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Abstract—Determining the extrinsic parameter between mul-
tiple LiDARs and cameras is essential for autonomous robots,
especially for solid-state LiDARs, where each LiDAR unit has
a very small Field-of-View (FoV), and multiple units are often
used collectively. The majority of extrinsic calibration methods
are proposed for 360◦ mechanical spinning LiDARs where the
FoV overlap with other LiDAR or camera sensors is assumed.
Few research works have been focused on the calibration of
small FoV LiDARs and cameras nor on the improvement of
the calibration speed. In this work, we consider the problem
of extrinsic calibration among small FoV LiDARs and cameras,
with the aim to shorten the total calibration time and further
improve the calibration precision. We first implement an adaptive
voxelization technique in the extraction and matching of LiDAR
feature points. Such a process could avoid the redundant creation
of k-d trees in LiDAR extrinsic calibration and extract LiDAR
feature points in a more reliable and fast manner than exist-
ing methods. We then formulate the multiple LiDAR extrinsic
calibration into a LiDAR Bundle Adjustment (BA) problem. By
deriving the cost function up to second-order, the solving time
and precision of the non-linear least square problem are further
boosted. Our proposed method has been verified on data collected
in four targetless scenes and under two types of solid-state
LiDARs with a completely different scanning pattern, density, and
FoV. The robustness of our work has also been validated under
eight initial setups, with each setup containing 100 independent
trials. Compared with the state-of-the-art methods, our work
has increased the calibration speed 15 times for LiDAR-LiDAR
extrinsic calibration (averaged result from 100 independent trials)
and 1.5 times for LiDAR-Camera extrinsic calibration (averaged
result from 50 independent trials) while remaining accurate. To
benefit the robotics community, we have also open-sourced our
implementation code on GitHub.

Index Terms—Multiple LiDAR-Camera Extrinsic Calibration,
Small FoV LiDAR, High-Resolution Mapping.

I. INTRODUCTION

LiDAR and camera sensors, due to their superior charac-
teristics in direct spatial ranging and rich color information
conveying, have been increasingly used in autonomous driv-
ing [1, 2], navigation [3, 4] and high-resolution mapping [5]
applications. One drawback of the current 360◦ mechanical
spinning LiDAR is their dramatic high cost, preventing their
massive application in industry. Solid-state LiDAR [6] has a
much lower cost while achieving a denser point cloud within
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Fig. 1: A) The dense colorized point cloud with the LiDAR poses and
extrinsic parameters optimized by our proposed method. The views
from other perspectives are exhibited in B) left side and C) right side.
Our experiment video is available at https://youtu.be/PaiYgAXl9iY.

its FoV. However, solid-state LiDARs are of small FoV that
multiple solid-state LiDARs need to be combined to achieve
a similar FoV coverage as the mechanical spinning LiDAR.
This setup necessitates precise extrinsic calibration among the
LiDARs and cameras.

Several challenges reside in the extrinsic calibration involv-
ing small FoV LiDARs: (1) Limited FoV overlap among the
sensors and the precision requirement. Current methods usually
require the existence of a common FoV between each pair
of sensors [7]–[10], such that each feature is viewed by all
sensors. In real-world applications, this FoV overlap might be
minimal or not even exist due to the small FoVs of solid-state
LiDARs and their numerous sensor mounting positions. The
accuracy requirement of the calibration results, e.g., the con-
sistency and colorization of the point cloud (see Fig. 1), is thus
more challenging. (2) Computation time demands. For general
ICP-based LiDAR extrinsic calibration approaches [5, 11], the
extrinsic is optimized by aligning the point cloud from all
LiDARs and maximizing the point cloud’s consistency. The
increase in the number of LiDARs implies that the feature
point correspondence searching will be more time-consuming.
This is due to the reason that each feature point needs to search
for and match with nearby feature points using a k-d tree which
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contains the whole point cloud. In the LiDAR-camera extrinsic
calibration, a larger amount of LiDAR points will also lead to
more computation time in the LiDAR feature extraction.

To address the above challenges, we propose a fast and
targetless approach for extrinsic calibration of multiple small
FoV LiDARs and cameras. To create enough co-visible fea-
tures among the small FoV sensors, we introduce motions to
the sensor platform such that each sensor will scan the same
area (hence features) at different times. We first calibrate the
extrinsic among LiDARs (and simultaneously estimate the Li-
DAR poses) by registering their point cloud using an efficient
Bundle Adjustment (BA) method we recently proposed [4]. To
reduce time consumption in feature correspondence matching
among LiDARs, we implement an adaptive voxelization to
dynamically segment the point cloud into multiple voxels
so that only one plane feature resides in each voxel (see
Sec. III-B). We then calibrate the extrinsic between the cameras
and LiDARs by matching the co-visible features between the
images and the above-reconstructed point cloud. To further
accelerate the feature correspondence matching, we inherit the
above adaptive voxel map to extract LiDAR edge features. In
summary, our contributions are listed as follows:
• We propose a targetless extrinsic calibration pipeline

for multiple small FoV LiDARs and cameras that share
very few or even no FoV overlap. We formulate LiDAR
extrinsic calibration into a Bundle Adjustment problem
and implement an adaptive voxelization technique into
the LiDAR feature extraction and matching process. The
overall pipeline enjoys higher calibration precision and
computation efficiency.

• We verify our proposed work on data collected in various
test scenes by LiDARs of different scanning patterns,
FoVs, and point densities. When compared to various
state-of-the-art methods, our proposed work could boost
the speed by 15 times for multiple LiDAR calibration
and 1.5 times for multiple LiDAR-Camera calibration.
Meanwhile, our proposed work maintains high calibration
precision, with the average translation and rotation errors
down to 6mm and 0.09 degrees for LiDAR-camera and
8mm and 0.2 degrees for LiDAR-LiDAR.

• We open-source our implementation in ROS on GitHub1

to benefit the robotics community.

II. RELATED WORKS

A. LiDAR-LiDAR Extrinsic Calibration

The extrinsic calibration methods between multiple LiDARs
could be divided into motion-based and motionless approaches.
Motion-based approaches assume each sensor undergoes the
same rigid motion in each time interval [2, 12, 13] and trans-
form the extrinsic calibration into a Hand-Eye problem [14].
Authors in [15]–[17] also introduce external inertial navigation
sensors to facilitate the motion estimation of LiDARs. The
calibration precision of these approaches is easily affected by
the accuracy of the LiDAR odometry results, which might be
unreliable. Motionless methods have been discussed in [7, 8]

1https://github.com/hku-mars/mlcc

where the authors attach retro-reflective tapes to the surface
of calibration targets to create and facilitate the feature extrac-
tion among multiple LiDARs. These approaches require prior
preparation work and FoV overlap between LiDARs, which is
unpractical in real-world applications.

