
ar
X

iv
:1

40
4.

46
39

v3
 [

cs
.N

I]
 2

6
A

ug
 2

01
4

Asymptotically-Optimal Incentive-Based En-route
Caching Scheme

Ammar Gharaibeh†, Abdallah Khreishah†, Issa Khalil⋆, Jie Wu⋄
†New Jersey Institute of Technology,⋆Qatar Computing Research Institute,⋄Temple University

amg54@njit.edu, abdallah@njit.edu, ikhalil@qf.org.qa,jiewu@temple.edu

Abstract—Content caching at intermediate nodes is a very
effective way to optimize the operations of Computer networks,
so that future requests can be served without going back to
the origin of the content. Several caching techniques have been
proposed since the emergence of the concept, including tech-
niques that require major changes to the Internet architecture
such as Content Centric Networking. Few of these techniques
consider providing caching incentives for the nodes or quality of
service guarantees for content owners. In this work, we present
a low complexity, distributed, and online algorithm for making
caching decisions based on content popularity, while taking into
account the aforementioned issues. Our algorithm performsen-
route caching. Therefore, it can be integrated with the current
TCP/IP model. In order to measure the performance of any
online caching algorithm, we define the competitive ratio asthe
ratio of the performance of the online algorithm in terms of traffic
savings to the performance of the optimal offline algorithm that
has a complete knowledge of the future. We show that under our
settings, no online algorithm can achieve a better competitive
ratio than Ω(log n), where n is the number of nodes in the
network. Furthermore, we show that under realistic scenarios,
our algorithm has an asymptotically optimal competitive ratio
in terms of the number of nodes in the network. We also study
an extension to the basic algorithm and show its effectiveness
through extensive simulations.

Index Terms—En-route caching, caching incentive, competitive
ratio, asymptotic optimality, quality of service.

I. I NTRODUCTION

Recently, content retrieval has dominated the Internet traffic.
Services like Video on Demand accounts for 53% of the total
Internet traffic, and it is expected to grow even further to 69%
by the end of 2018 [1]. Content Delivery Network (CDN)
uses content replication schemes at dedicated servers to bring
the contents closer to the requesting customers. This has the
effect of offloading the traffic from the origin servers, reducing
content delivery time, and achieving better performance, scal-
ability, and energy efficiency [2], [3]. Akamai, for example,
is one of the largest CDNs deployed, delivering around 30%
of web traffic through globally-distributed platforms [4].The
problem with CDN is the necessity ofdedicated serversand
that content replication is done offline.

Several techniques have emerged to overcome the limitation
of caching at dedicated servers. For example, Content Centric
Networking (CCN) [5] uses the content name instead of the IP
address of the source to locate the content. This allows more
flexible caching at intermediate nodes. In order to implement
CCN, major changes in the TCP/IP protocol needs to be
performed. When a client requests certain content, the client

sends anInterest Packetto all its neighbors, which in turn send
the packet to all of their neighbors except the one where the
packet came from. The process continues until a node caching
the desired content is found, which in turn replies with aData
Packetcontaining the desired content.

Clearly, caching a content will reduce the traffic on the
upstream path, if the same content is being requested another
time by a different client. Given the limited cache capacity, the
questions to answer become ‘What are the factors that affect
achieving the maximum traffic savings?’and ‘Which contents
are to be cached in order to achieve the same objective?’

Several studies try to answer the above questions. The work
in [6] investigates the dependence of the caching benefit on
content popularity, nodes’ caching capacities, and the distance
between nodes and the origin server. The performance of
CCN has been evaluated in [7] under different topologies,
by varying routing strategies, caching decisions, and cache
replacement policies. The results also show the dependence
of CCN performance on content popularity.

Several techniques for content caching have been proposed
in the literature. The work in [5] presentsAlways Cache,
where a node caches every new piece of content under the
constraint of cache capacity. The authors in [8] provide a
push-pull model to optimize the joint latency-traffic problem
by deciding which contents to push (cache) on intermediate
nodes, and which contents to pull (retrieve) from the origin
server. Most Popular Caching caches a content at neighboring
nodes when the number of requests exceeds some threshold
[9]. ProbCacheaims to reduce the cache redundancy by
caching contents at nodes that are close to the destination
[10]. A cooperative approach in [11] leads to a node’s caching
decision that depends on its estimate of what neighboring
nodes have in their cache. A collaborative caching mechanism
in [12] maximizes cache cooperation through dynamic request
routing. In [13], nodes try to grasp an idea of other nodes’
caching policies through requests coming from those nodes.

Few works targeted the caching decision problem from
the point of view of optimality, or providing incentives for
nodes to cache. The work in [14] presents an offline solution
through dynamic programming for content placement for en-
route caching. Authors in [15] characterize the optimal content
placement strategy under offline settings, in which all future
requests are known to all nodes in the network. The work
of [16] presents an online solution but with no efficiency or
optimality proofs. Other works such as [17] and [18] consider

http://arxiv.org/abs/1404.4639v3

incentives for nodes to cache. However, they provide high level
solutions that do not scale well with large systems. The authors
in [18] consider a special case with only 3 ISPs.

This paper provides a provably-optimal online solution for
the first time under a setting that brings incentives for the
nodes to cache. In order to provide incentives for the nodes to
cache, nodes have to charge content providers for caching their
contents. Adopting such charging policies forces the caching
node to provide quality of service guarantees for content
providers by not replacing their contents in the future, if the
node decides to cache their contents. Since the number of
contents far exceeds the nodes’ cache capacities, and assuming
that the charging price for every piece of content is the same,
then the node has no preference in caching one content over
the other, forcing the node to cooperate and apply our policy
that achieves asymptotic optimality.

Specifically, we make the following contributions:
(1) We design an online, low complexity, and distributed

caching decision algorithm that provides incentives for the
nodes to cache, and quality of service guarantees for content
providers.(2) Our algorithm performs en-route caching and
thus can be implemented without radical changes to the
TCP/IP protocol stack.(3) Under some realistic network
settings, We show that our algorithm is asymptotically (in
terms of the number of nodes in the network) optimal (in terms
of traffic savings).(4) Through extensive simulations, we show
that our algorithm outperforms existing caching schemes. We
also show the effeciency of an extension of our algorithm with
respect to the existing caching schemes.

The rest of the paper is organized as follows: Section II
states the definitions and settings of our algorithm. Section
III describes the algorithm and practical issues. Optimality
analysis of the algorithm is presented in Section IV. Section V
describes the extensions of our algorithm. Section VI provides
simulation results. We conclude the paper in Section VII.

II. SETTINGS AND DEFINITIONS

In this Section, we provide the settings under which our
algorithm takes place, followed by some necessary definitions.

