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Abstract—Content caching at intermediate nodes is a very sends annterest Packeto all its neighbors, which in turn send
effective way to optimize the operations of Computer netwdks, the packet to all of their neighbors except the one where the
so that future requests can be served without going back 10 \4cket came from. The process continues until a node caching

the origin of the content. Several caching techniques haveeen - . . . .
proposed since the emergence of the concept, including tech the desired content is found, which in turn replies witbata

niques that require major changes to the Internet architecure ~Packetcontaining the desired content.

such as Content Centric Networking. Few of these techniques Clearly, caching a content will reduce the traffic on the
consider providing caching incentives for the nodes or quétly of  ypstream path, if the same content is being requested anothe
service guarantees for content owners. In this work, we pr&sit e 1y 4 different client. Given the limited cache capaditg

a low complexity, distributed, and online algorithm for making . .
caching decisions based on content popularity, while takig into guestions to answer become ‘What are the factors that affect

account the aforementioned issues. Our algorithm performen-  achieving the maximum traffic savings?'and ‘Which contents
route caching. Therefore, it can be integrated with the curent are to be cached in order to achieve the same objective?’
TCP/IP model. In order to measure the performance of any  Several studies try to answer the above questions. The work
online caching algorithm, we define the competitive ratio aghe in [6] investigates the dependence of the caching benefit on

ratio of the performance of the online algorithm in terms of traffic - ) . . .
savings to the performance of the optimal offline algorithm hat content popularity, nodes’ caching capacities, and thiate

has a complete knowledge of the future. We show that under our between nodes and the origin server. The performance of
settings, no online algorithm can achieve a better competite = CCN has been evaluated ihl[7] under different topologies,

ratio than Q(logn), where n is the number of nodes in the py varying routing strategies, caching decisions, and each

network. Furthermore, we show that under realistic scenaros, yapjacement policies. The results also show the dependence
our algorithm has an asymptotically optimal competitive ratio f CCN f tent larit
in terms of the number of nodes in the network. We also study o periormance on content popularity.

an extension to the basic algorithm and show its effectivess Several techniques for content caching have been proposed

through extensive simulations. in the literature. The work in[]5] present&lways Cachg
Index Terms—En-route caching, caching incentive, competitive where a node caches every new piece of content under the
ratio, asymptotic optimality, quality of service. constraint of cache capacity. The authors [in [8] provide a

push-pull model to optimize the joint latency-traffic pref
by deciding which contents to push (cache) on intermediate
Recently, content retrieval has dominated the Internffidra nodes, and which contents to pull (retrieve) from the origin
Services like Video on Demand accounts for 53% of the totaérver. Most Popular Caching caches a content at neiglgorin
Internet traffic, and it is expected to grow even further t869 nodes when the number of requests exceeds some threshold
by the end of 2018[]1]. Content Delivery Network (CDN)[Q]. ProbCacheaims to reduce the cache redundancy by
uses content replication schemes at dedicated serverintp braching contents at nodes that are close to the destination
the contents closer to the requesting customers. This leas [(t0]. A cooperative approach in[11] leads to a node’s caghin
effect of offloading the traffic from the origin servers, rethg decision that depends on its estimate of what neighboring
content delivery time, and achieving better performancal-s nodes have in their cache. A collaborative caching mechanis
ability, and energy efficiency [2]/ [3]. Akamai, for examplein [12] maximizes cache cooperation through dynamic reques
is one of the largest CDNs deployed, delivering around 30B6uting. In [13], nodes try to grasp an idea of other nodes’
of web traffic through globally-distributed platformis [4[he caching policies through requests coming from those nodes.
problem with CDN is the necessity dfedicated serverand Few works targeted the caching decision problem from
that content replication is done offline. the point of view of optimality, or providing incentives for
Several techniques have emerged to overcome the limitatiomdes to cache. The work in[14] presents an offline solution
of caching at dedicated servers. For example, Content i€enthrough dynamic programming for content placement for en-
Networking (CCN) [5] uses the content name instead of the Bute caching. Authors in [15] characterize the optimalteah
address of the source to locate the content. This allows m@lacement strategy under offline settings, in which all fetu
flexible caching at intermediate nodes. In order to implemerequests are known to all nodes in the network. The work
CCN, major changes in the TCP/IP protocol needs to lod [16] presents an online solution but with no efficiency or
performed. When a client requests certain content, thatcli@ptimality proofs. Other works such as [17] and|[18] conside
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incentives for nodes to cache. However, they provide higélle S @ bS(%Z)JTT‘leeVIV( 2)=2
. . » = r,2)=
solutions that do not scale well with large systems. Thearsth ! P

in [18] consider a special case with only 3 ISPs. Sy @ SubTrees .

This paper provides a provably-optimal online solution for bz(l)zl, Wa(r,1)=3 3
the first time under a setting that brings incentives for the IE 4
nodes to cache. In order to provide incentives for the noaoles t bﬁ%bzgeeﬁf - 1)—d 2 5
cache, nodes have to charge content providers for cachag th bs 23:1Z Wigﬂ 23:2

contents. Adopting such charging policies forces the carhi
node to provide quality of service guarantees for content
providers by not replacing their contents in the future hié t
node decides to cache their contents. Since the number fgf. 1: Simple Caching Net-
contents far exceeds the nodes’ cache capacities, andiagsurrYVOfk-
that the charging price for every piece of content is the same
then the node has no preference in caching one content over
the other, forcing the node to cooperate and apply our policy(2) W;(r, 7): The expected number of requests fyrto be
that achieves asymptotic optimality. served from the cache at nodeat time slot, if all of the
Specifically, we make the following contributions: caching nodes cachg,.
(1) We design an online, low complexity, and distributed (3) to(i, j): The time when a request f@t; appears at node
caching decision algorithm that provides incentives fog th
nodes to cache, and quality of service guarantees for c’onten(4) &:(r,7): The total expected number of requests fyr
providers.(2) Our algorithm performs en-route caching ang, pe served from the cache at nodger time slotr. We

thus can be implemented without radical changes to thgsyme tha;(r, j) is fixedVr € {to, ..., to + Ti(to)}
TCP/IP protocol stack(3) Under some realistic network g ’ T ’

settings, We show that our algorithm is asymptotically (igimplicit
terms of the number of nodes in the network) optimal (in terms (i, 7) can be inferred from the context
of traffic savings)(4) Through extensive simulations, we show (6; d;(~, j): Number of hops from nodéto the first node
that our algorithm outperforms existing caching schemes. W _* 7. ™ ) P : .

