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Abstract—The importance of preventing microarchitectural
timing side channels in security-critical applications has surged
in recent years. Constant-time programming has emerged as
a best-practice technique for preventing the leakage of secret
information through timing. It is based on the assumption that
the timing of certain basic machine instructions is independent
of their respective input data. However, whether or not an
instruction satisfies this data-independent timing criterion varies
between individual processor microarchitectures.

In this paper, we propose a novel methodology to formally ver-
ify data-oblivious behavior in hardware using standard property
checking techniques. The proposed methodology is based on an
inductive property that enables scalability even to complex out-
of-order cores. We show that proving this inductive property
is sufficient to exhaustively verify data-obliviousness at the
microarchitectural level. In addition, the paper discusses several
techniques that can be used to make the verification process
easier and faster.

We demonstrate the feasibility of the proposed methodology
through case studies on several open-source designs. One case
study uncovered a data-dependent timing violation in the exten-
sively verified and highly secure IBEX RISC-V core. In addition
to several hardware accelerators and in-order processors, our
experiments also include RISC-V BOOM, a complex out-of-order
processor, highlighting the scalability of the approach.

Index Terms—Data-Oblivious Computing, Formal Verification,
Hardware Security, Constant-Time Programming

I. INTRODUCTION

IN recent years, the view on hardware (HW) as a root-of-
trust has been severely damaged. A flood of new security

vulnerabilities renewed the focus on microarchitectural side
channels. Both software (SW) and HW communities have
proposed numerous countermeasures to these new security
gaps. However, to fully meet the stringent demands of security-
critical applications, a holistic combination of multiple coun-
termeasures is needed that takes consideration of the entire
system stack.

The most prominent SW paradigm that tries to mitigate
microarchitectural timing side channels is known as data-
oblivious, or constant-time, programming [1], [2], [3], [4]. It
works by the assumption that the timing and the resource usage
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of certain operations inside a processor are independent of
their respective input data. Constant-time programming is an
actively studied discipline with many important contributions
from the SW community, including open-source libraries [5],
[6], [3], domain-specific languages [7], verification tools [8],
[9], [10], [2], [11] and dedicated compilers [12], [13]. The term
”constant-time” can, however, be misleading, as there is no
need for execution times to be constant. A variable operation
timing is acceptable, as long as it depends only on public
information. For example, in constant-time programming, the
program itself is considered public information. With this
assumption in mind, consider a Read-After-Write (RAW)
hazard in a pipelined processor causing a stall. The resulting
change in instruction timing is legal because it is based on
the public sequence of instructions, not on its (potentially
confidential) operands.

The data-oblivious subset of a processor’s instruction set
is often referred to as the set of oblivious HW primitives.
More complex instructions, which could potentially be inse-
cure, are decomposed into these primitives to ensure a data-
oblivious behavior. As a simple example, consider a processor
which implements a multi-cycle multiplication. A common
optimization in a HW multiplier is to check whether one
of the operands is zero and, if so, produce the result after
a single cycle. This creates a data-dependent timing and a
possible side channel if the operand contains confidential
information. Instead of issuing a multiplication, constant-time
programming would therefore resort to replacing the multiply
instruction by a sequence of primitive instructions like add and
shift. However, there is no guarantee that even these simple
instructions are actually oblivious HW primitives. Wether or
not an instruction fulfills the criterion of data-independent
timing can vary between the implemented microarchitectures.
Yet, there is only little research on how to verify these
assumptions at the microarchitectural level [14], [15], [16],
[17].

To make things worse, a recent survey [18] highlighted
seven classes of microarchitectural optimizations that all un-
dermine the constant-time paradigm. While exploiting some
of these optimizations in commodity processors may seem
unrealistic, an attack called Augury [19] demonstrated that
this threat is not only a theoretical one. The work shows the
security implication of one of these optimizations, namely data
memory-dependent prefetchers, as they are present in modern
Apple processors. In light of more and more such advanced
optimizations being implemented, the question arises as to how
we can restore the trust in HW.
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To this end, we propose a novel methodology for proving
data-oblivious execution of HW operations using standard
formal property checking techniques. For processors, the
approach certifies a set of trusted HW primitives for data-
oblivious programming. Our results show that even simple
instructions like a logical shift might suffer from an unex-
pected timing variability. We also found a potential, and pre-
ventable, timing vulnerability in the extensively verified Ibex
RISC-V core [20]. Furthermore, we extend the approach to
out-of-order cores, demonstrating its feasibility and scalability
with an experiment on the Berkeley Out-of-Order Machine
(BOOM) [21].

In summary, this paper makes the following contributions:
‚ Sec. II – We provide a comprehensive overview of related

approaches that aim to ensure data-obliviousness building
upon an analysis at the HW level.

‚ Sec. III – We introduce a definition for data-oblivious
execution at the microarchitectural level and formalize
it using the notion of a 2-safety property over infinite
traces. Since most HW designs are not built for data-
obliviousness, we also introduce a weaker notion of input-
constrained data-obliviousness for general designs. In
order to make these properties verifiable in practice, we
present how the definitions over infinite traces can be
transformed to inductive properties that span over only a
single clock cycle.

‚ Sec. IV – We propose a formal verification methodology,
called Unique Program Execution Checking for Data-
Independent Timing (UPEC-DIT) [17], that can exhaus-
tively detect any violation of data-obliviousness at the
HW level. The methodology is based on standard formal
property languages, and can therefore be easily integrated
into existing formal verification flows. When applied
to processor implementations, UPEC-DIT can be used
to qualify the instructions of a microarchitectural ISA
implementation regarding their data-obliviousness. These
data-oblivious instructions constitute HW primitives for
countermeasures such as constant-time programming and
can therefore serve as a HW root-of-trust for the higher
levels of the system stack.

‚ Sec. V – We present several optimization techniques,
such as black-boxing, proofs over an unrolled model, and
cone-of-influence reduction, which can further increase
the scalability and usability of the proposed methodology.

‚ Sec. VI – We demonstrate the feasibility of our approach
through case studies on multiple open-source Register-
Transfer Level (RTL) designs. Besides several HW ac-
celerators and in-order processors, our experiments also
cover the BOOM [21], a superscalar RISC-V processor
with floating-point (FP) support, a deep 10-stage pipeline
and out-of-order execution.

II. RELATED WORK

One of the first works that aims to formally verify data-
obliviousness on the microarchitectural level is Clepsydra [14].
In their approach, the authors instrument the HW with In-
formation Flow Tracking (IFT) [22], [23] in such a way

that it tracks not only explicit but also implicit timing flows.
The verification engineer is then able to perform simulation,
emulation or formal verification to verify timing flow proper-
ties on the instrumented design. We believe that the ability
to utilize a simulation-based approach can be particularly
useful when dealing with very large designs. The experiments
conducted using formal verification in Clepsydra are, however,
restricted to individual functional units, e.g., cryptographic
cores. The additional logic added to monitor timing flows
introduces a complexity overhead within the design that can
be prohibitively large when trying to formally verify data-
independent timing in commercial-sized processors.

IODINE [15] and XENON [16] are tools to formally verify
data-obliviousness at the RTL. To this end, they build their own
tool chain and annotation system. While this approach is an
important contribution to restoring trust in HW, its dependency
on a custom tool environment may be an obstacle to adoption
in industry. In contrast, in our proposed methodology, we use
standard SystemVerilog Assertions (SVA) which allows us to
leverage any commercial (or open source) property checking
tool. Our goal is to complement existing formal workflows,
creating a synergy between functional and security verifica-
tion, and thus lowering the barrier to industrial adoption.

Although XENON makes considerable scalability improve-
ments over its predecessor IODINE, it may face complexity
hurdles when dealing with commercial microarchitectures.
XENON models the entire propagation path from the data
inputs (sources) to the control outputs (sinks). For complex
systems, however, the complexity of unrolling only a few
clock cycles can already be prohibitive. In contrast, our work
employs an inductive reasoning, which results in a property
that spans only a single clock cycle. This significantly im-
proves the scalability of formal security verification for data-
obliviousness. For the first time, we present a method that is
applicable to large processors featuring out-of-order execution.