A. Settings

A network is represented by a graphG(V,E), where each
node i ∈ V has a caching capacity ofDi. If the node does
not have caching capability, its caching capacity is set to
0. Weights can be assigned to each linke ∈ E, but we
consider all links to have the same weight. The input consists
of a sequence of contentsβ1, β2, ..., βm, the j-th of which is
represented byβj = (Sj , rj , Tj(τ)), whereSj is the source
for contentβj , rj is the size ofβj, andTj(τ) is the effective
caching duration in which more requests are expected forβj

when a request appears at time slotτ . For simplicity, we
assume a slotted time system and thatTj(τ) is an integer
multiple of slots.

For each content, we define the following values:
(1) bi(j): Number of hops on the path from nodei to Sj

for βj .

v1

v2

v3

v4

SubTree1

SubTree2

SubTree3
b3(1)=2, W3(τ, 1)=4
b3(2)=1, W3(τ, 2)=2

SubTree4
b4(1)=3, W4(τ, 1)=2
b4(2)=2, W4(τ, 2)=1

S1

S2

b1(2)=1, W1(τ, 2)=2

b2(1)=1, W2(τ, 1)=3

Fig. 1: Simple Caching Net-
work.

Fig. 2: A single node in
CCN.

(2) Wi(τ, j): The expected number of requests forβj to be
served from the cache at nodei at time slotτ , if all of the
caching nodes cacheβj .

(3) t0(i, j): The time when a request forβj appears at node
i.

(4) Ei(τ, j): The total expected number of requests forβj

to be served from the cache at nodei per time slotτ . We
assume thatEi(τ, j) is fixed ∀τ ∈ {t0, . . . , t0 + Tj(t0)}.

(5) τ0(i, j): The time whenβj is cached at nodei. For
simplicity, we denote this value hereafter byτ0 since the values
of (i, j) can be inferred from the context.

(6) di(τ, j): Number of hops from nodei to the first node
cachingβj along the path toSj at timeτ . We assume that if
node i cachesβj at time τ0, thendi(τ, j) = di(τ0, j), ∀τ ∈
{τ0, . . . , τ0 + Tj(τ0)}.

Figure 1 shows a simple network to illustrate the afore-
mentioned definitions. In this example, we have two contents
β1 andβ2, originally stored onv1 and v2, respectively. The
triangles in the figure represent the subnetworks containing
the set of non-caching nodes connected to the caching node.
The values ofWi(τ, j) represent the expected number of
requests forβj coming from the set of non-caching nodes
in the subnetwork connected to nodei.

Before any requests forβj appears at any node, each node
i will send itsWi(τ, j) to all nodes on the path from nodei to
the source ofβj , Sj . This process will lead to the calculation
of the initial values ofEi(τ, j).

For example, in Figure 1, before any request forβ1 appears
at any node,E3(τ, 1) = W3(τ, 1) +W4(τ, 1), to a total value
of 6. This is because, starting from the initial configuration
while investigating the caching of contentβ1 on nodev3, all
the requests forβ1 coming from the subnetworks connected to
v3 andv4 will be served from the cache ofv3, if we decide to
cacheβ1 on v3. Similarly,E2(τ, 1) = 9. Later on, ifv4 decides
to cacheβ1, thenW4(τ, 1) will be subtracted from all nodes
along the path toS1, until the first node cachingβ1 is reached.
This is because none of these nodes will serve the requests
for β1 coming from the subnetwork connected tov4 after this
point. In Sections III and III-B3, we provide details for the
dynamic calculation and initialization ofEi(τ, j), respectively.

We define the total traffic savings of caching in the time

interval [0,t] as:

t∑

τ=0

n∑

i=1

m∑

j=1

Ei(τ0, j)di(τ0, j)I(ai(τ, j)), (1)

whereI(.) is the indicator function andai(τ, j) is the event
that βj exists at nodei at time τ . For example, referring to
Figure 1, cachingβ1 on v3 alone for a single time slot will
yield a saving ofE3(τ, 1)× d3(τ, 1) = (4 + 2)× 2 = 12.

We define the relative load on a caching nodei at time τ
whenβj arrives as

λi(τ, j) =
∑

k:k<j
k∈Cachei(τ)

rk
Di

,

wherek < j refers to the indices of allβk that are in the
cache of nodei at the time when consideringβj to be cached
at nodei. We usek ∈ Cachei(τ) to represent the existence
of βk in the cache of nodei at timeτ .

As we mentioned in Section I, charging content providers
for caching their contents will provide the nodes with the
necessary incentives to cache. In return, the nodes have to
guarantee quality of service for content providers by keeping
their content cached for the required time period. We assume
that content providers are charged the same to prevent the
node from prefering contents with a higher prices. To this end,
we considernon-preemptivecaching to represent our system
model, i.e., onceβj is cached at nodei, it will stay cached
∀τ ∈ {τ0, . . . , τ0 + Tj(τ0)} time slots. We elaborate more on
Tj(τ) in Section III-B4.

B. Definitions

Offline vs. Online Algorithms: The main difference between
the offline and the online algorithms is that the offline algo-
rithm has a complete knowledge of the future. In our work,
offline means that the algorithm knowswhen, where, andhow
many timesa content will be requested. This knowledge leads
to the optimal content distribution strategy that maximizes the
performance in terms of traffic savings. On the other hand,
online algorithms do not possess such knowledge. Online
algorithms have to make a caching decision for a content based
on the available information at the time of the content arrival.
Due to this difference, the offline algorithm’s performanceis
better than that of the online algorithm.

Under our settings, we assume that the node does not know
when a request for a content will come. However, once a
request for a content arrives at a caching node, the node will
know the content’s size, the effective caching duration time,
and the expected number of requests to be served from the
cache of the caching node. Furthermore, all other caching
nodes are informed about the arrival time of the request. We
elaborate more on this issue in Section III-B4. For example,
referring back to Figure 1, nodev3 does not know when a
request forβ1 will come. Only when a request forβ1 arrives
at v3 at timet0, doesv3 know r1, T1(t0), E3(τ, 1), in addition
to its own relative load,λ3(τ, 1), ∀τ ∈ {t0, . . . , t0 + T1(t0)}.

However, nodev3 does not know when the next request for
the same content will come.

To measure the performance in terms oftraffic savings,
as defined in (1), of the online algorithm against the offline
algorithm, we use the concept ofCompetitive Ratio. Here,
traffic savings refer to, but not limited, to the total numberof
hops saved using en-route caching, compared to the traditional
no-caching case in which the request for a content is served by
the content’s source. The traffic savings can be based on other
metrics like the actual distance or the energy consumption.
Other works have used the concept of competitive ratio, but
for different problems such as energy efficiency [19] or online
routing [20]. Competitive ratio is defined as the performance
achieved by the offline algorithm to the performance achieved
by the online algorithm,i.e., if we denote the offline per-
formance asPoff and the online performance asPon, the
competitive ratio is:

sup
t

sup
all input

sequences in [0,t]

Poff

Pon
.

As the ratio gets closer to 1, the online performance gets
closer to the offline performance. In other words, the smaller
the competitive ratio, the better the online algorithm’s perfor-
mance.