X : ; .cachingp; along the path t&5; at timer. We assume that if
also show the effeciency of an extension of our algorithniwit O . : _ .
respect to the existing caching schemes hode: cachesf; at time 7o, thend;(r,j) = di(o,j), v €

The rest of the paper is organized as follows: Secfibn {ITO’,""T[O;' ﬁj(m)}' ol ‘ to il he af

states the definitions and settings of our algorithm. Sectio F|g_ure shows a simple network to Tlustrate the aiore-
I describes the algorithm and practical issues Optima"mentloned definitions. In this example, we have two contents
analysis of the algorithm is presented in Secfioh IV. Sedib 5_1 and 52_’ originqlly stored orv; andv,, respectively. Th_e .
describes the extensions of our algorithm. Sedfidn VI tesi triangles in the figure represent the subnetworks contginin

simulation results. We conclude the paper in Sedfion VII. the set of non—cachmg nodes connected to the caching node.
The values ofW;(r,j) represent the expected number of

Il. SETTINGS AND DEFINITIONS requests fors; coming from the set of non-caching nodes

In this Section, we provide the settings under which ol the subnetwork connected to node

algorithm takes place, followed by some necessary defiritio  Before any requests fof; appears at any node, each node
¢ will send itsW;(r, j) to all nodes on the path from nodé¢o

A. Settings the source of3;, S;. This process will lead to the calculation

A network is represented by a gragi{V, E), where each ©f the initial values of&;(, j).
nodei € V has a caching capacity dp;. If the node does For example, in Figurel1, before any requestforappears
not have caching capability, its caching capacity is set @& any nodegs(r,1) = Ws(7,1) + Wy(r,1), to a total value
0. Weights can be assigned to each liake FE, but we of 6. This is because, starting from the initial configuratio
consider all links to have the same weight. The input cosmsigvhile investigating the caching of contefit on nodewvs, all
of a sequence of content, B, ..., B, the j-th of which is the requests fo; coming from the subnetworks connected to
represented by3; = (S;,7;,7;(7)), whereS; is the source vs andvs will be served from the cache of;, if we decide to
for contents;, r; is the size ofg;, andT;(7) is the effective cacheB; onwvs. Similarly, &>(7, 1) = 9. Later on, ifv, decides
caching duration in which more requests are expectegsfor to caches, thenW,(r, 1) will be subtracted from all nodes
when a request appears at time sfot For simplicity, we along the path t&, until the first node caching, is reached.
assume a slotted time system and tafr) is an integer This is because none of these nodes will serve the requests

22551{?25?%5 -2 Fig. 2: A single node in

7,1
2)=2, Wu(r,2)=1 CCN.

(i,7): The time wheng; is cached at node. For
, we denote this value hereafterhysince the values

multiple of slots. for 8, coming from the subnetwork connectedupafter this
For each content, we define the following values: point. In SectiongTll and_I-BB, we provide details for the

(1) bi(5): Number of hops on the path from nodeo S; dynamic calculation and initialization & (7, ), respectively.
for B;. We define the total traffic savings of caching in the time



interval [0f] as: However, nodevs does not know when the next request for
t o om the same content will come.
ZZZ5i(707j)di(70aj)I(ai(Taj))a (1) To measure the performa_mce in t_erms tuiffic savings.
0= =1 as defined in[{1), of the online algorithm against the offline
algorithm, we use the concept @ompetitive Ratio Here,
where(.) is the indicator function and;(7, j) is the event yraffic savings refer to, but not limited, to the total numbér
that §; exists at node at time 7. For example, referring to hops saved using en-route caching, compared to the traalitio
Figure[1, caching3, on v3 alone for a single time slot will o_caching case in which the request for a content is seryed b

yield a saving of€s(7,1) x d3(7,1) = (4 +2) x 2 = 12. the content’s source. The traffic savings can be based on othe
We define the relative load on a caching nadet time  metrics like the actual distance or the energy consumption.
when j3; arrives as Other works have used the concept of competitive ratio, but
) Tk for different problems such as energy efficiericy| [19] or oali
Ai(T, ) = Z D;’ routing [20]. Competitive ratio is defined as the performeanc
kec’“{;’z;;(ﬂ achieved by the offline algorithm to the performance actdeve

by the online algorithmj.e.,, if we denote the offline per-

where k < ] refers to the indices of a.I/Bk that are in the formance aSPOff and the online performance ﬁ)n, the
cache of node at the time when consideringj to be cached competitive ratio is:

at nodei. We usek € Cache;(7) to represent the existence
of §i in the cache of nodé at time 7. sup sup fr

As we mentioned in Sectidd I, charging content providers t all input FPon
for caching their contents will provide the nodes with the sequences in [0,1]
necessary incentives to cache. In return, the nodes haveAt the ratio gets closer to 1, the online performance gets
guarantee quality of service for content providers by kegpi closer to the offline performance. In other words, the smalle
their content cached for the required time period. We assunie competitive ratio, the better the online algorithm’sfpe
that content providers are charged the same to prevent thance.
node from prefering contents with a higher prices. To thid,en We motivate the design of our online algorithm by the
we considemon-preemptiveaching to represent our systenfollowing reasoning; knowing the contents’ popularitiésre
model,i.e, oncej; is cached at nodg it will stay cached does not guarantee an optimal solution. The order in which

¥

VT € {r,...,70 + T;(10)} time slots. We elaborate more onthe contents arrive makes a big difference.