A related line of research aims to establish a formally
defined relationship between HW and SW by formulating and
verifying so-called HW-SW contracts [24]. Similar to [17],
they can be used to prove data-independent timing on an
instruction-level granularity. However, current experiments
only cover in-order processor designs up to a pipeline depth
of three stages. A promising and ongoing related work named
TransmitSynth [25], [26] maps such a contract to a verifiable
SVA property in order to automatically detect data-dependent
side effects. TransmitSynth can enumerate microarchitectural
execution paths for a given instruction under verification. This
allows for a fine-grained categorization of leakage scenarios.
However, the workflow includes a manual annotation of so-
called Performing Locations (PLs), which are identifiers that
mark an instruction execution path. Correctly marking these
PLs requires some knowledge of the underlying design and
could be increasingly difficult with more complex systems,
especially for deep out-of-order processors like BOOM.

Other work pursues augmenting the Instruction Set Archi-
tecture (ISA) with information about the data-obliviousness
of instructions. In fact, both Intel [27] and ARM [28] have
recently added support for instructions with data-independent
timing. With the same goal in mind, RISC-V has just ratified
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the Cryptography Extension for Scalar & Entropy Source
Instructions [29]. A subset of this extension, denoted Zkt,
requires a processor to implement certain instructions of
standard extensions with a data-independent execution latency.
This ISA contract provides the programmer with a safe subset
of instructions that can be used for constant-time program-
ming. Another work on a Data-Oblivious ISA Extension
(OISA) [30] proposes to refine the ISA with information about
the data-obliviousness of each instruction. The authors then
develop HW support for this to track wether confidential infor-
mation can reach unsafe operands. The method proposed here
is complementary to the research efforts on such architectures
as it provides a tool to verify their security.

Finally, we point out that research on more efficient formal
solvers, such as IC3/PDR [31], is complementary to the pro-
posed approach. Our work proposes a solver-agnostic formal
verification methodology, and any progress on more efficient
model checkers can contribute to improved scalability of our
method.

III. THEORETICAL FOUNDATION

In this section, we introduce a formal notation that we will
use throughout this paper (Sec. III-A). We formally define
data-obliviousness at the microarchitectural level (Sec. III-B)
and then develop a weaker definition that is suitable for gen-
eral circuits not specifically designed for data-obliviousness
(Sec. III-C). In order to ensure scalability for more complex
designs, we translate these definitions, which are formu-
lated over infinite traces, into 1-cycle inductive properties
(Sec. III-D). We prove that these inductive properties are
equivalent to the corresponding definitions over infinite traces.
To conclude this chapter, we address some interesting special
cases (Sec. III-E).

A. Definitions

We first introduce some general notations to reason about
data-obliviousness as a HW property. We model a digital HW
design as a standard finite state machine (FSM) of Mealy type,
M “ pI, S, S0, O, δ, λq, with finite sets of input symbols I ,
output symbols O, states S, initial states S0 Ď S, transition
function δ : S ˆ I ÞÑ S and output function λ : S ˆ I ÞÑ O.
The interface sets I , O and the state set S are encoded in
(binary-valued) input variables X , output variables Y and state
variables Z, respectively.

A key observation is that, in a HW design, the timing of
a module is dictated by its control behavior. Accordingly, we
partition each interface set into two disjoint subsets in order
to separate control (C) from data (D). We denote these sets
as XC , XD, YC and YD, with

XC Y XD “ X;XC X XD “ H

YC Y YD “ Y ;YC X YD “ H

In practice, this partitioning of the interface is straightfor-
ward and is usually done manually based on the specification
of the design. For example, the operands and the result of a
functional unit are considered data, whereas any handshaking

signals that trigger the start of a new computation or indicate
that a provided result is valid belong to control.

We further define a trace τ “ te0, e1, ...u to be a sequence
of events, with an event et being a tuple pit, st, otq, where it
is the valuation of our design’s input variables X at time point
(clock cycle) t, st is its state, as represented by the value of Z
at t and ot is the valuation of its output variables Y at t. Let T
be the set of all infinite traces of the design where s0 P S0.

We introduce the following definitions:
‚ spτq “ ts0, s1, ...u is the sequence of valuations to the

design’s state variables Z in the trace τ P T .
‚ ipτq “ ti0, i1, ...u is the sequence of valuations to the

design’s input variables X in the trace τ P T . Likewise,
iCpτq is the sequence of valuations to XC and iDpτq is
the sequence of valuations to XD.

‚ opτq “ to0, o1, ...u is the sequence of valuations to the
design’s output variables Y in the trace τ P T . Likewise,
oCpτq is the sequence of valuations to YC and oDpτq is
the sequence of valuations to YD.

‚ With a slight abuse of notation, we also allow the above
functions to take single events as arguments, e.g., spetq “

st.
‚ For any t P N0, the notation τ rts represents the event et

at time point t. For example, spτ rtsq “ st represents the
valuation to the state variables in Z at time point t.

‚ Similarly, we define the notion rt..s as an infinite time
interval beginning with and including t. Accordingly,
τ rt..s represents an infinite subsequence of τ that starts
at and includes the time point t.

B. Data-Obliviousness in HW

Having established a basic notation, we proceed to defining
data-oblivious behavior at the microarchitectural level. In
our threat model, we assume that an attacker cannot access
confidential information directly. The attacker is, however,
able to observe the control signals of the design under attack,
e.g., by monitoring bus transactions. This means that, for
a HW module to be data-oblivious, the data used in the
computations must not affect the operating time or cause
other microarchitectural side effects. Based on this intuition we
formulate a definition of the security feature under verification:

Definition 1 (Data-Obliviousness).
A HW module is called Data-Oblivious (DO) if the sequence
of values of its control outputs YC is uniquely determined by
the sequence of values at the control inputs XC .

We can express Def. 1 formally as a 2-safety property over
infinite traces. We formalize it as follows: For any two infinite
traces running on the design whose starting states at time t are
identical and which receive the same control input sequences
from time point t on, data-obliviousness guarantees that the
control outputs after t are also identical:

DO – @τ1, τ2 P T, @t P N0 :

spτ1rtsq “ spτ2rtsq ^ iCpτ1rt..sq “ iCpτ2rt..sq

ñ oCpτ1rt..sq “ oCpτ2rt..sq

(1)
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C. Input-Constrained Data-Obliviousness

Def. 1 of data-obliviousness is fairly straightforward. Put
simply, it ensures that the control behavior of a HW design is
independent of the data it processes. Unfortunately, this strict
definition works only for HW that is carefully designed for
data-obliviousness. In general, however, designs are not data-
oblivious. A processor must be able to make decisions based
on the data it is processing, for example, when it executes
conditional branch instructions. Constant-time programming
tries to prevent data-dependent timing by excluding such
instructions from the security-critical parts of the program.
Data-obliviousness is achieved by restricting the program to
only use a data-oblivious subset of the ISA. Consequently, in
order to qualify a microarchitectural implementation for data-
obliviousness, we require a separation between data-oblivious
and non-data-oblivious operations at the HW level. This
means, we must systematically identify and formally verify the
control input configurations under which the design operates
data-independently. In practice, this requires constraining the
possible input values to a legal subset that ensures data-
obliviousness.

Definition 2 (Input-constrained Execution).
An input constraint is a non-empty subset ϕ Ď I of the
possible inputs to the design. An input-constrained trace τϕ
is an infinite trace in which the inputs to the design are
constrained by ϕ, i.e., ipτϕrtsq P ϕ for every t P N. The
subset Tϕ Ď T of all traces constrained by ϕ is called input-
constrained execution of the design.

We can now modify Def. 1 to introduce a weaker notion of
data-obliviousness. We call a HW design that provides a data-
oblivious subset of its functionality input-constrained data-
oblivious.

