORDECAY

When the feedback rate is higher than the forward fateve can achieve a super-exponential (in
blocklength) error decay. This result is presented in thiewiong theorem.

Theorem 1 For any R > 0 which satisfiesk < R, and R < C, a strictly positive second order error
exponent is achievable:

Es(R, Rypp, P) > 0.

Proof: See Appendix. [ |
The above result can be further generalized as follows.

Theorem 2 Given an integerL > 2, for any R > 0 which satisfieskR < ﬁRFB and R < C, a strictly
positive L** order error exponent is achievable:

Er(R, Ry, P) > 0.

Proof: See Appendix. [ |

We use a class of simple iterative coding schemes to provalibee achievability results. In particular,
to achieve a doubly exponential error decay we propose a-phase coding scheme as follows: in the
first phase, called the initial transmission, the messagend using a non-feedback code that occupies
a big portion of the transmission block( out of n). In the second phase, called the intermediate
decoding/feedback phase, the receiver decodes the mdsasegk on the received signals and feeds back
the decoded message to the transmitter, usiRguats of the available feedback. Depending on the validity
of the decoded message the transmitter decides to stay silgerform boosted retransmission. In the
case the message is decoded correctly, the transmitter sitegt during the rest of the transmission time.
Otherwise, it sends a sign of failure in the next ¢+ 1%) transmission and uses the remaining portion
of the transmission blockn = n — n; — 1) to send the message with an exponentially (in block length)



high power. While retransmission with such a large powergu@es a doubly exponential error decay,
it does not violate the power constraint since the probshili incorrect decoding in the second phase is
exponentially (in block length) low.

To guarantee ah—fold exponential decay when the available feedback raté-isl) R, for some integer
L > 2, the above scheme can be modified to inclide 1 rounds of intermediate decoding/feedback and
boosted retransmission, where retransmission at eachl rdumeeded, is done with exponentially higher
power than the previous retransmission.

Note that in comparison with the Schalkwijk-Kailath (SKheme presented inl[2], the above iterative
technique needs less feedbadkR( nats instead of the infinite rate required by the SK schemed) an
provides better error decay rate.

IV. R., < R: FIRST ORDER EXPONENTIAL ERROR DECAY

In the previous section we have shown that by utilizing a liee#t link with a rate higher than the
forward rate, we can reduce the error probability signifiaas compared to the case with no feedback.
The high reliability of the iterative scheme presented i@ ldst section is due to the fact that the initial
decoding error at the receiver (which is a rare event) isgo#yf detectable at the transmitter. Therefore
it can be corrected by retransmitting the message with hiaghep without violating the average power
constraint. The perfect error detection at the transmitebtained from the feedback of the initial decoded
message at the receiver. However, when the feedback rate/és than the forward rate, the receiver has
to use a source code to compress its decoded message befiregfé back. The transmitter must then
reconstruct the uncompressed decoded message to detest@mnysince this reconstruction involves some
first order exponential (in blocklength) error decay (cep@nding to the source coding error exponent),
the error detection is erroneous with the same decay raterefdre, the mis-detection of the receiver
error due to the compression on the feedback link domin&e®tror probability.

While the above intuitive explanation justifies the failupé the block retransmission schemes in
achieving a super-exponential error decay, one might lstile that such a decay rate can be achieved
using other schemes. For example one alternative is to lbtilegoroblem from a stochastic control point
of view and use a rate-limited variant of the recursive femitbschemes presented in [13] and![14]. In
this section, we show that no matter what communicationreehis used, one cannot achieve infinite first
order error exponent.

Theorem 3 Given R > R, the first order error exponent is upper bounded by

EI(R> RF37 P) S Eup<RFB>7
where E,,(Ryz) = 4P + 179/2 + R and 7, is the solution to%(ro —1—1log(m)) = Rps-

Proof: See Appendix. [ |
The proof, which is rather lengthy, can be explained usirggfllowing observation. It is shown in
[15] that given a peak power constraint, the best achievahier decay is exponential. Therefore, in
order to achieve a super-exponential error decay, thertrigtes should be able to boost the power under
certain circumstances. However, given the expected powrestaint, the power can be boosted only under
rare occasions where the receiver would decode wronglyrnwibe. Therefore, there should be enough
feedback bits to communicate the occurrence of those rarasans to the sender. It turns out that this
requirement is met only if the number of possible feedbacksages«*?72) is at least as large as the

number of forward messages'{).

