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Abstract— Inspired by traditional handmade crafts, where a
person improvises assemblies based on the available objects,
we formally introduce the Craft Assembly Task. It is a robotic
assembly task that involves building an accurate representation
of a given target object using the available objects, which do
not directly correspond to its parts. In this work, we focus
on selecting the subset of available objects for the final craft,
when the given input is an RGB image of the target in the
wild. We use a mask segmentation neural network to identify
visible parts, followed by retrieving labeled template meshes.
These meshes undergo pose optimization to determine the most
suitable template. Then, we propose to simplify the parts of the
transformed template mesh to primitive shapes like cuboids or
cylinders. Finally, we design a search algorithm to find corre-
spondences in the scene based on local and global proportions.
We develop baselines for comparison that consider all possible
combinations, and choose the highest scoring combination for
common metrics used in foreground maps and mask accuracy.
Our approach achieves comparable results to the baselines for
two different scenes, and we show qualitative results for an
implementation in a real-world scenario.

I. INTRODUCTION
DIY (Do It Yourself) tasks aim to create, modify or repair

objects using one’s own ability and creativity without aid of
professionals [1], covering a broad range of interests, such
as woodwork, knitting, home-improvement and handmade
crafts of objects. For instance, in arts classes, children are
given simple materials such as colored papers, cotton balls,
PET bottles, and are tasked with building a specific object
without explicit instructions. This process requires a series
of decisions, such as determining the necessary parts of the
target object, and which materials are more suitable for each
part. For example, consider the scenario illustrated in Fig. 1,
where the target objects are a hedgehog and a sailboat.

Despite their differences, both can be crafted with the
available objects, demonstrating the versatility and creativity
involved in these tasks. In addition, desired affordances, such
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Fig. 1. Illustrative example of a traditional craft task. Even if the available
objects are non-exact correspondences to the target, a human is capable of
abstracting and manipulating these objects to obtain a craft similar to their
target.

as ”floating” for the sailboat craft can be taken into account;
in this case, makeup sponges can be used as the hull since
they are capable of floating. While these decisions may be
straightforward for a human, automating them is challenging
as they often rely on abstracting the available materials,
evaluating possible interactions and prior knowledge of the
target object.

These challenges inspired us to propose the Craft As-
sembly Task: a novel robotic assembly task where the
objective is to construct a craft that provides an accurate
and functional representation of a given target object using a
set of available objects that do not directly correspond to its
parts. The inherent open-ended nature of the Craft Assembly
Task allows us to explore and address object assembly’s
challenges when the available materials are limited or the
specifications for the parts of the target object are ill-defined.

In our previous work [2], we briefly introduced an early
version of this task, where the input was a CAD model of
the target assembly, and only focused on comparing the parts
with objects in the scene. In this work, we expand upon
and formally define this task, considering a more complex
scenario where the input of the system is a single RGB image
of the target object in the wild and a set of available objects.
The expected output is a part-segmented 3D structure of the
target that uses the available objects as its components.

Our approach to this task begins by identifying the vis-
ible parts of the target object in the RGB image using
a neural network. To reconstruct their 3D structure, we
utilize template meshes, which are pre-prepared meshes
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used to represent object classes, due to a lack of databases
with ground truth correspondences between real world RGB
images and part-segmented 3D models. The template meshes
corresponding to the detected object class are retrieved, and
then undergo pose optimization, to identify the template
mesh and its respective transformation that best aligns it to
the input. To further minimize differences, only the parts
of mesh that have corresponding masks are retained, and
the occluded parts are generated using heuristics, such as
symmetry assumptions. To compare the generated model
parts with the scene objects, both are simplified to simple
primitive shapes, such as cuboids or cylinders. The 3D
bounding box of each part is used to generate the primitive
candidates, and the best matching one is selected. Finally,
we propose a search algorithm to match each simplified part
with a scene object based on the local proportion between the
pair, and the overall proportion of the whole model. The final
output is a set of scene objects suitable for assembling a craft
that matches the target object in appearance and functionality.