In our previous work [5], a simple rotational movement is
introduced to eliminate the requirement of FoV overlap, as
each onboard sensor could percept the same region of interest.
Then the extrinsic parameter is calibrated, along with the
estimation of LiDAR poses, by optimizing the consistency of
the point cloud map with iterative closest point (ICP) registra-
tion. The main problem within [5] is that the ICP registration
always registers one scan to the other, leading to an iterative
process where only one optimization variable (e.g., extrinsic or
LiDAR poses) can be optimized (by registering the point cloud
affected by the variable under optimization to the rest). Such
an iterative procedure is prolonged to converge. Moreover, at
each iteration, the ICP-based feature correspondence matching
process might be very time-consuming. As for each point-to-
plane correspondence, ICP needs to either search inside a k-
d tree containing the entire point cloud or create a k-d tree
containing the local point cloud every time before searching.

In this work, we formulate the extrinsic calibration into
a bundle adjustment (BA) problem [4], where all the op-
timization variables (both extrinsic and LiDAR poses) are
optimized concurrently by registering points into their cor-
responding plane. When compared to other plane adjustment
techniques [18, 19], the BA technique we use does not estimate
the plane parameters in the optimization process but solves for
them analytically in a closed-form solution prior to the opti-
mization iteration. The removal of plane parameters from the
optimization iteration lowers the dimension significantly and
leads to very efficient multi-view registration. To match points
corresponding to the same plane, we implement an adaptive
voxelization technique [4] to replace the k-d tree in [5]. As
only one plane feature exists in each voxel, our proposed work
significantly saves the computation time in correspondence
searching while remaining accurate (see Sec. III-B).

B. LiDAR-Camera Extrinsic Calibration

The extrinsic calibration between LiDAR and camera could
be mainly divided into target-based and targetless methods. In
target-based approaches, the geometric features, e.g., edges and
surfaces, are extracted from artificial geometric solids [20]–
[22] or chessboard [23, 24] using intensity and color infor-
mation. These features are matched either automatically or
manually and are solved with non-linear optimization tools.
In [25], authors establish the constraints using the crosswalk
features on the streets; however, this method is essentially
target-based as the parallelism characteristic of the crosswalk
is used. Since extra calibration targets and manual work
are needed, these methods are less practical compared with
targetless solutions.

The targetless methods could be further divided into motion-
based and motionless approaches. In motion-based methods,
the initial extrinsic parameter is usually estimated by the
motion information and refined by the appearance information.



In [26], authors reconstruct a point cloud from images using
the structure from motion (SfM) to determine the initial
extrinsic parameter and refine it by back-projecting LiDAR
points onto the image plane. In [13, 27], authors initialize
the extrinsic parameter by Hand-Eye calibration and optimize
it by minimizing the re-projection error between images and
LiDAR scans. In motionless approaches, only the edge features
that co-exist in both sensors’ FoV are extracted and matched.
Then the extrinsic parameter is optimized by minimizing the
re-projected edge-to-edge distances [9, 28]–[30] or by max-
imizing the mutual information between the back-projected
LiDAR points and the images [10].

Our proposed work is targetless and creates co-visible
features by moving the sensor suite to multiple poses, hence al-
lowing extrinsic calibration between LiDAR and cameras even
when they have no overlap, a circumstance that was not solved
in prior works [10, 13, 29]. Moreover, compared with our
previous work [28] which extracts LiDAR edge features using
the RANSAC algorithm, this work extracts edge features using
the same adaptive voxelization already computed in the LiDAR
extrinsic calibration, which is more competitive in computation
time and calibration precision. Compared with [10] which uses
LiDAR intensity information as a feature, our work uses more
reliable 3D edge information and is more computationally
efficient and accurate (see Sec. IV). Moreover, our work does
not require the common FoV between sensors.

III. METHODOLOGY

A. Overview

Let B
AT = (BAR,BAt) ∈ SE(3) represent the rigid trans-

formation from frame A to frame B, where B
AR ∈ SO(3)

and B
At ∈ R3 are the rotation and translation. We denote

L = {L0, L1, · · · , Ln−1} the set of n LiDARs, where L0 rep-
resents the base LiDAR for reference, C = {C0, C1, · · · , Ch}
the set of h cameras, EL = {L0

L1
T, L0

L2
T, · · · , L0

Ln−1
T} the set of

LiDAR extrinsic parameters and EC = {C0

L0
T,C1

L0
T, · · · ,Ch

L0
T}

the set of LiDAR-camera extrinsic parameters. To create co-
visible features between multiple LiDARs and cameras that
may share no FoV overlap, we rotate the robot platform to
m poses such that the same region of interest is scanned by
all sensors (see Fig. 2). Denote T = {t0, t1, · · · , tm−1} the
time for each of the m poses and the pose of the base LiDAR
at the initial time as the global frame, i.e., G

L0
Tt0 = I4×4.

Denote S = { GL0
Tt1 ,

G
L0

Tt2 , · · · ,
G
L0

Ttm−1
} the set of the base

LiDAR poses in global frame. The point cloud patch scanned
by LiDAR Li ∈ L at time tj ∈ T is denoted by PLi,tj ,
which is in Li’s local frame. This point cloud patch could be
transformed to global frame by

GPLi,tj = G
Li

TtjPLi,tj

, { GLi
RtjpLi,tj + G

Li
ttj , ∀pLi,tj ∈ PLi,tj}.

(1)

In our proposed approach of multi-sensor calibration, we
sequentially calibrate the EL and EC . In the first step, we simul-
taneously estimate the LiDAR extrinsic EL and the base lidar
pose trajectory S based on an efficient multi-view registration
(see Sec. III-C). In the second step, we calibrate the EC by

Fig. 2: FoV overlap created by rotation between two opposite pointing
sensors. The original setup of two sensors Li and Lj/Ck share no
FoV overlap. With the introduction of rotational motion, the same
region is scanned by all sensors across different times.

matching the depth-continuous edges extracted from images
and the above-reconstructed point cloud (see Sec. III-D). Lying
in the center of both LiDAR and camera extrinsic calibration is
an adaptive map, which finds correspondence among LiDAR
and camera measurements efficiently (Sec. III-B).

