
A SYNTACTIC LANGUAGE MODEL BASED ON INCREMENTAL CCG PARSING

Hany Hassan Khalil Sima’an* Andy Way

School of Computing *Language and Computations
Dublin City University Universiteit van Amsterdam

Dublin 9, Ireland Amsterdam, Netherlands

ABSTRACT
Syntactically-enriched language models (parsers) constitute a
promising component in applications such as machine trans-
lation and speech-recognition. To maintain a useful level of
accuracy, existing parsers are non-incremental and must span
a combinatorially growing space of possible structures as ev-
ery input word is processed. This prohibits their incorpo-
ration into standard linear-time decoders. In this paper, we
present an incremental, linear-time dependency parser based
on Combinatory Categorial Grammar (CCG) and classifica-
tion techniques. We devise a deterministic transform of CCG-
bank canonical derivations into incremental ones, and train
our parser on this data. We discover that a cascaded, incre-
mental version provides an appealing balance between effi-
ciency and accuracy.

Index Terms— Natural languages, Language Modeling,
Grammar

1. INTRODUCTION

As it processes an input sentence left-to-right (for a language
like English), word-by-word, an incremental parser builds for
each prefix of the input sentence a partial parse that is a sub-
graph of the partial parse that it builds for a longer prefix.
Incremental parsers may have access only to a fixed, lim-
ited window of lookahead words.1 Besides being cognitively
plausible, an incremental parser is more appealing for appli-
cations if its time and space (worst-case) complexities are lin-
ear in input length. An incremental, linear-time parser should
constitute a natural match for the word-by-word decoding and
pruning schemes used within phrase-based statistical machine
translation and speech recognition.

Combinatory Categorial Grammar (CCG) [1] is a theory
that assumes a lexicalized grammar consisting of a lexicon
and a small set of combinatory operators. The operators as-
semble lexical entries together into parse-trees. The lexical
entries consist of syntactic constructs (called ‘supertags’) that
describe such lexical information as the POS tag of the word,
its subcategorization information and the hierarchy of phrase

1In other words, an incremental parser may not delay decisions indefi-
nitely.

categories that the word may project upwards in the parse-
tree.

The CCGbank [2] was obtained by transforming the parse
trees in the Penn Wall Street Journal (WSJ) Treebank into
normal form CCG derivations, exhibiting head-dependency
annotations over a wide-coverage lexicon of supertags. The
CCGbank has been used to train wide-coverage CCG parsers,
e.g. [3]. These parsers assign supertags to the words in an in-
put sentence based on the probability of a word–supertag pair
given their local context [4], and assemble these supertags
together into parse trees by deciding on the suitable combi-
natory operators. Due to ambiguity regarding the choice and
order of operators over the sequence of supertags, existing
CCG parsers remain cubic-time (worst-case complexity) and
non-incremental.

In this paper we present the design of a linear-time parser
that builds exactly a single parse incrementaly, as it processes
every input word from left to right. This parser is obtained
by transforming CCGbank derivations into incremental ones,
that exhibit the incremental parse decisions and states, and
then training a classifier to make such incremental decisions
for a novel input. We study different kinds of architectures for
incremental parsing and various sets of classification features
and arrive at a incremental linear time, parser that exhibits
useful accuracy levels.

2. RELATED WORK

A number of researchers have introduced approaches that
incorporate syntactic information into language models. The
Structured Language Model [5] constitutes an incremen-
tal shift-reduce parser which conditions the probability of
words on previous lexical heads, rather than previous words
as in n-gram language models. The probability of the word
is the weighted sum of its conditional probabilities from
possible parses. [6] proposed an incremental top-down and
left-corner parsing that generates conditional word probabil-
ities. He deployed parse probabilities directly to calculate
the string probabilities. Charniak [7] proposes a head-driven
parsing approach that directly uses generative Probabilistic
Context-Free Grammar (PCFG) models as language models
which made use of a non-incremental, head-driven statisti-

cal parser to produce string probabilities. [8] proposes a
language model based on a constraint dependency grammar
and a tagger derived from that grammar to exploit syntactic
dependencies.