T;(7) in SectionIl-B4. Referring to Figurdll, consider the existence of two con-
o tents namedX and Y, originally located atv;. Assume

B. Definitions that Wy(r, X) = Wi(r,X) = 1, Wy(r,Y) = 1, and

Offline vs. Online AlgorithmsThe main difference betweenW,(7,Y) = 10. Assume that all nodes have enough residual
the offline and the online algorithms is that the offline algcsache capacity for one content except nagdewhich is full
rithm has a complete knowledge of the future. In our worlgnd cannot cache any content. Furthermore, assumeXithat
offline means that the algorithm knowgen where andhow andY will be both requested twice by, at different time
many timesa content will be requested. This knowledge leaddots. Consider the following two scenarios:
to the optimal content distribution strategy that maxirsittee (En-Route Caching) If the first request for contenk,
performance in terms of traffic savings. On the other hanfllowed by the first request for conteht, arrives atv,, then
online algorithms do not possess such knowledge. Onling will cache the first contenkX andwv, will cache content’,
algorithms have to make a caching decision for a contentbasehieving a traffic saving at, for the next pair of requests of
on the available information at the time of the content atriv (1 x 3) + (10 x 1) = 13. Later on, if requests foX andY
Due to this difference, the offline algorithm’s performarge appear abts, thenvs will get contentX from v, and content”
better than that of the online algorithm. from vy, gaining an additional savings 6f x 0)+(1x 1) = 1.

Under our settings, we assume that the node does not knov®n the other hand, if a request fbris followed by a request
when a request for a content will come. However, once far X atwv,, thenv, will cache the first content” and vy will
request for a content arrives at a caching node, the node w#iche contenX, achieving a traffic saving at, for the next
know the content’s size, the effective caching durationetimpair of requests of10x 3)+ (1 x 1) = 31. Later on, if requests
and the expected number of requests to be served from the X andY appear ats, thenvs will get contentX from
cache of the caching node. Furthermore, all other caching and conteny” from v;, gaining an additional savings of
nodes are informed about the arrival time of the request. We x 1) + (1 x 0) = 1. So the online algorithm will achieve
elaborate more on this issue in Section Ill}B4. For examplan average traffic savings a8.
referring back to Figur€ll, node; does not know when a  The offline algorithm knows in advance that cont&nhwill
request for3; will come. Only when a request fof; arrives be requested and can reject the caching of coniérdt vy
atvz at timet,, doesvs know r1, T (o), E5(7, 1), in addition and cache it ab, to achieve a traffic saving ofl0 x 3) +
to its own relative loadAs(7,1),V7 € {to,....to +T1(to)}. (1 x1)4+ (1 x1)+ (1 x0)=32.



(Routing to the Closest Caching Node)lf the first request nodei. When Node recieves the message, it makes a caching
for content X, followed by the first request for conteif, decision according to Algorithinl 2. If nodedecides to cache
arrives atvy, thenwv, will cache the first contenk’, andv,  §;, it initializes a header field in the request packet to the
will cache contentt’, achieving a traffic saving at, for the value of&;(r,j). If node: decides not to cache, it initializes
next pair of requests dfl x 3) 4+ (10 x 1) = 13. Later on, if the header field to 0.
requests forX andY appear avs, thenvs will get contentX The request packet is then forwarded to the parent node
from v, and content” from v, gaining an additional savingsThe parent first subtracts the value stored in the header field
of (I1x1)+(1x1)=2. from its own value of€.(r,j). Based on the new value of

On the other hand, if a request figris followed by a request &.(r, j), if node = decides to cachg;, it adds its&.(r, j) to
for X atwvg, thenvy will cache the first content” andwv, will  the value in the header field. Otherwise, nadadds 0. The
cache contenk’, achieving a traffic saving at; for the next request packet is then forwarded to nogde parent, and the
pair of requests of10x 3)+(1x 1) = 31. Later on, if requests whole process is repeated until the request reaches the first
for X andY appear atvs, thenvs will get contentX from node that has the content in its cache. The content then will
vy and contenty” from vy, gaining an additional savings offollow the same path back to the requester, and every node in
(1 x 1)+ (1 x 1) = 2. Because of this, the online algorithmthe path that decided to cache the content will store a copy
will achieve an average traffic savings f. in its cache. We describe the operation of our algorithm in

The offline algorithm knows in advance that cont&htwill ~ Algorithm [T
be requested and can reject the caching of contérat vy,
and will cache it ab to achieve a traffic saving d¢fl0 x 3) + Algorithm 1 En-Route Caching

(Ix1)+ A x1)+(1x1) =33 A request for3; appears at nodeat timet,.

The above examples show that the online algorithm cannot _
header =0

guarantee an optimal solution. In fact, we show that there-f _ he (£ th
is an upper bound on the savings achieved by the onIineI %eilfggcekl\(/v?t)hﬂ-en
algorithm when compared to the offline algorithm, and we else I

develop an online algorithm that achieves that bound under Send a control message to retrieve d; (fo, )

realistic settings. w < first node on the path taS;, where g; €
ll. ALGORITHM Cacheq(to)

Nodew replies withr; andID

Vu € Path(w,1), storer;,d,(to, 5)

for uy € Path(i,w),k = 1: Length(Path(i,w)) do
Eup (to,7) = Eu, (Lo, §) — header
Run Cost-Reward Cachinglgorithm

A. CRC Algorithm if Caching Decision = TRUEhen

header = header + &,, (to,7)

In this Section, we present the Cost-Reward Caching (CRC)
algorithm that achieves the optimal competitive ratio,nglo
with some practical issues. We introduce the proof of opti-
mality in the next Section.