Definition 3 (Input-constrained Data-Obliviousness).
A HW design is called input-constrained data-oblivious
(DOϕ) if, for a given input constraint ϕ Ď I , the values of its
control outputs YC are uniquely determined by the sequence
of control inputs XC .

In essence, Def. 3 partitions the design behavior into data-
oblivious and non-oblivious HW operations. The HW runs
without any observable side effect on the architectural level,
as long as only inputs within the constraint ϕ are given. For
the special case of ϕ “ I , Def. 3 is equivalent to the original
Def. 1.

The following trace property formalizes the requirement of
input-constrained data-obliviousness:

DOϕ – Dϕ, @τ1, τ2 P Tϕ, @t P N0 :

spτ1rtsq “ spτ2rtsq ^ iCpτ1rt..sq “ iCpτ2rt..sq

ñ oCpτ1rt..sq “ oCpτ2rt..sq

(2)

D. Formally Proving Data-Obliviousness in Practice

In the previous subsections, we defined data-obliviousness
as a property over infinite traces. Most commercial model
checking tools, however, reason about sequential circuits by

unrolling the combinatorial part of the design over a finite
number of clock cycles. Therefore, our definitions of data-
obliviousness formalized over an infinite number of clock
cycles are not yet suitable for being checked on practical tools.

For exhaustive coverage of every possible design behavior,
the circuit must be unrolled to its sequential depth. The
sequential depth of a circuit is the minimum number of clock
cycles needed to reach all possible states, typically starting
from the reset state of the design. For most practical designs,
the sequential depth can easily reach thousands of clock cycles.
To make things worse, the sheer size of an industrial design
may make it impossible for the property checker to unroll
for more than a few clock cycles, even for highly optimized
commercial tools. Therefore, it is usually not possible to verify
such a design exhaustively with bounded model checking from
the reset state.

Interval Property Checking (IPC) [32], [33] provides un-
bounded proofs and can scale to large designs by starting
from a symbolic initial state. Instead of traversing a large
number of states from reset, IPC starts from an arbitrary “any”
state. However, there are two challenges associated with this
approach.

The first challenge stems from the nature of the symbolic
initial state. Since the proof starts from any possible state, it
also includes states that are unreachable from reset. This can
lead to false counterexamples, since the property in question
may hold for the set of reachable states, but fail for certain
unreachable states. This challenge arises not only in security
verification, but in all formal verification approaches that use
a symbolic initial state. A standard approach to address this
problem is to add invariants to the proof:

Definition 4 (Invariant).
For a given HW design, we call a subset of states B Ď S an
invariant if for every state s P B all its successor states s1 are
also in B. This means that,

@s P S,@i P I : s P B ñ δps, iq P B

In other words, an invariant is a set of states that is closed
under reachability. To simplify the notation, we implicitly
assume that S0 Ď B in the rest of the paper, i.e., we only
consider invariants that include the reset states.

Even when using a symbolic initial state that “fast-forwards”
the system to an arbitrary execution state, the data must still
propagate from the input through the system before it can
affect a control output. Therefore, the second challenge is
to handle the structural depth, i.e., the length of the prop-
agation path from XD to YC , of the design. For large and
complex designs, unrolling the circuit is costly and quickly
reaches the capacity of formal tools. In such cases, it is not
possible to make exhaustive statements about a design’s data-
obliviousness based on its I/O behavior alone and we need to
look into the internal state of the system.

For this problem, we propose an inductive property for data-
obliviousness that spans a single clock cycle and that also
considers internal state signals. Just like for the input/output
signals, we partition the set of state variables Z into control
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variables ZC and data variables ZD, where ZC Y ZD “ Z
and ZC X ZD “ H. Accordingly, sCpτq is the sequence of
valuations to ZC and sDpτq is the sequence of valuations
to ZD. For the sake of a simplified notation, we also let iC ,
oC and sC take an input symbol, output symbol or state of the
Mealy machine and return the valuation of the corresponding
subset of control signals XC , YC and ZC , respectively. We
present how to systematically partition Z into ZC and ZD

later in Sec. IV such that this process is always conservative
in terms of security.

The data-obliviousness property that we use as an element
of our inductive reasoning is shown in Eq. 3.

DO’ – DB Ď S, @s1, s2 P B, @i1, i2 P I :

sCps1q “ sCps2q ^ iCpi1q “ iCpi2q

ñ sCpδps1, i1qq “ sCpδps2, i2qq

^ oCpλps1, i1qq “ oCpλps2, i2qq

(3)

This property expresses that if we have two instances of
the system for which the control inputs and states have equal
values, then the control state variables will also be equal in
the next states of the two instances. This weakens the initial
assumption that a discrepancy between the two instances can
originate only from the data inputs. By allowing internal data
(state) signals to take arbitrary values, we implicitly model
any propagation of data through the system by the symbolic
initial state.

It is important to remember that the invariant B is a superset
of the reachable states because we require it to include the
initial states, S0 Ď B. In practice, the security property of
Eq. 3 holds not only in the reachable state set but, often, also in
many unreachable states. Therefore, finding a suitable invariant
for the given property is usually less of a problem than may be
generally expected. In our proposed methodology (Sec. IV),
we systematically create the necessary invariant in an iterative
procedure and prove it on the fly along with the property for
data-obliviousness.

In the same way as for Eq. 3, we can derive an inductive
property for data-obliviousness when the set of allowed inputs
to the design is restricted by a constraint ϕ (Def. 3). This
causes a restriction also in the set of reachable states, which
must be expressed by an invariant. To this end, we extend
Def. 4 and denote Bϕ as a set of states for which @s P S,@i P

ϕ : s P Bϕ ñ δps, iq P Bϕ under a given constraint ϕ. As an
example, assume that the input constraint ϕ excludes branch
instructions from entering the pipeline of our processor. A
corresponding invariant Bϕ excludes all states that involve
processing of such branch instructions. We elaborate on how
to systematically derive such an invariant in Sec. IV.

Eq. 4 shows the inductive property for input-constrained
data-obliviousness.

DO’ϕ – Dϕ, DBϕ Ď S, @s1, s2 P Bϕ, @i1, i2 P ϕ :

sCps1q “ sCps2q ^ iCpi1q “ iCpi2q

ñ sCpδps1, i1qq “ sCpδps2, i2qq

^ oCpλps1, i1qq “ oCpλps2, i2qq

(4)

We now show that, for any HW design, our inductive
properties cover their corresponding definitions over infinite
traces.

Theorem 1 ((3) ñ (1) and (4) ñ (2)). If a HW design
operates (constrained) data-obliviously according to the in-
ductive property Eq. 3 (Eq. 4), it also operates (constrained)
data-obliviously according to the property over infinite traces
Eq. 1 (Eq. 2).

Proof. We show that (4) ñ (2). This covers (3) ñ (1) for the
special case that ϕ “ I .
We prove this implication by contradiction. Assume a HW
design fulfills property (4) for a given ϕ but violates prop-
erty (2), i.e., there exists a set of traces τ1, τ2 P Tϕ with
t P N0 : spτ1rtsq “ spτ2rtsq ^ iCpτ1rt..sq “ iCpτ2rt..sq such
that Dtk P N0 : oCpτ1rtksq ‰ oCpτ2rtksq where tk ą t. (The
case tk “ t can be excluded since property (4) holds on the
design and ZC Ď Z.)
oCpτ1rtksq ‰ oCpτ2rtksq requires that the antecedent of (4)

is violated at time point tk ´ 1. Since our initial assumption
requires iCpτ1rtk ´ 1sq “ iCpτ2rtk ´ 1sq, it follows that
sCpτ1rtk ´ 1sq ‰ sCpτ2rtk ´ 1sq. However, this is a con-
tradiction to

spτ1rtsq “ spτ2rtsq
ZCĎZ

ñ sCpτ1rtsq “ sCpτ2rtsq

p4q
ñ sCpτ1rt ` 1sq “ sCpτ2rt ` 1sq

p4q
ñ ...

p4q
ñ sCpτ1rtk ´ 1sq “ sCpτ2rtk ´ 1sq

which means that our initial assumption is wrong, and there-
fore (4) ñ (2).