In this work, we do not consider the assembly sequence
planning step. For evaluation, we apply the 6D transforma-
tions from the simplified parts to the chosen scene objects
to obtain an assembled version in a virtual environment. As
there is no ground truth solution for this task, we propose
to evaluate the success rate of our task based on different
metrics to account for accurate 3D pose, correct amount
of parts and silhouette matching with the input. We also
compare the part segmented rendering of our final craft
with baselines, which analyzes all possible combinations of
the scene objects and chooses the optimal one according to
different metrics used in foreground maps and mask accuracy
evaluation. Our approach is applied to four object classes
under two different scenes, and it achieves comparable results
to the baselines in the average part IoU (Intersect over Union)
metric.

In summary, our main contributions are:
• Formally introducing the Craft Assembly Task, a chal-

lenging open-ended assembly scenario, inspired by DIY
handmade crafts;

• Developing a framework to address this task by using
template mesh retrieval, which alleviates the require-
ment of extensive part-segmented 3D models of the
target objects;

• Proposing a search algorithm to find the most similar
correspondence for cuboids and cylinders shapes, par-
ticularly when exact matches are unavailable, based on
proportions of the dimensions.

II. RELATED WORK

A. 3D reconstruction from RGB images

Reconstructing a 3D model from a single or multi-view
RGB input is a major topic of interest in computer vision.
Most works rely on supervised deep learning approaches to
find a direct correlation between 2D and 3D features, as
well as dealing with occluded parts. However, initially there
was a lack of large datasets for this task. To circumvent this

limitation, Su et al. [3] proposed to leverage the existing
large scale 3D models dataset, ShapeNet[4], by rendering its
3D models under different viewpoints with randomized back-
grounds, obtaining correspondences between the transformed
3D model and the RGB image for training and testing. This
was used in subsequent approaches [5], [6], although there
was concern about performance when applied to real-world
images, instead of rendered models. Xie et al. [7] used a
similar approach, training on 3D models from ShapeNet
rendered in 3D environments, and reported results on the
Pix3D dataset [8], a more challenging dataset which provides
fine-aligned pairs between real-world images and 3D models
of objects. Although it achieved state-of-the-art performance,
there is a significant difference compared to rendered objects.

A common limitation in these methods is the required
dataset for training, as most of them use hundreds of models
per object class to account for small variations within the
same object class. In the Craft Assembly Task, since the
final craft features are limited by the available materials, our
proposed solution focus on a 3D template mesh retrieval
approach, as the main priority is recovering the overall
segmented geometric structure and not a fine-grained aligned
3D model. This also alleviates the data required to retrieve
a feasible structure.

B. Recovering 3D structure from an RGB image

For a craft assembly, reconstructing the whole unseg-
mented model in 3D does not provide sufficient information.
We also need to retrieve the structure of the object: the set
of parts and necessary transformations. Since datasets with
segmented 3D models were scarce, Xu et al. [9] used a series
of heuristics to segment the models from ShapeNet into a
set of cuboid shapes, which were then used for training
their neural network. With the release of PartNet [10], a
large-scale part-segmented 3D object dataset with different
levels of granularity, works such as PQ-Net [11] and SM-
Net [12], used autoencoders to learn reconstruction of fine-
grained parts, however the number of parts to be recovered
must be specified beforehand.

Alternatively, unsupervised approaches proposed to learn
free-form sets of primitives as parts to reconstruct the ob-
ject [13], [14]. They also require specifying the number of
possible parts beforehand to handle occlusion and avoid over-
fitting with many small primitives. For the Craft Assembly
Task, the primitives generated by the aforementioned unsu-
pervised approaches may not be suitable for assembly, while
in supervised approaches, there is a burden of generating a
new dataset with the desired level of segmentation. Because
our solution uses 3D template mesh retrieval, in order to
obtain a segmented model, we created colored textures
to label the parts of the meshes. It allows, during pose
optimization between the template meshes and the input, for
the final rendered image of the template mesh to already
be part segmented. This segmentation helps distinguishing
poses with ambiguous silhouettes.



C. Part Assembly

The next consideration to take into account is how to
compare the parts of the transformed template mesh with
the available parts in the scene. Several researches [15], [16]
focused on the pose estimation sub-problem of autonomous
assembly, where given the target assembly and point clouds
of the parts, it learns the 6D-pose of each part to form the
target assembly. It slightly differs from the Craft Assembly
Task since, for the latter, the parts are non-exact corre-
spondences. The closest work, to our knowledge, is general
part assembly [17], where they learn to segment the target
point cloud jointly with pose estimation of the input point
clouds of the parts. They also focus on novel assemblies, by
augmenting their training data with non-exact parts, however,
in the Craft Assembly Task, we do not explicitly specify
which of the objects from the scene should be used to form
the assembly beforehand, adding another layer of decisions
to the task.