CRC takes advantage of en-route cachirgy, a request for
a content is forwarded along the path to the content’s squrce
up to the first node that has the content in its cache. TheFor example, Figur€]l3 shows a simple network where a
content then will follow the same path back to the requestarontents; is originally stored aifS;. We removed the triangles
In CCN, when an interest packet for a new content arrivegpresenting the set of non-caching nodes for the sake of
at a node on a certain interface, the node will send tlotarity. If a request for3, appears aby, nodewv, will send
interest packet using all other interfaces. For examplgyifeéi a control message up to the first node cachiigwhich is
shows a single node in CCN, where the numbers represént and retrieves the values of anddy(ty,1) = 1. Based
the interfaces of the node. When a requestdparrives at the on these values, ifiy decides to cachég,, it will send the
node through interface number 2, and a match is not founshuest for3; to its parent, which isS;, with the header
in neither the cache nor the Pending Interest Table (PIE), tfield initialized to £ (to, 1) = 14. Node Sy will simply reply
node will send the request on all interfaces except interfawith a data packet containing;, andwv, will cache ;. Later
number 2. Our algorithm uses en-route caching, so the new, if another request fof, appears avs while 3, is still
interest packet is only forwarded on the single interface@l cached at, nodewvs will send a control message up to the
the path to the content’s source. first node cachings;, which isvg. Nodewvy sends a message
When a request for a contefif appears at a nodeat time containing the values of; and its ID to nodev,. Node v
to, nodei sends a small control message up to the first nodéll store the value ofrq, setsds(to,j) = 1, and forwards
cachingB; along the path to the source of the content.dudde the message tos. Nodews in turn will store the value of
that first node, then node replies with a message containingand setds(to, j) = 2. Based on these values,f decides to
r; and the ID of nodev. Every nodeu in the path from node cacheg; it will send the request fop; to its parent, which is
w to nodei stores a copy of the message, computgs,,j), w2, with a header field initialized t&5(7,1) = 2. When the
and forwards the message to the next node along the pathdquest reaches, it will first subtract the value in the header




field from its owné&;(7,1), so the new value of,(7,1) is For example, Figurgl4 shows the relative load at a node for
Es(1,1) = E3(7,1) — header = 4 — 2 = 2. The reason that the next 10 time slots starting froty, which is the arrival time
nodews has to subtract the header field from its ofig{r,1) of a new contenB,. The node has three cached contefits,

is because the requests f68r coming from the subnetwork 32, and 83 that are going to be flushed at times= ¢y + 3,
connected to node; will not be served from the cache ofr, =ty + 9, andrs = to + 7, respectively. When &, arrives
nodewvs sincevs decided to cachg;. Based on these values,at this node at- = ¢, with T4(¢¢) = 10, the cost calculation

if vo decidesnotto cachesy, it will add O to the header field should include three cached contents for 3 time slots, two
and forward the request to its paraegt Nodewvy will simply cached contents for 4 time slots, one cached content for 2
reply with a data packet containirfy, and onlyvs will cache time slots, and 0 cached content for 1 time slot. If the total
5. savings for caching, is greater than the aggregated cost, then
B4 will be cached on nodé and the relative load is updated
to include the effect o0f3,.

AT, Flushing Time of 5
! Flushing Time of g3
&
Flushing Time of 3o
&
torl fot2 foi3 fotd toib toib fo 7 foi8 totl fprll T
Fig. 3: Simple Caching Netwrok 2. Fig. 4: Relative Load Calculation Example. The figure shows

the state of the cache in one node when it considers a new
The core idea of the Cost-Reward Caching algorithm is tntentg, for caching at timet, and Ty (o) = 10. We have
assign an exponential cost function for each node in termstafee contents3;, 32, and s, that are to be flushed at times
the node’s relative load. If the cost of caching a content is = ¢, + 3, » =ty + 9, andr; = to + 7, respectively.
less than the traffic savings achieved by caching the cantent
the algorithm decides to cache. The choice of an exponential

cost function guarantees that the node’s capacity consraib- Practical Issues

are not violated. We show that in the next Section. So far, we developed a fully distributed algorithm that
We define the cost of caching at a nodat time 7 as: achieves asymptotic optimality in terms of traffic savingsler
, M) some realistic assumptions. Before providing the optiyali
Ci(7,j) = Di(p™™7 = 1), proof, we discuss in this section the practical issues tretem

n'ihe algorithm easy to implement. The major issues in our
algorithm include providing incentives for the caching esd
and QoS guarantees for the content providers, the adoption

where i, is a constant defined in SectiénlIV. The algorith
for Cost-Reward Caching is presented in Algorithm 2.

Algorithm 2 Cost-Reward Caching (CRC) of en-route caching, calculating the popularity expeotatf
— - : each content, and updating the effective caching duration.
New request for3; arriving at node: at timeto 1) Providing Incentives and QoS Guaranteés:this work,
V7 € {to, ..., to + Tj(to) }, Computedi(r, j), Ci(7, j) the QoS measure is to guarantee the existence of the content

. to+T (o) _ . to-+T5 (f0) 7 _inthe cache for a certain period of time, so the content véll b
it >0 il g)dilto,g) = 270 5:Ci(T.0)  delivered quickly. In other words, once a caching node dexid

then to cache a certain content, the content will not be replaced
during the effective caching time of the content. Providing
Cachef3; on node: such a guarantee along with adopting an equal pay charging
70(i, ) = to(i, J) .. policy for all contents will provide the caching nodes wittet
VT € {to, ... to+ Ti(to)}, Mi(7,5 +1) = Xi(T.7) + B, necessary incentive to cache. Figlife 5 shows the interactio
else between the ISP and the content provider.
Do not cache We assume that the caching nodes should adopt charging

policies, where every content provider is charged the same.
In the algorithm, when new content that m®t currently This will prevent the caching node from preferring one cante
cached by node arrives at timety, nodei computes the over the other. Moreover, such charging policies will enéor
relative load 4;(r,j)) and the cost;(r, 7)) for everyr € the caching nodes to cooperate and apply our CRC algorithm.
{to, ..., to+T;(7)}. This is because a currently cached content 2) En-Route Cachingin en-route caching, a request foy
may be flushed beforg + T} (to), thus the relative load and will be sent to the parent along the traditional path to the-co
the cost should be adjusted for each time slot thereafter. tent's source, until the request reaches the first node rgchi



2) Providing guaranteed 4) Effective Caching DurationThe effective caching du-
caching time . . . .
ration of a content depends on its arrival time. For example,

— & incentiv . .
Content <!>Tﬂ‘ SJISP hus o incentive most people read the newspaper in a period of two hours,
Providers o prefer one content . I L.