Proving the relationship ”(4) ñ (2)” is crucial to ensure
the validity of our proposed approach. If we can verify the
inductive property on the design, we have also verified that the
property over infinite traces holds. Our approach requires us
to find some system invariant for which the inductive property
holds. Usually, in practice, such an invariant can include the
majority of the unreachable states. This is key to the feasibility
of the proposed methodology, as it makes finding a suitable
invariant much more practical.

The implication in the opposite direction, i.e., ”(2) ñ (4)”,
is not true for the general case. The reason for this is that
Eq. 4 can over-approximate the state space, which could lead
to false counterexamples. However, this does not affect the
validity of the proposed methodology, as its goal is to prove
the inductive property.

E. Special Cases

In Def. 1, we model the security-critical timing behavior
by a set of control output signals, e.g., signals responsible for
bus handshaking. The concern might arise as to how these
properties can be formulated if the design under verification
does not implement any such control interface at all. The
question is: What is a realistic attacker model in this case? If an
attacker can observe the data outputs themselves, any constant-
time provisions are futile. If we assume a scenario, in which
the attacker can spy on internal signals to determine when an
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operation has finished, we can prove data-independence for
these signals instead. In any case, if there is no handshaking
control implemented whatsoever, the specification must give
detailed information about the timing behavior of the system.
Then, timing is an essential part of the circuit’s functional
correctness and should be covered by conventional verification
methods.

IV. METHODOLOGY

In this chapter, we present Unique Program Execution
Checking for Data-Independent Timing (UPEC-DIT) building
upon earlier work in [17]. UPEC-DIT is a formal methodol-
ogy to systematically and exhaustively detect data-dependent
behavior at the microarchitectural level. In particular, we
show how UPEC-DIT is used to verify data-obliviousness
by proving the properties introduced in the previous chapter
(Eq. 3 and Eq. 4). In the following, for reasons of simplicity,
when the distinction between the case of ϕ “ I and the case
of ϕ Ă I is irrelevant, we omit the term ”input-constrained”
and simply speak of ”data-obliviousness”.

A. UPEC-DIT Overview

HoldUPEC-DIT
Algorithm

UPEC-DIT
Induction Base

Data-
Independence

Data-
Dependency

Fail

Computational
Model 

RTL Design

Specification

Partition I/O Fail

Hold

Property
Template

Fig. 1. UPEC-DIT Flow

Fig. 1 shows an overview of the different steps of the
methodology. We describe each step in more detail in the
following subsections. We base our work on a methodology
called Unique Program Execution Checking (UPEC) [34],
[35]. UPEC utilizes IPC [32], [33] and a 2-safety model to
systematically and exhaustively trace the propagation of confi-
dential information through the system. Originally, UPEC was
devised to detect transient execution attacks in processors. In
that scenario, the secret is stored at a protected location (data-
at-rest) from which it must never leak into the architecturally
visible state.

This paper extends over previous UPEC approaches in that
it targets a threat model for data-in-transit, i.e., confidential
information is processed legally, but must not cause any
unwanted side effects. This threat model only allows the
attacker to observe microarchitectural side effects resulting
from the victim’s processing of confidential data. These side
effects take the form of variations in the execution time of
the victim’s operations. UPEC-DIT must therefore tolerate the
processing of confidential data within the data path, i.e., it must
discriminate between legal and illegal propagation of secrets
through the hardware. Since these side effects are dictated by
the control behavior of the HW, the challenge for UPEC-DIT
is to detect such secret-dependent control logic alterations.

Our starting point is the RTL description of the system.
Based on the specification, we partition the I/O signals of the
design into control and data. With this information, we create
the computational model and initialize the main inductive
property for UPEC-DIT which is then submitted to the main
algorithm that implements the induction step in our global
reasoning. During the execution of the algorithm, the property
is iteratively refined with respect to the internal state signals
until it either holds or a counterexample is returned, describ-
ing a data-dependent behavior. This refinement procedure is
conservative in the sense that a wrong decision may lead to a
false counterexample, but never to a false security proof. If the
property holds, the final step is to ensure that our assumptions
for the proof are valid by performing an induction base proof.
Once both, the induction step property and the induction base
property, have been successfully verified we have obtained a
formal guarantee that the design under verification operates in
a data-oblivious manner.

The result of our methodology is a set of data-oblivious HW
primitives on which SW countermeasures, such as constant-
time programming, can rely. Given such a certified set of
instructions, and provided the SW employs such a program-
ming paradigm, data-dependent timing channels are avoided.
With the same intention, processor vendors like Intel [27]
and ARM [28] have added information about the data-
obliviousness of individual instructions. The results of our
methodology can be directly matched against such DIT specifi-
cations. For every instruction of the considered set, our method
certifies data-independent timing of its operation and that it
leaves no footprints in the design’s control state containing
information about confidential operands processed. Hence, any
software composed from the certified set of instructions is
data-oblivious.

B. Computational Model

Instance 1

Instance 2

=
YC

YC

XC

XC

YD

YDXD

XD

Fig. 2. UPEC-DIT Computational Model

Fig. 2 shows the abstract computational model for the pro-
posed methodology. Like previous UPEC approaches, UPEC-
DIT is based on a 2-safety computational model. In our model,
inputs and outputs of the design are partitioned into control
and data signals. This is a manual step that, in most cases,
is straightforward and can be done by consulting the design
specification. Generally speaking, any confidential information
passing through the system must be marked as data. After the
partitioning, the generation of the 2-safety model can be fully
automated. The control inputs XC take arbitrary but equal
values, whereas the data inputs XD remain unconstrained.
According to Def. 1, our goal is to prove that for any sequence
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of inputs, the control outputs YC never diverge from their
respective counterparts in the other instance.

C. The UPEC-DIT Property

Fig. 3 shows our IPC property template to formally verify
the data-obliviousness of the design.

UPEC-DIT-Step(ZC , YC , ϕ, Bϕ):
assume:

at t: Control State Equivalence(ZC );
at t: Invariants(Bϕ);
during t..t+1: Input Constraints(ϕ);

prove:
at t+1: Control State Equivalence(ZC );
at t+1: Invariants(Bϕ);
during t..t+1: Control Output Equivalence(YC );

Fig. 3. Interval property template for UPEC-DIT

It expresses our abstract definitions introduced in Sec. III
by standard property languages such as SVA. We iteratively
refine this property with respect to ZC , ϕ and Bϕ during the
execution of the UPEC-DIT algorithm. We now describe the
individual components of the property, expressed as macros
or functions, in more detail:

‚ Control State Equivalence() constrains the state holding
signals related to control (ZC) to be equal in both
instances of the computational model. At the start of the
algorithm, we set ZC “ Z, before iteratively refining
this partitioning. We elaborate on how this is done in
Sec. IV-D.

‚ Input Constraints() exclude unwanted behavior to
achieve input-constrained data-obliviousness (Def. 3).
For systems specifically designed to be data-oblivious,
such constraints might not be required. An example for
this macro would be ”no new (data-dependent) division
issued to the processor pipeline”.

‚ Invariants() are used to constrain the state space to
exclude unreachable scenarios. These invariants are it-
eratively deduced during the main algorithm (Sec. IV-D).
All invariants used to strengthen our properties are proven
inductively on the fly, along with data-obliviousness,
which is why the macro Invariants() is included also in
the property commitment.

‚ Control Output Equivalence() is our main proof target
and expresses that the outputs marked as control must
never diverge.

It is important to note that the control inputs are already
constrained in the computational model itself (cf. Fig. 2), and,
therefore, are not specified in the property.

D. The UPEC-DIT Algorithm

The basic idea of the UPEC-DIT algorithm is to use the
counterexamples of the formal tool to iteratively refine the
set of all state signals Z into control and data subsets ZC

and ZD, respectively. Leveraging this partitioning of internal
signals results in an inductive proof over only a single clock
cycle, which scales even for very large designs.