B. Adaptive Voxelization
To find the correspondences among different LiDAR scans,

we assume the initial base LiDAR trajectory S, LiDAR extrin-
sic EL, and camera extrinsic EC are available. The initial base
LiDAR trajectory S could be obtained by an online LiDAR
SLAM (e.g., [3]), and the initial extrinsic could be obtained
from the CAD design or a rough Hand-Eye calibration [14].
Our previous work [5] extracts edge and plane feature points
from each LiDAR scan and matches them to the nearby edge
and plane points in the map by a k-nearest neighbor search
(k-NN). This would repeatedly build a k-d tree of the global
map at each iteration. In this paper, we use a more efficient
voxel map proposed in [4] to create correspondences among
all LiDAR scans.

The voxel map is built by cutting the point cloud (registered
using the current S and EL) into small voxels such that all
points in a voxel roughly lie on a plane (with some adjustable
tolerance). The main problem of the fixed-resolution voxel map
is that if the resolution is high, the segmentation would be too
time-consuming, while if the resolution is too low, multiple
small planes in the environments falling into the same voxel
would not be segmented. To best adapt to the environment, we
implement an adaptive voxelization process. More specifically,
the entire map is first cut into voxels with a pre-set size (usually
large, e.g., 4m). Then for each voxel, if the contained points
from all LiDAR scans roughly form a plane (by checking
the ratio between eigenvalues), it is treated as a planar voxel;
otherwise, they will be divided into eight octants, where each
will be examined again until the contained points roughly
form a plane or the voxel size reaches the pre-set minimum
lower bound. Moreover, the adaptive voxelization is performed
directly on the LiDAR raw points, so no prior feature points
extraction is needed as in [5].

Fig. 3 shows a typical result of the adaptive voxelization
process in a complicated campus environment. As can be
seen, this process is able to segment planes of different sizes,
including large planes on the ground, medium planes on the
building walls, and tiny planes on tree crowns.



Fig. 3: A) LiDAR point cloud segmented with the adaptive voxeliza-
tion. Points within the same voxel are colored identically. The detailed
adaptive voxelization of points in the dashed white rectangle could
be viewed in B) colored points and C) original points. The default
size for the initial voxelization is 4m, and the minimum voxel size is
0.25m.

(a) (b)

Fig. 4: (a) The l-th factor item relating to S and EL with Li ∈ L and
tj ∈ T . (b) The distance from the point Gpk to the plane π.

C. Multi-LiDAR Extrinsic Calibration

With adaptive voxelization, we can obtain a set of voxels of
different sizes. Each voxel contains points that are roughly on
a plane and creates a planar constraint for all LiDAR poses
that have points in this voxel. More specifically, considering
the l-th voxel consisting of a group of points Pl = {GpLi,tj}
scanned by Li ∈ L at times tj ∈ T . We define a point cloud
consistency indicator cl

(
G
Li

Ttj

)
which forms a factor on S

and EL as shown in Fig. 4(a). Then, the base LiDAR trajectory
and extrinsic are estimated by optimizing the factor graph. A
natural choice for the consistency indicator cl (·) would be
the summed Euclidean distance between each GpLi,tj to the
plane to be estimated (see Fig. 4(b)). Taking account of all
such indicators within the voxel map, we could formulate the
problem as

arg min
S,EL,nl,ql

∑
l

(
1

Nl

Nl∑
k=1

(
nTl
(
Gpk − ql

))2)
︸ ︷︷ ︸

l-th factor

, (2)

where Gpk ∈ Pl, Nl is the total number of points in Pl, nl is
the normal vector of the plane and ql is a point on this plane.

It is noticed that the optimization variables (nl,ql) in (2)
could be analytically solved (see Appendix A) and the resultant
cost function (3) is over the LiDAR pose G

Li
Ttj (hence the base

LiDAR trajectory S and extrinsic EL) only, as follows

arg min
S,EL

∑
l

λ3 (Al) (3)

where λ3(Al) denotes the minimal eigenvalue of matrix Al

defined as

Al =
1

Nl

Nl∑
k=1

Gpk
GpTk − q∗l q

∗T
l ,q∗l =

1

Nl

Nl∑
k=1

Gpk. (4)

To allow efficient optimization in (3), we derive the closed-
form derivatives w.r.t the optimization variable x up to second-
order (the detailed derivation from (3) to (5) is elaborated in
Appendix B):

λ3(x� δx) ≈ λ3(x) + J̄δx +
1

2
δxT H̄δx, (5)

where J̄ is the Jacobian matrix, and H̄ is the Hessian matrix.
The δx is a small perturbation of the optimization variable x:

x = [· · · GL0
Rtj

G
L0

ttj · · ·︸ ︷︷ ︸
S

· · · L0

Li
R L0

Li
t · · ·︸ ︷︷ ︸

EL

].

Then the optimal x∗ could be determined by iteratively solv-
ing (6) with the LM method and updating the δx to x.(

H̄ + µI
)
δx = −J̄T (6)

D. LiDAR-Camera Extrinsic Calibration

With the LiDAR extrinsic parameter EL and pose trajectory
S computed above, we obtain a dense global point cloud by
transforming all LiDAR points to the base LiDAR frame. Then,
the extrinsic EC is optimized by minimizing the summed dis-
tance between the back-projected LiDAR edge feature points
and the image edge feature points. Two types of LiDAR
edge points could be extracted from the point cloud. One
is the depth-discontinuous edge between the foreground and
background objects, and the other is the depth-continuous edge
between two neighboring non-parallel planes. As explained
in our previous work [28], depth-discontinuous edges suffer
from foreground inflation and bleeding points phenomenon;
we hence use depth-continuous edges to match the point cloud
and images.

In [28], the LiDAR point cloud is segmented into voxels
with uniform sizes, and the planes inside each voxel are
estimated by the RANSAC algorithm. In contrast, our method
uses the same adaptive voxel map obtained in Sec. III-B. We
calculate the angle between their containing plane normals for
every two adjacent voxels. If this angle exceeds a threshold, the
intersection line of these two planes is extracted as the depth-
continuous edge, as shown in Fig. 5. We choose to implement
the Canny algorithm for image edge features to detect and
extract.