I)PayingCharges. L overthe other so the caching duration should be two hours beginning at
All providers pay the arrival of the first request. However, if a new request for
the same charges Benefits the newspaper arrives at a node in the middle of the range
or CP are more than the charges . i .
_ _ _ and was cached by the algorithm, then the caching duration
Fig. 5: Interaction between ISP and Content Provider. should be one hour. This requires the broadcast of the first
arrival time to all other nodes in the network. The additiona
overhead incurred by such broadcasting is negligible coetpa
the content or the content's source. The adoption of tHigthe reduction of thénterestpacket broadcasting we achieve
en-route caching reduces the amount of broadcdstiedest through the adoption of en-route caching.
packets as opposed to the currently deployed schemes in CCN,
where the interest packets are broadcasted to all neighbors
Moreover, using en-route caching prevents the reception of
multiple copies of the requested content as opposed to CCN. . ) ) .
Furthermore, our algorithm can be easily implemented in the!" this Section, we show that any online algorithm has a
current Internet architecture. competitive ratio that is lower bounded WYy(log(n)), then
3) Calculating the Initial Content Expectation ValueSor we show that our algorithm does not violate the capacity

each content, we start by building a caching tree rootedeat gﬁonstraints, and achieves a cqmpetitivg ratio that is upper
source of the content. The caching tree is the union of t gunded _b_y(?(log(n)) quer reall_s'uc settings. N ]
traditional paths from the source of the content to all other Proposition 1: Any online algorithm has a competitive ratio
nodes. We calculate the initial expectation value at a cachihich is lower bounded b§2(log(n)).
node for a certain content, when only nofig holds thej- Proof: We show this proposition by giving an example
th content, based on the content’s popularity and the numiiétwork, such that the best online algorithm competitieora
of end nodes in the subnetwork connected to that node. F®rower bounded by2(log(n)). Consider a network which
example, in Figur€l1}Vs(r, j) at nodevs for contentp; is consists ofn. + 2 nodes, as shown in Figufeé 6. All contents
proportional to the content’s popularity and the numberraf e are originally placed at nod€, and nodeC' is the only node
nodes in the subnetwork connected to nege with caching capability with a unit cache capacity. All othe
Algorithm [@ shows how to calculate;(r,j) for each nodes can request the contents. We consider a 2-time_ slqts
content at each caching node before the appearance of 8y§tem where all contents are to be requested at the beginnin
request at any node. The expectations are calculated iPf&ach time slot, though sequentially. Sequentially me¢hat
distributed way, where each node only needs to know tHee algorithm has to make a caching decision for a content
expectation values of its children in the caching tree. la ttPefore considering the next one.
simulation, we investigate the effect of having error masgi
in the expectation calculation.

IV. PERFORMANCEANALYSIS

Algorithm 3 Initial Content Popularity Expectation Calcula-
tion
for each content; = {S;,r;,T;(7)} do
CachingTree(j) < build the traditional path tree rooted
at 5 Fig. 6: Network for Lower Bound Proof.
for each caching nodee CachingTree(j) do
CalculateW;(r, j)

Initialize & (7, §) < Wi(r, ) Consider alog(n) + 1 phases of contents. For each phase
for each node: € Ancestor(i) in CachingTree(j) do 0 < ¢ < log(n), we havel/« identical contents, each with
E(1.5) = E.(1,§) + Wi(r, ) sizea < 1 and a caching time equal to 2 time slots. Contents

in the same phase are destined for the safmaodes. The
reason behind considering a 2-time slots system is that when

] . a node caches a content, the traffic saving is considered for
For example, referring back to Figlre 3, and before a requegtre requests.

for 8, appears at any node, the value€gfr, j) are calculated
as described in Algorithn] 3. Take node for example, then
52(7’, 1) = WQ(T, 1) + W5(T, 1) + Wg(T, 1) = 4. The final

expectation values for the rest of the nodes are shown in
figure. G; = 1;2°

Let z; be the fraction of contents stored from phasand
G, be the traffic saving of the online algorithm gained from
I%réasez', then



Consider the firs: phases, then the online traffic saving of - -Cy(7,§) = nTFr; > (7, j)bi(j) = &7, 5)di(to, §)

thesek phases, denoted ty(k), is From the definition of our algorithmg; should not be cached

k , at nodei. Therefore, the CRC algorithm does not violate the
k) = Z G; = Z ;2" capacity constraints. ]
' The next lemma shows that the traffic saving gained by our
The offline algorithm will cache the contents from phdse algorithm is lower bounded by the sum of the caching costs.

only, gaining a traffic saving ot* Lemma 1:Let A be the set of indices of contents cached
Now consider the ratio of the online traffic saving to th@y the CRC algorithm, an# be the last index, then
offline traffic saving:
R e 2log(11) 2; [Ei(r, 5)dilto, )] = Y Ci(r.k+1)  (4)
_ 1—k 1,jEA,T 1,7
D IDIE =S D IP P ’
k=0 k=0 =0 1=0 k=1t

3 ©
~

log 1 Proof: By induction onk. Whenk = 0, the cache is
; 9~k < 149 <9 empty and the right hand side of the inequality is 0. When
h h B; is not cached by the online algorithm, neither side of the