Algorithm 1 The UPEC-DIT Algorithm
1: procedure UPEC-DIT
2: ZC Ð Z
3: ϕ,Bϕ Ð H

4: CEX Ð IPC(UPEC-DIT-Step(ZC , YC , ϕ,Bϕ))
5: while CEX ‰ tu do
6: if YC1 ‰ YC2 P CEX then
7: return CEX
8: for each z P ZC : z1 ‰ z2 P CEX do
9: if z is Data then

10: ZC “ ZCztzu

11: else if Invalid CEX then
12: Update(ϕ,Bϕ)
13: ZC Ð Z
14: break
15: else
16: return CEX
17: CEX Ð IPC(UPEC-DIT-Step(ZC , YC , ϕ,Bϕ))
18: return hold

Alg. 1 shows the algorithm in pseudocode. We begin by
initializing the set of control states ZC with the set of all
state signals Z in Line 2. In the beginning, the set of input
constraints ϕ and invariants Bϕ is empty. We then call the
formal property checker in Line 4 using the property in Fig. 3.
In almost all cases, this will produce a counterexample CEX
which shows a first propagation of data.

We then continuously investigate the returned counterex-
amples to decide on how to proceed: If a discrepancy has
traveled to a control output (Line 6), we detected a data-
dependent timing and return the respective counterexample. If
a propagation to one or multiple internal signals has occurred
(Line 8), the verification engineer has to decide if this informa-
tion flow was valid or not. Whenever a propagation to a data
signal, e.g., a pipeline buffer, is detected, we generalize the
proof by removing this variable from the set of control signals
(Line 10). In the case that the propagation touches a signal
considered control, e.g., pipeline stall or valid signals, the
algorithm concludes and returns the counterexample (Line 16).

In some cases, the counterexamples may show behavior
that is either unreachable or invalid in the given applica-
tion scenario. An example for an invalid behavior could be
the exclusion of certain instruction types for which data-
obliviousness is not required, e.g., branches. To handle these
cases, invariants or input constraints must be added to restrict
the set of considered states (Line 12). Afterwards, we also reset
the set of control signals ZC . This is required for correctness,
as an added input constraint might also make some previ-
ously considered propagation impossible. In our experiments,
however, resetting ZC did not occur often and thus did not
cause significant overhead. After every discrepancy in the
counterexample has been investigated, we rerun the proof
with the new assumptions (Line 17). This is continued until
the proof holds and no new counterexample can be found
by the formal property checker. In this case, the algorithm
terminates. We continue by verifying the induction base, i.e.,
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we check, as described in the following subsection, that our
initial assumptions hold after a system reset.

We emphasize that the proposed property covers any inter-
dependence between elements of a sequence of HW opera-
tions. If such a sequence exists, the first operation produces a
differing starting state for the later operation. This manifests
itself as a discrepancy in either the data or control state
space: A difference in the control state, however, violates the
commitment of our property and leads to a counterexample.
A discrepancy of data is already taken into account for any
subsequent operation, since we assume that all data signals can
take arbitrary values. As a result, UPEC-DIT never misses
a timing channel that requires a specific combination of
operations.

In addition, is important to note that the proposed methodol-
ogy is conservative in the sense that if a control-related signal
from Z is mistakenly declared as data (Line 9), it will not
result in a false security proof. In this case, the algorithm
will continue until the propagation eventually reaches a control
output YC and returns the corresponding counterexample. The
main purpose of the individual partitioning of the state set
signals is to detect and stop such propagation as early as
possible.

E. Induction Base

By successfully proving the inductive property (Fig. 3), we
show that our 2-safety model never diverges in its control
behavior during operation. For completing our proof of data-
obliviousness, we also have to verify that the assumptions and
invariants made in this inductive proof are correct. Therefore,
the last step of the methodology is to prove the induction base,
i.e., that the system starts in a data-oblivious state.

UPEC-DIT-Base(ZC , YC , ϕ, Bϕ):
assume:

during t-k..t-1: Reset Sequence();
during t-k..t: Input Constraints(ϕ);

prove:
at t: Control State Equivalence(ZC );
at t: Invariants(Bϕ);
at t: Control Output Equivalence(YC );

Fig. 4. Interval property template for UPEC-DIT Induction Base

Fig. 4 shows our IPC property template for the induction
base. We want to show that the reachability assertions Bϕ

we introduced during the iterative algorithm include the re-
set state of the system, which means that they are indeed
invariants according to Def. 4. Furthermore, we want to prove
that the system is properly initialized regarding its control
behavior. In essence, Control State Equivalence() ensures that
all control state signals ZC are initialized. If this commitment
fails, then the system could behave differently after a reset,
which could hint to a functional bug. Lastly, by assuming
Control Output Equivalence(), we verify that there is no com-
binatorial path from a data input XD to a control output YC .

When both the base and step property hold, we have
exhaustively verified that our design operates data-obliviously,

either in the strong sense of Def. 1, or for a subset of its total
behavior in the weakened sense of Def. 3. This represents an
unbounded formal proof that, due to its inductive nature, can
scale to very large designs.

V. OPTIMIZATIONS

The methodology described Sec. IV verifies data oblivious-
behavior at the microarchitectural level exhaustively. In prac-
tice, it may not always be necessary to be exhaustive and an
efficient bug-hunting may suffice for the intended application
of some designs. In addition, the low complexity of certain
designs allows for exhaustive verification of data-obliviousness
at the I/O interface level, without the need for invariants and
constraints on the internal behavior of the design. To this end,
we now discuss some enhancements and trade-off techniques
that may be useful for applying UPEC-DIT in practice.

A. Unrolled Proofs

The methodology presented in Sec. IV uses an inductive
proof with a single-cycle property to avoid complexity issues.
In this approach, the set of all possible data propagation paths
is over-approximated in the symbolic initial state by leaving
the values of internal data signals unconstrained. While this
over-approximation leads to a very low proof complexity, it
implies the need to deal with the possibility of spurious coun-
terexamples. Writing invariants can overcome this problem,
but in some cases it is affordable to simply increase the
computational effort to avoid these problems. If the complexity
of the system allows for a sufficient number of unrollings
in our computational model, considering the full propagation
path starting from any data input to any control output can
significantly reduce the number of false counterexamples and
thus the effort of writing invariants. This unrolled approach
represents the original UPEC-DIT methodology, as described
in [17].

UPEC-DIT-Unrolled-IO(Z, YC , ϕ):
assume:

at t: State Equivalence(Z);
at t: Input Constraints(ϕ);

prove:
during t..t+k: Control Output Equivalence(YC );

Fig. 5. Unrolled UPEC-DIT property only considering I/O-behavior

The idea of unrolled proofs is shown in Fig. 5 and is
a straightforward implementation of Def. 1. In this prop-
erty, all state signals Z are initialized to equal but arbitrary
values between the two instances. This is denoted by the
State Equivalence() macro. We then prove that for a maximum
latency k, the two instances maintain equal control outputs YC .
We choose k to be greater or equal to the length of the
longest HW operation in the design. If this property fails,
it means that the difference in YC must originate from the
data inputs XD, since this is the only source of discrepancy
between the two instances. In this case, the property checker
returns a counterexample which guides the verification to the
root cause by highlighting the deviating values.
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The great advantage of this variant of UPEC-DIT is that
it does not require an iterative partitioning of internal state
signals Z. Therefore, the only manual steps are partitioning
the system interface and choosing a maximum latency k.
Everything else can be automated. For many low-complexity
designs, such as functional units or accelerators, this approach
can provide exhaustive proofs. It can also serve as a quick
initial test for larger systems, as most timing channels become
visible after only a few cycles. Unfortunately, this approach
can run into scalability problems because the full propagation
paths from input to output can be too long in more complex
systems such as processor cores.