We motivate the design of our online algorithm by the
following reasoning; knowing the contents’ popularities alone
does not guarantee an optimal solution. The order in which
the contents arrive makes a big difference.

Referring to Figure 1, consider the existence of two con-
tents namedX and Y , originally located atv1. Assume
that W3(τ,X) = W4(τ,X) = 1, W3(τ, Y) = 1, and
W4(τ, Y) = 10. Assume that all nodes have enough residual
cache capacity for one content except nodev3, which is full
and cannot cache any content. Furthermore, assume thatX
and Y will be both requested twice byv4 at different time
slots. Consider the following two scenarios:

(En-Route Caching): If the first request for contentX ,
followed by the first request for contentY , arrives atv4, then
v4 will cache the first contentX andv2 will cache contentY ,
achieving a traffic saving atv4 for the next pair of requests of
(1 × 3) + (10 × 1) = 13. Later on, if requests forX andY
appear atv3, thenv3 will get contentX from v1 and contentY
from v2, gaining an additional savings of(1×0)+(1×1) = 1.

On the other hand, if a request forY is followed by a request
for X at v4, thenv4 will cache the first contentY andv2 will
cache contentX , achieving a traffic saving atv4 for the next
pair of requests of(10×3)+(1×1) = 31. Later on, if requests
for X andY appear atv3, thenv3 will get contentX from
v2 and contentY from v1, gaining an additional savings of
(1 × 1) + (1 × 0) = 1. So the online algorithm will achieve
an average traffic savings of23.

The offline algorithm knows in advance that contentY will
be requested and can reject the caching of contentX at v4
and cache it atv2 to achieve a traffic saving of(10 × 3) +
(1× 1) + (1 × 1) + (1× 0) = 32.

(Routing to the Closest Caching Node): If the first request
for contentX , followed by the first request for contentY ,
arrives atv4, then v4 will cache the first contentX , and v2
will cache contentY , achieving a traffic saving atv4 for the
next pair of requests of(1× 3) + (10× 1) = 13. Later on, if
requests forX andY appear atv3, thenv3 will get contentX
from v4 and contentY from v2, gaining an additional savings
of (1× 1) + (1× 1) = 2.

On the other hand, if a request forY is followed by a request
for X at v4, thenv4 will cache the first contentY andv2 will
cache contentX , achieving a traffic saving atv4 for the next
pair of requests of(10×3)+(1×1) = 31. Later on, if requests
for X andY appear atv3, thenv3 will get contentX from
v2 and contentY from v4, gaining an additional savings of
(1 × 1) + (1 × 1) = 2. Because of this, the online algorithm
will achieve an average traffic savings of24.

The offline algorithm knows in advance that contentY will
be requested and can reject the caching of contentX at v4,
and will cache it atv2 to achieve a traffic saving of(10×3)+
(1× 1) + (1× 1) + (1× 1) = 33.

The above examples show that the online algorithm cannot
guarantee an optimal solution. In fact, we show that there
is an upper bound on the savings achieved by the online
algorithm when compared to the offline algorithm, and we
develop an online algorithm that achieves that bound under
realistic settings.

III. A LGORITHM

In this Section, we present the Cost-Reward Caching (CRC)
algorithm that achieves the optimal competitive ratio, along
with some practical issues. We introduce the proof of opti-
mality in the next Section.

A. CRC Algorithm

CRC takes advantage of en-route caching,i.e., a request for
a content is forwarded along the path to the content’s source,
up to the first node that has the content in its cache. The
content then will follow the same path back to the requester.

In CCN, when an interest packet for a new content arrives
at a node on a certain interface, the node will send the
interest packet using all other interfaces. For example, Figure
2 shows a single node in CCN, where the numbers represent
the interfaces of the node. When a request forβj arrives at the
node through interface number 2, and a match is not found
in neither the cache nor the Pending Interest Table (PIT), the
node will send the request on all interfaces except interface
number 2. Our algorithm uses en-route caching, so the new
interest packet is only forwarded on the single interface along
the path to the content’s source.

When a request for a contentβj appears at a nodei at time
t0, nodei sends a small control message up to the first node
cachingβj along the path to the source of the content. Letw be
that first node, then nodew replies with a message containing
rj and the ID of nodew. Every nodeu in the path from node
w to nodei stores a copy of the message, computesdu(t0, j),
and forwards the message to the next node along the path to

nodei. When Nodei recieves the message, it makes a caching
decision according to Algorithm 2. If nodei decides to cache
βj , it initializes a header field in the request packet to the
value ofEi(τ, j). If node i decides not to cache, it initializes
the header field to 0.

The request packet is then forwarded to the parent nodez.
The parent first subtracts the value stored in the header field
from its own value ofEz(τ, j). Based on the new value of
Ez(τ, j), if nodez decides to cacheβj , it adds itsEz(τ, j) to
the value in the header field. Otherwise, nodez adds 0. The
request packet is then forwarded to nodez’s parent, and the
whole process is repeated until the request reaches the first
node that has the content in its cache. The content then will
follow the same path back to the requester, and every node in
the path that decided to cache the content will store a copy
in its cache. We describe the operation of our algorithm in
Algorithm 1.

Algorithm 1 En-Route Caching

A request forβj appears at nodei at time t0.
header = 0
if βj ∈ Cachei(t0) then

Reply back withβj

else
Send a control message to retrieverj , di(t0, j)
w ← first node on the path toSj, where βj ∈
Cachew(t0)
Nodew replies withrj andID
∀u ∈ Path(w, i), storerj , du(t0, j)
for uk ∈ Path(i, w), k = 1 : Length(Path(i, w)) do
Euk

(t0, j) = Euk
(t0, j)− header

Run Cost-Reward Cachingalgorithm
if Caching Decision = TRUEthen
header = header + Euk

(t0, j)

For example, Figure 3 shows a simple network where a
contentβ1 is originally stored atS1. We removed the triangles
representing the set of non-caching nodes for the sake of
clarity. If a request forβ1 appears atv0, nodev0 will send
a control message up to the first node cachingβ1, which is
S1, and retrieves the values ofr1 and d0(t0, 1) = 1. Based
on these values, ifv0 decides to cacheβ1, it will send the
request forβ1 to its parent, which isS1, with the header
field initialized toE0(t0, 1) = 14. NodeS1 will simply reply
with a data packet containingβ1, andv0 will cacheβ1. Later
on, if another request forβ1 appears atv5 while β1 is still
cached atv0, nodev5 will send a control message up to the
first node cachingβ1, which is v0. Nodev0 sends a message
containing the values ofr1 and its ID to nodev2. Node v2
will store the value ofr1, setsd2(t0, j) = 1, and forwards
the message tov5. Nodev5 in turn will store the value ofr1
and setd5(t0, j) = 2. Based on these values, ifv5 decides to
cacheβ1 it will send the request forβ1 to its parent, which is
v2, with a header field initialized toE5(τ, 1) = 2. When the
request reachesv2, it will first subtract the value in the header

field from its ownE2(τ, 1), so the new value ofE2(τ, 1) is
E2(τ, 1) = E2(τ, 1) − header = 4 − 2 = 2. The reason that
nodev2 has to subtract the header field from its ownE2(τ, 1)
is because the requests forβ1 coming from the subnetwork
connected to nodev5 will not be served from the cache of
nodev2 sincev5 decided to cacheβ1. Based on these values,
if v2 decidesnot to cacheβ1, it will add 0 to the header field
and forward the request to its parentv0. Nodev0 will simply
reply with a data packet containingβ1, and onlyv5 will cache
β1.