All previous approaches depend on non-deterministic
techniques to grow a huge number of partial derivations
which is unmanageable for large-scale applications such as
MT or large-scale speech recognition. This has limited the
usability of these approaches to very small tasks and/or re-
ranking of systems outputs. Another major aspect is that the
previous approaches deploy PCFG techniques, that cannot
handle non-constituent constructions.

3. DEPENDENCY LANGUAGE MODEL

We present a dynamic model of syntax construction based on
the theoretical concepts proposed in [9]. In our model the
syntactic process is represented by a sequence of transitions
between adjacent syntactic states. The syntactic representa-
tion is built step-by-step from left-to-right while traversing
the input string as shown in (1). The syntactic state is sup-
posed to summarize all the syntactic information about frag-
ments that have already been processed so far. The parser
produces fully connected intermediate structures while mov-
ing from one word to the next.

We devise an incremental parser based on CCG as the
grammatical representation of the syntactic states and the
transition actions that lead from a state to another. Following
the approach taken in (1), each word wi is associated with a
lexical syntactic/semantic descriptor sti. At each transition,
a parsing action oi is associated with that transition, which
transforms the current parsing state Si to the next state Si+1

which, in turn, represents a new partial syntactic derivation.
When the last word is encountered, a final state Sn represents
the final syntactic structure for the given sequence of words.
Such a sequence of parsing actions constructs the parsing
derivation step-by-step.

S0
o1

w1,st1
//S1

o2

w2,st2
//S2 Si

oi

wi,sti

//Si+1 Sn (1)

In our language model, which employs CCG as grammat-
ical representation: the lexical descriptor sti is represented
by a CCG supertag, the parsing action oi is represented by a
CCG Combinatory Operator with the state Si being a com-
posite CCG category.

The probability P (W,S) of a word sequence W = wn
1

and associated final parse state sequence S = sn
1 , which rep-

resents a possible derivation, can be described as in Eqn 2:

P (W,S) =
n∏

i=1

P (wi|Wi−1Si−1)

P (sti|Wi)P (oi|Wi, Si−1, STi) (2)

John loves Mary

S0 NP (S\NP)/NP NP
> NOP
S1: NP

> TRFC

S2: S/NP
> FA

S3: S

Fig. 1. A sentence and possible supertag-, operator- and state-
sequences. NOP: No Operation; BC: Backward Composition;
FA: Forward Application.

• P (wi|Wi−1Si−1) is the probability of wi given the pre-
vious sequence of words Wi−1 and the previous se-
quence of states Si−1.

• P (sti|Wi): is the lexical descriptor (supertag sti) prob-
ability given the word sequence Wi up to the current
position. This is represented by a sequence tagger (su-
pertagger) in our CCG incremental parser.

• P (oi|Wi, Si−1, STi) represents the parsing action (op-
erator oi) probability given the previous words, su-
pertags and state sequences up to the current position.
This is represented by a sequence operator tagger in
our CCG incremental parser.

It is worth noting that the proposed language model is deter-
ministic, in the sense that it maintains a single parsing state,
that represents the possible parsing decision at each word po-
sition. This characteristic is very important for incorporat-
ing our dependency language model into large-scale MT and
speech recognition systems. In the remainder of this paper,
we will discuss the development and evaluation of this incre-
mental parser based on CCG.

4. LINEAR-TIME, INCREMENTAL CCG PARSING

As it processes the sentence left-to-right, word-by-word, our
parser specifies for every word a supertag and a combina-
tory operator, and maintains a parse-state (henceforth ‘state’).
Each state is represented by a composite CCG category. This
composite CCG category is the result of applying the com-
binatory operator to the preceding state and current supertag.
In terms of CCG representations, a CCG composite category
specifies a functor and the arguments that are expected to the
right of the current word.

Crucially, given a sentence and its state sequence, the de-
pendency structure can be retrieved unambiguously. At each
state the partial dependency structure can be represented as a
directed graph with nodes representing words and arcs repre-
senting dependency relations. Figure 1 illustrates the work-
ings of this incremental parser.

Our parser consists of two parts: (i) a Supertag-Operator
Tagger which proposes a supertag–operator pair for the cur-
rent word, and (ii) a State-Realizer, which realizes the cur-

Fig. 2. Illustration of the CCGbank transformation process
into incremental derivations.

rent state and dependencies by applying the current opera-
tor to the previous state and the current supertag. In this
work, the State-Realizer is a deterministic function, whereas
the supertag-operator tagger is a statistical one trained on our
own incremental version of the CCGbank. While this concep-
tual view describes a baseline, fully/no-lookahead incremen-
tal version, we will trade off some aspects of this architecture
for accuracy, by employing lookahead in predicting supertag–
operator pairs.