III. METHODOLOGY

The Craft Assembly Task is formally defined as follows:
given a representation of the target object and a scene with n
objects available, which are non-exact correspondences to the
required parts, the goal is to select a subset of m objects from
the scene and assemble a craft that accurately represents the
target object in terms of both appearance and functionality.
We focus on the object selection process, particularly the
scenario where the representation of the target object is a
single RGB image of the object in the wild. Furthermore, we
only consider scenes where the available objects are primitive
shapes, either cuboids or cylinders.

A. Overview

There are two main challenges: obtaining a part-segmented
3D structure suitable for assembly from a single RGB image,
and matching the parts of this structure with the objects avail-
able in the scene. Our approach to address these challenges
are divided in four steps, which are illustrated in Fig. 2. In
the first step, we obtain the part segmentation masks from
the RGB input using a fine-tuned vision transformer, in this
case, EVA02 [18].

The second step is retrieving the template mesh from a
database alongside the optimized camera parameters that
best fit the masks obtained in the first step. These template
meshes, representing the considered object classes in 3D,
are prepared beforehand, using texture maps to label their
parts. Using a differentiable renderer, we perform online
training to optimize the camera parameters for each template
mesh of the detected object class, represented as the ”Pose
Optimization” block in Fig. 2 . We follow a training approach
similar to [19], initializing Nc initial views per batch, and
optimizing simultaneously using silhouette loss. It results in
Nc images per batch, which are individually scored using
a weighted sum of three loss terms: the IoU loss, the part
IoU loss and a loss based on the distance between centers
of parts. The result with the minimum total loss is selected
for the next step.

In the third step, we refine the result by considering
only the parts from the retrieved template mesh that have
corresponding masks from the first step. To generate the
remaining parts of the model that were occluded in the input,
we assume left-right symmetry, and apply rules designed for
specific object classes to add internal components that are
unseen in both the input and the template meshes. It ensures
functional coherence, for example, adding an axle to connect
wheels so they afford to ”roll together”.

Comparing the parts of this generated model with the
scene objects is non-trivial due to non-exact correspon-
dences. Traditional 3D measures, such as chamfer distance,
are inadequate due to scale differences and may not guaran-
tee visual likeness. Therefore, we propose to first simplify
each part of the model to the same domain of the scene
objects: primitive shapes, either a cuboid or cylinder, by
using its 3D bounding box to propose primitive candidates.
We evaluate the primitive shape candidates by sampling a
point cloud for each and calculating the chamfer distance to
a sampled point cloud of the part, choosing the candidate
with lowest distance.

Finally, in the last step, a search algorithm matches each
part in the simplified primitive-shaped model with the closest
correspondence in the scene, considering both per-part pro-
portion, that is, the proportions between the dimensions of
the part, and the overall proportion, the proportion of the
dimensions between different parts. Our strategy revolves
around using the largest part in the model as the reference
of all other parts, and then finding its correspondence in
the scene. The corresponding scene object is used as the
reference to all other scene objects, obtaining a common
ground for comparison.

B. Part segmentation

To perform part segmentation suitable for assembly, we
label images extracted from ImageNet[20] to fine-tune a
pre-trained EVA02 model. Specifically, we use the weights
pretrained on the COCO dataset[21] with Object365[22]
intermediate fine-tuning, and fine-tune it for the parts of
the truck, chair, table and bus object classes, resulting in
nine possible part classes. They are listed alongside their
corresponding object classes in Table I. To minimize errors
in part mask classification, due to similar object parts and
objects in the background, we use the EVA02 model with
pre-trained weights for object detection, specifically the
COCO with Object 365 intermediate fine-tuning weights, as
an off-the-shell model to crop the target object and classify
it in the considered object classes. In cases multiple objects
are detected, we choose the one with the highest confidence.
In case the object detection fails, the mask segmentation
is applied to the whole image. Since some part classes
are unique to a object class, for example, ”truck cabin” is
exclusive to object class ”truck”, this correlation can be used
to determine the object class. Finally, in the case multiple
unique part classes are detected, the one with the highest
confidence is chosen to determine the object class.