✈✵

✈✶ ✈✷

✈✸ ✈✹ ✈✺ ✈✻

❙✶

❲✻✭✜❀ �✮ ❂ �

❲✺✭✜❀ �✮ ❂ ✁❲✹✭✜❀ �✮ ❂ �

❲✸✭✜❀ �✮ ❂ ✂

❲✷✭✜❀ �✮ ❂ �❲✶✭✜❀ �✮ ❂ ✁

❲✵✭✜❀ �✮ ❂ ✄

❊✻✭✜❀ �✮ ❂ �

❊✺✭✜❀ �✮ ❂ ✁❊✹✭✜❀ �✮ ❂ �

❊✸✭✜❀ �✮ ❂ ✂

❊✷✭✜❀ �✮ ❂ ✄❊✶✭✜❀ �✮ ❂ ☎

❊✵✭✜❀ �✮ ❂ �✄

Fig. 3: Simple Caching Netwrok 2.

The core idea of the Cost-Reward Caching algorithm is to
assign an exponential cost function for each node in terms of
the node’s relative load. If the cost of caching a content is
less than the traffic savings achieved by caching the content,
the algorithm decides to cache. The choice of an exponential
cost function guarantees that the node’s capacity constraints
are not violated. We show that in the next Section.

We define the cost of caching at a nodei at timeτ as:

Ci(τ, j) = Di(µ
λi(τ,j) − 1),

whereµ is a constant defined in Section IV. The algorithm
for Cost-Reward Caching is presented in Algorithm 2.

Algorithm 2 Cost-Reward Caching (CRC)

New request forβj arriving at nodei at time t0
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Computeλi(τ, j), Ci(τ, j)

if
∑t0+Tj(t0)

τ=t0
Ei(τ, j)di(t0, j) ≥

∑t0+Tj(t0)
τ=t0

rj
Di

Ci(τ, j)
then

Cacheβj on nodei
τ0(i, j) = t0(i, j)
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λi(τ, j) +

rj
Di

else
Do not cache

In the algorithm, when new content that isnot currently
cached by nodei arrives at timet0, node i computes the
relative load (λi(τ, j)) and the cost (Ci(τ, j)) for every τ ∈
{t0, . . . , t0+Tj(τ)}. This is because a currently cached content
may be flushed beforet0 + Tj(t0), thus the relative load and
the cost should be adjusted for each time slot thereafter.

For example, Figure 4 shows the relative load at a node for
the next 10 time slots starting fromt0, which is the arrival time
of a new contentβ4. The node has three cached contents,β1,
β2, andβ3 that are going to be flushed at timesτ1 = t0 + 3,
τ2 = t0 +9, andτ3 = t0 + 7, respectively. When aβ4 arrives
at this node atτ = t0 with T4(t0) = 10, the cost calculation
should include three cached contents for 3 time slots, two
cached contents for 4 time slots, one cached content for 2
time slots, and 0 cached content for 1 time slot. If the total
savings for cachingβ4 is greater than the aggregated cost, then
β4 will be cached on nodei, and the relative load is updated
to include the effect ofβ4.

Fig. 4: Relative Load Calculation Example. The figure shows
the state of the cache in one node when it considers a new
contentβ4 for caching at timet0 andT4(t0) = 10. We have
three contents,β1, β2, andβ3, that are to be flushed at times
τ1 = t0 + 3, τ2 = t0 + 9, andτ3 = t0 + 7, respectively.

B. Practical Issues

So far, we developed a fully distributed algorithm that
achieves asymptotic optimality in terms of traffic savings under
some realistic assumptions. Before providing the optimality
proof, we discuss in this section the practical issues that make
the algorithm easy to implement. The major issues in our
algorithm include providing incentives for the caching nodes
and QoS guarantees for the content providers, the adoption
of en-route caching, calculating the popularity expectation of
each content, and updating the effective caching duration.

1) Providing Incentives and QoS Guarantees:In this work,
the QoS measure is to guarantee the existence of the content
in the cache for a certain period of time, so the content will be
delivered quickly. In other words, once a caching node decides
to cache a certain content, the content will not be replaced
during the effective caching time of the content. Providing
such a guarantee along with adopting an equal pay charging
policy for all contents will provide the caching nodes with the
necessary incentive to cache. Figure 5 shows the interaction
between the ISP and the content provider.

We assume that the caching nodes should adopt charging
policies, where every content provider is charged the same.
This will prevent the caching node from preferring one content
over the other. Moreover, such charging policies will enforce
the caching nodes to cooperate and apply our CRC algorithm.

2) En-Route Caching:In en-route caching, a request forβj

will be sent to the parent along the traditional path to the con-
tent’s source, until the request reaches the first node caching

Fig. 5: Interaction between ISP and Content Provider.

the content or the content’s source. The adoption of this
en-route caching reduces the amount of broadcastedInterest
packets as opposed to the currently deployed schemes in CCN,
where the interest packets are broadcasted to all neighbors.
Moreover, using en-route caching prevents the reception of
multiple copies of the requested content as opposed to CCN.
Furthermore, our algorithm can be easily implemented in the
current Internet architecture.

3) Calculating the Initial Content Expectation Values:For
each content, we start by building a caching tree rooted at the
source of the content. The caching tree is the union of the
traditional paths from the source of the content to all other
nodes. We calculate the initial expectation value at a caching
node for a certain content, when only nodeSj holds thej-
th content, based on the content’s popularity and the number
of end nodes in the subnetwork connected to that node. For
example, in Figure 1,W3(τ, j) at nodev3 for contentβj is
proportional to the content’s popularity and the number of end
nodes in the subnetwork connected to nodev3.

Algorithm 3 shows how to calculateEi(τ, j) for each
content at each caching node before the appearance of any
request at any node. The expectations are calculated in a
distributed way, where each node only needs to know the
expectation values of its children in the caching tree. In the
simulation, we investigate the effect of having error margins
in the expectation calculation.