To train the statistical components, we transform the
CCGbank normal form derivations into strictly left-to-right
derivations, with operators specifically chosen to allow incre-
mentality while satisfying the dependencies in the CCGbank.
In the next section we briefly describe our transformation
technique developed to obtain the appropriate training data.

4.1. Obtaining left-to-right derivations from CCGbank

The goal of the transformation is to obtain training data for
our incremental parsing approach. The result of the transform
is an incremental CCGbank where sentences are annotated
with supertags as well as combinatory operators that allow
left-to-right, incremental building of a parse while satisfying
the dependencies specified in the CCGbank. Figure 2 illus-
trates the transformation process, step-by-step, on a sentence
of the CCGbank. At the beginning of the process, we start
with the words, the associated supertags and the dependency
relations, indicated by curved dotted arrows in the figure. The
purpose of the transformation process is to induce the state
sequence and the operator sequence. These sequences should
be able to reproduce the given dependency relations.

The same procedure applies during parsing, i.e. if we have
the supertag and the operator sequences, then we are able
to construct both the incremental states and the dependency
graph. The details of this linguistic transformation process is
beyond the scope of this short paper.

4.2. Implementation Detail

After POS tagging, the parser works its way through the
sentence, left-to-right, assigning for every word a supertag–
operator pair, and deciding on a state using the deterministic
state-realizer. We describe the state-realizer before delving

John likes Mary

NP (S\NP)/NP NP

NOP T RF C F A

?>=<89:;S0 // ?>=<89:;S1 // ?>=<89:;S2 // ?>=<89:;S3

NP S/NP S

S1 GFED@ABCJohn

S2 GFED@ABCJohn // GFED@ABClikes

S3 GFED@ABCJohn // GFED@ABClikes GFED@ABCMaryoo

Fig. 3. Illustration of the operation of the incremental parse-
state realizer and the associated intermediate dependency
graphs at each state.

into the implementation of different versions of the supertag-
operator tagger.

Parse-State Realizer: After assigning supertag–operator
pairs for the words of the input sentence (described in the
next section), the state-realizer deterministically realizes the
parse-states as well as the intermediate dependency graphs
between words using the CCG incremental operators (as de-
fined in our incremental version of the CCGbank). Figure 3
illustrates the realizer operation along with the incrementally
constructed partial dependency graphs at each state.

Supertag-Operator Taggers: We build different linear-time
models for assigning supertag–operator pairs to words in or-
der to explore the effect of the different gradations of incre-
mentality on parsing accuracy. All models present in this pa-
per are based on MaxEnt classifiers [10]. A MaxEnt classifier
selects the class that gives the highest conditional probabil-
ity of any class given a set of features of the input, where
the probability is expressed as a log-linear interpolation of
weights of features. The weights are trained in order to max-
imize the likelihood of the given training data.

5. EXPERIMENTS AND RESULTS

This section details a number of experiments carried out to
test the effectiveness of the supertagger, the operator tagger,
and our ability to capture the necessary dependencies using a
range of incremental parsers. We used the same data split as
in [3]. Sections 02–21 were used for training, section 00 for
dev-testing of intermediate taggers, and section 23 for testing
dependencies.

Given our introduction of new supertags for coordina-
tion, apposition, interruption, and WH-movement, we used
section 00 to evaluate our supertagger’s accuracy compared
to the standard CCGbank set. Although our supertags are
more complex, we obtain an F-score of 91.7 which compares
favourably with the supertagger of [3].

