
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 1

Android HIV: A Study of Repackaging Malware for
Evading Machine-Learning Detection

Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang, and Kui Ren

Abstract—Machine learning based solutions have been success-
fully employed for automatic detection of malware on Android.
However, machine learning models lack robustness to adversarial
examples, which are crafted by adding carefully chosen pertur-
bations to the normal inputs. So far, the adversarial examples
can only deceive detectors that rely on syntactic features (e.g.,
requested permissions, API calls, etc.), and the perturbations can
only be implemented by simply modifying application’s manifest.
While recent Android malware detectors rely more on semantic
features from Dalvik bytecode rather than manifest, existing
attacking/defending methods are no longer effective.

In this paper, we introduce a new attacking method that
generates adversarial examples of Android malware and evades
being detected by the current models. To this end, we propose
a method of applying optimal perturbations onto Android APK
that can successfully deceive the machine learning detectors. We
develop an automated tool to generate the adversarial examples
without human intervention. In contrast to existing works, the
adversarial examples crafted by our method can also deceive
recent machine learning based detectors that rely on semantic
features such as control-flow-graph. The perturbations can also
be implemented directly onto APK’s Dalvik bytecode rather
than Android manifest to evade from recent detectors. We
demonstrate our attack on two state-of-the-art Android malware
detection schemes, MaMaDroid and Drebin. Our results show
that the malware detection rates decreased from 96% to 0% in
MaMaDroid, and from 97% to 0% in Drebin, with just a small
number of codes to be inserted into the APK.

Index Terms—android malware detection, adversarial machine
learning.

I. INTRODUCTION

W ITH the growth of mobile applications and their users,
security has increasingly become a great concern for

various stakeholders. According to McAfee’s report [24], the
number of mobile malware samples has increased to 22
millions in third quarter of 2017. Symantec further reported
that in Android platform, one in every five mobile applications
is actually malware [30]. Hence, it is not surprising that the
demand for automated tools for detecting and analysing mobile
malware has also risen. Most of the researchers and practi-
tioners in this area target Android platform, which dominants

Manuscript received December 12, 2018; revised May 29, 2019; accepted
July 15, 2019. Date of publication July 31, 2019; date of current version Oc-
tober 8, 2019. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Loukas Lazos. (Corresponding
author: Xiao Chen.)

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, and X. Yang are with the
Faculty of Science, Engineering and Technology, Swinburne University of
Technology, Hawthorn, VIC 3122, Australia. E-mail: xiaochen@swin.edu.au.

S. Nepal is with Data61, CSIRO, Australia.
K. Ren is with Department of Computer Science and Engineering, Univer-

sity at Buffalo, State University of New York, Buffalo, NY 14260, USA.
Digital Object Identifier 10.1109/TIFS.2019.2932228

the mobile OS market. To date, there has been a growing
body of research in malware detection for Android. Among all
the proposed methods [13], machine learning based solutions
have been increasingly adopted by anti-malware companies
[19] due to their anti-obfuscation nature and their capability
of detecting malware variants as well as zero-day samples.
Despite the benefits of machine learning based detectors, it has
been revealed that such detectors are vulnerable to adversarial
examples [25], [6]. Such adversarial examples are crafted by
adding carefully designed perturbations to the legitimate inputs
that force machine learning models to output false predictions
[16], [25], [31].

Analogously, adversarial examples for machine learning
based detection are very much like the HIV which progres-
sively disables human beings’ immune system. We chose
malware detection over Android platform to assess the fea-
sibility of using adversarial examples as a core security
problem. In contrast to the same issue in other areas such
as image classification, the span of acceptable perturbations
is greatly reduced: an image is represented by pixel values
in the feature space and the adversary can modify the feature
vector arbitrarily, as long as the modified image is visually
indistinguishable [39]; however, in the context of crafting
adversarial examples for Android malware, a successful case
must comply with the following restrictions which are much
more challenging than the image classification problem: 1) the
perturbation must not jeopardise malware’s original functions,
and 2) the perturbation to the feature space can be practically
implemented in the Android PacKage (APK), meaning that
the perturbation can be realised in the program code of an
unpacked malware and can also be repacked/rebuilt into an
APK.

So far, there are already a few attempts on crafting/de-
fending adversarial examples against machine learning based
malware detection for Android platform. However, the validity
of these works is usually questionable due to their impracti-
cality. For example, Chen et al. [8] proposed to inject crafted
adversarial examples into the training dataset so as to reduce
detection accuracy. This method is impractical because it is
not easy for attackers to gain access to the training dataset
in most use cases. Grosse et al. [17] explored the feasibility
of crafting adversarial examples in Android platform, but
their malware detecting classifier was limited to Deep Neural
Network (DNN) only. They could not guarantee the success
of adversarial examples against traditional machine learning
detectors such as Random Forest (RF) and Support Vector
Machine (SVM). Demontis et al. [9] proposed a theoretically-
sound learning algorithm to train linear classifiers with more

ar
X

iv
:1

80
8.

04
21

8v
4 

 [
cs

.C
R

] 
 1

6 
N

ov
 2

02
1



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 2

Manifest
(AndroidManifest.xml)

Dalvik Bytecode
(classes.dex)

Assets
(assets/)

Compiled resources
(Resources.arsc)

Signatures
(META-INF/)

Resources
(res/)

Native libraries
(lib/)

Fig. 1. File structure of APK. AndroidManifest.xml declares
the essential information; classes.dex contains the Dalvik Bytecode;
resources.arsc holds the compiled resources in binary format; META-
INF, lib, assets, and res folders include the meta data, libraries, assets, and
resources of the application, respectively.

evenly-distributed feature weights. This allows one to improve
system security without significantly affecting computational
efficiency. Chen et al. [7] also developed an ensemble learning
method against adversarial examples. Yang et al. [38] con-
ducted new malware variants for malware detectors to test
and strengthen their detection signatures/models. According
to our research, all these ideas [9], [7], [38] can only be
applied to the malware detectors that adopt syntactic features
(e.g., permissions requested in the manifest or specific APIs
in the source code [33], [1], [2], [26]). However, almost
all recent machine learning based detection methods rely
more on the semantic features collected from Dalvik byte-
code (i.e., classes.dex). This disables existing methods of
crafting/defending adversarial examples in Android platform.
Moreover, it is usually simple for existing methods to mod-
ify the manifest for the generation of adversarial examples.
However, when the features are collected from the bytecode,
it becomes very challenging to modify the bytecode without
changing the original functionality due to their programmatic
complexity. Therefore, existing works are not of much value in
providing proactive solutions to the ever-evolving adversarial
examples in terms of Android malware variants [7], [17], [8],
[9], [38].

In this paper, we propose and study a highly-effective
attack that generates adversarial malware examples in An-
droid platform, which can evade being detected by current
machine learning based detectors. In the real world, defenders
and attackers are always engaged in a never-ending war. To
increase the robustness of Android malware detectors against
malware variants, we need to be proactive and take potential
adversarial scenarios into account while designing malware
detectors to achieve creating such a proactive design. The work
in this paper envisions an advanced method to craft Android
malware adversarial examples. The results can be used for An-
droid malware detectors to identify malware variants with the

manipulated features. For the convenience of description, we
selected two typical Android malware detectors, MaMaDroid
[23] and Drebin [1]. Each of these two selects semantic or
syntactic features to model malware behaviours.

We summarise the key contributions of this paper from
different angles of view as follows:

• Technically, we propose an innovative method of crafting
adversarial examples on recent machine learning based
detectors for Android malware (e.g., Drebin and Ma-
MaDroid). They mainly collected features (either syntac-
tic or semantic ones) from Dalvik bytecode to capture
behaviors of Android malware. This contribution is dis-
tinguishable from the existing works [7], [8], [9], [17]
because can only target/protect the detectors relying on
syntactic features.

• Practically, we designed an automated tool to apply the
method to the real-world malware samples. The tool
calculates the perturbations, modifies source files, and
rebuilds the modified APK. This is a key contribution
as the developed tool adds the perturbations directly to
APK’s classes.dex. This is in contrast to the existing
works (e.g., [8], [17]) that simply apply perturbations in
AndroidManifest.xml. Although it is easy to imple-
ment, they cannot target/protect recent Android malware
detectors (e.g., [10], [28]) which do not extract features
from Manifest.