Algorithm 3 Initial Content Popularity Expectation Calcula-
tion

for each contentβj = {Sj , rj , Tj(τ)} do
CachingT ree(j)← build the traditional path tree rooted
at Sj

for each caching nodei ∈ CachingT ree(j) do
CalculateWi(τ, j)
Initialize Ei(τ, j)←Wi(τ, j)

for each nodez ∈ Ancestor(i) in CachingT ree(j) do
Ez(τ, j) = Ez(τ, j) +Wi(τ, j)

For example, referring back to Figure 3, and before a request
for β1 appears at any node, the values ofEi(τ, j) are calculated
as described in Algorithm 3. Take nodev2 for example, then
E2(τ, 1) = W2(τ, 1) + W5(τ, 1) + W6(τ, 1) = 4. The final
expectation values for the rest of the nodes are shown in the
figure.

4) Effective Caching Duration:The effective caching du-
ration of a content depends on its arrival time. For example,
most people read the newspaper in a period of two hours,
so the caching duration should be two hours beginning at
the arrival of the first request. However, if a new request for
the newspaper arrives at a node in the middle of the range
and was cached by the algorithm, then the caching duration
should be one hour. This requires the broadcast of the first
arrival time to all other nodes in the network. The additional
overhead incurred by such broadcasting is negligible compared
to the reduction of theInterestpacket broadcasting we achieve
through the adoption of en-route caching.

IV. PERFORMANCEANALYSIS

In this Section, we show that any online algorithm has a
competitive ratio that is lower bounded byΩ(log(n)), then
we show that our algorithm does not violate the capacity
constraints, and achieves a competitive ratio that is upper
bounded byO(log(n)) under realistic settings.

Proposition 1: Any online algorithm has a competitive ratio
which is lower bounded byΩ(log(n)).

Proof: We show this proposition by giving an example
network, such that the best online algorithm competitive ratio
is lower bounded byΩ(log(n)). Consider a network which
consists ofn + 2 nodes, as shown in Figure 6. All contents
are originally placed at nodeS, and nodeC is the only node
with caching capability with a unit cache capacity. All other
nodes can request the contents. We consider a 2-time slots
system where all contents are to be requested at the beginning
of each time slot, though sequentially. Sequentially meansthat
the algorithm has to make a caching decision for a content
before considering the next one.

v0 v1 vn

S

C

Fig. 6: Network for Lower Bound Proof.

Consider alog(n) + 1 phases of contents. For each phase
0 ≤ i ≤ log(n), we have1/α identical contents, each with
sizeα≪ 1 and a caching time equal to 2 time slots. Contents
in the same phase are destined for the same2i nodes. The
reason behind considering a 2-time slots system is that when
a node caches a content, the traffic saving is considered for
future requests.

Let xi be the fraction of contents stored from phasei and
Gi be the traffic saving of the online algorithm gained from
phasei, then

Gi = xi2
i

Consider the firstk phases, then the online traffic saving of
thesek phases, denoted byG(k), is

G(k) =
∑

Gi =

k∑

i=0

xi2
i

The offline algorithm will cache the contents from phasek
only, gaining a traffic saving of2k

Now consider the ratio of the online traffic saving to the
offline traffic saving:

logn∑

k=0

G(k)

2k
=

log n∑

k=0

k∑

i=0

xi2
i

2k
=

logn∑

i=0

logn∑

k=i

xi2
i−k

=

log n∑

i=0

xi

log n∑

k=i

2i−k ≤ 1 ∗ 2 ≤ 2

Hence, there exist somek such thatG(k)
2k ≤

2
logn . This means

that the saving of the offline algorithm is at least within alogn
factor of the savings achieved by any online algorithm.

Before we start the proof of satisfying the capacity con-
straints and the upper bound, we need to state the following
two assumptions:

1 ≤
1

n
.
Ei(τ, j)bi(j)

rjTj(τ)
≤ F ∀j, ∀i 6= Sj , ∀τ, (2)

and
rj ≤

minDi

log(µ)
∀j, (3)

whereF is any constant large enough to satisfy the assumption
in (2), µ = 2(nTF + 1), n is the number of caching nodes,
andT = max(Tj), ∀j. The assumption in (2) states that the
amount of traffic savings for a content scales with the content’s
size and caching duration. The assumption in (3) requires that
the caching capacity of any node should be greater than the
size of any content, which is a practical condition to assume.

We start by proving that the CRC algorithm does not
violate the capacity constraints. After that, we show that
CRC achieves aO(log(n)) competitive ratio. In all of the
subsequent proofs,τ ∈ {t0(i, j), . . . , t0(i, j) + Tj(t0(i, j))},
wheret0(i, j) is the arrival time ofβj at nodei.

Proposition 2: The CRC algorithm does not violate the
capacity constraints.

Proof: Let βj be the first content that caused the relative
load at nodei to exceed 1. By the definition of the relative
load, we have

λi(τ, j) > 1−
rj
Di

using the assumption in (3) and the definition of the cost
function, we get

Ci(τ, j)

Di
= µλi(τ,j) − 1 ≥ µ

1−
rj
Di − 1

≥ µ1− 1
log µ − 1 ≥

µ

2
− 1 ≥ nTF

Multiplying both sides byrj and using the assumption in (2),
we get

rj
Di

Ci(τ, j) ≥ nTFrj ≥ Ei(τ, j)bi(j) ≥ Ei(τ, j)di(t0, j)

From the definition of our algorithm,βj should not be cached
at nodei. Therefore, the CRC algorithm does not violate the
capacity constraints.

The next lemma shows that the traffic saving gained by our
algorithm is lower bounded by the sum of the caching costs.

Lemma 1:Let A be the set of indices of contents cached
by the CRC algorithm, andk be the last index, then

2 log(µ)
∑

i,j∈A,τ

[Ei(τ, j)di(t0, j)] ≥
∑

i,τ

Ci(τ, k + 1) (4)

Proof: By induction onk. When k = 0, the cache is
empty and the right hand side of the inequality is 0. When
βj is not cached by the online algorithm, neither side of the
inequality is changed. Then it is enough to show, for a cached
contentβj , that:

2 log(µ)
∑

i,τ

[Ei(τ, j)di(t0, j)]

≥
∑

i,τ

[Ci(τ, j + 1)− Ci(τ, j)]

since summing both sides over allj ∈ A will yield (4).
Consider a nodei, the additional cost incurred by caching

βj is given by:

Ci(τ, j + 1)− Ci(τ, j) = Di[µ
λi(τ,j+1) − µλi(τ,j)]

= Diµ
λi(τ,j)[µ

rj
Di − 1]

= Diµ
λi(τ,j)[2

logµ
rj
Di − 1]

Since2x − 1 ≤ x for 0 ≤ x ≤ 1 and using the assumption
in (3)

Ci(τ, j + 1)− Ci(τ, j) ≤ Diµ
λi(τ,j)[

rj
Di

logµ]

≤ rj logµ[
Ci(τ, j)

Di
+ 1]

≤ logµ[
rj
Di

Ci(τ, j) + rj]

Summing overτ , i, and the fact thatβj is cached, we get
∑

i

∑

τ

[Ci(τ, j + 1)− Ci(τ, j)]

≤ logµ
∑

i

∑

τ

[
rj
Di

Ci(τ, j) + rj]

≤ logµ[
∑

i

Ei(τ, j)di(t0, j) +
∑

i

∑

τ

rj]

≤ 2 logµ
∑

i

Ei(τ, j)di(t0, j)

In the next lemma,di(τ, j) is defined for the online algo-
rithm.