Note that the error exponent upper bound provided in the elibeorem stays bounded &&.;
approaches? from below. On the other hand, we showed in the previous aedhat for any feedback
rate higher thank, the error exponent is infinite (doubly exponential decdyjese two facts lead to an
interesting conclusion: the error exponent as a functiotheffeedback rate has a sharp discontinuity at
the pointR.; = R.



The above theorem provides an upper bound on the first ordar exponent for feedback rates below
R. We conjecture that a similar result may be obtained on thmtbedness of th&!” order error exponent
for feedback rates belowR.

V. R,z < R: LOWER BOUND ON ERROR EXPONENT

We have shown in the previous section that the probabilitgradr whenR ., < R cannot decay faster
than exponential as a function of the blocklengthAlthough the feedback in this case does not provide
an infinite error exponent, we still expect that the erroragnt should be improved in the presence of
feedback as compared to the non-feedback scenario. Ingbi®s we will show that the error exponent
with feedback is at leask,, above the non-feedback error exponent. The main resulti@fsection is
the following theorem.

Theorem 4 For all rates R < C, such thatR > R, the error exponent is lower bounded as follows
El (R7 RF87 P) 2 ENoFB(R) + RFB7 (3)
where E,-5(R) is the error exponent for the AWGN channel in the absenceeafbfeck.

Proof: See Appendix. [ |
The achievability scheme for the above result is constductgng the multi-phase scheme proposed
in the proof of Theoremll, in conjunction with a compressiechnique to reduce the rate of feedback
in the intermediate decoding/feedback phase fi®rto R, . Using such a scheme, the error probability
is dominated by the probability of error mis-detection. S'krror term is the product of the probability
of error in the initial transmission phasexp(—nFEy,-5(R))) and the probabilitydxp(—nR;)) that the
compression loss hides this event from the transmitter.

VI. PER CHANNEL USE FEEDBACK CONSTRAINT

In the previous sections we focused on a scenario wherawbrgerate over the whole transmission
block was constrained to be lower thdl).,. Under that constraint, the receiver can use the available
feedback ¢ R, nats) any time during the transmission. In particular, gghe coding scheme proposed
in Section lll, the receiver collects all the feedback bitsl aises them in one feedback transmission at
the end of the first phase. In this section we considpemachannel usdéeedback rate constraint. Under
this constraint, the receiver cannot feed back more tRan nats after each channel use. This translates
to the following constraint on the size of the feedback sigighabet at each timee {1,...,n}:

;| < efire. (4)

Given that the above constraint is more restrictive thanaWerage feedback rate constraint considered
previously, we can conclude that the upper bound on the exponent obtained in Section IV holds
in the above scenario as well. Interestingly, we show thailar achievability results as those stated in
Section Il for the average feedback rate constraint am talge for the per channel use feedback scenario.

Theorem 5 Given the per channel use feedback constrainfzif, > (L — 1)R and R < C, a strictly
positive L' order error exponent is achievable:

Er(R, Ry, P) > 0.

Proof: See Appendix. [ |
The above result is proved using a combination of the scheesepted in Section 11l and a block Markov
coding scheme which is described in the Appendix. Figuiréutilates an example of this iterative coding
scheme for the case whefe= 2.
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VIl. SUMMARY AND DISCUSSION

We considered the impact of rate-limited noiseless feddbadhe error probability in AWGN channels.
We first showed that if the feedback rdte; that exceeds the rate of the data transmitted on the forward
channel, one can achieve a super-exponential decay in lghtypaf error as a function of the code
blocklength. Our achievability result is based on a muftage scheme in which an initial transmission
of the message, if decoded incorrectly, is followed by thearesmission of the message with boosted
power. A key requirement in this scheme is for the transmttieperfectly detect the error in the initial
transmission every time it happens. The minimum feedbatk nequired to perfectly communicate the
initial decoded message 8 and therefore our scheme fails to achieve a super-expahemntor decay
for R.; < R. We showed that this is true for any scheme. Thaklis, > R is also a necessary condition
for achieving a super-exponential error decay. While wevigied an upper bound for the error exponent
when R, < R, we also showed that even in this case, the use of feedbadas®s the error exponent
by at leastR,;. For the case in whiclR., > (L — 1) R, for some positive integek, we generalized our
multi-phase iterative scheme to prove the achievabilitpof.— fold exponential (in blocklength) error
decay. The above results are illustrated in Figure 3. It casden that the error exponent as a function
of the feedback rate has a sharp discontinuityat = R.