• We evaluated the proposed manipulation methods of
adversarial examples by using the same datasets that
Drebin and MaMaDroid (5879 malware samples) used
[1], [32]. Our results show that, the malware detection
rates decreased from 96% to 0% in MaMaDroid, and from
97% to 0% in Drebin, with just a small distortion gener-
ated by our adversarial example manipulation method.

The rest of the paper is organised as follows. Section II
gives an introduction to Android application packaging which
forms the basis for adding perturbations. Section III presents
the details of two typical target Android malware detectors
as well as the attack scenarios. Section IV and V show how
to craft adversarial examples against MamaDroid and Drebin,
respectively, followed by discussions on open issues in Section
VI. Related work comes in Section VII, and finally, Section
VIII concludes the paper.

II. ANDROID APPLICATION PACKAGE

Android applications are packaged and distributed in the
form of APK files. The APK file is a jar-like archive that
packs the application’s dexcode (.dex files), resources, assets,
and manifest file. The structure of an APK is shown in
Fig.1. In particular, AndroidManifest.xml is designed
for the meta-data such as permissions requested, definitions of
components like Activities, Services, Broadcast Receivers and
Content Providers. Classes.dex is used to store the Dalvik
bytecode to be executed on the Android Runtime environment.
Res folder contains graphics, string resources, user interface
layouts, etc. Assets folder includes non-compiled files and
META-INF is to store the signatures and certificates.

The state-of-the-art detectors usually use machine learning
based classifiers to categorize applications as either malicious



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 3

or benign [1], [2], [23], [26], [33]. Features employed by such
classifiers are extracted from the APK archive by performing
static analysis on the manifest and dexcode.

Manifest introduces the components of an applica-
tion as well as its requested permissions. Such infor-
mation is presented in a binary XML format inside
AndroidManifest.xml.

Contents presented in the manifest are informative, im-
plying the intentions and behaviours of an application. For
instance, requesting android.permission.SEND_SMS
and android.permission.READ_CONTACTS permis-
sions indicate that the application may send text messages
to your contacts. Features retrieved from the manifest are
usually constructed as a vector of binary values, while each
value indicates the presence/absence of a certain element in
the manifest. Dexcode, or Dalvik Bytecode, is the operational
code on Android platform. All the Java source codes are
compiled and assembled into a single Dalvik Executable
(classes.dex). Features extracted from classes.dex,
such as Control-Flow-Graph (CFG) and Data-Dependency-
Graph (DDG), contains rich semantic information and logical
structure of the application. They are usually presented in two
forms: 1) the raw sequence of API calls, and 2) the statistic
information retrieved from the call graph (e.g., similarity
scores between two graphs [10]). Such features are proved to
have strong discriminating power for identification of malware.

To evade being detected by machine learning based de-
tectors, a malware sample has to be manipulated so that
the extracted features for the learning systems look benign.
Intuitively, the target files to be modified are those from which
the features are extracted, i.e., AndroidManifest.xml
and/or classes.dex. While both of these files are in binary
format and are not readable by human, decompiling tools such
as apktool are used to convert them into a readable format.
Specifically, the binary XML can be transformed into plain-
text XML, and the Dalvik bytecode can be disassembled to
smali files, which are more human-friendly as intermediate
presentations of bytecode. The processed manifest file and
smali files can be edited and reassembled to an APK.

III. TARGETED SYSTEMS AND ATTACK SCENARIOS

We propose a framework to craft adversarial examples that
can evade machine learning based detection. Generally, ma-
chine learning based malware detection methods leverage two
types of features: static and dynamic features. Static features
are collected from disassembled APKs. Examples of such
features include requested permissions, API call sequences,
and control flow graphs. Dynamic features, on the other hand,
are collected during the execution of the applications by
monitoring their behavior and communication patterns. Since
dynamic features are collected by feeding random inputs, it is
more challenging to alter dynamic features than static features.
Therefore, we target static features in this work, and leave
the dynamic case for future work. Specifically, we target two
typical solutions which have been widely analysed in this
field, i.e., MaMaDroid [23] and Drebin [1]. The semantic
features that MaMaDroid uses are extracted from dexcode,

and the syntactic string values which are adopted by Drebin
are retrieved from both dexcode and manifest. We provide an
overview of MaMaDroid and Drebin below.

A. MaMaDroid

MaMaDroid extracts features from the CFG of an applica-
tion. It uses the sequence of abstracted API calls rather than
the frequency or presence of certain APIs, aiming at capturing
the behavioural model of the mobile application. MaMaDroid
operates in two modes, namely family mode and package
mode. API calls will be abstracted to either family level or
package level according to their mode. For instance, the API
call sendTextMessage() is abstracted as:

family︷  ︸︸  ︷
android .telephony︸                 ︷︷                 ︸

package

.SmsManager : void sendTextMessage()

︸                                                                          ︷︷                                                                          ︸
API call

Family mode is more lightweight, while package mode is more
fine-grained. We demonstrate the results of attacking both.

MaMaDroid firstly extracts the CFG from each application,
and obtains the sequences of API calls. Then, the API calls are
abstracted using either of the above-mentioned modes. Finally,
MaMaDroid constructs a Markov chain with the transition
probabilities between each family or package, used as the
feature vector to train a machine learning classifier. Fig. 2
illustrates the feature extraction process in MaMaDroid. Sub-
graph (a) is a code snippet that has been decompiled from
a malicious application; sub-graph (b) shows the call graph
extracted from the source code; sub-graph (c) is the abstracted
call graph generated from (b); and finally, sub-graph (d)
presents the Markov chain generated based on (c).

MaMaDroid recognises nine families and 338 packages
from official Android documentation. Packages defined by
application developer and obfuscated with identifier mangling,
are abstracted as self-defined and obfuscated, re-
spectively. Overall, there are 340 possible packages and 11
families.

Given the extracted features, MaMaDroid leverages RF,
KNN, and SVM to train the malware detector and test the
performance on several datasets (which were collected over
different time periods). RF outperforms the other two classi-
fiers, with its F-measure reaching 0.98 and 0.99 in the family
and package modes, respectively.

B. Drebin

Drebin is an on-device lightweight Android malware detec-
tor. Drebin extracts features from both the manifest and the
disassembled dexcode through a linear sweep over the man-
ifest file and the disassembled smali files of the application.
The features such as permissions, activities, and API calls are
presented as strings. Eight sets of features are retrieved, as
listed in Table I.

The extracted features are put into a multidimensional vector
(S) to create a |𝑆 |-D space, in which we can have 0 or 1 value



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 4

package com.a.c;
import android.util.Log;
Import android.content.Context;
import y2k.joyreactor.ServiceLocator; 
import y2k.joyreactor.util.Record; 

public class FetchAd {
  public static boolean Fetch(Context para){
    try {

  ServiceLocator.getService(true).record(para);
  return true;}

    catch (Exception para) {
  Log.d("u tty", para.getMessage()); }

    return false;
  }}

com.a.c FetchAd:
Fetch()

android.util.Log:
d()y2k.joyreactor.ServiceLocator: 

getService()

y2k.joyreactor.util.Record: 
record()

java.lang.Throwable:
getMessage()

(a) source code

self‐defined

java android java.lang android.util

self‐defined

0.5

0.25 0.25

0.5

0.25 0.25

com.a.c FetchAd:
Fetch()

[self‐defined, self‐defined]

Java.lang.Throwable:
getMessage()
[java, java.lang]

android.util.Log:
d()

[android, android.util]

com.a.c FetchAd:
Fetch()

[self‐defined, self‐defined]

com.a.c FetchAd:
Fetch()

[self‐defined, self‐defined]

y2k.joyreactor.ServiceLocator: 
getService()

[self‐defined, self‐defined]

y2k.joyreactor.util.Record:
 record()

[self‐defined, self‐defined]

(b) call graph generated from (a)

(c) call sequence extracted from (b), with corresponding family/package abstraction in sqaure brackets (d) Markov chains generated from (c), in family and package mode.

family package

Fig. 2. Process of feature extraction in MaMaDroid, from (a) to (d)

TABLE I
OVERVIEW OF DREBIN FEATURE SET

Drebin feature sets

manifest

𝑆1 Hardware components
𝑆2 Requested permissions
𝑆3 App components
𝑆4 Filtered intents

dexcode

𝑆5 Restricted API calls
𝑆6 Used permissions
𝑆7 Suspicious API calls
𝑆8 Network addresses

along each dimension, indicating the presence or absence of
the corresponding feature. The following shows an example of
the feature vector 𝜑(𝑥) of a malicious application that sends
premium SMS messages and thus requests certain permissions
and hardware components.