Suppose Gpi represents the i-th point from a LiDAR edge
feature extracted above in global frame. With pin-hole camera
and its distortion model, Gpi is projected onto the image taken
by camera Cl at tj , i.e., Il,j by

Il,jpi = f

(
π

(
Cl

L0
T
(
G
L0

Ttj

)−1
Gpi

))
, (7)

where f(·) is the camera distortion model and π(·) is the
projection model. Let Ii represent the set of images that
capture the point Gpi, i.e., Ii = {Il,j}. For each Il,jpi, the κ



Fig. 5: Depth-continuous LiDAR edge feature extraction comparison.
A) Real-world image. B) Raw point cloud of this scene. C) Edges
extracted using method in [28] where the yellow circles indicate the
false estimations. D) Edges extracted with adaptive voxelization.

nearest image edge feature points qk on Il,j are searched. The
normal vector ni,l,j of the edge formed by these κ points is
thus the eigenvector corresponding to the minimum eigenvalue
of Ai,l,j that

Ai,l,j =

κ∑
k=1

(qk−qi,l,j)(qk−qi,l,j)
T ,qi,l,j =

1

κ

κ∑
k=1

qk. (8)

The residual originated from this LiDAR camera correspon-
dence is defined as

ri,l,j = nTi,l,j
(
Il,jpi − qi,l,j

)
. (9)

Collecting all such correspondences, the extrinsic EC calibra-
tion problem could be formulated as

E∗C = arg min
EC

∑
i

∑
Il,j∈Ii

(
nTi,l,j

(
Il,jpi − qi,l,j

))
. (10)

Inspecting the residual in (9), we find the Il,jpi is dependent
on LiDAR poses G

L0
Ttj . This is due to the reason that LiDARs

may have FoV overlap with cameras at different times (as
in Fig. 2). Since G

L0
Ttj ∈ S has been well estimated from

Sec. III-C, we keep them fixed in this step. Moreover, the
ni,l,j and qi,l,j are also implicitly dependent on EC , since
both ni,l,j and qi,l,j are related with nearest neighbor search.
The complete derivative of (10) to the variable EC would be
too complicated. In this paper, to simplify the optimization
problem, we ignore the influence of camera extrinsic on ni,l,j
and qi,l,j . This strategy works well in practice as detailed in
Sec. IV-B.

The non-linear optimization (10) is solved with LM method
by approximating the residuals with their first order derivatives
(11). The optimal E∗C is then obtained by iteratively solv-
ing (11) and updating δx to x using the � operation [31].

δx = −
(
JTJ + µI

)−1
JT r, (11)

where

δx =
[
· · · Cl

L0
φT δCl

L0
tT · · ·

]T ∈ R6h

x =
[
· · · Cl

L0
R Cl

L0
t · · ·

]
J =

[
· · · JTp · · ·

]T
, r =

[
· · · rp · · ·

]T
,

with Jp and rp being the sum of Ji,l,j and ri,l,j when l = p:

Ji,l,j = nTi,l,j
∂f(p)

∂p

∂π(P)

∂P

[
− Cl

L0
R
(
L0pi

)∧
I
]
∈ R1×6

L0pi =
(
G
L0

Ttj

)−1
Gpi.

(12)

E. Calibration Pipeline
The workflow of our proposed multi-sensor calibration is

illustrated in Fig. 6. At the beginning of the calibration, the
base LiDAR’s raw point cloud is processed by a LOAM
algorithm [3] to obtain the initial base LiDAR trajectory S.
Then, the raw point cloud of all LiDARs are segmented by
time into point cloud patches, i.e., PLi,tj , Li ∈ L, tj ∈ T that
is collected under the pose G

Li
Ttj .

In multi-LiDAR extrinsic calibration, the base LiDAR poses
S are first optimized using the base LiDAR’s point cloud
patches PL0,tj . It is noticed that only S is involved and
optimized in (3). Then the extrinsic EL are calibrated by
aligning the point cloud from the LiDAR to be calibrated
with those from the base LiDAR. In this stage’s problem
formulation (3), S is fixed at the optimized values from the
previous stage, and only EL is optimized. Finally, both S and
EL are jointly optimized using the entire point cloud patches.
In each iteration of the optimization (over S, EL, or both), the
adaptive voxelization (as described in Sec. III-B) is performed
with the current value of S and EL. Moreover, the Hessian
matrix H has a computation complexity of O(N2), where N is
the number of points. In practice, to reduce this computational
complexity, we down-sample the number of points scanned
from the same LiDAR to 4 in each voxel. Such a process
would lower the time complexity of the proposed algorithm
to O(Nvoxel), where Nvoxel is the total number of adaptive
voxels. In Sec. IV-A1 experiment (2), Nvoxel ≈ 9×103 which
is greatly smaller than the total number of raw LiDAR points
in this scene, i.e., Npoints ≈ 4× 107.

In multi-LiDAR-camera extrinsic calibration, the adaptive
voxel map obtained with the S∗ and E∗L in the previous step
is used to extract the depth-continuous edges (Sec. III-D).
Then those three-dimension edges are back-projected onto
each image using the extrinsic parameter EC and are matched
with two-dimension Canny edges extracted from the image.
By minimizing the residuals defined by these two edges, we
iteratively solve for the optimal E∗C with the Ceres Solver2.

IV. EXPERIMENTS AND RESULTS

To test the proposed algorithm, we customized a remotely
operated vehicle platform3 (see Fig. 7) with one Livox AVIA
LiDAR4 (with 70.4 degrees of FoV, see L3 in Fig. 7), one
Livox MID-100 LiDAR5 (which has three internal MID-40
LiDARs, each has 38.4 degrees of FoV with only 8.4 degrees
overlap between adjacent MID-40 units, see L0, L1, and L2 in
Fig. 7) and two MV-CA013-21UC6 cameras (with 82.9 degrees

2http://ceres-solver.org/
3https://www.agilex.ai/product/3?lang=en-us
4https://www.livoxtech.com/avia
5https://www.livoxtech.com/mid-40-and-mid-100
6https://www.rmaelectronics.com/hikrobot-mv-ca013-21uc/



Fig. 6: The workflow of our proposed method: multi-LiDAR extrinsic
calibration (light blue region) and LiDAR-camera extrinsic calibration
(light green region). The adaptive voxelization takes effect in the steps
surrounded by the yellow rectangle.

(a) (b)

Fig. 7: Our customized multi-sensor vehicle platform. Left: the FoV
coverage of each sensor with their FoV specs. Right: the orientation
of each sensor is denoted in the right-handed coordinate system.

(a) Scene-1 (b) Scene-2

Fig. 8: Our experiment test scenes.

of FoV each, see C1 and C2 in Fig. 7). The extrinsic parameters
of the three MID-40 inside the MID-100 have been calibrated
by the manufacturer and could be used as the ground truth for
the calibration evaluation.