We showed that the above necessary and sufficient condibioadhieving a super-exponential error
decay holds whether the feedback limitation is expressed egnstraint on theveragefeedback rate
or on theper channel usdeedback rate. Note that our results address the asymytekiavior of the
probability of error in terms of the blocklengthh and therefore may provide limited insight for codes
with small blocklength. In particular, for small values of one might expect the per channel feedback
rate constraint to lead to a higher error probability tharcenario with average feedback rate constraint.
On the other hand, the former is a more practical scenario iagpiicitly captures the delay associated
with sending data on the feedback link.

In this paper we showed the advantages of feedback in ternmprbving the decay rate of the error
probability. A subject for future research is to explore ttber advantages of interactive communication
in terms of reducing the coding complexity and energy corgion. One interesting problem to be
addressed is how to use rate-limited feedback to consttidiké schemes which do not need complex
block encoding decoding.

VIII. A PPENDIX
Proof of Theoreni]1: Fix § > 0 such thatR < C(1 — ). Defineny = en andn; = n — ny — 1,
wheree > 0 is chosen such that

AP ) (5)
n
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holds for large enough. Choose the feedback signal domains as follows

U, = {1}, fori#mny
U, = {1,...¢e"}

We construct two non-feedback codés = (n;, Z—?, P) and %, = (na, Z—f, P/~), where

v=PF, (nl, @,P) .
n

(6)

Form € {1,...,e"%}, pick the corresponding codewoid" (m) from %, and send it in the first; channel
uses. Based on the received signgls and using the optimal non-feedback decoding function fateco

%, the transmitter decodes the message and sends back ggodeti to the transmitter
Up, = M.

If m; = m, then
Xi=0,i=n1+1,...,n,

otherwise, the next input will be

an-i—l: \/P/’y

and then the codeword correspondingritois picked from the codeboo¥; and is transmitted in the

remainingn, transmissions. On the other side, the receiver compgyes with the threshold™ =

\/ P/




If Y,,,+1 < T, then the remaining received signals are ignored and thedéelcmessage in the first try is
announced as the final decision
m=mj.

If Y,,+1 > I, the receiver decodes the message based on the,lasteived signals and using the optimal
non-feedback decoding function for co@g. The resulting message, is then announced as the final
decision

m - ﬁlQ.

Using the above scheme, the average power used in the fotim&rdill be

1

- (1P +~(n2)(P/v)) < P.

Therefore our scheme satisfies the power constraint. Alscatlerage feedback rate i which meets
the constraint on the feedback link. There are three casesich an error can happen. The first case is
when the first decoding is correct but the receiver receiviedlare signal from the transmitter due to the
noise on then; + 1% transmission. The probability of this event is upper bouhbg

P.{false negative < Q(T"), (7)

where(.) is the tail probability of the standard normal distributidrhe second case is when the first
decoding is wrong but the failure signal is not decoded otiyreat the receiver. The probability of this
event is upper bounded by

P.{false positivé < Q(I). 8)

The third case is when the first decoding fails and the faitigeal is decoded correctly, but the second
decoding also fails. The probability of this event satisfies

P.{wrong decodin§ < P.(no, @,P/y) 9)
U
R

= Pe(”%??P/V)' (10)

Using the exponential upper bound for tfe-function, we have
. " P
P.{false negativg+ P.{false positivé < aexp(—g—), (11)
Y

wherea > 0 is some constant. By positivity of the error exponent foesdess than the capacity [1] and
sinceZ—? < C(1—4?%), we know that for any) > 0, there exists a fixed > 0 such that

V=P <nl, e P) < et (12)