𝜑(𝑥) ↦→

©«

...
0
1

...
1
0

...

ª®®®®®®®®®¬

...
permission.SEND_SMS

permission.RECORD_AUDIO
...

hardware.camera
hardware.telephony

...

After the features being retrieved, Drebin learns a linear
SVM classifier to discriminate between benign and malicious
applications. The classification performance on Drebin was
evaluated on a dataset consisting 5,560 malware samples and
123,453 benign applications, which are collected between
August 2010 and October 2012.

C. Attack Scenarios

The knowledge of the target system obtained by the adver-
sary may vary in different situations. This includes the feature
set, the training set, the classification algorithm as well as the
parameters. We argue that in the real world, it is not likely
for the adversary to have full knowledge of the classification
algorithm used in the target detector. However, the adversary
can probe the detector through feeding desired inputs and
getting the corresponding outputs.

Knowing the feature set, as a baseline assumption for
attacking learning systems, has been widely adopted in similar
works in this field [5], [8], [17], [21]. Therefore, in this paper,
we consider the following four situations in our attack: 1)
Scenario F: the adversary only knows the feature set; 2)
Scenario FB: The adversary knows the feature set only, and
can query the target detector as a black box; 3) Scenario FT:
The adversary knows both the feature set and training set, but
cannot query the target detector; and 4) Scenario FTB: The
adversary knows both the feature set and the training set, and
can also query the target system as a black box. Note that in
the scenarios that allows querying the target system as a black-
box (i.e., scenario FTB and FB), the only information that the
adversary can get is the predicted label from the black-box
oracle when given an input. Also note that in the scenarios of
having access to the training set (i.e., scenario FTB and FT),
the adversary can only have a copy of the training set, but
he/she cannot inject new samples or modify the existing ones
in the training set.

IV. ATTACK ON MAMADROID

A. Attack Algorithm

We introduce an evasion attack on MaMaDroid in this
section. The purpose is to make a piece of malware evasive



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 5

with minimal API call injections into its original smali code.
We assume that we only have black-box access to the target
(MaMaDroid) detector. In other words, we can get output
from MaMaDroid by feeding input, but we do not know how
it processes internally. There are two considerations for the
features used in MaMaDroid. First, because the features are
actually the state transition probabilities of the call graph, the
probabilities of the transitions departing from the same node
in the call graph will increment up to 1. Second, the feature
value should be bounded between 0 and 1. We will address
these considerations in our algorithms.

We employ two adversarial example crafting algorithms
that have been widely adopted to generate evasive malware
examples. To study a more effective way of attacking, we
craft adversarial example by either optimising an adversarial
objective function (i.e., refer as C&W), or perturbing influen-
tial features based on the indicative forward derivatives (i.e.,
refer as JSMA). C&W and JSMA are originally developed
for crafting adversarial image examples, which has continuous
pixel values as the features. In our case, we are going to
calculate the perturbation based on the number of API calls,
which are discrete. Therefore, we need to refine plain C&W
and JSMA algorithms to cater our needs. We construct a neural
network 𝐹 as a substitute to launch the attack. In the malware
detection case, 𝐹 is a binary classifier which has a 2D output.
Let the input features of the original malware form an 𝑛

dimensional vector, denoted as 𝑋 .
1) Refined C&W: C&W crafts adversarial malware with

tunable attack confidence while optimising the distortion on
the original malwale features. We modify C&W to search for
an adversarial malware sample through optimising an objective
function with the following constraints:

min𝛿 | |𝛿 | |22 + 𝑐 · 𝑓 (𝑋 + 𝛿)

𝑠.𝑡. 𝑋 + 𝛿 ∈ [0, 1]𝑛,

𝑎𝑛𝑑 | |𝑋𝑔 + 𝛿𝑔 | |1 = 1, 𝑔 ∈ 1...𝑘 .

(1)

Here, 𝛿 is the perturbation to be optimised and 𝑐 is a constant
to balance the two terms in the objective function. We use
line-search to determine the value of 𝑐. The first term in the
objective function minimises the 𝑙2 distortion on the original
features, which means the change on the MaMaDroid feature
should be small enough to limit the amount of API calls we
insert into the smali code. The second term is a specially
designed adversarial loss function 𝑓 . Suppose 𝑡 is the ground-
truth class of the current malware example 𝑋 . Our goal is to
make 𝑋 be incorrectly classified into the other classes (in our
case, the benign class). Thus, 𝑓 takes the following format:

𝑓 (𝑋) = 𝑚𝑎𝑥(𝑍 (𝑋)𝑡 − 𝑚𝑎𝑥{𝑍 (𝑋)𝑖 : 𝑖 ≠ 𝑡},−𝜅) (2)

in which 𝑍 (𝑋) is the pre-softmax output from the substi-
tute 𝐹, 𝜅 is a hyper-parameter which can adjust the attack
confidence and 𝑓 will maximise the loss between the out-
put of current model and the ground-truth. To address the
aforementioned considerations, we apply two constraints in
the optimisation. First, each feature after perturbation should

be between 0 and 1. Second, the 𝑙1 norm of the features in
each family/package group should be equal to 1. The objective
function is optimised with AdaGrad [11]. The feature values
are iteratively updated until being misclassified. We use either
the substitute model (in scenario F and FT), or the MaMaDroid
oracle (in scenario FB and FTB), which we refer as the pilot
classifier, to determine whether a sample is misclassified.

Since the current feature 𝑋 is a set of probabilities, to
make the perturbation viable during the code injection into the
original smali code, we change the optimisation variable from
𝛿𝑖 on 𝑋 (the perturbation on the probabilities) to 𝜔 on 𝐴 (the
perturbation on the number of API calls). For the perturbation
on the 𝑖-th feature in group 𝑔, we have:

𝛿
𝑔

𝑖
=

𝑎
𝑔

𝑖
+ 𝜔

𝑔

𝑖

𝑎𝑔 + 𝜔𝑔
−
𝑎
𝑔

𝑖

𝑎𝑔
. (3)

wherein 𝜔𝑔 =
∑

𝑖 𝜔
𝑔

𝑖
and 𝑎

𝑔

𝑖
is the number of API calls

indicated by the 𝑖-th feature in the 𝑔-th group. We change
the optimiser from 𝛿 to 𝜔. Accordingly, we change the first
term of the adversarial objective function to | |𝜔 | |22, in order to
minimise the total number of code injections.