We have verified our proposed work with the data collected
in two random test scenes on our campus, as shown in Fig. 8.
Scene-1 is a square in front of the main library building
with moving pedestrians, and scene-2 is an open area near
a garden. The calibration data is collected in both scenes by
rotating the sensor suite slightly for more than 360◦ degrees
and keeping this platform still every few degrees. Keeping
the robot platform still during data collection enables us to
acquire a dense enough point cloud from each LiDAR at
each pose and also eliminates the problem caused by motion
distortion and time synchronization. The timestamps T are
manually selected so that only the point cloud and image data
are chosen when the robot platform is still. During sensor suite
rotation, a dedicated LiDAR inertial odometry and mapping

(LOAM) algorithm loam-livox [3] is called to estimate a rough
LiDAR pose trajectory Sinit, which serves as the initial pose
in our factor graph optimization. Moreover, to obtain an initial
estimate of the extrinsic ELinit , we collected another data, the
initialization data, which is collected in scene-1 with an ‘8’-
figure path. Similarly, loam-livox is used to estimate each
LiDAR’s trajectory, based on which the extrinsic is solved by a
standard Hand-eye calibration. All experiments are conducted
on a desktop computer with an i7-9700K processor and 32GB
RAM.

A. Multiple LiDAR Calibration

1) Calibration Precision: In this section, we compare our
algorithm with the motion-based method [13] and the ICP-
based method [5] using the MID-100 LiDAR and the AVIA
LiDAR. Both [5, 13] are targetless, offline, and utilize the
motion information to calibrate the extrinsic parameter without
requiring significant LiDAR FoV overlap as our method in
this work. The method in [13] is essentially a variant of hand-
eye calibration, with further consideration of pose uncertainty.
To compare the performance of [13] with our method on the
calibration data collected above, we run loam-livox [3] to
obtain the point cloud of each scan and its poses (odometry).
Since the uncertainty information within each LiDAR’s motion
estimation is also examined in [13] to achieve the optimal
performance, we manually calculate the measurement noise
in each LiDAR odometry estimation. This is completed by
calculating the covariance between the consecutive scans using
the above-obtained point cloud and taking the odometry as
the initial guess. Then, the odometry and its uncertainty
information of each LiDAR are fed to and processed by [13].
The other method under comparison is our previous work [5],
which used the same rotation to create an overlap for small
FoV LiDARs and an ICP-based factor graph optimization to
estimate the extrinsic parameter and LiDAR pose. To make a
fair comparison, we feed the same initial pose trajectory Sinit
and extrinsic ELinit obtained above to both [5] and this work
before the full calibration on the calibration data collected
above.

The experiment is divided into two parts: (1) MID-100
LiDAR self calibration: the middle MID-40 is chosen as
the base LiDAR to calibrate the extrinsic EL of the other
two MID-40s, i.e., L1

L0
T, L1

L2
T (see Fig. 7). To evaluate the

calibration precision, we compare the optimized L1

L0
T∗, L1

L2
T∗

with the ground-true values obtained from the manufacturer.
To further enrich the calibration data collected above, we adopt
the calibration data of MID100 in two extra scenes used in [5].
This leads to four test scenes in total (two scenes in this
work and two scenes from [5]), each has two LiDAR extrinsic
ground-truth (i.e., L1

L0
T, L1

L2
T) for evaluation. Consequently, we

have eight independent real-world calibration data for MID40
in the evaluation. (2) AVIA and MID-100 LiDAR: the AVIA
LiDAR is chosen as the base LiDAR to calibrate the extrinsic
EL between AVIA and each MID-40s, i.e., L3

L0
T, L3

L1
T and L3

L2
T

(see Fig. 7). To evaluate the calibration precision, we calculate
the L1

L0
T∗ = (L3

L1
T∗)−1 L3

L0
T∗ and L1

L2
T∗ = (L3

L1
T∗)−1 L3

L2
T∗



using the above results and compare them with the ground-
true values obtained from the manufacturer. This experiment
is conducted with calibration data collected in the two scenes
from this work only since the previous work [5] did not have
an AVIA LiDAR. The two scenes and two LiDAR extrinsic
ground-truths lead to four independent real-world calibration
data in the evaluation. As a result, we have twelve independent
calibration data and two LiDAR types (i.e., Livox MID-40
and AVIA) with completely different scanning patterns, point
densities, and FoVs.
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Fig. 9: Extrinsic calibration results of the motion-based [13], ICP-
based [5] and our proposed methods in two experiment setups (with
few or no FoV overlap between sensors).

The comparison results of our method, the ICP-based pre-
vious work [5], and motion-based [13], are shown in Fig. 9.
Both the ICP-based previous method [5] and our proposed
method in this work outperform the motion-based method [13]
in calibration precision. This is due to the reason that the
precision of the motion-based method [13] relies heavily on the
extent of excitation in the sensor motion. Since the sensors’
movements in all test scenes are mainly constrained on the
ground, as most ground vehicles do, the excitation in the
z-dimension of the extrinsic is much less assured. Besides
the excitation, the quality of the LiDAR pose estimation
is also a crucial factor affecting the performance of hand-
eye calibration in [13]. For the Livox MID-40 and AVIA
LiDARs that have very small FoV, the odometry is significantly
deteriorated due to the reduction of feature points in a frame
[3]. In contrast, our current method and previous one [5]
use a rotation motion to create a large FoV overlap, where
the same feature points are observed from multiple LiDARs
from multiple poses. Exploiting the constraints imposed by
these co-visible features considerably increase the calibration
accuracy, almost irrelevant to excitation in motion or odometry
accuracy. Moreover, when compared to the ICP-based previous
method [5], the performance of our method in this work has
considerably improved the calibration precision (in terms of
average calibration error) and robustness (in terms of the
variance in the calibration error), especially in translation.
These results are credited to the more accurate feature match-
ing correspondences and solutions brought by the adaptive
voxelization and second-order optimization. Moreover, it is
shown that our proposed method is less affected by the distinct
characteristics (point cloud density, FoV, scan pattern, etc.)
introduced by different types of LiDARs.

2) Convergence and Computation Time Comparison: The
main benefit of our method in this work, when compared to
our previous work [5], is the computation time, which serves

as one of the main motivations for this work. In this section,
we demonstrate that the proposed algorithm converges much
faster than the ICP-based method [5] in terms of both iteration
times and computation time while remaining accurate. Since
the motion-based method [13] directly generates the extrinsic
result, the convergence comparison with this method is not
applicable. To ensure the data diversity in the comparison, we
use all the calibration data of MID-100 in the previous section
collected in four scenes (two scenes collected in this work and
two extra scenes from [5]). We choose the middle MID-40 as
the base LiDAR to calibrate the adjacent two LiDARs. To
further examine the convergence robustness to initial values of
the extrinsic, we perform 100 independent trials. In each trial,
the initial extrinsic EL is randomly perturbed (±10 degrees for
L1

Li
R and ±0.2m for L1

Li
t) from the manufacturer’s calibrated

values.