)

g

0o

1=0 k=1
mequallty is changed. Then it is enough to show, for a cached
= that:
that the saving of the offline algonthm is at Feast withilbgn
factor of the savings achieved by any online algorithm.m
Before we start the proof of satisfying the capacity con- 2log(p )Z[S-(r 5)di(to, )]
straints and the upper bound, we need to state the following
two assumptions: > Z (r,j +1) = Ci(7,§)]
1 &i(T,7)bi(j .
1< LEOING) p iisg v (@
no rT(7) since summing both sides over gl A will yield ().
and . Consider a node, the additional cost incurred by caching
min D; . o .
;< V7, (3) Bj is given by:
log(1) . , N
whereF is any constant large enough to satisfy the assumption Ci(r,j+1) = Ci(m, ) = Di[p 7700 — pnim 7]
in @), n = 2(nTF + 1), n is the number of caching nodes, = Dy [ o _ 1]

andT = max(T}),Vj. The assumption inf12) states that the
amount of traffic savings for a content scales with the cdigten
size and caching duration. The assumptioriin (3) requiras th N . _
the caching capacity of any node should be greater than theSlnce2 —l=wafor0<z<1and using the assumption
size of any content, which is a practical condition to assum® ®

We start by proving that the CRC algorithm does not
violate the capacity constraints. After that, we show that Ci(r,j+1) = Ci(r,5) < Dmxi(m‘)[ﬁ log 4]
CRC achieves @) (log(n)) competitive ratio. In all of the ’ T D;

= Dy [2 glog iy _ 1]

subsequent proofs; € {to(i, ), .., to(i, j) + Tj(to(i, )}, Ci(r.J)
. . . : < r.
wheret (i, 7) is the arrival time ofg; at nodes. =T 1Ogﬂ[ D; +1
Proposition 2: The CRC algorithm does not violate the < 1Ogﬂ[ Ci(r,5) + 1]
capacity constraints. D; !

Proof: Let 8; be the first content that caused the relativgumming overr, i, and the fact thaB; is cached, we get
1 1 j 1

load at nodei to exceed 1. By the definition of the relative

load, we have | . ZZ (1,7 +1) = Ci(7, )]
)\i(ij) >1—-—=
D;
using the assumption ifJ(3) and the definition of the cost < loguzz (7,7) + 73]
function, we get
Slogﬂzgz 7-7.] ’Lth.] +ZZTJ]
Oi(ij) —_ i(mg) 1*T—jv i i i
—p = —1>p P -1 s2logu25i<m)di(to,j>

>l mmr 1> 2 1> rE
=H =g =" -

Multiplying both sides byr; and using the assumption inl (2), In the next lemmad;(r, j) is defined for the online algo-
we get rithm.



Lemma 2:Let @Q be the set of indices of contents cachethis proof techniqued;(r,j) of the online algorithm should
by the offline algorithm, but not the CRC algorithm. et be equal tod;(r,j) of the offline algorithm. In the next

argmax;cq(Ci(7,7)). Then two corollaries, we show cases wheigr, j) of the online
_ . algorithm is equal tal;(r, j) of the offline algorithm.
SN N i )dilte. )] < DD Cilr D) Corollary 1: When there is only one caching node in every
i JEQ T 7 T

path, thend;(, j) of the online algorithm is equal té;(7, 5)

Proof: Since3; was not cached by the online aIgorithmOf the offline algorithm, and our algorithm achieves asyripto

have: bptimality.
we have. Corollary 2: When every node in the path shares the same
Z Ei(T, 5)d;(to, 7) < Z %C’i(ﬂj) caching decision, themi(f,j)_of the online algorithm is equal
- L i to d; (7, 7) of the offline algorithm, and our algorithm achieves
< Z ;_J Ci(r, 1) asymptotic optimality.
T ! . V. EXTENSION TOCRC ALGORITHM
YOS &l dilto, ) <Y D_J_Ci(Tal) In this section, we provide an extension to the CRC algo-
ioT . rithm. We show the effeciency of this extension with respect
Summing over allj € Q to currently deployed caching schemes through extensive
r simulations.
Ei(r,i)d;(tg,j) < Ci (1,1 L
;%2 (r.3)di(to, 5) z;z; ( )j;? D; A. Replacement-CRC
< Z Z Ci(r,1) The basic CRC algori'ghm provides quality of seryice guar-
—~ antees for content providers by not replacing their costent

Si i laorith ; q it relati once they are cached. Content providers, in return, argetira
Ince anyT’_o IN€ aigorithm cannot exceed a unit refativiy provide incentives for the caching nodes based on the
load,> ;.o o < 1.

€Q D; — u caching policy discussed in sectibn Il[4B1. In this sectioe
Combining Lemmall and Lemnia 2, we have the fOHOW'nBresent an extension for the basic CRC algorithm that allows
lemma. . - content replacement.
Lemma 3: Let A. be the_ set of indices of the c_ontents The settings for Replacement-CRC are the same as for
cached by the offline algorithm, and létbe the last index. the basic CRC algorithm. However, there is no restriction on

Then: keeping a contenB; in the cache of node for the whole
Z Ei(r,)di(to, §) effective caching duration tim&;(7), as3; may be replaced
i jEA* T by another content.
g , We present the details of the Replacement-CRC algorithm
< 2log(2p) . Z Ei(r, j)di(to, j) in algorithm[3.
i,JEA,T
Proof: The traffic savings of the offline algorithm is givenAlgorithm 4 Replacement-CRC
by: A new request fors; appears at nodeat timet,
Z 51-(7—73’)(11-(1607]') _VT € {t07 T to + Tj_(to)}! CormpUte)‘Z:(ij)a Ci(ij)
i,jEA*,T if %:7— i’t(;()v.])dl(tgv.]) Z ZT D—JTO»L(T,_]) then
. _ _ . acheg; at nodei
= Z &i(r,j)di(to, j) + Ny Z &i(7,7)di(to, J) 7o0(i, 7) = to(i, §) |
HIEQT BIEAT/QT V71 € {to,...,to-‘rTj(to)},/\i(T,j-i-l):)\i(T,j)-i-;—ji
< Z gZ(Ta.])dZ(tOL])_'_ Z E’L(Ta.])dl(tOL]) else
,jEQ,T ©,jEA,T VP, € C’achei(to) U ﬂj,VT S {to, oot + Tk(to)},
. . Compute
< Ci(r, 1)+ &i(T,7)d;i(to, 7) P! N
7;727— Z‘J'GZA_J- )\f(Taj):AZ(Taj)_FFJI_FkI