Deleting codes may jeopardise the functionality of the mal-
ware, therefore we only inject code to make adversarial exam-
ples. We apply a ReLu function (i.e., 𝑅𝑒𝐿𝑢(𝜔) = 𝑚𝑎𝑥(0, 𝜔))
to clip 𝜔 to non-negative values after each iteration. As the
result, the first constraint (i.e., 𝑎

𝑔

𝑖
+𝜔𝑔

𝑖

𝑎𝑔+𝜔𝑔 ∈ [0, 1]) is automatically
satisfied. To satisfy the second constraint (the sum of the
feature values in the same group being 1), we normalise∑

𝑖

𝑎
𝑔

𝑖
+𝜔𝑔

𝑖

𝑎𝑔+𝜔𝑔 for each group after each gradient descent round.
2) Refined 𝐽𝑆𝑀𝐴: JSMA finds adversarial examples using

the forward derivatives of the classifier. JSMA iteratively
perturbs important features to determine the Jacobian matrix
based on the model input and output features. The method
first calculates the Jacobian matrix between the input features
𝑋 and the outputs from 𝐹. In the case of MaMaDroid, we
want to find the Jacobian between the API call numbers 𝐴

and the outputs from 𝐹, given the relationship between API
call numbers and the probabilities (i.e., the input features). The
Jacobian can be calculated as follows:

𝐽𝐹 (𝐴) = [ 𝜕𝐹 (𝑋)
𝜕𝑋

𝜕𝑋

𝜕𝐴
] = [

𝜕𝐹𝑗 (𝑋)
𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑎𝑖
]𝑖∈1...𝑛, 𝑗∈0,1 (4)

wherein 𝑖 is the index of the input feature and 𝑗 is the index
of the output class labels (in our case it is binary). 𝑥𝑖 is the
𝑖-th feature, 𝑎𝑖 is the corresponding 𝑖-th API call, and 𝐹𝑗𝑋

is the output of the substitute at the 𝑗-th class. Suppose 𝑡 is
the ground truth label. To craft an adversarial example, 𝐹𝑡 (𝑋)
should decrease while the outputs of other classes 𝐹𝑗 (𝑋), 𝑗 ≠ 𝑡

are increased.
Based on the calculated Jacobian, we can construct a

saliency map 𝑆(𝐴, 𝑡) to direct the perturbation. The value for
feature 𝑖 in the saliency map can be computed as:

𝑆(𝐴, 𝑡) [𝑖] =
{

0, 𝑖 𝑓 𝐽𝑖𝑡 (𝐴) > 0 𝑜𝑟
∑

𝑗≠𝑡 𝐽𝑖 𝑗 (𝐴) < 0,
|𝐽𝑖𝑡 (𝐴) | (

∑
𝑗≠𝑡 𝐽𝑖 𝑗 (𝐴)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 6

According to the saliency map, we pick one API call (𝑖) that
has the highest 𝑆(𝐴, 𝑡) [𝑖] value to perturb during each itera-
tion. The maximum amount of allowed changes is restricted
to 𝛾. The number of the selected API call will be increased
by a small amount, represented as 𝜃, in each iteration. The
iteration terminates when the sample is misclassified by the
pilot classifier, or the maximum change number is reached.

B. APK Manipulation

In our study, the development of the APK file modification
method was guided by the following design goals: 1) the
modified APK will keep its original functionality; and 2) the
modification will not involve additional human efforts, i.e., it
can be applied automatically via running scripts.

As introduced in section III, the feature vector that Ma-
MaDroid uses are the transition probabilities between states
(either families or packages). Intuitively, the modification
approach we apply is to add a certain number of API calls from
specific callers to callees into the code to change feature values
in the feature space. Since we can obtain the total number of
calls that go from any callers to any callees with static analysis,
we therefore can calculate how much the feature values will
be affected by adding a single call.

The APK manipulation process is designed with two strate-
gies, namely simple manipulation strategy and sophisticated
manipulation strategy. The following explains their details and
limitations, respectively.

Simple manipulation strategy was motivated by the pro-
cess that MaMaDroid extracts and calculates its feature val-
ues. MaMaDroid extracts all API calls from classes.dex,
and abstracts them as either their families or packages
merely based on their root domain in the package names.
For instance, The self-defined class "MyClass" in a
self-defined package like android.os.mypack, and the
system class "StorageManager" in the system pack-
age android.os.storage, will both be abstracted as
android family or android.os package. By adding such
self-defined classes, we are able to mislead the abstraction of
API calls in MaMaDroid.

According to the above observation, we design some code
blocks that can include an arbitrary number of calls from any
caller to any callee. The java source code shown below is
an example of adding two android to android calls.
Arbitrary number of calls can be added by simply invoking
callee() multiple times in the caller().

package android.os.mypack

public class Myclass {
public static void callee() {}
public static void caller() {

callee();
callee();}}

Our approach proceeds by injecting the required self-defined
classes into the source of the target APK, and invoking the cor-
responding caller methods in the onCreate() method of
its entry point activity class. The entry point activity can be lo-
cated by searching "android.intent.action.MAIN"

in the manifest. Since source code cannot be perfectly reverse-
engineered to Java, we perform the code insertion on the smali
code. As mentioned in Section II, the modified smali codes
can be rebuilt to make an APK again. The following listing
presents the smali code of the above Java source code (with
constructor methods omitted).

.class public Landroid/os/mypack/Myclass;

.source "Myclass.java"

.method public static callee()V
.locals 0
return-void

.end method

.method public static caller()V
.locals 0
.line 6
invoke-static {},

Landroid/os/mypack/Myclass;->callee()V
return-void

.end method

The described modification process can add an arbitrary
number of calls from any callers to any callees, by simply
runing an automated script. It also ensures that the process
will not affect the functionality of the original application.
However, it modifies the CFG that MaMaDroid extracted from
the APK, and consequently modifies its feature values.

Simple manipulation takes advantage of the design flaw
in the feature abstraction process in MaMaDroid, thus can
possibly be defended by implementing white-list filter, which
filters out the API calls that are not in a standard Android SDK
when processing API abstraction (which is not implemented
in MaMaDroid).

Sophisticated manipulation strategy is designed to
bypass the white-list filter, in which system provided
non-functional API calls are inserted into the smali
code. For instance, invoking a Log.d() method in the
onCreate() method of the entry activity class (e.g.,
com.my.project.MainActivity), will result in adding
one self-defined to android call in the family mode, or one
self-defined to android.util call in the package mode. Since
the calls that we inserted are in the activity class of the
project, it is abstracted to self-defined or obfuscated
according to the abstraction rule of MaMaDroid. Therefore,
with sophisticated manipulation, calls only originated from
self-defined or obfuscated family/package can be inserted.
Such limitation slightly decreased the evasion rate from 99%
to 93% in our family mode experiment. An example of added
smali code for a log.d() method is presented as follows.

const-string p0, ""
const-string p1, ""

.line 13
invoke-static {p0, p1},

Landroid/util/Log;->d(Ljava/lang/String;
Ljava/lang/String;)I

We developed a script to automatically perform the code
insertion process. We firstly prepared the above described



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 7

no-op code blocks from each caller to each callee. These
code block are independent to the application, thus can be
repeatedly used in the attack. The number of calls to be
inserted from specific callers to callees were calculated by
our attack algorithms described in Section IV-A. Then, we
used regular expression to locate the onCreate() method
in the smali code of the entry point activity class, and add
any necessary code blocks to the end of the onCreate()
method. Fig. 3 demonstrates the attack process, in which the
dashed lines show the process of our attack algorithm, and the
solid lines illustrate our APK manipulation procedure.

C. Experiment Settings

The experiments to be presented in the following two
subsections evaluate the effectiveness of crafted adversarial
examples. More specifically, we are going to answer the
following two questions: 1) can the modified malware sample
effectively evade from the target detector? and 2) can the
modification be easily applied to the original APK? For the
convenience of experiments, we built MaMaDroid based on
the source code that the authors published online1.

1) Dataset: To evaluate the performance of the crafted
adversarial examples, we use the same datasets that have been
used in MaMaDroid. First, the set of benign applications con-
sists of 5,879 benign applications collected by PlayDrone [32]
in 2014 (denoted by oldbenign in [23]). The set of malware
includes 5,560 samples that were initially used in Drebin [1]
and collected between 2010 and 2012 (denoted by drebin in
[23]). The original experiments reported in [23] also tested
several combinations of other old and new datasets collected
over years to evaluate the robustness of their approach. Using
only one set of data does not affect our research target, i.e., to
craft adversarial example that can fool and evade the malware
detector. The classification results on the chosen datasets are
promising, of which the F-measures reach 0.88 and 0.96,
in the family and package modes, respectively. Our work
is to generate malware samples for evading the detection,
therefore, our test set obtains only malware samples. We
carefully prepare the test set by manually checking that every
sample can be installed and launched on an Android smart
phone. We randomly select 1,000 qualified malware samples
to form the test set, leaving the rest of the malware samples,
together with the benign application samples to be the training
set.