1
for large enough values of. Combining [(11) and(12), we obtain
P.{false negativg+ P,{false positivé < exp(—e"(¢ToM)), (13)

which shows the probability of the first two types of errorsales doubly exponentially in the blocklength.
It remains to show that the third type of error is also uppeurtated by a doubly exponential term. To
show that, note that on the right hand side[of| (10), the ra& mostl /e times the capacity achieved by
SNR P. However, the SNRP/~ is exponentially (inn) higher thanP

P/y > Pe™,
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for large values of. and therefore
P.{wrong decoding§ < P.(en, E, Pe™). (14)
€

Given [I3) and the above inequality, the proof will be cortglié we show thatP, (en, £, Pe"¢) decays
doubly exponentially as a function ef To show this, we can use the fact that for communicatiorsrate
(in nats/channel use) less than

1, 24+ VP2+4

5 n f?
the following upper bound on error probability holds in thesence of feedbackl[1]:
Pe(n7 R, P) < 6—n(E(R,p)_E/)’

for any ¢ > 0 and for large enough values of where

E(R,P) = 5(1—\/(1—6—%)). (15)

Taken sufficiently large such that
R
— <

Then using[(I5) leads to

P.(en, Rfe, Pé™) < e nelZ5m(-Vi—e i)
= exp(—exp(n(¢ + o(1))))

[

Proof of Theoreni]2: Let’s partition the whole transmission block info+ 1 sub-blocks, the first
of which has length'l — ¢)n. We choose the remaining sub-blocks to have equal lengththd first
sub-block, the transmitter sends the message using théeedback Gaussian codebo@k with rate R
and powerP. After transmission in thé’” sub-block, the receiver feeds back the message it has dicode
within that sub-block. If the decoded message matches thesrmitted one, the transmitter stays silent
for the rest of the time. Otherwise, it sends a failure alamd eetransmits the message in the 1%
sub-block using a non-feedback Gaussian codel§okith rate k. The power of the alarm signal and
the powerP; of codebooks; are chosen to be inversely proportional to the probabilitdecoding error
in the firsti sub-blocks. That is,

Pi+1 = P/’yiv

where~; is the total probability of error in the firgtsub-blocks. The.-fold exponential error decay can
be shown inductively. Given that the probabilityis (i — 1)-fold exponential in terms of the blocklength
(the case of = 2 was shown in the previous Theorem), the power atithsub-block (if transmission is
needed) igi — 1)-fold exponential in blocklength. This in turn leads to afold exponential error decay
at the end of theé" sub-block. Note that both the transmission power and thabfeek rate in the above
scheme satisfy the problem constraints. [ |
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Proof of Theoreni]3: Let us first introduce some key definitions which will be usedour proof.
We define the decoding region for messageas
D(m) = {Y": "™ (Y") = m}
Also for each feedback signal sequenée= (u4, ...,u,) € U, let’s define the feedback decision region
Bw") ={Y": g™ (") =u;,i=1,..n}

A key quantity in our proof is the joint distribution of the ddback signal sequence and the output
sequence given the transmitted mess&ge - (.,.|.). For simplicity, we drop the subscript and use
P(y™, u™|m) to denote the density of the output sequentand the feedback sequence = (uy, ..., u,)
conditional on the transmission of the messageDefining uy, = 0, we can write

P<yn7 un|m) = H?:lp (yl‘m7 ui_17 yi_l) P (ul‘m7 ui_17 yl) (16)
= H?:lp (yl ‘m7 ui_17 fz(n) (m7 ui_l)a yi_l) P (ul ‘ma ui_lu yi7 gz(n) (yl)> (17)
= H?:IP (yl}fz(n) (m7 ui_1)> l{ui:ggn)(yi)} (18)

(y: = £ (m, w2

n 1
= lyrepwyllicg \/(%)exp (— 5 > (19)
) yn _ f(n) m, u™ |2
Ly (27) " exp (_H ( il |