The extrinsic rotation and translation errors of both methods
versus iteration numbers are plotted in Fig. 10, where the
calibration error is calculated from the manufacturer values.
Each box in this box-plot contains 800 calibration results
from 100 trials and each trail includes the results of two
LiDAR extrinsic (i.e., {L0, L1} and {L1, L2} see Fig. 7)
overall four scenes. As can be seen, our method converges
much quicker than the previous method [5], especially in
translation. The entire algorithm converges within 5 iterations,
even in the worst-case scenario, while that of the previous work
converges much slower. After 15 iterations, the convergence
in the translation of [5] is slowed down even more. The slow
convergence of [5] is attributed to the pairwise ICP registration
process, where only one pose or extrinsic can be estimated
at a time. In contrast, our method optimizes all the poses
and extrinsic concurrently, leading to a more complete point
registration in each iteration and hence fewer iterations to
converge. The results in Fig. 10 also show how the translation
error of the ICP-based method [5] converges to a larger value
than that of our method, which is in agreement with the results
in the previous section comparing the calibration prevision.

Besides the convergence rate in terms of iteration numbers,
our method also achieves a much lower computation time
than [5] at each individual iteration. The averaged computation
time per trial per iteration of both methods is summarized
in Table I. Within each step of the calibration (see Fig. 6),
we further dig into and calculate the time cost in feature
correspondence matching (Match) and non-linear cost function
solving (Solve). It is seen our proposed work significantly
saves the computation time in the above two processes due
to the implementation of adaptive voxelization (Sec. III-B)
and second-order optimization (Sec. III-C). In each iteration, a
voxel map is created only once for our proposed work, and for
any feature point, its corresponding feature points are simply
the points within the same voxel. Whereas in [5], a unique
k-d tree data structure needs to be created and searched each
time for every feature point during the feature correspondence
matching process. In non-linear cost function solving, the
Jacobian and Hessian matrix w.r.t. the optimization variables
(S and EL) are exactly derived in our proposed work, leading
to a faster and more accurate solution. In contrast, in [5], only



TABLE I: AVERAGE COMPUTATION TIME PER ITERATION ON MULTI-LIDAR CALIBRATION

Pose Optimization Extrinsic Optimization Global Optimization
Match Solve Total Match Solve Total Match Solve Total

ICP-Based [5] 4.0220s 1.1057s 5.1613s 4.4635s 1.6041s 6.1045s 11.0557s 3.3616s 14.9829s
Proposed 0.1040s 0.0328s 0.2288s 0.3419s 0.0443s 0.5771s 2.2940s 0.4687s 3.0887s
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Fig. 10: Convergence comparison of ICP-based [5] method and our
proposed work. Each box contains the results from 100 trials. The
mean and standard deviation of the initial extrinsic errors are 0.1846m
and 0.0562m for translation and 9.4038 degrees and 2.9094 degrees
for rotation, respectively.
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Fig. 11: The distribution of calibration errors of our proposed method
under multiple disturbed initial values. Each box contains the results
of 100 trials. It is seen under the setups of (a)-(g), most of the
initial values could be converged with only a few outliers. The initial
disturbance exceeds our convergence tolerance under the setup of (h).

the Jacobian of the residual w.r.t. one LiDAR is considered,
causing inaccurate Hessian matrix computation. This analysis
is also verified in Fig. 10 that the proposed work makes both
the extrinsic translation and rotation errors quickly converge
to the appropriate values. The reduction of iteration numbers
(more than 3 times) and computation time per iteration (more
than 5 times) shorten the calibration time of the previous
method [5] by more than 15 times.

3) Robustness Test: To quantify the convergence basin of
our proposed method, we test our method when the initial
extrinsic ELinit is perturbed by noises at different levels. We
use the MID-100 dataset collected from two test scenes in this
work and choose the middle MID-40 as the base LiDAR to

calibrate the adjacent two LiDARs. The calibration error is
calculated similarly as in Sec. IV-A1. In each configuration,
the initial extrinsic is randomly perturbed 100 times (e.g., 0.5m
10 degrees means ±10 degrees for L1

Li
R and ±0.5m for L1

Li
t)

from the manufacturer’s calibrated values.
The calibration errors are illustrated in Fig. 11. Each box

in this box-plot contains 400 results from 100 trials and each
trail contains 4 results from two LiDAR pairs (i.e., {L0, L1}
and {L1, L2} see Fig. 7) in two test scenes. It is shown that
given the rotation noise of 10 degrees, the proposed method
could ideally converge when the translation noise is 0.5m and
mostly converge when the translation noise is under 2.0m.
When the rotation noise is 20 degrees, our proposed method
could generally converge when the translation noise is under
1.0m. Such a high noise level is sufficient to cover the faulty
scenarios in the real world caused by manufacturing mounting
errors or severe vibration during usage.

B. Multiple LiDAR Camera Calibration

1) LiDAR-Camera with FoV Overlap: In this section, we
verify the effectiveness of our method in calibrating the
extrinsic among LiDARs and cameras when they have FoV
overlap. We select the AVIA as the base LiDAR and calibrate
its extrinsic w.r.t. two cameras (see Fig. 7). The extrinsic EC
is initialized by adding disturbance to the values measured
from the CAD model. We perform 50 independent trials with
the calibration data collected in scene-2, that in each trial the
initial extrinsic is randomly perturbed (±5 degrees for Ck

L3
R

and ±0.1m for Ck

L3
t) from the CAD model’s measurements.

We calibrate the extrinsic of each camera individually (i.e.,
C1

L3
T∗,C2

L3
T∗), then we calculate the C1

C2
T∗ = C1

L3
T∗(C2

L3
T∗)−1

and compare it with that directly calibrated by the standard
chessboard method serving the ground-truth.

We compare our method with three targetless methods
that work for LiDAR-cameras with FoV overlaps: RANSAC-
based [28], motion-based [13], and mutual information-
based [10]. Our previous work [28] is the latest state-of-the-
art specifically designed for high-resolution LiDARs, which is
most similar to this work. [10, 13] are state-of-the-art methods
originally designed for 360◦ LiDARs. In [13], each point from
a LiDAR scan is projected onto and matched with adjacent two
images, and the extrinsic is optimized by minimizing the total
points’ color difference (i.e., the appearance) across adjacent
images. In [10], the extrinsic is optimized by maximizing
the mutual information between LiDAR intensity images and
camera images.

The calibration results are illustrated in Fig. 12 and Fig. 13.
It is seen that both [28] and our work are an order of magnitude
better than [10, 13] in both rotation and translation. This is due
to the reason that the three-dimensional LiDAR edge feature is



Fig. 12: Point cloud colorized using the extrinsic calibrated by motion-based [13], mutual information-based [10], RANSAC-based [28] and
our proposed methods. Each row represents a viewpoint in scene-2. The detailed difference between these methods is pointed out by arrows,
e.g., miss-colorization on pillars and benches (zoomed view is recommended).