As discussed in Section III-C, to simulate the scenarios
where the original training dataset of the target detector is
unknown to the adversary (i.e., Scenario F and FB), we
collected a set of malware samples and another set of benign
applications from VirusShare2 and APKPure3, respectively.
VirusShare dataset consists of 24,317 malware samples col-
lected between May 2013 to March 2014, while APKPure
dataset consists of 10,000 applications we crawled from its
website on January 2018. The applications from APKPure are
submitted to VirusTotal to examine their benignity. We discard

1https://bitbucket.org/gianluca_students/mamadroid_code
2https://virusshare.com
3https://apkpure.com

the samples that are reported by at least one anti-virus engine
as malicious. Finally, the APKPure dataset contains 9,664
application. We randomly selected 4,560 malware samples
and 5,879 benign applications from VirusShare and APKPure
datasets, respectively, to form the surrogat dataset (to eliminate
the influence caused by different number of training samples
in the original and surrogate datasets). In the FT and FTB
scenarios, we use the original dataset to train the target
detector, as well as our attack algorithm; while in the F and
FB scenarios, we use the original dataset to train the
target detector and the surrogate dataset to train the attack
algorithm.

2) Experiment Work Flow: Given a malicious APK as the
input, we firstly decompiled it with apktool, and constructed
its feature vector. The attack algorithm then optimised the
perturbations to be added to the feature vector, i.e., the number
of calls added from each caller to callee. Then, corresponding
pre-designed code blocks were inserted into the smali files,
which were then recompiled into a new APK. The manip-
ulated APK was submitted to MaMaDroid oracle to get the
classification result. The attack was declared successful if the
modified APK was labelled as benign. This process makes sure
that our attack method not only changes the feature vector, but
also effectively modifies the APK. We additionally verified
that all the modified APKs can be successfully installed and
launched on an Android smartphone. It was difficult to verify
whether the functionality was affected or not. However, we
presume that since the calls we added were non-functional,
they will not have changed the functionality of original APK.

As we have explained before, we run experiments in four
deliberate scenarios (refer to Section III-C). The details of
the settings for each scenario are listed in Table II. In the
experiments, we train a substitute model to approximate Ma-
MaDroid by using AdaGrad. Accordingly, a multi-layer per-
ceptron (MLP) model is employed. The model contains 2 fully
connected hidden layers, each has 128 nodes. Each training
batch contains 256 samples and the substitute model is trained
for 100 epochs. In addition, we introduce dropout after each
hidden layer to prevent overfitting problem in the experiments.
We set the dropout rate to 0.5. Note that MaMaDroid trained
with the original dataset is used as benchmark for evaluation,
and we only require black-box access to the pilot classifier
(refer the definition to Section IV-A).

D. Experiment Results

In [23], MaMaDroid’s performance was examined on three
different machine learning classifiers. They are RF, SVM,
and K-Nearest Neighbour (KNN). To be consistent with the

TABLE II
ATTACK SCENARIOS

Scenario Pilot Classifier Training Set

F Substitute Surrogate
FT Substitute Original
FB MaMaDroid Surrogate

FTB MaMaDroid Original



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 8

smali
smalismali

0, 0.24, ..., 0, 0.2, 0
0.3, 0.22, ..., 0, 0, 0
1, 0,   … , 0, 0.5, 0.1 
0, 0, 0,  ..., 0, 0.4, 0
0, 0.05,..., 0.45, 0.2

0, 0.24, ..., 0, 0.2, 0
0.5, 0.22, ..., 0, 0, 0
1, 0,   … , 0, 0.5, 0.1 
0, 0, 0,  ..., 0, 0.6, 0
0, 0.05,..., 0.45, 0.2

feature 
extraction

attack
algorithm

locate program
entry point 

APK 
decompilation

pre‐designed
no‐op calls

smali
smalimodified 

smali
automated

manipulation

repackage
MaMaDroid
(Black-box)

classification
successful failed

Fig. 3. The attack process: the dashed lines show the process of our attack algorithm, and the solid lines illustrate our APK manipulation procedure.

experiments in [23], we also evaluate our proposed method
on these classifiers, respectively. In addition, to investigate
the robustness of Deep Neural Networks (DNN) in malware
detection, we leverage the features of MaMaDroid to train
a DNN-based detector. Specifically, our DNN-based detector
consists of five hidden layers, each with 128, 64, 64, 64, 64
neurons, respectively. The F-measures in family and package
modes are 0.92 and 0.95, respectively, which is comparable
to the state-of-the-art. The proposed attack methods are also
evaluated on the DNN-based detector.

The effectiveness of the crafted adversarial examples is
evaluated in terms of evasion rate and distortion. Evasion rate
is defined as the ratio of malware samples that are misclassified
as benign, to the total number of malware samples in the
testing set. Distortion is defined as the number of API calls
added to the smali code for each malware sample.

1) Overall results: The overall results of our attack are
presented in Fig. 4-7. Specifically, Fig. 4 and Fig. 5 present
the attack results of family mode using two attack algo-
rithms, while Fig. 6 and Fig. 7 demonstrate the results of
package mode. We applied the attack on aforementioned four
machine learning algorithms (sub-figures (a)-(d)), under four
real world scenarios (x-axes) as discussed in Section III-C.
Simple manipulation strategy is applied in this experiment,
while sophisticated manipulation strategy is evaluated in Sub-
section (4). The evasion rate before attack is also reported and
acted as a baseline. The evasion rate as well as the average
distortion for each sample is reported. The results indicate that
the proposed attack methods effectively evaded MaMaDroid
in most of the real world scenarios. For instance, the evasion
rate on RF increased from 4% (before attack) to 56%-99%
(after attack) in the family mode, and from 3% to 58%-99%
in the package mode, depending on the scenario and attack
algorithm. It is worth to note that in scenario FTB, where
adversary gains most knowledge of MaMaDroid, the evasion
rate (C&W) reaches 100% in RF, 100% in SVM, 83% in 3-
NN, and 100% in DNN, with average 55, 2, 65, and 1 API
calls added to each malware samples for these algorithms,

respectively. Even when the adversary only knows the feature
set (i.e., scenario F), the evasion rates with JSMA reach 62%,
75%, 58%, and 91%, in the above mentioned algorithms,
respectively.

2) Evaluation results by scenarios: An important obser-
vation is the improvement of attack effectiveness with the
increase of adversary’s knowledge of the target system. While
different level of knowledge obtained by adversary affects the
evasion rate in both algorithms, the impact on each factor
is different. As demonstrated in Fig. 5 , in the scenarios
which black-box access to MaMaDroid oracle is acquired
(i.e., FB and FTB), the evasion rate of C&W in all four
algorithms are significantly higher than the evasion rate in
the scenarios which black-box access is not granted (i.e., F
and FT). In the meanwhile, the possession of training set (F
versus FT, FB versus FTB) has little impact on the evasion
rate. However, the evasion rate in JSMA (refer to Fig. 4) are
to the contrast. The possession of training set influenced the
evasion rate significantly, while the access to black-box model
is less important.

3) Evaluation results by operation modes: As introduced
in Section III, MaMaDroid runs in either the family mode or
the package mode. Family mode is more lightweight, while
package mode is more fine-grained. The original classification
performance in the package mode is slightly better than that in
the family mode, with the original (baseline) evasion rate falls
in the range of 1%-6% on various algorithms (compared with
4%-11% in the family mode). The results of the experiment
indicate that the attack is more effective in the package mode
than in the family mode, in terms of evasion rate. For instance,
when attacking using JSMA, the evasion rate in the package
mode with RF reaches 100% in scenario FTB (Fig. 6(a)),
while it is 89% in the family mode in the same scenario
(Fig. 4(a)). However, the average distortion of the adversarial
example in the package mode is significantly higher than in
the family mode. In average, 17 API calls need to be added
in each application in the family mode, while this number
increased to 257 in the package mode. The results disclose



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 9

Base F FT FB FTB0
10
20
30
40
50

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
10
20
30
40
50

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
10
20
30
40
50

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
10
20
30
40
50

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB
(a) RF

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(b) SVM

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(c) 3-NN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(d) DNN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 4. The evasion rate and average distortion of adversarial examples generated by JSMA in the family mode

Base F FT FB FTB0
25
50
75

100
125
150

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
25
50
75

100
125
150

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
25
50
75

100
125
150

Av
g.