Lemma 2:Let Q be the set of indices of contents cached
by the offline algorithm, but not the CRC algorithm. Letl =
argmaxj∈Q(Ci(τ, j)). Then

∑

i

∑

j∈Q

∑

τ

[Ei(τ, j)di(t0, j)] ≤
∑

i

∑

τ

Ci(τ, l)

Proof: Sinceβj was not cached by the online algorithm,
we have:

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

τ

rj
Di

Ci(τ, j)

≤
∑

τ

rj
Di

Ci(τ, l)

∑

i

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

rj
Di

Ci(τ, l)

Summing over allj ∈ Q
∑

i

∑

j∈Q

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

Ci(τ, l)
∑

j∈Q

rj
Di

≤
∑

i

∑

τ

Ci(τ, l)

Since any offline algorithm cannot exceed a unit relative
load,

∑
j∈Q

rj
Di
≤ 1.

Combining Lemma 1 and Lemma 2, we have the following
lemma.

Lemma 3:Let A∗ be the set of indices of the contents
cached by the offline algorithm, and letk be the last index.
Then:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j)

≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

Proof: The traffic savings of the offline algorithm is given
by:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j)

=
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +
∑

i,j∈A∗/Q,τ

Ei(τ, j)di(t0, j)

≤
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, l) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, k + 1) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ (2 logµ+ 1)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

Note that di(τ, j) in the previous lemmas is defined by
the online algorithm. In order to achieve optimality using

this proof technique,di(τ, j) of the online algorithm should
be equal todi(τ, j) of the offline algorithm. In the next
two corollaries, we show cases wheredi(τ, j) of the online
algorithm is equal todi(τ, j) of the offline algorithm.

Corollary 1: When there is only one caching node in every
path, thendi(τ, j) of the online algorithm is equal todi(τ, j)
of the offline algorithm, and our algorithm achieves asymptotic
optimality.

Corollary 2: When every node in the path shares the same
caching decision, thendi(τ, j) of the online algorithm is equal
to di(τ, j) of the offline algorithm, and our algorithm achieves
asymptotic optimality.

V. EXTENSION TO CRC ALGORITHM

In this section, we provide an extension to the CRC algo-
rithm. We show the effeciency of this extension with respect
to currently deployed caching schemes through extensive
simulations.

A. Replacement-CRC

The basic CRC algorithm provides quality of service guar-
antees for content providers by not replacing their contents
once they are cached. Content providers, in return, are chraged
to provide incentives for the caching nodes based on the
caching policy discussed in section III-B1. In this section, we
present an extension for the basic CRC algorithm that allows
content replacement.

The settings for Replacement-CRC are the same as for
the basic CRC algorithm. However, there is no restriction on
keeping a contentβj in the cache of nodei for the whole
effective caching duration timeTj(τ), asβj may be replaced
by another content.

We present the details of the Replacement-CRC algorithm
in algorithm 4.

Algorithm 4 Replacement-CRC

A new request forβj appears at nodei at time t0
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Computeλi(τ, j), Ci(τ, j)
if
∑

τ Ei(t0, j)di(t0, j) ≥
∑

τ
rj
Di

Ci(τ, j) then
Cacheβj at nodei
τ0(i, j) = t0(i, j)
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λi(τ, j) +

rj
Di

else
∀βk ∈ Cachei(t0) ∪ βj , ∀τ ∈ {t0, . . . , t0 + Tk(t0)},
Compute
λk
i (τ, j) = λi(τ, j) +

rj
Di
− rk

Di

Ck
i (τ, j) = Di[µ

λk
i (τ,j)−1]

if λk
i (τ, j) ≤ 1 then

Diff(k) =
∑

τ Ei(τ0, k)di(τ0, k)−
∑

τ
rj
Di

Ck
i (τ, j)

l = argmink(Diff)
if l 6= j then

Replaceβl with βj

∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λl
i(τ, j)

Algorithm 4 states that if the traffic savings gained by
caching a new contentβj is greater than the caching cost

at nodei, then the algorithm decides to cache. Otherwise, we
compare the difference between the traffic savings and the
caching costs for everyβk ∈ Cachei(τ), if it is replaced by
βj without violating the capacity constraints. We then choose
the content with the minimum difference to replace withβj .

VI. SIMULATION RESULTS

In this Section, we compare our CRC algorithm to some of
the existing caching schemes.

A. Settings

We simulate the following caching schemes:
(1) CRC: This scheme represents our basic algorithm.
(2) CRC Version 2: This is similar to the CRC scheme,

Version 1, except that we retrieve the content from the closest
node that has the content in its cache, not necessarily along
the path to the content’s source.

(3) All Cache: This scheme caches every new content
arriving at a caching node, as long as there is enough residual
capacity to cache the new content.

(4) Random Caching Version 1: In this scheme, when a
request for a content arrives at nodei, the caching probability
of the content depends on the content’s popularity at nodei.
The popularity of a contentβj at nodei denoted byPopj , is
defined as the ratio of the number of requests forβj coming
from the subnetwork connected to nodei denoted byN j

i ,
to the total number of non-caching nodes in the subnetwork
connected to nodei denoted byNi. Mathematically speaking,
Popj = N j

i /Ni. If we choose a uniform random numberx
between [0,1], andx ≤ Popj , then the contentβj is cached
if there is enough room for it in the cache. Otherwise, the
content is not cached.

(5) Random Caching Version 2: This is similar to Random
Caching Version 1, except that the caching probability of the
content depends on the content’s popularity at nodei, scaled
by the fraction of the available residual capacity to the total
capacity in the cache of nodei denoted byfi, i.e., if we choose
a uniform random numberx between [0,1], andx ≤ fi×Popj,
then the contentβj is cached if there is enough room for it in
the cache. Otherwise, the content is not cached.

For every caching nodei in the network, we assign a
cache capacityDi that is uniformly chosen in the range
of [750,1000] GB. The number of the non-caching nodes
connected to the caching nodei is chosen uniformly at random
in the range of 10 to 90 nodes.

For every content, we randomly chose one of the nodes to
act as the source. Each content has a size chosen randomly
in the range of [100,150] MB. The starting effective time of
the content is chosen randomly. The end time is also chosen
randomly within a fixed interval from the starting time. If the
end time exceeds the end time of the simulation, it is adjusted
to be equal to the end time of the simulation. The simulation
interval is chosen to be 1000 time slots.

B. Results on Random topologies

We start our evaluation on random backbone topologies, in
which the caching nodes are generated as a random topology.

We simulate the effect of the number of caching nodesn
in the network for three cases,n = 30, n = 50, andn = 100
nodes. For each case we use 10 random topologies, and report
the average performance. We fix the effective caching duration
to 150 slots and the number of contents to 10000 contents to
solely show the effect of increasing the number of nodes on
the performance of the CRC algorithm. The results are shown
in Figure 7(a).