TABLE II: COMPUTATION TIME ON MULTIPLE LIDAR-CAMERA CALIBRATION

LiDAR Feature Extraction Extrinsic Optimization Per Iteration

Plane Estimation Edge Estimation Total LiDAR-Camera
Feature Matching

Solving
Cost Function Total

Motion-Based [13] - - - 1.7690s 3.5780s 10.8457s
Mutual Information-Based [10] - - - 3.6042s 0.6101s 4.7520s
RANSAC-Based [28] 9.6186s 27.6738s 37.4523s 0.8609s 0.5552s 1.4548s
Proposed 3.8054s 2.4494s 6.2892s 0.5424s 0.2510s 0.8278s

10 2

10 1

100

101

Ro
ta

tio
n 

Er
ro

r (
de

gr
ee

)

10 2

10 1

100

101

10 2

10 1

100

101

10 2

10 1

100

101

10 2

10 1

100

101

Initial
Parameter

10 4

10 3

10 2

10 1

100

Tr
an

sla
tio

n 
Er

ro
r (

m
)

Motion-Based
10 4

10 3

10 2

10 1

100

Mutual
Information-Based

10 4

10 3

10 2

10 1

100

RANSAC-Based
10 4

10 3

10 2

10 1

100

Proposed
10 4

10 3

10 2

10 1

100

Fig. 13: Extrinsic calibration results of motion-based [13], mutual
information-based [10], RANSAC-based [28] and our proposed meth-
ods. Each box-plot illustrates the results of 50 trials using the data
collected in scene-2. The mean and standard deviation of the initial
rotation errors are 2.4768 and 1.2390 degrees. The mean and standard
deviation of the initial translation errors are 0.1308m and 0.0682m,
respectively.

more reliable than the point cloud intensity information used
in [10] and the color appearance in [13], especially in the
structured test scene with large planes and long edges. This
difference in calibration precision could also be visualized in
Fig. 12. It is also interesting to see that our work outperforms
the RANSAC-based method [28] quite significantly, although
they share many similarities in the overall calibration pipeline.
This is due to the reason that our plane estimation method
uses adaptive voxels to capture planes (and hence edges) at a
finer level with higher quality than that of the fixed-size voxels
used in [28]. The more accurate plane and edge estimation in
our method (see Fig. 5) eventually leads to higher calibration

precision and robustness.
Besides precision, our method also consumes much less

computation time in each step and optimization iteration,
as summarized in Table II. We first compare our proposed
method with [10]. Though no prior feature extraction process
is needed in [10], the calculation of the mutual information
consumes significant time due to the process of all LiDAR
points and image pixels. This phenomenon also appears in
the motion-based method [13], as each point from a LiDAR
scan is projected onto and matched with two adjacent images.
The averaged raw LiDAR points in each LiDAR scan is
Nraw ≈ 8 × 105 while the total number of extracted LiDAR
edge feature points is Nfeature ≈ 5×104, and this discovery is
in accordance with the recorded time consumption in Table II.

We then compare the detailed time consumption with the
RANSAC-based method [28]. In [28], the LiDAR plane feature
is extracted by first cutting the point cloud into fixed-size vox-
els and second analyzing the points distribution in each voxel
using RANSAC. In comparison, our proposed work cuts the
point cloud into voxels with sizes adapted to the environment
and extracts the plane feature by analyzing eigenvalues in each
voxel (see Sec. III-B). This difference in operation also leads
to distinct total voxel numbers, e.g., Nfixed = 9216 versus
Nadaptive = 1369 in this scene, which further causes large
computation time divergence in LiDAR edge feature estimation
as in Table II. Moreover, method in [28] are also prone to false
estimations (see Fig. 5) which makes the feature matching and
cost function solving processes less reliable (see Fig. 13) and
more time consuming.

2) LiDAR-Camera without FoV Overlap: In this section,
we demonstrate that the proposed method could also calibrate
the extrinsic EC between LiDAR and cameras without FoV
overlap. We choose the middle MID-40 of the MID-100 as the
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Fig. 14: Extrinsic calibration results of MID-100 and opposite point-
ing cameras in two test scenes. Each box-plot illustrates the results of
50 trials. The mean and standard deviation of the initial rotation errors
are 2.5408 and 1.3645 degrees. The mean and standard deviation of
the initial translation errors are 0.1376m and 0.0663m, respectively.

base LiDAR and calibrate the extrinsic of each LiDAR-camera
pairs (i.e., C1

L1
T,C2

L1
T, see Fig. 7). The initial extrinsic EC are

calculated by adding disturbance to the values measured from
the CAD model. We perform 50 independent trials with the
data collected in both scenes from this work, that in each trial
we randomly perturb the initial extrinsic value (±5 degrees
for Ck

L1
R and ±0.1m for Ck

L1
t) from the CAD’s measurements.

Then we calculate the C1

C2
T∗ = C1

L1
T∗(C2

L1
T∗)−1 and compare

it with that obtained by the standard chessboard method. The
calibration results and the corresponding colorized point cloud
are illustrated in Fig. 14 and Fig. 15.

It is seen that the general extrinsic calibration performance
between MID-40 and cameras is less competitive than that
between AVIA and cameras. This might be due to the reason
that AVIA has larger FoV coverage (70.4 versus 38.4 degrees)
and thus larger point cloud density (6 laser beams versus
1 laser beam) than MID-40, which will provide more edge
correspondences in all directions. The performance of MID-
40 and cameras extrinsic calibration in scene-2 is also slightly
better than scene-1. This is probably due to the reason that the
extracted LiDAR edges mismatch with and are trapped into
the image edges that largely existed on the ground of scene-1.

V. CONCLUSION

In this paper, we proposed a targetless extrinsic calibration
method for multiple small FoV LiDARs and cameras. Unlike
existing ICP-based methods, which rely on the k-d tree in
LiDAR feature correspondences matching, our proposed work
implemented an adaptive voxel map to store and search
for the feature points to save the calibration time. We also
formulated the multiple LiDAR extrinsic calibration into a
Bundle Adjustment problem and derived the cost function up
to second order to boost the solving process. In LiDAR-camera
extrinsic calibration, we reused the above constructed adaptive
voxel map to shorten LiDAR plane feature extraction and edge
feature estimation time. Compared with the RANSAC-based
methods, our work improved both computation efficiency and
accuracy. It is believed that this open-sourced work will benefit
the community of autonomous navigation robots and high-
resolution mapping, especially when the sensor setups include
small FoV LiDARs with few or even no FoV overlap.