5 (20)
where f® (m,u") = (" (m, o), ..., fe (m,u"1)). In this derivation, [[G) is a consequence of the
probability chain rule. Equatioril{) is derived using the fact that for any two random varialilés.S)
and any deterministic mappirig(.), W < S < T'(S) is a Markov chain. Finally[Ig) is a direct result of
the Markov chain relationshiph/, U~ Y1) «+» X; «+ Y; and also the equatioli; = gi(")(Yi). Another
guantity of interest will be the probability of using a feedk signal sequencgé’ € U conditional on the
transmission of a message € M,

P(urlm) = [ P(" o lm)dy" @)

With the above definitions we can now proceed with the proop@®se the theorem does not hold.
That is, let’s assume there exists> 0 such that the following inequality can hold for arbitrarigrge n:
P.(n,R, Rpp, P) < e ™ Eur(Brp)+7), (22)

Given suchn’s, the above inequality implies that for at least half of thessages: € M, we have

P.(m) < 2¢ M Bup(BrB)+7) — o=(Bup(Rrp)+y+o(1) (23)

Removing the messages which do not satisfy the above, wenadbteodebook with the rate of at least
%log(%ﬁ") which, for arbitrarily largen, is arbitrarily close toR. Therefore,22) implies the existence of
a code with rateR for which theper message error probabilitgan be less than its right hand side for
arbitrarily largen and for somey > 0. Let us defines(n) = n(E,,(Rrz) +7). To prove the theorem, we

will show that there existg, such that for any: > n,, the inequality
P.(m) < e*™ (24)

cannot hold for all messages € M. Let us fixng, to be determined later, and assume that for some
n > ng, there exists a communication scheme for whgh) holds for alln. Given such a communication
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scheme, for eacln, we construct an initial birf,(m) including a subset of feedback signal sequences
as follows

Fo(m) = {u™: P(u"|m) > e "fire},

whered > 0 is a fixed constant, to be determined later. Defining F(m)|m} as ZuneFo(m) P(u™m),
we can write

Pr{Fy(m)jm} = 1— Y P(u"|m)

un € Fo(m)
> 11— 5U\e‘”RF5
> 1-6 (25)

In the following algorithm we update the content of each @guentially.

1) Start withi = 0.

2) Pick two distinct messages, m’ € M, such that there exists a feedback sequericevhere both

F;(m) and F;(m/) include u".

3) Assuming||f™ (m,u™)||? > ||f™ (m/,u™)||> (without loss of generality), remove® from F;(m).

4) Increase by 1 and setF;(k) = F;_1(k), for all k£ € M.

5) SetJ = {k € M : Fi(k) # 0}. If |J| > e"'r5, go to step2, otherwise stop.
Note that steR is feasible since whenever this step is executed the nunilvemeempty bins are greater
than the cardinality oft/| which is e"®r&. Therefore, there should exist at least one feedback sequen
which appears in two bins. Also note that for alhy M and any integet

Fy(k) C Fy_y(k)... C Fy(k). (26)

Assumem,m’ are the messages picked in step 2 afids the sequence removed from the Hif(m)
in step3 and at iteration of the above algorithm. Given such3atuple (v, m,m’), a major part of the
rest of the proof is devoted to obtaining a lower bound|fgf™ (m, u™)||2. First for anyy”, let's use the
triangle inequality to write

ly" = f™ )P < (ly" = f" )]+ 1 ) = fO ()]
= ly" = fO ' w)|P + 1" (m, ) — f(" (m/,u")|[?
+2[Jy" = f (! )L () = f ()|
< 2(lly" = FO a1 (mat) — fO (ma)|P). (27)

Similarly, we have

(1™ () = fO ()| P < 2] (my a2+ (L (! a™)|P).

Combining @7), @8) and the assumption in step 3 of our algorithm that” (m, u™)|[> > ||f™ (m/, u™)
we have

ly™ = £ (m,a)| P < 2(|ly" = F (m! )|+ 4] £ (m, w™)]?).
Using this inequality and the derivation i), we have

P(y",u"lm) > Lgmepqepexp (=4l F (m, u™)|?) (21)~ 2exp (=||y" — f™ (m',u™)|?) . (28)
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Denoting the complement of a sdt by A, we can write