 D
ist

or
tio

n
Base F FT FB FTB0

25
50
75

100
125
150

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB
(a) RF

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(b) SVM

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(c) 3-NN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(d) DNN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 5. The evasion rate and average distortion of adversarial examples generated by C&W in the family mode.

Base F FT FB FTB0

500

1000

1500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0

500

1000

1500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0

500

1000

1500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0

500

1000

1500
Av

g.
 D

ist
or

tio
n

Base F FT FB FTB
(a) RF

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(b) SVM

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(c) 3-NN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(d) DNN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 6. The evasion rate and average distortion of adversarial examples generated by JSMA in the package mode.

Base F FT FB FTB0
500

1000
1500
2000
2500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
500

1000
1500
2000
2500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
500

1000
1500
2000
2500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB0
500

1000
1500
2000
2500

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB
(a) RF

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(b) SVM

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(c) 3-NN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base F FT FB FTB
(d) DNN

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 7. The evasion rate and average distortion of adversarial examples generated by C&W in the package mode.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 10

Simple Strategy Sophisticated Strategy
0

20

40

60

Av
g.

 D
ist

or
tio

n
RF SVM 3-NN DNN

Simple Strategy Sophisticated Strategy
0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 8. Comparison of applying simple manipulation strategy and sophisti-
cated manipulation strategy in the family mode by C&W

that while using more fine-grained features slightly enhance
the classification accuracy, it’s resistance to our attack is
significantly higher than using highly abstracted features (i.e.,
family mode), considering that more than 15 times of number
of calls need to be inserted for a successful evasion.

4) Evaluation results by manipulation strategy: As pre-
sented in Section IV-B, two strategies can be applied to the
proposed APK manipulation method. In simple manipulation
strategy, API calls originated from any caller can be inserted
into the smali code; while in sophisticated manipulation strat-
egy, only API calls originated from android, google,
self-defined and obfuscated can be added. Thus, we
examine the feasibility of the sophisticated manipulation strat-
egy, by restricting that only the values of the calls originated
from aforementioned families can be modified in the feature
space. Fig. 8 presents the evasion rates and the corresponding
average distortions of applying simple manipulation strategy
and sophisticated manipulation strategy in scenario FTB, re-
spectively. In the simple manipulation strategy, the evasion rate
are 100%, 100%, 83%, and 100%, in RF, SVM, 3-NN, and
DNN, respectively, with 55, 2, 65, and 9 API calls in average to
be added; while in the sophisticated manipulation strategy, the
evasion rate slightly decreased to 99%, 96%, 58%, and 100%,
respectively. The number of API calls to be injected in the
sophisticated manipulation strategy are in average 46, 14, 16,
and 9, respectively. The results demonstrate that sophisticated
manipulation strategy can also achieve a high evasion rate with
only a small number of API calls to be injected into the APK.

V. ATTACK ON DREBIN

A. Attack Algorithm

We adopt the Jacobian-based attack to craft an adversarial
example for Drebin, since the features of Drebin are binary.
𝐽𝑆𝑀𝐴 perturbs a feature from 0 to 1 in each iteration.
Regarding the Jacobian for Drebin, we calculate it based on
the following formula:

Base F FT FB FTB
0
2
4
6
8

10

Av
g.

 D
ist

or
tio

n

Base F FT FB FTB
Senario

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 9. The average distortion and evasion rate of adversarial example
generated by JSMA on Drebin.

𝐽𝐹 (𝑋) = [ 𝜕𝐹 (𝑋)
𝜕𝑋

] = [
𝜕𝐹𝑗 (𝑋)
𝜕𝑥𝑖

]𝑖∈1...𝑛, 𝑗∈0,1 (6)

wherein 𝑋 is the binary feature vector for Drebin and 𝑖 is
the classification result (i.e., malware if 𝑖 = 1). Based on
the Jacobian matrix, we select the most influential feature to
perturb in each iteration. In other words, we perturb the 𝑖-th
feature for which 𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖∈1...𝑛,𝑥𝑖=0𝐹0 (𝑥𝑖). We change
the selected one feature from 0 to 1 in each iteration, until the
example is misclassified, or we reach the maximum amount
of allowed change (i.e., 𝛾).

B. APK Manipulation

Drebin extracts features from both manifest and
dexcode. Different from previous work that only modifies
the features in manifest [17], we analyse the capability of
modifying the features obtained from the dexcode.

As explained in Section III-B, Drebin retrieves fea-
tures by applying a linear scan on related source files
(AndroidManifest.xml and smali files), which only
searches for the presence of particular strings (e.g., name
of API calls), rather than examining whether the calls are
executed. Therefore, our strategy is to add code containing
the required features but never being invoked or executed. The
listing below presents an example of adding a “suspicious
API: getSystemService()” feature to the smali code.

.method private addSuspiciousApiFeature()V
.locals 1
const-string v0, "phone"
.line 17
invoke-virtual {p0, v0},

La/test/com/myapp/MainActivity;->
getSystemService(Ljava/lang/String;)
Ljava/lang/Object;

move-result-object v0
check-cast v0,

Landroid/telephony/TelephonyManager;
return-void

.end method



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 11

C. Experiments & Evaluations

We present our attack performance on Drebin by reporting
the evasion rate and the average distortion in different real
world scenarios. Dataset described in Section IV-C is used in
the experiments.

Fig. 9 reports the result of our proposed attack. In scenario
FTB, where the adversary gets most knowledge of Drebin (i.e.,
the feature set, the training set, and output from Drebin oracle),
99% of malware samples in the testing set are misclassified
after the attack, with average 3.5 features to be added in
each sample. While in scenario F, where the adversary obtains
least knowledge of Drebin (i.e., only the feature set), 60%
adversarial malware examples can evade from detection.

Table III presents the average number of features inserted
into each malware sample, from which we observe that the
most added features are in the sets of restricted API calls and
suspicious API calls.

TABLE III
NUMBER OF FEATURES ADDED IN EACH SET

Source File Feature Sets Avg. Number Added

dexcode

𝑆5 Restricted API calls 2.17
𝑆6 Used permissions 0.1

𝑆7 Suspicious API calls 1.21
𝑆8 Network addresses 0.02

VI. DISCUSSION

A. Comparison with Existing works

We compare our attack method with another two works in
evading machine learning based malware detection. Chen et al.
[8] proposed to poison the training dataset to mislead machine
learning detectors. Grosse et al. [17] proposed a white-box
attack against deep learning based malware detection models.
Both of these works require the access to the feature set,
the training set and the machine learning model, therefore
we compare our results of scenario FTB with them, which
requires the same knowledge of the target model. However, the
comparison works make additional assumptions. [8] further
assumes that the adversary is capable of injecting tainted
samples into the training set, and [17] only considers the
situation that the adversary knows the detailed structure and
parameters of the targeting machine learning model (i.e.,
white-box). These assumptions are more restrictive that are
unlikely to happen in real world scenarios.

Table IV presents the evasion rate of our methods and the
methods proposed in [8] and [17]. The results show that our
methods outperform the compared methods in terms of evasion
rate.

B. Applicability of Our Attack

A great number of machine learning based Android malware
detection techniques have been proposed in the past few years.
The main differences and key contributions of these techniques
are the features they extracted to profile the malware samples.
As we could not demonstrate the effectiveness of the proposed

TABLE IV
COMPARISON WITH EXISTING WORKS (EVASION RATE)

MaMaDroid Drebin
RF SVM 3-NN DNN

Our JSMA Attack 89% 96% 86% 93% 99.4%
Our C&W Attack 100% 100% 83% 100% —

Chen et al. [8] — 68.95% — — 75.2%
Grosse et al. [17] — — — — 69.35%

method on every machine learning detector, we therefore
selected two typical detectors, Drebin and MaMaDroid that use
syntactic and semantic features, respectively. In prior works,
they have been selected as baseline methods to evaluate the
performance of adversarial attacks, e.g., [8], [17].

Our proposed attack framework can be applied in most
machine learning based detectors, which extract features from
either manifest or bytecode of an application. We just need
to refine the attack algorithm according to the constraint and
inter-dependency of the features used in the target detector, just
as what we have done for attacking MaMaDroid and Drebin.