Architecture Dependency Supertagging Operator
Accuracy Accuracy Accuracy

Joint 83.20 85.02
Cascade 86.70 91.70 90.90

No look ahead 59.01 68.11 76.19

Table 1. Accuracy Results for Joint and Cascaded systems

In Table 1 we also present the results for our Operator
tagger. This displays a very high accuracy of 90.9%. We also
present the results for unlabelled dependency accuracy using
our method. We use the same evaluation criteria as [3] by
comparing the dependency output of the incremental parser
with the predicate-argument dependencies in the CCGbank.
Testing on section 23 of the WSJ, we obtain an F-score of
86.7. The score with the gold standard POS in the input
is 87.5. Clearly, this result is considerably below the re-
sult reported in [3] (91.65% unlabelled dependency F-score),
who use a non-incremental, chart parser (qubic-time in input
length). While we aim for maximum accuracy, we accept
the fact that a linear-time, incremental parser will generally
perform less well than a qubic-time non-incremental parser.
More relevant to language modeling, [3] observe that on
section 23 of the WSJ, their parser takes 1.9 minutes. By con-
trast, our parser takes just 11 seconds, a speed-up of around
ten times, on the same specification machine.

The results reported above demonstrate the accuracy of
the cascaded approach using two cascaded taggers: the first
for supertags, and the second the operator tagger followed by
the deterministic state-realizer. We compared the cascaded
model with a joint model, where we train a single classifier
that produces the supertags and operators simultaneously in
the same step. In Table 1 we give the unlabeled dependency
results for section 23 for the cascaded and joint models side-
by-side for comparative purposes. The significantly inferior
result of the joint model exemplifies the hardness of CCG in-
cremental parsing.

The present parser is just two words of lookahead away
from being fully incremental. We also examined the effect
of lookahead features on the supertagger, operator tagger and
dependency results. As shown in Table 1, huge improvements
are to be seen when the parser avails of lookahead. Clearly,
full incrementality at this stage comes at a high cost in accu-
racy.

6. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a novel dependency language
model based on wide-coverage CCG incremental parser. Our
empirical results show useful dependency accuracy even
when compared with bottom-up parsing while obtaining far
more efficient incremental parsing. This speedup is, we feel,
particularly attractive for applications that incorporate in the

decoder a word-prediction (or language) model, since this
semi-incremental parser works in a fashion similar to such
language models, i.e. the possible states are built on-the-fly
from the training data, just like any other non-parametric
method. Work on an improved dependency accuracy is on-
going as well as an investigation of the effect of using the
proposed language model in machine translation.

7. ACKNOWLEDGEMENTS

We would like to thank Salim Roukos for fruitful discussions.
This work is partially funded by SFI Award 05/IN/1732.

8. REFERENCES

[1] Mark Steedman, The Syntactic Process, MIT Press,
Cambridge, MA, 2000.

[2] Julia Hockenmaier and Mark Steedman, “Ccgbank: a
corpus of ccg derivations and dependency structures ex-
tracted from the penn treebank,” Computational Lin-
guistics, vol. 33, no. 4, pp. 355–396, 2007.

[3] S. Clark and J. Curran, “Wide-Coverage Efficient Statis-
tical Parsing with CCG and Log-Linear Models,” Com-
putational Linguistics, vol. 33, no. 1, pp. 439–552,
2007.

[4] S. Bangalore and A. Joshi, “Supertagging: An Ap-
proach to Almost Parsing,” Computational Linguistics,
vol. 25, no. 2, pp. 237–265, 1999.

[5] C. Chelba, Exploiting Syntactic Structure for Natural
Language Modeling, Ph.D. thesis, Johns Hopkins Uni-
versity, Baltimore, MD, 2000.

[6] B. Roark, “Probabilistic top-down parsing and language
modeling,” Computational Linguistics, vol. 27, no. 2,
pp. 249–276, 2001.

[7] E. Charniak, “Immediate-head parsing for language
models,” in 39th Meeting of the Association for Compu-
tational Linguistics - (ACL’01), Toulouse, France, 2001,
pp. 124–131.

[8] W. Wang, Andreas Stolcke, and M. Harper, “The use
of a linguistically motivated language model in conver-
sational speech recognition,” in Proceedings of Acous-
tics, Speech, and Signal Processing(ICASSP), Montreal,
Canada, 2004.

[9] D. Milward, “Dynamic Dependency Grammar,” Lin-
guistics and Philosophy, vol. 17, pp. 561–605, 1994.

[10] Adam Berger, Vincent Della-Pietra, and Stephen Della-
Pietra, “A Maximum Entropy approach to natural lan-
guage processing,” Computational Linguistics, vol. 22,
no. 1, pp. 39–71, 1996.