CH(r,j) = Difp ) 71]
if \¥(,j) <1 then

<Y Cilmk+1)+ > &l §)di(to, )

@7 i,JEA,T ; L] ]
, . Dif f(k) =3, &i(ro, k)di(ro, k) — 32, 5-CF(7.j)
< (2logp+1) Y &7 §)di(to, 5) | = argming (Dif f) "
i,jEAT if | #£ 4 then
<2log(2u) Y &i(r,§)dilto. ) Replaces; with 3;
i,JEA,T VT € {to, ceey to + Tj(to)}, )\i(T,j + 1) = /\i(T,j)

[ |
Note thatd;(r,j) in the previous lemmas is defined by Algorithm [4 states that if the traffic savings gained by
the online algorithm. In order to achieve optimality usingaching a new content; is greater than the caching cost



at nodes, then the algorithm decides to cache. Otherwise, &2 Results on Random topologies

compare the difference between the traffic savings and theye start our evaluation on random backbone topologies, in
caching costs for evergy, € Cache;(7), if it is replaced by which the caching nodes are generated as a random topology.
ﬁj without ViOlating the Capacity constraints. We then ChOOSGWe simulate the effect of the number of Caching nodes
the content with the minimum difference to replace with  in the network for three cases,= 30, n = 50, andn = 100
nodes. For each case we use 10 random topologies, and report
VI. SIMULATION RESULTS the average performance. We fix the effective caching durati
to 150 slots and the number of contents to 10000 contents to
In this Section, we compare our CRC algorithm to some sblely show the effect of increasing the number of nodes on
the existing caching schemes. the performance of the CRC algorithm. The results are shown
in Figure[T(a).
As can be seen from the figure, increasing the number of the
caching nodes will result in better performance in all sckem
We simulate the following caching schemes: since more contents can be cached. Another observation from
(1) CRC: This scheme represents our basic algorithm. the figure is that the performance of CRC schemes increases at
(2) CRC Version 2: This is similar to the CRC schemé? higher rate than other schemes as we increase the number of

Version 1, except that we retrieve the content from the psdne nodes in the network. This shows that our scheme greatly
node that has the content in its cache, not necessarily aldIgji€fits from adding more caching nodes to the network. It
the path to the content's source. is also aligned with the property of asympto_tlc optimality o
(3) All Cache: This scheme caches every new conteéw scheme. On the other hand, not much improvement can
arriving at a caching node, as long as there is enough rdsid & Seen from the other schemes when the number of nodes is

capacity to cache the new content. mcreas_ed in the network. .
(4) Random Caching Version 1: In this scheme, when ﬁalWe simulate the effect of changing the number of contents

. , . I om 2000 to 10000. The results are averaged over 10 runs and
request for a content arrives at nogehe caching probability

, . 2 are shown in FigurEl7(b). The reason that the performance of
of the content depends on the content's popularity at mdethe Cache All, Random 1, and Random 2 schemes increases
The popularity of a content; at node:; denoted byPop,, is ’ '

defined as the ratio of the humber of requestsfocomin and then decreases is that there is a saturation point after
¢ h bretwork ted t dinl ; g b Njg which the caches of the network cannot handle the requests.
rom the subnetwork connected to nodelenoted by, n the other hand, Our scheme reserves the cache capacity
to the total number of non-caching nodes in the subnetwofr

ted t dedenoted b Math ticall Ki contents with higher traffic savings, and achieves an
connecte J—O nodedenoted byN;. Mathematically speaking, improvement of 2 to 3-fold in terms of traffic savings.
Pop; = N/ /N;. If we choose a uniform random number

b & h h . hed Figure [T(c) shows the effect of the maximum effective
etween [0.1], andt < Pop;, then the conteng; is cache caching duration for three cases, 50, 100, and 150 time

if there is enough room for it in the cache. Otherwise, thﬂots. In this scenario, the difference between the start

content is not cache_d. ] o and end times for each content is drawn randomly from
(5) Random Caching Version 2: This is similar to Random, ..,max .caching duration}. The reason that the traffic

Caching Version 1, except that t’he caching probability @ thsyings decrease as the maximum effective caching duration
content depends on the content's popularity at nodaled jncreases after a certain point is that contents are cade f

by the fraction of the available residual capacity to the;altot|0nger period, so future contents are less likely to find gfou
capacity in the cache of nodelenoted byf;, i.e., if we choose |ogiqual capacity at the caching node.

A. Settings

a uniform random number between [0,1], and < f;xPop;,  |n all of the results in Figur&l7, the performance of CRC
then the conteng; is cached if there is enough room for it inyiersijon 2 is always less than the performance of CRC Version
the cache. Otherwise, the content is not cached. 1. This is because CRC Version 2 deviates from the settings

For every caching nodé in the network, we assign aunder which we achieve optimality.
cache capacityD; that is uniformly chosen in the range So far our performance measure was the traffic saving. In
of [750,1000] GB. The number of the non-caching nodesigure[8, we measure the cost in terms of total number of
connected to the caching nodis chosen uniformly at random hops to satisfy all of the requests. The results in Figliree8 ar
in the range of 10 to 90 nodes. for a random topology with 100 caching nodes, the number of

For every content, we randomly chose one of the nodesdontents is 10000, and the maximum effective caching dumrati
act as the source. Each content has a size chosen randdmiys0 slots. The results in the figure show that even when we
in the range of [100,150] MB. The starting effective time ofeasure the performance in terms of the total cost, our sshem
the content is chosen randomly. The end time is also choseduces the cost by the range of 30% to 50%.
randomly within a fixed interval from the starting time. Ifeth  In Figure[® we measure the per topology improvement
end time exceeds the end time of the simulation, it is adjustéor all schemes with respect to Random Caching Version 2
to be equal to the end time of the simulation. The simulatietheme. Here, we measure the performance of all schemes
interval is chosen to be 1000 time slots. for 100 different random topologies. For each topology, we
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Fig. 7: The Effects of Different Factors on the Performant¢he Random Topologies.