C. Artifacts in Our Attack

It could be argued that adding a certain number of dummy
calls or no-op APIs, such as logging output and reading
files, introduces artifacts into the APK, which may make the
application look suspicious. To investigate whether our attack
will introduce such side effect to the original APK, we observe
the prevalence of such no-op API calls (e.g. android.util.log)
in the applications in the wild. According to our observation
on the experiment dataset, we find that it is normal for an
application, either benign or malicious, to have a certain
number of no-op API calls. For example, 17.9% benign appli-
cations and 16.3% malware samples in the dataset have more
than 100 android.util.log() calls in their source code.
The percentages further increased to 28.7% and 40% for the
applications to have more than 50 android.util.log()
calls, in benign and malicious applications, respectively. There
is no specific indication whether malware samples or benign
applications tend to have more such calls than the other. Note
that the average number of calls we inserted to craft adversarial
examples is only 17 for family mode (refer to Fig. 4), and 257
for package mode (refer to Fig. 6). Therefore, the injected code
will not bring strong indication that suggests an application to
be benign or malicious.

D. Defending Methods

1) Adversarial training method: The idea of adversarial
training is to recursively feed crafted adversarial examples into
the training dataset to strengthen the robustness of the machine
learning model. We evaluate the effectiveness of adversarial
training method on the proposed attack. Fig. 10 shows the
F-measure of benign and malicious applications with the
proposed adversarial training method, with varying percentage
of adversarial malware samples added in the training set.
Note that the malware test set contains the equal number of
original and adversarial malware samples. The F-measure of



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 12

0 2 4 6 8
% of Adversarial Examples Added in Training Set

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
F-

m
ea

su
re

Benign App
Malware

Fig. 10. F-measure of benign and malicious applications with the proposed
adversarial training defending method on MaMaDroid, with varying percent-
age of adversarial malware samples added in the training set.

benign and malicious samples increased from 69% to 80% and
from 64% to 82.5% by adding 1% of adversarial examples
into the training dataset, respectively. Their F-measure further
increased to 83% and 87%, respectively, when adding more
adversarial examples into the training dataset. Although this
defending method is simple and effective, it strongly relies on
the a priori knowledge of the attack algorithm.

2) Ensemble learning method: Ensemble of classifiers is
one of the effective defences for black-box adversarial exam-
ple. Instead of training one classifier using the full feature set
and all training samples, a number of sub-classifiers are trained
with either a subset of features, or a subset of training samples.
The final classification result is then made based on the
decision of different sub-classifiers with a specific rule, such as
majority vote. We demonstrate the effectiveness of ensemble
learning defence method against our attack. Two scenarios are
considered: scenario F and scenario FTB. In scenario F, the
attacker cannot query the target model, therefore he/she is not
aware of the existence of the defence mechanism. In scenario
FTB, the attacker can query the target model with the defence
mechanism implemented, and get its prediction result.

Fig. 11 presents the results of applying ensemble learning
method to defend our C&W attack on MaMaDroid (family
mode), in aforementioned two scenarios, respectively. Two
ensemble strategies are implemented in both scenarios, in
which each of 10 classifiers is trained with either 1/10 training
samples, or 1/10 of features. Evasion rates with and without
defence are reported. The results suggest that the ensemble
learning method is effective in defending the attack when
the attacker has least knowledge of the target model (i.e.,
scenario F), where the evasion rate decreased from 90% to
40-59% in different ensemble strategies. However, when the
attacker is capable to query the target model (e.g., the model is
implemented as an online service), the defence method cannot
effectively defend the proposed attack.

Scenario F
0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Base
No Defence

Defence - Ensemble Training
Defence - Ensemble Feature

Scenario FTB
0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n 

Ra
te

Fig. 11. Evasion rate of applying ensemble learning defence mechanism on
MaMaDroid family mode in two scenarios (FTB and F). Base: the evasion
rate before attack as a baseline; No Defence: attack the model without
implementing the defence; Defence - Ensemble Training: attack the model
with implementing ensemble learning method as defence, in which each of 10
classifier is trained with 1/10 training samples; Defence - Ensemble Feature:
attack the model with implementing ensemble learning method as defence, in
which each of 10 classifier is trained with 1/10 features.

VII. RELATED WORKS

A. Adversarial Attacks to Malware Detection

Recently, there are some research works that studied the
security aspect of various machine learning based malware
detectors. We give them a brief overview as follows:

Srndic et al. [21] proposed an attack against PDFrate, an
online malicious PDF file detection system. They modified
the fields in PDF file that was not rendered by PDF readers.
They are extracted as features to discriminate malicious files
from benign ones. Similar work was done by Biggio et al. [5],
who leveraged gradient descent attack to evade detection. Due
to the relative simplicity of the PDF file structure, it is easy
to alter the file without changing the original content.

Rosenberg et al. [27] proposed a black-box attack against
machine learning based malware detectors in Windows OS
based on analysing API calls. The attack algorithm iteratively
added no-op system calls (which are extracted from benign
softwares) to the binary code. The proposed method could
only be applied to the detection systems that embedded the call
sequence into a feature vector. It could not work if the features
are statistical information extracted from the call sequence,
such as similarity score or probability.

Grosse et al. [17] extended an existing adversarial example
crafting algorithm to the Android domain. They trained a deep
feed-forward neural network classifier with the feature set
adopted in Drebin. It had a comparable detection performance
with Drebin. Then, they launched a white-box attack on the
DNN model. In our work, we further customised the algorithm
they proposed, and demonstrated a successful black-box attack
on the original Drebin system.

Chen et al. [8] proposed a poisoning attack for Android
malware detection systems through polluting the training set
of the original detectors. However, to inject tainted samples



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 13

into the training set is an arguable assumption in real world
scenarios. Hu et al. [18] demonstrated a generative adversarial
network-based (GAN) approach to craft adversarial examples
of malware.

In additions, the works [17], [8], [18] used binary features
to indicate the presence of a certain permission or API.
The modification on these features usually cannot affect the
functionality of the applications. For instance, the adversary
can request a new permission in the manifest but will not
implement it in the code. Most of recent works will adopt
semantic features such as the ones extracted from the control
flow graphs. They usually require more cautions to tamper
with if we want the application functionality not to be affected.

B. Android Malware Detection

Researchers have developed many Android malware detec-
tion methods in the last decade. So far, there are a few survey
published in this field. Readers could refer to these surveys
for typical methods [14], [29], [20]. In this subsection, we
mainly focus on those which were published recently and used
machine learning techniques as their core algorithms.

In this field, almost all recently proposed detectors relied on
semantic features to model malware behaviours. For example,
Fan et al. [12] proposed DAPASA, an approach to detect
Android piggybacked applications through sensitive subgraph
analysis. Xu et al. [35] leveraged the inter-component commu-
nication patterns to detect Android malware. Yang et al. [36]
developed DroidMiner to scan suspicious applications to de-
termine when they contain malicious modalities. DroidMiner
can also be used to diagnose the malware family. Similar idea
has also been developed by Li et al. in the work [22]. Du
et al. adopted community structures of weighted function call
graphs to detect Android malware. Zhang et al. [40] proposed
a semantic-based approach to classify Android malware via
dependency graphs. Gascon et al. [15] developed a method
based on efficient embeddings of function call graphs with an
explicit feature map. Furthermore, Yang et al. [37] considered
user-event-driven components and the related sequences of
callbacks from the Android framework to the application
code. They further developed a program representation to
capture those callback sequences so as to differentiate Android
malware from benign applications.

As explained in Section I, existing works [7], [17], [8],
[9], [38] will not work properly when recent detectors relied
more on semantic features. In this paper, we presented an
advanced method of crafting adversarial examples by applying
perturbations directly on the APK classes.dex file. The
generated adversarial examples will also be effective on recent
detectors that rely more on semantic features.

VIII. CONCLUSION AND FUTURE WORK

Recent studies in adversarial machine learning and com-
puter security have shown that, due to its weakness in battling
against adversarial examples, machine learning could be a
potential weak point of a security system [4], [3], [34]. This
vulnerability may further result in the compromise of the
overall security system. The underlying reason is that machine

learning techniques are not originally designed to cope with
intelligent and adaptive adversaries, who can manipulate input
data to mislead the learning system.