Pe(m)z/D( . <Z P(y",umlm)> dy" (29)

u'meld
> / P(y", u"|m)dy" (30)
D(m)cNB(u™)
> / P(y",u"m)dy" (31)
D(m/)NB(u™)
2> exp (=417 mar)l?) f gy puny (27) 72 €XD (=l um)|?) dy™, (32)

where [B)) is due to the fact thab(m) and D(m') are disjoint sets and the last inequality is a consequence
of (28). Using the assumptiof@4]) and rearranging the above inequality, we can write

1 n
1 (m, u™)[[? > 1 (3(”) +108 [y (27) " 2exp (—Ily”—ﬂ”)(m’vun)llz)dy") - (33)

To complete our lower bound faff™ (m,«")||?, in the following, we find a lower bound for the integral
in (B3). First note that since™ € F;(m), we can write

/ P(y™, u™|lm')dy"
D(m/)NB(u™)

— P(unlm) — / Py, u|m)dy"
D(m/)eNnB(u™)

> P(u™m') — P.(m)
> e nErs _ o=s(n) (34)

Z 56_nRFB(1 _ 16—(s(n)—anB))

> Do, (35)

where [34) follows from the assumption tha24) holds for all the messages and the fact thfapicked in
step3 and at the'" iteration of the algorithm is in bir; () and therefore is a member &f(m’). Also
inequality B5) is secured by the appropriate choicergf Now let's define the sphergp(f™ (m/, u™))
as

Sp(m' u") = {y" : |ly" — f (', u")||* < nr}, (36)

wherer will be determined later. Partitioning the sBt(m’) N B(u") into D(m/) N B(u™) N Sp(m/, u™)
and D(m/) N B(u™) N Sp(m/,u™)¢ and using(33]), we can write

Py u )y > Do Py, ulm')dy". (37)

/D(m’)ﬂB(u”)ﬂSp(m’,u”) /D(m’)ﬁB(u”)ﬁSp(m’,u”)c
The second term in the right hand side BT can be bounded as follows

/ P(y™, u™m’)dy"
D(m/)NB(u™)NSp(m/ ,u™)°¢

Sp(m’,u”)c

<Pe{ 30— £, )P >
i=1

<exp (—nEL(r)), (38)
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where we have used the Chernoff bound in the last step. Ininbgquality £.(7) is defined as
Ee(r) = max st — u(s), (39)
wherep(s) is the semi-invariant moment-generating function of thé$tjuare distribution corresponding
to k= (g — £ (', ui )
1

p(s) = log E,[e] = 5 log(-— ). (40)

Replacingu(s) in ([B9) and optimizing that equation we obtain
1
E.(1)= 5(7‘ —1—1log(7)) (41
which is positive and increasing for atl> 1 and tends to infinity as — oo. Chooser such that
E.(T) > Rpp + ¢, (42)
for somee > 0, to be determined later. Usin@7) and (38) we can write

/ P(y", u"m’)dy"
D(m/)NB(u™)NSp(m’ ,u™)

> ge—nRFB _ 6_n(RFB+5) (43)
) 2

> —nRrp 1 — Zene

zge = ge™)
)

> Ze—"RFB, (44)

where we guarantee the validity of the last step by the ap@i@pchoice ofny. Now let’s derive the
lower bound for the integral if33) as follows

/ (@) 2exp (~Ily" — £l )| 2) dy” (45)
D(m/)NB(u™)
>/ (2) "V 2exp (~ly" = £ ' )| 2) dy” (46)
D(m/)NB(u™)NSp(m/u™)
n _ f£(n) roamY |2
26_nT/2/ (27T)—n/2€xp (_ ||y f (m U )|| ) dy" (47)
D(m))NB(un)NSp(m’ um) 2
_m—/2/ P<yn7un‘m/>dyn (48)
D(m/)NB(u™)NSp(m/ u™)
> ée—n(7/2+RFB). (49)
!
The inequality [{9) along with (33)) lead to
(n) n\||2 1 1 4
Hf (mvu )H > _(S(H) _ Og(é) _ z _ RFB)' (50)
n 4° n n 2
Substitutings(n) = n(E,,(Rr5) + ) in the above inequality, we obtain
(n) nY||2 _ 1 4
)P L Tmm los(3)) -
n 4 2 n

By choosinge in (#2) small enough such thatz™ + % < ~/2, we conclude that for any feedback

sequence;™ which is dropped in any iteration of our algorithm:

15 (m )| > n(P + ). (52)
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The above inequality is sufficient for us to prove the theorBioting that the cardinality of the set at
the end of our algorithm ig"f#2, we can write

n

B (ff")(m ) ] (53)
=2 Z () £ (m, )| (54)
mEM u”eu
>y % Z (" )| £ (m, ™) | (55)
meM\J eFy(
s Z (" fm)n(P + 1) (56)
| meM\J un€Fy(m) 8
-~ n(P+3)
= me%:v Pr{ Fy(m)|m}. (57)
n(P +5) s £g
>~ m;\J(l ) (58)
>n(P + 176)(1 — e~n(R-FRr5)) (59)
>nP. (60)

In the above derivation[5() is obtained using52) and the fact that for alln € M\ J, all the v™'s in
Fy(m) are removed at the end of the algorithm. Al§ER]) is a consequence @&5]) and (£9) is satisfied by
choosingy < m. The last inequality is secured by the appropriate choice,ohe above inequality
shows the conflict of the power constraint and the assumtiatn[24]) can hold for some: > n,, where
ng is chosen such that for any > n,

1

1
Zo—(s(n)=nRpp) _ = 61
56 < 5 (61)
2 1
_ —ne - 2
c 16P + 63)
Given the assumption dk.; < R, it is clear that there exists, such that all the above three inequalities
hold and this completes the proof. [ |

Proof of Theorernl4:We prove the achievability of the above error exponent uamgerative scheme
similar to the one used in the proof of Theorein 1. We use thetesame structure and notation as in
the previous iterative scheme and just express the digtirecbf this scheme. The main distinction is that
here, instead of feeding back the decoded messagé/(j.e= m;), the receiver sends back a function of
its decoded message

Un, = 9" (1), (64)
whereg™ : M s {1,...,e"%r5} is the feedback decision function. After receivifig,, the transmitter
compares the received feedback with the feedback corrdsppio the original message and stays silent
if

g™ (m) = Uy,

Otherwise, it sends the failure alarm and retransmits thesage with high power exactly similar to what
was described in the proof of Theorém 1. Considering theeasfgthe feedback functiop™(.), it is
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clear that this scheme meets the feedback constraint. Aisceasy to show that the power constraint is
also met. In particular, note that the probability of refmamssion in our scenario is

Pr{g"™ (m) # g (1)}
which is less than or equal to= Pr{m # 7, } and therefore the expected power used here is less than
the case considered in Theoréim 1. Also note that the typesakeseen here include the three types of
errors in the earlier case (false negative, false positiMbvarong decoding at the receiver) plus the error
due to the fact that a subset of the decoding errors in thebliosk are not recognized by the transmitter.
That is, the error corresponding to the event

which we call arerror mis-detection eventnust also be considered as a possible error event. We showed
earlier that the algorithm in Theorem 1 achieves a doublyoegptial error decay, where the error is
associated with the first three types of errors. Thereftre,probability of error for the current scenario
can be upper bounded by the sum of two terms: the probabsitp@ated with an error mis-detection
event and the probability associated with the other thrpegyof errors:

P.(n, R, Ry, P) < Pr{m # 1iv, g™ (m) = g (1) } + exp(—exp(n(¢ + o(1)))), (65)

for some( > 0. Given that the feedback rate is less than the feedforwag] we expect the error mis-
detection event to dominate the total error probabilitynéte the proof will be complete if we show that
there exists a sequence of feedback encoding funcfigfis(.)}>>, such that

Pr{m # my, g™ (m) = ¢" (1)} < exp( — n(Exors(R) + Ryors + 0(1))). (66)

We show the existence of such a feedback encoder sequemgeausatndom coding argument. Given
and a feedback functiofi™ : M — {1,...,e"%r5} | let's define the se¥™ (j) for eachj € {1, ..., e"frs}
as