As can be seen from the figure, increasing the number of the
caching nodes will result in better performance in all schemes
since more contents can be cached. Another observation from
the figure is that the performance of CRC schemes increases at
a higher rate than other schemes as we increase the number of
the nodes in the network. This shows that our scheme greatly
benefits from adding more caching nodes to the network. It
is also aligned with the property of asymptotic optimality of
our scheme. On the other hand, not much improvement can
be seen from the other schemes when the number of nodes is
increased in the network.

We simulate the effect of changing the number of contents
from 2000 to 10000. The results are averaged over 10 runs and
are shown in Figure 7(b). The reason that the performance of
the Cache All, Random 1, and Random 2 schemes increases
and then decreases is that there is a saturation point after
which the caches of the network cannot handle the requests.
On the other hand, Our scheme reserves the cache capacity
for contents with higher traffic savings, and achieves an
improvement of 2 to 3-fold in terms of traffic savings.

Figure 7(c) shows the effect of the maximum effective
caching duration for three cases, 50, 100, and 150 time
slots. In this scenario, the difference between the start
and end times for each content is drawn randomly from
{1, . . . ,max .caching duration}. The reason that the traffic
savings decrease as the maximum effective caching duration
increases after a certain point is that contents are cached for a
longer period, so future contents are less likely to find enough
residual capacity at the caching node.

In all of the results in Figure 7, the performance of CRC
Version 2 is always less than the performance of CRC Version
1. This is because CRC Version 2 deviates from the settings
under which we achieve optimality.

So far our performance measure was the traffic saving. In
Figure 8, we measure the cost in terms of total number of
hops to satisfy all of the requests. The results in Figure 8 are
for a random topology with 100 caching nodes, the number of
contents is 10000, and the maximum effective caching duration
is 150 slots. The results in the figure show that even when we
measure the performance in terms of the total cost, our scheme
reduces the cost by the range of 30% to 50%.

In Figure 9 we measure the per topology improvement
for all schemes with respect to Random Caching Version 2
scheme. Here, we measure the performance of all schemes
for 100 different random topologies. For each topology, we

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of Nodes
 (a)

T
ra

ffi
c

S
av

in
gs

CRC1
CRC2
Cache All
Random 1
Random 2

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

5

Number of Contents
 (b)

CRC1
CRC2
Cache All
Random 1
Random 2

50 100 150
0

2

4

6

8

10

12

14
x 10

5

Maximum Effective Caching Time
 (c)

CRC1
CRC2
Cache All
Random 1
Random 2

Fig. 7: The Effects of Different Factors on the Performance of the Random Topologies.

1
0

1

2

3

4

5

6

7

8

9
x 10

5

T
ra

ffi
c

C
os

t

CRC1
CRC2
Cache All
Random1
Random2

Fig. 8: Traffic cost.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

per Topology Improvement

F
(x

)

CRC1
CRC2
Cache All
Random1

Fig. 9: The empirical CDF of the per topology improvement
for random topologies with respect to Random Caching Ver-
sion 2.

normalize the performance of all schemes with respect to
the performance of Random Caching Version 2. Denote the
performance of the CRC scheme and Random Caching Version
2 scheme for topologys asPCRC(tops) andPRandom2(tops),
respectively. We compute the normalized performance of CRC
scheme with respect to Random Caching Version 2 scheme for
topologys asRCRC(tops) = PCRC(tops)/PRandom2(tops).
After that, the empirical CDF of the vectorRCRC =
[RCRC(top1), RCRC(top2), . . . , RCRC(top100)] for the 100
random topologies is plotted. We do the same process for the
other two schemes. The results in the figure show that our
scheme experiences about 4 times the improvements as that
by Random Caching Version 2.

C. Results on a Small-word generated topology

In [21] it is shown that the Internet topology exhibits
a small-world structure defined in [22]. In this Section we
perform simulations based on the small world-structure.

Figure 10 is similar to Figure 7, but for the small-world
topologies. The results follow the same trend as the results
for the random topologies except for two differnces. The
first difference is that is that CRC Version 1 achieves better
perofrmance than CRC Version 2 as we increase the number
of nodes. The second difference is that all of the schemes
performances increase with increasing the effective caching
time. One of the reason is due to the sparsity of the small-
world topologies, which results in the fact that the requests
are distributed over multiple domains inside the topology.

D. Results for Replacement-CRC

We compare the performance of Replacement-CRC against
the following schemes:

(1) Least Recently Used (LRU): In this scheme, when a
request for a contentβj appears at nodei, Least Recently
Used replacement is performed at all nodes along the path
from nodei to the source of the contentβj .

(2) Random Replacement: In this scheme, when a request
for a contentβj appears at nodei, every node along the path
from nodei to the source of the contentβj will randomly
choose a cached content to be replaced withβj , as long as
the capacity constraints are satisfied.

(3) CCN: This scheme represents the Content Centric Net-
work as described in [5], where a request for a content is
broadcasted until the closest node with a copy of the content
in its cache is found. The content then follows the path from
the closest node to the requester, and all nodes along that
path caches the content as long as the capacity constraints
are satisfied, or performs replacement using LRU if content
replacement is needed.

We use the same settings as described in Section VI-A, and
we simulate the effect of increasing the number of caching
nodes in the network, the effect of increasing the number of
contents, and the effect of increasing the cache capacity ofthe
caching nodes. The results are shown in Figure 11.

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

6

Number of Nodes
 (a)

T
ra

ffi
c

S
av

in
gs

CRC1
CRC2
Cache All
Random 1
Random 2

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

5

Number of Contents
 (b)

CRC1
CRC2
Cache All
Random 1
Random 2

50 100 150
0

2

4

6

8

10

12

14
x 10

5

Maximum Effective Caching Time
 (c)

CRC1
CRC2
Cache All
Random 1
Random 2

Fig. 10: The Effects of Different Factors on the Performanceof the Small-world Topologies.

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Nodes
(a)

N
um

be
r

of
 H

op
s

CRC
LRU
Random
CCN

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of Contents
(b)

CRC
LRU
Random
CCN

0 500 1000 1500 2000
0

2

4

6

8

10

12
x 10

4

Average Cache Size (GB)
(c)

CRC
LRU
Random
CCN

Fig. 11: The Effects of Different Factors on the Performanceof Different Replacement Schemes.

Figure 11(a) shows the performance of all schemes as we
increase the number of the caching nodes in the network.
From the figure, the performance of all schemes increases
with increasing the number of caching nodes. This is be-
cause adding more caching nodes will increase the overall
caching capacity of the network, which results in more cached
contents. Moreover, as the topology grows with adding more
nodes, the average distance between the nodes in the netwrok
increases. The figure shows that Replacement-CRC outper-
forms the existing replacement schemes by 30% to 60%.