C. Results on a Small-word generated topology

_ In [21] it is shown that the Internet topology exhibits
a small-world structure defined in_[22]. In this Section we
perform simulations based on the small world-structure.
Figure[I0 is similar to Figuré]l7, but for the small-world
topologies. The results follow the same trend as the results
for the random topologies except for two differnces. The
first difference is that is that CRC Version 1 achieves better
perofrmance than CRC Version 2 as we increase the number
of nodes. The second difference is that all of the schemes
performances increase with increasing the effective cachi
time. One of the reason is due to the sparsity of the small-
ke world topologies, which results in the fact that the regsiest

Cache All

¥ e Rendom { ‘ ‘ ‘ ] are distributed over multiple domains inside the topology.

Traffic Cost

Fig. 8: Traffic cost.

D. Results for Replacement-CRC

We compare the performance of Replacement-CRC against
the following schemes:

o } ] (1) Least Recently Used (LRU): In this scheme, when a
b b A request for a content; appears at node, Least Recently
per Topology Improvement Used replacement is performed at all nodes along the path

Fig. 9: The empirical CDF of the per topology improvemerf{OM nodei to the source of the contepy.

for random topologies with respect to Random Caching Ver- (2) Random Replacement: In this scheme, when a request
sion 2. for a contents; appears at nodg every node along the path

from nodei to the source of the conterit; will randomly

choose a cached content to be replaced withas long as

the capacity constraints are satisfied.
normalize the performance of all schemes with respect to(3) CCN: This scheme represents the Content Centric Net-
the performance of Random Caching Version 2. Denote th@rk as described in_[5], where a request for a content is
performance of the CRC scheme and Random Caching Versiwnadcasted until the closest node with a copy of the content
2 scheme for topology as Pore (tops) and Prandoma2(tops), in its cache is found. The content then follows the path from
respectively. We compute the normalized performance of CRIe closest node to the requester, and all nodes along that
scheme with respect to Random Caching Version 2 scheme fiaith caches the content as long as the capacity constraints
topology s as Rcrc (tops) = Pore (tops)/ Prandoma(tops). — are satisfied, or performs replacement using LRU if content
After that, the empirical CDF of the vectoRcrc = replacement is needed.
[Rore(topr), Rere(tops), . .., Rore(topioo)] for the 100 We use the same settings as described in Selction] VI-A, and
random topologies is plotted. We do the same process for the simulate the effect of increasing the number of caching
other two schemes. The results in the figure show that cwndes in the network, the effect of increasing the number of
scheme experiences about 4 times the improvements as timaitents, and the effect of increasing the cache capacityeof
by Random Caching Version 2. caching nodes. The results are shown in Fidgude 11.



x 10° x10° X 10

8 9 14
——CRC1 —— CRC1 A,
7 CRC2 8 CRC2 12 K
Cache All 7 Cache All
n 6 Random 1 Random 1
o)) 10 —3¢— CRC1
£ _| =¥ Random 2 6| =—j— Random 2 CRC2
S
g 5 8 E Cache All
o Random 1
5‘:_5 4 6 —¥— Random 2
= 8 4
0 0
30 40 50 60 70 80 90 100 2000 4000 6000 8000 10000 50 . 100 . X 150
Number of Nodes Number of Contents Maximum Effective Caching Time

@ (b) ()

Fig. 10: The Effects of Different Factors on the Performaatéhe Small-world Topologies.
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Fig. 11: The Effects of Different Factors on the Performaot®ifferent Replacement Schemes.

Figure[I1(a) shows the performance of all schemes as performance of the other schemes with only 30% of the cache
increase the number of the caching nodes in the netwodapacity.
From the figure, the performance of all schemes increases
with increasing the number of caching nodes. This is be-
cause adding more caching nodes will increase the overall VII. CONCLUSION
caching capacity of the network, which results in more cdche
contents. Moreover, as the topology grows with adding moreCaching at intermediate nodes has the advantage of bringing
nodes, the average distance between the nodes in the netfgkcontents closer to the users, which results in traffioath
increases. The figure shows that Replacement-CRC outg@g from the origin servers and lower delays. To acheive this
forms the existing replacement schemes by 30% to 60%. caching schemes such as en-route caching and CCN have been

Figure[I1(b) shows the performance of all schemes as ¥estigated. Unlike CCN, the use of en-route caching do¢s n
increase the number of contents. As we increase the numkguire major changes to the TCP/IP model. Previous works
of contents, the performance of all schemes increases sifié¥e studied en-route caching under offline settings toiaehe
more contents are available for caching. Replacement-CH® optimal content placement strategy. In this work, welytu
acheives better perofrmance than the other schemes, sind8& framework of en-route caching under online settings.
is able to identify the contents with higher traffic savinggla Under this framework, we characterize the fundamental
the replacement is done less frequently than the other sshentimit for the ratio of the performance of the optimal offline

In Figure[11(c), we investigate the effect of increasing thecheme to that of any online scheme. The offline scheme
caching size of the caching nodes on the performance hads a complete knowledge of all of the future requests, while
all schemes. We increased the caching size of each ndlde online scheme does not possess such knowledge. We also
until we reach a saturation point, where all of the nodetesign an efficient online scheme and prove that the develope
are able to cache all of the contents without the need fonline scheme achieves optimality as the number of nodes
replacement. At this saturation point, all schemes ackeiva the network becomes large. Moreover, we introduce an
the same traffic savings. Another observation from the figuextension to the algorithm. Our simulation results affirre th
is that the performance of Replacement-CRC at 500GB efficiency of our scheme and its extension. Our future work
similar to the performance of the other schemes at 1500GBcludes the investigation of network coding [23], [24] end
This means that Replacement-CRC can achieve the samoe settings.
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