VO (j) = {me M: g™ (m) = j}.
We can observe that, in fact, determining the funcg6h(.) is equivalent to partitioning1, ..., e"*} into

the sets{V™ (j)}jﬁ”. Now let’s consider all the possible feedback functionsvitich

|V(") (j)| _ 6"(R_RFB)7

forall j € {1,...,e"®rz}, That is, let’s consider all the equal partitionings of tle¢ &, ..., e"/*r5}. From
this set of functions, let’s pick the functigjf(.) uniformly randomly and use it as the feedback encoder
function. We denote the partitioning associated witf.) by {V*(j)}jﬁ”. Now let's compute
E[Pr{m # 1, g™ (m) = ¢" (i) }],
where the expectation is with respect to the randomnesscking the feedback function. We have
E[Pr{m # 1, g"(m) = g"(111)}] =

E[ZZ’:; Pr{m is sent} ZieM#m Pr{m, = i|m is sent}1{g«(i)=g+(m)}] =

Zf:jl Pr{m is sent} > . (2, Priiu = d[m is sent} E[1 g y=g=(my}] - (67)
For each pairi,m), we can write
Ellgg =g mp] = Pll;{g*(i) =g"(m)}
= > Pr{g’(i) = klg"(m) = k}Pr{g"(m) = k}
o
= Y Pr{i € V*(k)|m € V*(k)}Pr{m € V*(k)}. (68)

k=1
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Since {V*(j)}j’j” is uniformly randomly chosen from all equal partitionings {d, ..., "'}, we can
write for i # m and for anyk € {1, ..., e"firs}

V*(k)| -1
e"RFB ,
Y- VR —1

en(R—RpB) -1

Pr{i € V*(k)lm € V*(k)} =

Substituting the above equality ii6y) we get

El{gi)=g mp3] = (69)

We can now combindt) and 1) and conclude

enlt

Z Pr{m is sent} Z Pr{rm, = i|m is sent}
1EMi#Em

e "(BreteM)priDecoding error in first block}

e Brete) p (n R, P)
—n(Rrp+ENorB(R)+o(1))

(R Rrp) __
E[Pr{m # i, g"(m) = ¢"(f)}] !

er

IA A

(&

The above inequality implies that the expected (with respeencoder selection) probability of error
mis-detection event is less than the right hand sidéG@. (Therefore, we can conclude that there exists
at least one feedback encoding function among the ones froithwve randomly selected that satisfies
@6a). This completes the proof. [ |

Proof of Theoreml5:Here, we only present the proof for the case where 2. Following a similar
approach as in Theoren 2, the proof can be extenddd to2.

For eachR < C, there exists) > 0 such thatR < C(1 — ¢’). Let’s fix ¢’ and consider the integdr
which satisfies
| ,
5 < ? <. (70)

We divide the whole transmission block intsub-blocks each with length= n/k. We then partition each
sub-block into three parts of lengths 1 and/, exactly the same as the partitioning in thephase scheme
proposed in Section lll. In the first portion of sub-blogke {1, ...,k — 1}, messagen; which contains
nR/(k—1) nats of new information is transmitted on the forward chamseng a non-feedback Gaussian
codebook similar to the first phase of the algorithm desdriimeSection Ill. After the transmission, this
message is decoded and the decoded mesaage transmitted back on the feedback channel during the
first portion of thej + 1% sub-block and with the rat& nats per channel use. By the end of the feedback
transmission (end of the first portion of sub-block 1), the transmitter can detect the decoding error. If
m; # m;, the failure alarm is sent in the second portion of jhe 15 sub-block and the message; is
retransmitted with high power in the third portion of the 15 block. In fact, for each sub-block we apply
the 3-phase iterative scheme of Section Il with the distomcthat the error detection and retransmission
for each sub-block occurs one sub-block after the origirsaddmission. The forward rate per channel use
in each sub-block is

kR / 1 "2

Defining § = 2¢', the rate per channel use will be less th@ql — §). Using the results of Section I,
we can conclude that there exigts> 0 such that the error probabiliti®/ for the messager; is upper
bounded by
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!/

P! < exp(-exp (1) < exp(~exp(n’ )

where the last inequality is a consequencdi@).(Using the union bound, the total error probability will
be bounded as follows

k—1
P, < Pl
j=1
5/
< (b~ Dexp(-exp(n’))
5/
< Sexp(—exp(n=)).
where the last inequality is again a consequencé@f. (Taking § = %C the above inequality completes
the proof. [ ]
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