Figure 11(b) shows the performance of all schemes as we
increase the number of contents. As we increase the number
of contents, the performance of all schemes increases since
more contents are available for caching. Replacement-CRC
acheives better perofrmance than the other schemes, since it
is able to identify the contents with higher traffic savings and
the replacement is done less frequently than the other schemes.

In Figure 11(c), we investigate the effect of increasing the
caching size of the caching nodes on the performance of
all schemes. We increased the caching size of each node
until we reach a saturation point, where all of the nodes
are able to cache all of the contents without the need for
replacement. At this saturation point, all schemes acheives
the same traffic savings. Another observation from the figure
is that the performance of Replacement-CRC at 500GB is
similar to the performance of the other schemes at 1500GB.
This means that Replacement-CRC can achieve the same

performance of the other schemes with only 30% of the cache
capacity.

VII. C ONCLUSION

Caching at intermediate nodes has the advantage of bringing
the contents closer to the users, which results in traffic offload-
ing from the origin servers and lower delays. To acheive this,
caching schemes such as en-route caching and CCN have been
investigated. Unlike CCN, the use of en-route caching does not
require major changes to the TCP/IP model. Previous works
have studied en-route caching under offline settings to acheive
the optimal content placement strategy. In this work, we study
the framework of en-route caching under online settings.

Under this framework, we characterize the fundamental
limit for the ratio of the performance of the optimal offline
scheme to that of any online scheme. The offline scheme
has a complete knowledge of all of the future requests, while
the online scheme does not possess such knowledge. We also
design an efficient online scheme and prove that the developed
online scheme achieves optimality as the number of nodes
in the network becomes large. Moreover, we introduce an
extension to the algorithm. Our simulation results affirm the
efficiency of our scheme and its extension. Our future work
includes the investigation of network coding [23], [24] under
our settings.

ACKNOWLEDGEMENT

This research is supported by NSF grant ECCS-1331018.

REFERENCES

[1] V. Cisco, “Cisco Visual Networking Index: Global MobileData Traffic
Forecast Update, 2013–2018,”Cisco Public Information, 2014.

[2] A. Vakali and G. Pallis, “Content Delivery Networks: Status and
Trends,” Internet Computing, IEEE, vol. 7, no. 6, pp. 68–74, 2003.

[3] A.-M. K. Pathan and R. Buyya, “A Taxonomy and Survey of Content
Delivery Networks,”Grid Computing and Distributed Systems Labora-
tory, University of Melbourne, Technical Report, 2007.

[4] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-Performance Internet Applications,”ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” inProceedings of
the 5th international conference on Emerging networking experiments
and technologies. ACM, 2009, pp. 1–12.

[6] I. Psaras, R. Clegg, R. Landa, W. Chai, and G. Pavlou, “Modelling and
Evaluation of CCN-caching Trees,”NETWORKING 2011, pp. 78–91,
2011.

[7] D. Rossi and G. Rossini, “Caching performance of contentcentric net-
works under multi-path routing (and more),”Relatório técnico, Telecom
ParisTech, 2011.

[8] X. Guan and B.-Y. Choi, “Push or pull? toward optimal content delivery
using cloud storage,”Journal of Network and Computer Applications,
2013.

[9] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-Based
Caching Strategy for Content Centric Networks,” inCommunications
(ICC), 2013 IEEE International Conference on. IEEE, 2013, pp. 3619–
3623.

[10] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic In-Network Caching
for Information-Centric Networks,” inProceedings of the second edition
of the ICN workshop on Information-centric networking. ACM, 2012,
pp. 55–60.

[11] M. Fiore, F. Mininni, C. Casetti, and C. Chiasserini, “To Cache or Not
To Cache?” inINFOCOM 2009, IEEE. IEEE, 2009, pp. 235–243.

[12] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative Hierarchical
Caching with Dynamic Request Routing for Massive Content Distribu-
tion,” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 2444–
2452.

[13] N. Laoutaris, G. Zervas, A. Bestavros, and G. Kollios, “The Cache
Inference Problem and its Application to Content and Request Routing,”
in INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE. IEEE, 2007, pp. 848–856.

[14] A. Jiang and J. Bruck, “Optimal Content Placement For En-Route Web
Caching,” in Network Computing and Applications, 2003. NCA 2003.
Second IEEE International Symposium on. IEEE, 2003, pp. 9–16.

[15] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi,
and D. C. Kilper, “Dynamic In-Network Caching for Energy Efficient
Content Delivery,” inINFOCOM, 2013 Proceedings IEEE. IEEE, 2013,
pp. 245–249.

[16] E. J. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort
content location in cache networks,” inINFOCOM 2009, IEEE. IEEE,
2009, pp. 2631–2635.

[17] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma,“Incentive-
Compatible Caching and Peering in Data-Oriented Networks,” in Pro-
ceedings of the 2008 ACM CoNEXT Conference. ACM, 2008, p. 62.

[18] T.-M. Pham, S. Fdida, and P. Antoniadis, “Pricing in Information-Centric
Network Interconnection,” inIFIP Networking Conference, 2013. IEEE,
2013, pp. 1–9.

[19] S. Albers and H. Fujiwara, “Energy-Efficient Algorithms for Flow Time
Minimization,” ACM Transactions on Algorithms (TALG), vol. 3, no. 4,
p. 49, 2007.

[20] P. Jaillet and M. R. Wagner, “Generalized Online Routing: New Com-
petitive Ratios, Resource Augmentation, and Asymptotic Analyses,”
Operations research, vol. 56, no. 3, pp. 745–757, 2008.

[21] T. Bu and D. Towsley, “On Distinguishing between Internet Power
Law Topology Generators,” inINFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2. IEEE, 2002, pp. 638–647.

[22] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,”nature, vol. 393, no. 6684, pp. 440–442, 1998.

[23] P. Ostovari, J. Wu, and A. Khreishah, “Network coding techniques for
wireless and sensor networks,” inThe Art of Wireless Sensor Networks.
Springer, 2014, pp. 129–162.

[24] A. Khreishah, I. Khalil, and J. Wu, “Distributed network coding-based
opportunistic routing for multicast,” inProceedings of the thirteenth
ACM international symposium on Mobile Ad Hoc Networking and
Computing. ACM, 2012, pp. 115–124.

	I Introduction
	II Settings and Definitions
	II-A Settings
	II-B Definitions

	III Algorithm
	III-A CRC Algorithm
	III-B Practical Issues
	III-B1 Providing Incentives and QoS Guarantees
	III-B2 En-Route Caching
	III-B3 Calculating the Initial Content Expectation Values
	III-B4 Effective Caching Duration

	IV Performance Analysis
	V Extension to CRC Algorithm
	V-A Replacement-CRC

	VI Simulation Results
	VI-A Settings
	VI-B Results on Random topologies
	VI-C Results on a Small-word generated topology
	VI-D Results for Replacement-CRC

	VII Conclusion
	References