The goal of this work has been, more specifically, to show
that adversarial examples can be very effective to Android
malware detectors. To this end, we first introduced a DNN
based substitute model to calculate optimal perturbations that
also comply with the APK feature interdependence. We next
developed an automated tool to implement the perturbations
onto the source files (e.g., smali code) of a targeted malware
sample. According to the evaluation results, the Android mal-
ware detection rates decreased from 96% to 0% in MaMaDroid
(i.e., a typical detector that uses semantic features). We also
tested Drebin (i.e., a typical detector that uses syntactic
features but also collects some features from classes.dex).
We found Drebin’s detection rates decreased from 97% to
0%. To the best of our knowledge, our work is the first
one to overcome the challenge of targeting recent Android
malware detectors, which mainly collect semantic features
from APK’s ‘classes.dex’ rather than syntactic features
from ‘AndroidManifest.xml’.

Our future work will focus on two areas: defence mecha-
nisms against such attacks and attack modifications to cope
with such mechanisms. For this paper, we only present in
Section VI-D a brief discussion about the feasibility and effec-
tiveness of an adversarial training and an ensemble learning
defending method. In the next stage, we plan to continue the
in depth analysis of various defence mechanisms. We will
also compare between the effectiveness of different substitute
models’ architectures.

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens. Drebin: Effective and explainable detection of android
malware in your pocket. In Ndss, volume 14, pages 23–26, 2014.

[2] Z. Aung and W. Zaw. Permission-based android malware detection.
International Journal of Scientific & Technology Research, 2(3):228–
234, 2013.

[3] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of
machine learning. Machine Learning, 81(2):121–148, Nov 2010.

[4] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security,
ASIACCS ’06, pages 16–25, 2006.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning
at test time. In Joint European conference on machine learning and
knowledge discovery in databases, pages 387–402. Springer, 2013.

[6] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
may 2017.

[7] L. Chen, S. Hou, and Y. Ye. Securedroid: Enhancing security of machine
learning-based detection against adversarial android malware attacks.
In Proceedings of the 33rd Annual Computer Security Applications
Conference, ACSAC 2017, pages 362–372, 2017.

[8] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li. Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach. computers & security, 73:326–
344, 2018.

[9] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be more
secure! a case study on android malware detection. IEEE Transactions
on Dependable and Secure Computing, 2017.

[10] Y. Du, J. Wang, and Q. Li. An android malware detection approach
using community structures of weighted function call graphs. IEEE
Access, 5:17478–17486, 2017.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 14

[11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[12] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu. Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis. IEEE
Transactions on Information Forensics and Security, 12(8):1772–1785,
2017.

[13] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan. Android security: A survey of issues, malware penetration,
and defenses. IEEE Communications Surveys Tutorials, 17(2):998–1022,
Secondquarter 2015.

[14] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan. Android security: a survey of issues, malware penetration,
and defenses. IEEE communications surveys & tutorials, 17(2):998–
1022, 2015.

[15] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection
of android malware using embedded call graphs. In Proceedings of
the 2013 ACM workshop on Artificial intelligence and security, pages
45–54. ACM, 2013.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[17] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel.
Adversarial examples for malware detection. In European Symposium
on Research in Computer Security, pages 62–79. Springer, 2017.

[18] W. Hu and Y. Tan. Generating adversarial malware examples for black-
box attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[19] KasperskyLab. Machine learning for malware detection, 2017.
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-
Whitepaper-Machine-Learning.pdf, Last accessed on 2019-08-09.

[20] M. La Polla, F. Martinelli, and D. Sgandurra. A survey on security for
mobile devices. IEEE communications surveys & tutorials, 15(1):446–
471, 2013.

[21] P. Laskov et al. Practical evasion of a learning-based classifier: A case
study. In Security and Privacy (SP), 2014 IEEE Symposium on, pages
197–211. IEEE, 2014.

[22] Y. Li, T. Shen, X. Sun, X. Pan, and B. Mao. Detection, classification
and characterization of android malware using api data dependency. In
International Conference on Security and Privacy in Communication
Systems, pages 23–40. Springer, 2015.

[23] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini. Mamadroid: Detecting android malware by building
markov chains of behavioral models. arXiv preprint arXiv:1612.04433,
2016.

[24] McAfee. Mcafee mobile threat report q1 2018, 2018.
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-
threat-report-2018.pdf, Last accessed on 2019-08-09.

[25] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. The limitations of deep learning in adversarial settings. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 372–387. IEEE, 2016.

[26] N. Peiravian and X. Zhu. Machine learning for android malware
detection using permission and api calls. In Tools with Artificial
Intelligence (ICTAI), 2013 IEEE 25th International Conference on,
pages 300–305. IEEE, 2013.

[27] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. Generic black-
box end-to-end attack against rnns and other api calls based malware
classifiers. arXiv preprint arXiv:1707.05970, 2017.

[28] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek. Android
malware detection using complex-flows. In Distributed Computing
Systems (ICDCS), 2017 IEEE 37th International Conference on, pages
2430–2437. IEEE, 2017.

[29] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda.
Evolution, detection and analysis of malware for smart devices. IEEE
Communications Surveys & Tutorials, 16(2):961–987, 2014.

[30] Symantec. Internet security threat report volume 20, 2015.
https://www.symantec.com/content/en/us/enterprise/other_resources/213
47933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf,
Last accessed on 2019-08-09.

[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural networks.
CoRR, abs/1312.6199, 2013.

[32] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google play.
In ACM SIGMETRICS Performance Evaluation Review, volume 42,
pages 221–233. ACM, 2014.

[33] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat:
Android malware detection through manifest and api calls tracing. In

Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on, pages 62–69. IEEE, 2012.

[34] W. Wu. Adversarial sample generation: Making machine learning
systems robust for security, 2018. https://blog.trendmicro.com/trendlabs-
security-intelligence/adversarial-sample-generation-making-machine-
learning-systems-robust-for-security/, Last accessed on 2019-08-09.

[35] K. Xu, Y. Li, and R. H. Deng. Iccdetector: Icc-based malware detection
on android. IEEE Transactions on Information Forensics and Security,
11(6):1252–1264, 2016.

[36] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. Droidminer:
Automated mining and characterization of fine-grained malicious be-
haviors in android applications. In European symposium on research in
computer security, pages 163–182. Springer, 2014.

[37] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-
flow analysis of user-driven callbacks in android applications. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, volume 1, pages 89–99, May 2015.

[38] W. Yang, D. Kong, T. Xie, and C. A. Gunter. Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in
android apps. In Proceedings of the 33rd Annual Computer Security
Applications Conference, pages 288–302. ACM, 2017.

[39] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li. Adversarial examples:
Attacks and defenses for deep learning. CoRR, abs/1712.07107, 2017.

[40] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android
malware classification using weighted contextual api dependency graphs.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1105–1116. ACM, 2014.


	I Introduction
	II Android Application Package
	III Targeted Systems and Attack Scenarios
	III-A MaMaDroid
	III-B Drebin
	III-C Attack Scenarios

	IV Attack on MaMaDroid
	IV-A Attack Algorithm
	IV-A1 Refined C&W
	IV-A2 Refined JSMA

	IV-B APK Manipulation
	IV-C Experiment Settings
	IV-C1 Dataset
	IV-C2 Experiment Work Flow

	IV-D Experiment Results
	IV-D1 Overall results
	IV-D2 Evaluation results by scenarios
	IV-D3 Evaluation results by operation modes
	IV-D4 Evaluation results by manipulation strategy


	V Attack on Drebin
	V-A Attack Algorithm
	V-B APK Manipulation
	V-C Experiments & Evaluations

	VI Discussion
	VI-A Comparison with Existing works
	VI-B Applicability of Our Attack
	VI-C Artifacts in Our Attack
	VI-D Defending Methods
	VI-D1 Adversarial training method
	VI-D2 Ensemble learning method


	VII Related Works
	VII-A Adversarial Attacks to Malware Detection
	VII-B Android Malware Detection

	VIII Conclusion and Future Work
	References