UPEC-DIT-Unrolled(Z,ZC , YC , ϕ):
assume:

at t: State Equivalence(Z);
at t: Input Constraints(ϕ);

prove:
during t..t+k: Control State Equivalence(ZC );
during t..t+k: Control Output Equivalence(YC );

Fig. 6. Unrolled UPEC-DIT property with internal state signals

A trade-off between computational complexity and a de-
creased number of false counterexamples is presented in
Fig. 6. This variant of UPEC-DIT also starts by initializing
all state signals Z to equal but arbitrary values, and thus
considers propagation paths starting from the data inputs. In
this case however, we perform a partitioning of Z into ZC

and ZD based on Alg. 1. Having an internal representation of
the control-flow allows for a much earlier detection of data-
dependent side-effects. Furthermore, isolating the source of the
discrepancy to the input makes the returned counterexamples
more intuitive and less likely to be spurious.

Unfortunately, this approach does not scale well for complex
systems beyond a few clock cycles. Nonetheless, this unrolled
method can serve as a basis for the inductive proof, since
the deduced partitioning of Z is the same for both variants.
Therefore, it often makes sense to start with the unrolled
approach and set k “ 1. The verification engineer can then
iteratively increase k until no new counterexamples appear
or the computational cost becomes prohibitive. Then the
transition to the inductive method is made by initializing ZC

in Line 2 of Alg. 1 with the remaining control state signals.
In our experience, starting with an unrolled model makes
the counterexamples more intuitive because it shows longer
propagation paths starting from the inputs. This can be espe-
cially helpful early in the methodology, when the verification
engineer has little to no knowledge or intuition about the
design under verification. We have omitted the invariants in
Fig. 5 and Fig. 6 because they are usually very simple when
all state signals Z are initialized to equal values.

Finally, we would like to point out that the unrolled prop-
erty (Fig. 6) can also be used in an effective bug hunting
approach that trades formal/exhaustive coverage for efficiency.
Instead of executing the full iterative algorithm that refines
the set of state signals systematically (required for formal
exhaustiveness), we can specify Control State Equivalence()

using a set of state signals identified as control manually,
and run the proof. The verification engineer determines the
control variables based on knowledge and experience. Obvious
examples of control signals are stall variables in a processor
pipeline. Empirical evidence from our experiments shows that
almost all timing vulnerabilities manifest themselves in only
a handful of control signals. While this short-cut over the
formal algorithm bears a certain risk of missing corner-case
behavior, it avoids the potentially laborious iterative procedure
and produces high-quality results fast. It may be a viable
option in certain practical scenarios.

B. Black-Boxing

Black-boxing can significantly increase the scalability of
the formal proof. Essentially, black-boxing excludes the func-
tionality of certain components from the system, reducing the
complexity of the computational model. When a module is
black-boxed, its inputs become outputs of the system under
verification. Likewise, any output of the module connected to
the rest of the system is now considered as an open input, since
the functionality of that component is no longer considered.
In particular, for state-heavy submodules, such as caches, their
black-boxing can greatly simplify the overall state space for
the formal proof.

Instance 1

Instance 2

Instance 1

Instance 2

=

Fig. 7. Computational Model before and after sound black-boxing

Abstraction using black-boxing is widely supported by com-
mercial and academic formal tools. However, conventional for-
mal verification often requires an abstract representation of the
black-boxed component to model the behavior partially at the
interface between the component and the rest of the system.
Over- or under-approximation of such an abstract represen-
tation can lead to false counterexamples or verification gaps,
respectively. Fortunately, the 2-safety computational model of
UPEC-DIT allows for sound black-boxing, ensuring that no
security violations are missed. We only need to monitor the
interface of the black-boxed component, as shown in Fig. 7.
Moreover, false counterexamples can be avoided by assuming
that the outputs of the component produce equal values in the
two instances, as long as no discrepancy propagates to the
inputs of the component.

If a counterexample is produced that shows a difference at
the black-box inputs, the verification engineer can decide to
either undo the black-boxing or examine the module individ-
ually. The first option requires less effort but results in higher
computational complexity, while the second option requires
more manual effort but can lead to a better understanding of
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the system and simpler counterexamples. We will explore the
second option further in the following subsection.

C. Modularization

Setting up formal proofs from scratch for a very large
system can be a difficult task. Therefore, it is often advisable to
decompose the problem and to first look at individual compo-
nents that are ”suspicious” or critical to security. Examples
would be a cryptographic accelerator or, in the case of a
processor, the various functional units of the pipeline.

Investigating an individual component results in a less
complex computational model, simpler counterexamples, and
helps to establish a better understanding of the system. We
can utilize the same inductive approach as elaborated in
Sec. IV or, if computational complexity permits, the unrolled
approach described in Sec. V-A. If a counterexample is found
for a single module, it is very likely that it also indicates
a security threat to the entire system. If a component turns
out to be data-oblivious, we can use this information to
simplify our computational model of the system using black-
boxing (Sec. V-B). For this purpose, we consider the control
(data) inputs of the black-box as control (data) outputs of
the system and the control (data) outputs of the black-box
as control (data) inputs of the system. Therefore, we can
skip the data propagation through the black box and use
its data output as a new source of discrepancy. This allows
us to systematically partition the formal proof in a divide-
and-conquer fashion, making it scalable even for very large
systems.

D. Further Optimizations

Two other well-known optimization concepts can be applied
to UPEC-DIT. First, each property can be divided into several
independent, parallelizable properties that check whether prop-
agation into a particular signal is possible. This means that,
instead of verifying all possible propagation paths at once, we
generate and verify an individual property for each z P ZC .
Second, a cone-of-influence reduction can be used to reduce
the number of candidates in the property commitment. Instead
of checking for Control State Equivalence(), we can check
only for the equivalence of all state signals that are in the
fan-out of I Y ZzZC .

VI. EXPERIMENTS

All experiments are available in our GitHub repository [36].

A. Example: SHA512 Core

We begin our practical evaluation with a practical example
demonstrating the proposed methodology in detail, namely
an open-source implementation of a cryptographic accelerator
implementing the SHA512 algorithm [37]. A timing channel
in such a core can create severe security flaws, as it can
significantly reduce the strength of the underlying encryp-
tion. Therefore, we want to exhaustively verify that no data-
dependent timing behavior exists in this accelerator.

We begin by looking at the interface of the module along
with its specification. The core implements 5 inputs (clk i,
rst i, text i, cmd i and cmd w i) and 2 outputs (text o and
cmd o). After referring to the documentation, we mark the
clock, reset and handshaking signals (cmd) as control, while
the plain and cipher text ports are marked as data. Our goal
is to prove that the accelerator is data-oblivious according to
Def. 1, i.e., the data input text i has no influence on the control
output cmd o.

The next step is to generate our 2-safety computational
model (Fig. 2), in which the control inputs are constrained
to be equal, while the data input remains unconstrained. We
also generate a macro for State Equivalence() that constrains
each of the 37 state-holding signals (2162 flip-flops) to equal
values between the two instances at the start of our proof.
Given the I/O partitioning, both steps can be fully automated
with dedicated tool support.

We can now choose to formulate either a single-cycle or an
unrolled proof. For an exhaustive proof over multiple clock
cycles, we have to unroll the model to its sequential depth,
as elaborated in Sec. V-A. According to the specification, one
encryption operation has a latency of 97 clock cycles. Since
the complexity of this module is rather low, it is still possible
to unroll the formal proof for several hundred cycles. For more
complex accelerators, this is usually not feasible.

Therefore, to show the effectiveness of the UPEC-DIT
methodology, we decide to iteratively create an inductive
single-cycle proof using Alg. 1. We begin by setting up the
UPEC-DIT-Step property (Fig. 3 in Sec. IV-C) in such a way
that Control State Equality() considers all 37 state holding
signals Z of the design and Control Output Equality() ensures
the equality of cmd o. After running the verification tool, we
receive a first counterexample showing a discrepancy prop-
agation to two internal pipeline buffers (W3 and Wt). Since
these are used to store intermediate results of the encryption,
we classify them as data, exclude them from the macro and
rerun the proof.