Though no external calibration target is required, it is noted
that our proposed work relies on the existence of natural

Fig. 15: Colorized point cloud of MID-100 LiDAR and the opposite
pointing camera in scene-1. The left camera’s images are used to
color the point cloud. The brightness of the building wall is due to
the reflection of the sunlight. A) Bird-eye’s view. B) Details of the
stairs, fence, and ground tiles. C) Entrance of the library. The details
of flowerpots are clearly shown.

plane features (structured building walls, ground, etc.) in the
calibration environment. The precision and robustness of the
extrinsic calibration among LiDARs and cameras are based
on the correct extraction of LiDAR plane features. Thus, our
proposed work is less reliable in unstructured scenes (e.g.,
country field, mountain valley, or forest). Given appropriate
calibration scenes with sufficient plane features, it is believed
our proposed work could produce both fast and accurate cali-
bration results. In our future work, we wish to take the sensor
measurement’s noise model and camera intrinsic parameters
into consideration.
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APPENDIX A

A. Elimination of Feature Parameters From Cost Function

The original optimization dimension in (13)) is too high due
to the dependence on the planar parameters π = (nl,ql).

arg min
S,EL,nl,ql

∑
l

(
1

Nl

Nl∑
k=1

(
nTl
(
Gpk − ql

))2)
︸ ︷︷ ︸

l-th factor

. (13)

It is noted that the planar parameters (nl,ql) are independent
for different planes and we can optimize over them first, i.e.,

arg min
S,EL

∑
l

(
min
nl,ql

1

Nl

Nl∑
k=1

(
nTl
(
Gpk − ql

))2)
. (14)



The inner optimization over (nl,ql) in (14) could be further
performed on ql first and on nl then, i.e.,

arg min
nl

(
min
ql

1

Nl

Nl∑
k=1

(
nTl
(
Gpk − ql

))2)
. (15)

As can be seen, the cost function in (15) is quadratic w.r.t.
ql. Hence the inner optimization can be solved analytically by
setting the derivatives to zeros, i.e.,

nln
T
l

(
1

Nl

Nl∑
k=1

(
Gpk − ql

))
= 0. (16)

It is seen that the solution to (16) is not unique as long as∑Nl

k=1

(
Gpk − ql

)
is perpendicular to nl, which allows ql to

move freely along any direction perpendicular to nl. Since this
free movement of ql does not change the plane parameterized
by it, nor affect the cost function in (15), any solution of
ql satisfying (16) would be an optimal solution to the inner
optimization problem of (15). One such solution could be

q∗l =
1

Nl

Nl∑
k=1

Gpk. (17)

Substituting the optimal solution of ql in (17) back to (15)
leads to

arg min
‖nl‖=1

nTl

(
1

Nl

Nl∑
k=1

Gpk
GpTk − q∗l q

∗T
l

)
︸ ︷︷ ︸

Al

nl. (18)

Again, this optimization problem has the well-known analyti-
cal optimal solution n∗l , which is the eigenvector corresponding
to the smallest eigenvalue λ3 of the matrix Al. As a result,
substituting the optimal n∗l back to (14) leads to

S∗, E∗L = arg min
S,EL

∑
l

λ3 (Al) . (19)

As can be seen, the optimization variables (nl,ql) are an-
alytically solved before the optimization, which significantly
reduces the optimization dimension.

B. Second-Order Derivation of Cost Function

The optimization in (19) is nonlinear and solved iteratively.
In each iteration, the cost function is approximated to the
second order. More specifically, we view λ3 as a function of all
the contained points Gp which is the column vector containing
each Gpk ∈ Pl:

Gp = [GpT1
GpT2 · · ·GpTNl

]T ∈ R3Nl .

The λ3(Gp) in (19) could be approximated by

λ3
(
Gp + δGp

)
≈ λ3

(
Gp
)

+J ·δGp+
1

2
δGpT ·H ·δGp, (20)

where J and H are the first and second derivatives of λ3(Gp)
w.r.t. Gp. The expression of J and H could be found in [4]

and is omitted here due to space limit. Suppose the k-th point
Gpk in Gp is scanned by LiDAR Li at time tj , then

Gpk = G
Li

Ttjpk = G
L0

Ttj ·
L0

Li
T · pk

= G
L0

Rtj

(
L0

Li
R · pk + L0

Li
t
)

+ G
L0

ttj ,
(21)

which implies Gpk is dependent on S and EL. To perturb Gpk,
we perturb a pose T in its tangent plane δT = [φT δtT ]T ∈
R6 with the � as defined in [31], i.e.,

T = (R, t)

T� δT =
(
R exp

(
φ∧
)
, t + δt

)
.

(22)

Based on the error parameterization in (22) for both G
L0

Ttj

and extrinsic L0

Li
T, the perturbed point location in (21) is

Gpk + δGpk = G
L0

Rtj exp
(
G
L0
φ∧tj
)(

L0

Li
R exp

(
L0

Li
φ∧
)
pk

+ L0

Li
t + δL0

Li
t
)

+ G
L0

ttj + δ GL0
ttj .

(23)
Then, subtracting (21) from (23), we obtain

δGpk ≈ G
L0

Rtj

(
L0

Li
Rpk + L0

Li
t
)∧ G

L0
φtj + δ GL0

ttj+
G
Li

Rtj

(
pk
)∧ L0

Li
φ + G

L0
Rtjδ

L0

Li
t

(24)

and
δGp = D · δx, (25)

where

δx = [· · · GL0
φTtj δ

G
L0

tTtj · · ·
L0

Li
φT δL0

Li
tT · · · ]T ∈ R6(m+n−2)

is a small perturbation of the optimization variable x

x = [· · · GL0
Rtj

G
L0

ttj · · ·
L0

Li
R L0

Li
t · · · ],

and

D =


...

...
· · · DSk,p · · · DELk,q · · ·

...
...

 ∈ R3Nl×6(m+n−2)

DSk,p =

{ [
− G
L0

Rtj

(
L0

Li
Rpk + L0

Li
t
)∧

I
]
, if p = j

03×6, else

DELk,q =

{ [
− G
L0

Rtj
L0

Li
R
(
pk
)∧ G

L0
Rtj

]
, if q = i

03×6, else.
(26)

Substituting (25) to (20) leads to

λ3(x� δx) ≈ λ3(x) + JDδx +
1

2
δxTDTHDδx

= λ3(x) + J̄δx +
1

2
δxT H̄δx.

(27)
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