After several iterations of checking the UPEC-DIT-Step
property, a fixed point is reached with only 5 out of 37
signals left in ZC : busy, cmd, read counter, round and Kt. All
other signals only store intermediate results and were therefore
marked as data and removed from the proof. This means that
even though a vast majority of the design can be in an arbitrary
state, the timing behavior only depends on certain control
registers inside the design.

The last step is to verify the induction base with the UPEC-
DIT-Base property (Fig. 4 in Sec. IV-E), which also holds.
Hence, we successfully showed that the core operates timing-
independent w.r.t. its input data. With some experience, the
entire proof procedure can be completed in less than an hour.

B. Functional Units and Accelerators

Tab. I shows the results for several functional units (FUs)
and accelerators. All of these experiments were conducted
using the unrolled approach as elaborated in Sec. V-A.

The first design, BasicRSA, was taken from OpenCores [38].
It implements an accelerator for the RSA cryptosystem. This
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TABLE I
RESULTS FOR FUNCTIONAL UNITS

Design DIT State bits Time Mem
BasicRSA ✗ 532 <1s 589 MB
SHA1 ✓ 911 <1s 306 MB
SHA256 ✓ 1103 <1s 296 MB
SHA512 ✓ 2162 <1s 329 MB
AES (secworks) ✓ 2472 4s 994 MB
AES (OpenCores) ✓ 554 <1s 819 MB
FWRISCV MDS-Unit (!) 331 <1s 596 MB
ZipCPU Div-Unit ✗ 142 11s 1347 MB
CVA6 Div-Unit ✗ 209 <1s 580 MB

For each entry, we list whether or not the design has data-independent
timing (DIT), number of state bits, total proof time and peak memory
usage.

module computes the modular exponentiation needed for the
encryption algorithm in a square-and-multiply fashion. While
this approach is very efficient, it makes the latency directly
dependent on the number of 1s in the exponent, i.e., the
value of the key. In addition, the timing of each individual
multiplication depends on the intermediate results, since the
submodule terminates earlier for smaller multipliers. There-
fore, the overall timing depends not only on the exponent, but
also on the base and modulus operands. In our experiment, we
split the proof into three properties to show the dependence
of each data input separately.

SHA1, SHA256 and SHA512 [37] implement accelerators
for standardized variants of the Secure Hash Algorithm, which
differ in the number of rounds and in the length of their
message digests. We also looked at two different accelera-
tor implementations [39], [40] of the Advanced Encryption
Standard (AES). These symmetric cryptosystems are naturally
quite resilient to timing side channels due to their round-
based algorithms. However, although unlikely in practice, the
microarchitecture of these accelerators could still implement
data-dependent side-effects. All of these accelerators were
proven by UPEC-DIT to have data-independent timing, which
met our initial expectations.

The Multiplication-Division-Shifting-Unit is part of the
Featherweight RISC-V [41] project. Its goal is to build a
resource-efficient implementation for FPGAs. All of its oper-
ations take multiple clock cycles, shifting only one bit in each
cycle. In this FU, multiplication and division were proven to
execute data-independently, requiring 33 cycles to complete.
However, UPEC-DIT produced a counterexample for shift
operations, as the timing is directly dependent on the shift
amount. This violates the common assumption of constant-
time programming that shift operations are data-oblivious. The
reason for this is that most modern processors employ barrel
shifters, i.e., they are able to perform an N -bit shift in a single
clock cycle.

The last two designs are serial division units taken from
the ZipCPU [42] and CVA6 [43] open-source projects. Both
FUs showed strong dependencies of their timing w.r.t. their
operands. ZipCPU implements an early termination when
dividing by zero. In CVA6, the FU is optimized to perform
as few subtractions as possible. At the start of the division,
the number of subtractions required is computed based on

TABLE II
RESULTS FOR IN-ORDER PROCESSORS

FW IBEX (+DIT) SCARV CVA6
I-Type ✓ ✓ ✓ ✓ ✓
R-Type ✓/✗ ✓/✓ ✓/✓ ✓/✓ ✓/✓
Mult ✓/✓ ✓/✗ ✓/✓ ✓/✓ ✓/✓
Div ✓/✓ ✓/✗ ✓/✓ ✓/✓ ✗/✗
Load (!) (!) (!) ✗ ✗
Store (!)/✓ (!)/✓ (!)/✓ ✗/✗ ✗/✓
Jump (!) ✓ ✓ (!) ✗
Branch ✗/✗ ✗/✗ ✓/✓ ✗/✗ ✗/✗
State bits 3086 1019 1021 2334 682849
AT 0:03 2:06 4:24 3:27 1:35:41
WCT 0:04 5:11 6:40 8:02 3:06:43
Mem 1.7 4.5 4.3 2.1 11.9

In each experiment (separate proof), UPEC-DIT proved that the
instruction class executes data-independently either always (✓), only
under certain SW restrictions ((!)), or not at all, i.e, it depends on its
operands (✗). Multi-operand instructions denote rs1/rs2 separately, as
they can have different impact on timing. We also report the number
of state bits in the original design, the average time (AT) and worst-
case time (WCT) of a single proof (HH:MM:SS) as well as the peak
memory requirements (GB).

the operand values. Essentially, the greater the difference in
size between the two operands, the more subtractions must
be performed. As a result, the latency of the FU is strongly
data-dependent.

In all case studies, UPEC-DIT was applied without a priori
knowledge of the designs. It systematically guided the user to
the points of interest. Even though the designs have operations
taking up to 192 cycles, proof time and memory requirements
remained insignificant. Furthermore, operations like multipli-
cation, which are usually a bottleneck for formal tools, did
not cause any complexity issues. This is by merit of the pro-
posed 2-instance computational model which abstracts from
functional signal valuations and only considers the difference
between the two instances.

C. In-Order Processor Cores

We investigated four different open-source in-order RISC-V
processors from low to medium complexity, as shown in
Tab. II. The Ibex processor is listed twice, as it comes with
a data-independent timing (DIT) security feature, which we
examined separately. All of these experiments were conducted
using the unrolled approach as elaborated in Sec. V-A. The
results show that time and memory requirements are still
moderate, even in the case of a medium-sized processor.

The first design we investigated is the sequential Feather-
weight RISC-V [41] processor which aims at balancing perfor-
mance with FPGA resource utilization. As our results show,
most instructions execute independently of their input data.
However, there was one big exception, namely, R-Type shift
instructions. For area efficiency, the implementation shares a
single shifting unit for multiplication, division and shifting.
The shifting unit can only shift one bit in each cycle (cf. VI-B),
which results in data-dependent timing depending on the shift
amount (rs2). We singled out the shift instructions in a separate
proof and showed that other R-Type instructions like addition
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do, in fact, preserve data-independent timing. Note that I-
Type shift instructions also execute with dependence on the
shift amount. The shift amount, however, is specified in the
(public) immediate field of the instruction. Consequently, since
the program itself is viewed as public, I-Type shifting executes
data-obliviously. Load, Store and Jump (JALR) can cause an
exception in case of a misaligned address, while Branches
incur a penalty if a branch is not taken.

The Ibex RISC-V Core [20] is an extensively verified,
production-quality open-source 32-bit RISC-V CPU. It is
maintained by the lowRISC not-for-profit company and de-
ployed in the OpenTitan platform. It is highly configurable
and comes with a variety of security features, including a
data-independent timing (DIT) mode. When activating this
mode during runtime, execution times of all instructions are
supposed to be independent of input data. In our experiments,
we apply UPEC-DIT for both inactive and active DIT mode
and use the default ”small” configuration, with the ”slow”
option for multiplication.

When the DIT mode is turned off, we found three cases of
data-dependent execution time:

‚ Division and (slow) multiplication implement fast paths
for certain scenarios.

‚ Taken branches cause a timing penalty, as the prefetch
buffer has to be flushed.

‚ Misaligned loads and stores are split into two aligned
memory accesses.

The first two issues are solved when DIT mode is active,
as seen in Tab. II. All fast paths are deactivated and non-
taken branches now introduce a delay to equal the timing of
taken branches. However, the timing violation for misaligned
memory accesses is not addressed.

When running Ibex in DIT mode, data-oblivious memory
accesses require special measures, such as the integration
of the core with a data-oblivious memory sub-system. For
example, an oblivious RAM controller [44] makes any mem-
ory access pattern computationally indistinguishable from any
other access pattern of the same length. However, our ex-
periments with UPEC-DIT reveal that even with such strong
countermeasures in place, Ibex still suffers from a side channel
in the case of memory accesses that are misaligned. This
is because the core creates a different number of memory
requests for aligned and misaligned accesses. We reported
this issue to the lowRISC team and suggested to disable the
misaligned access feature for DIT mode. With this fix, the HW
would remain secure even in case that a faulty/malicious SW
introduces a misaligned access. The lowRISC team refined the
documentation and will consider the proposed fix for future
updates of the core.

The SCARV [45] is a 5-stage single-issue in-order CPU
core, implementing the RISC-V RV32IMC instruction sets. We
prove that most instructions do not leak information through
timing by running UPEC-DIT on the core. Taken branches,
however, use additional cycles due to a pipeline flush. Memory
access instructions cause exceptions if their addresses are
misaligned. To our surprise, however, not only the address but
also the value of a store instruction can cause data-dependent
behavior. The reason for this is that loads and stores to a

particular address region are interpreted as memory-mapped
I/O accesses and do not issue a memory request. This can
be used to set a SW interrupt timer depending on the store
value. As a result, the timing of such an interrupt is directly
correlated to the data of the store instruction.

CVA6 [43], also known as Ariane, Having almost 700 k
state bits, the design itself already pushes the limits of formal
property checkers. To make things worse, a straightforward
2-safety circuit model would have twice as many state bits.
Fortunately, UPEC-DIT allows for sound black-boxing to cope
with complexity issues (cf. Sec. V-B). Black-boxing reduces
the computational model to 24 k state bits. For load and
store instructions, a couple of exception scenarios showed
up: Access faults (PMP), misaligned addresses or page faults.
Besides a data-dependent division and timing variations by
mispredicted branches UPEC-DIT also found an interesting
case in which a load can be delayed. In order to prevent RAW
hazards, whenever a load is issued, the store buffer is checked
for any outstanding stores to the same offset. If any exist,
the load is, conservatively, stalled until the stores have been
committed. However, this can cause a timing delay in case of a
matching offset, even if both memory accesses go to different
addresses.

D. UPEC-DIT with Inductive Proofs

In this subsection, we extend our experiments to the
BOOM [21], a superscalar RISC-V processor with FP support,
a deep 10-stage pipeline and out-of-order execution.

In a first attempt, the same unrolled approach (cf. Sec. V-A),
as above for in-order processors, was applied to BOOM, and
UPEC-DIT was able to prove the data-obliviousness of basic
arithmetic instructions and multiplication. However, the high
design complexity caused by the deep pipeline pushed the
formal tools to their limits, with some proof times exceeding
20 hours. Fortunately, with a few design-specific adjustments,
it was still possible to formally verify the absence of any data-
dependent side-effects. These optimizations included splitting
the verification into individual proofs for the integer and FP
pipelines, since these are implemented as separate modules
in BOOM. To do this, we constrained the outputs of the FP
register file to be equal for the integer pipeline verification
and vice versa. After unrolling for 7 clock cycles, no new
propagation was detected in either pipeline. Furthermore, a
sound black-boxing (cf. Sec. V-B) of complex components,
such as the re-order buffer (ROB) and caches, was performed,
significantly reducing the complexity of the computational
model: While a single instance of BOOM has more than 500k
state bits, our final 2-safety model contained only about 47k
state bits.

Black-boxing the ROB not only reduces the size of the com-
putational model, but also drastically reduces the complexity
of spurious counterexamples caused by the symbolic initial
state. During normal operation of an out-of-order processor,
the ROB reflects the control state of the entire system. Assum-
ing an arbitrary initial state can therefore lead to many false
counterexamples where the ROB in no way reflects the state
of the computational pipeline. Fortunately however, the actual
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TABLE III
RESULTS FOR INDUCTIVE PROOFS

Design #State Bits |ZD| #BB Time Mem.
BOOM (Int) 46958 31 4 5s 1.6GB
BOOM (FP) 46958 143 4 5s 2.0GB
CVA6 23484 22 7 58s 3.1GB

For each experiment, the table shows the size of the final computa-
tional model, the number of (unconstrained) data signals within per
instance, the number of black-boxes per instance, and the time and
memory consumption of the final inductive step proof.

state of the ROB is of no concern to UPEC-DIT, as long as
instructions commit to it equally between the two instances.
We can therefore create a black-box and consider its inputs in
our proof statement.

Nevertheless, the long proof times caused by the high com-
plexity made us rethink the approach. Thus, we extended the
methodology and developed the inductive proof, as presented
in Sec. IV, which spans over only a single clock cycle.
Eliminating the need to unroll the circuit drastically reduced
the complexity of the computational model, diminishing indi-
vidual proof times from over 20 hours to just a few seconds.
In this transition, we also found that in most cases, data can
only affect the control flow through a few specific channels.
This insight made it easier to find meaningful invariants and
constraints that restrict the over-approximated state space in
order to avoid false counterexamples.

Tab. III shows the results in terms of computational com-
plexity for the inductive proofs. We also re-run our experiment
on CVA6 [43] to illustrate the improvement in scalability
compared to an unrolled proof. As shown in the table, proof
time and memory usage are reduced significantly by eliminat-
ing the need to unroll the model. In CVA6, data propagates
through 22 internal signals (ZD), which can take arbitrary
values in the final proof. By assuming the equality of two
internal signals, we excluded division and control and status
register (CSR) operations from consideration. Branches and
Load/Store instructions were excluded by black-boxing the
branch unit and the load-store unit (LSU).

The experiments in BOOM were split for the integer and
FP pipelines. Within the integer pipeline, UPEC-DIT detected
data propagation into 31 internal signals (ZD). We excluded
branches, division, and misaligned memory accesses after
receiving counterexamples for each of these cases. Inside
the FP pipeline, data is propagated into 143 internal data
signals (ZD). However, only counterexamples caused by FP
division and square root had to be excluded from the proof
with constraints.

For BOOM, our results show that branch, integer division,
FP division, and square-root operations have data-dependent
timing. We have not examined memory access instructions,
as these are usually given special treatment in constant-time
programming. The remaining integer arithmetic instructions
(including multiplication) were formally proven to execute
data-obliviously. An interesting case are FP arithmetic instruc-
tions: Although their timing is independent of their operands,
they are not data-oblivious. UPEC-DIT revealed that these
instructions can still leave a side effect in the form of an excep-

tion flag in the FP CSR named fcsr. This is in compliance with
the ISA specification of RISC-V. However, in order to create a
timing side channel, a victim program would have to explicitly
load these registers. Therefore, these instructions could, in fact,
be used securely for constant-time programming, if a suitable
SW restriction was introduced.

VII. CONCLUSION

In this paper, we proposed UPEC-DIT, a novel methodology
for formally verifying data-independent execution in RTL
designs. We proposed an approach based on an inductive
property over a single clock cycle, which facilitates a veri-
fication methodology scalable even to complex out-of-order
processors. We presented and discussed several techniques
that can help the verification engineer simplify and accelerate
the verification process. UPEC-DIT was evaluated against
several open-source designs, ranging from small functional
units to a complex out-of-order processor. While many of
the implemented instructions execute as expected, UPEC-DIT
uncovered some unexpected timing violations. Our future work
will address the design of security-conscious hardware. We
envision that UPEC-DIT, if integrated in standard design flows,
can make significant contributions to restoring the trust in the
hardware for confidential computing.
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