Fig. 2. Overview of our proposed solution for the Craft Assembly Task. Given the RGB image of the target object, the visible parts are segmented
and classified. Labeled template meshes of the detected class are retrieved from a prepared database and their pose are optimized through a differentiable
renderer using the segmentation results as the target. The parts of the best aligned mesh are simplified to primitive shapes. Finally each part is matched
with an object in the scene (input) using a search algorithm, generating the final Craft Proposal.

TABLE I
CONSIDERED PART CLASSES WITH CORRESPONDING OBJECT CLASSES.

Object classes
Part classes truck bus chair table
truck cabin ⃝ × × ×
truck body ⃝ × × ×
bus body × ⃝ × ×
wheel ⃝ ⃝ × ×
chair back × × ⃝ ×
chair seat × × ⃝ ×
chair arm × × ⃝ ×
table surface × × × ⃝
furniture leg × × ⃝ ⃝

Formally, for each input image I , with a single in-
stance of a target object, we obtain a set of masks M =
{m1,m2, ...,mT } and an object class label, based on the
object detection results or the unique part class label present
in M .

C. Template mesh Database

To create the template mesh database, we collect three
meshes per object class from freely available models at
SketchFab [23] to act as templates. They are illustrated in
Fig. 2, and are stored in the database with semantic labels
regarding their object class.

For each mesh, we create a custom texture map, labeling
the faces according to the considered part classes. The
meshes are scaled to fit within a unit cube, and are centered
at the origin of the coordinate system.

D. Pose optimization

Using the results from the part segmentation step, we
retrieve all template meshes of the corresponding object
class. Our goal in this step is determining the camera
parameters and which retrieved template mesh best aligns
the rendered image with the masks in M .

For each retrieved template mesh, we perform pose op-
timization following the approach from [19] with some
modifications. They initialize Nc camera hypotheses per
template mesh model per batch to avoid local optima issues.
The virtual camera parameters of a differentiable renderer are
optimized to match the silhouette of the render to a given
target silhouette. The highest scoring results, in terms of IoU,
are selected, and in the following step, they apply semantics
to differentiate ambiguous poses, choosing the result with
the highest average part IoU, that is the mean IoU calculated
per-part based on the semantic labeled areas.

In our approach, we combine all masks from M into a
single binary mask, M∗, which is used as the target silhouette
during training. Additionally, we modify the loss function
from mean squared error (L2 loss) to mean absolute error (L1

loss), as employing L1 loss yielded more consistent results
in pose estimation. Empirically, we observed that L2 loss
converges faster, but it resulted in incorrect poses for ”table”
and ”chair” more often.

For the final selection from the Nc × batches results,
relying solely on IoU or part IoU does not lead to accurate
poses due to significant divergences between our template
meshes and the input. Instead, we propose selecting the result
that minimizes the weighted sum of three losses. The masks
in M are combined based on their part class label, generating
the set {m∗

1,m
∗
2, ...,m

∗
O}, with each mask corresponding to

a unique part class label. Each result is a render R also
divided into a set of masks with unique part class labels:
{r1, r2, ...rO}. In case a label is present in M but not in R,
the mask is considered empty for evaluation.

The first loss, LIoU , represents the IoU loss of the overall
silhouette, aiming to ensure alignment of the overall struc-
ture, but being subject to ambiguous poses.

LIoU = 1− IoU(M∗, R) (1)

The second loss, LmIoU , is the part IoU loss averaged across
the N semantic classes, which helps handling pose ambiguity



by considering the accuracy of the semantic labels. However,
due to differences between the template and the input, this
loss can be high even if they are well-aligned.

LmIoU =
1

N
×

N∑
i=1

1− IoU(m∗
i , ri) (2)

The third loss is a normalized Euclidean distance between the
centers of masks averaged across the N semantic classes. It
alleviates the the penalties of the other losses, by considering
only the alignment of the center of the masks:

Ldist =
1

N
×

N∑
i=1

dcenter(m
∗
i , ri) (3)

In this equation, dcenter stands for the normalized Euclidean
distance function between the center of the pair of masks.
They are normalized by using the diagonal distance of the
top-left corner to the bottom-right corner of the masks, which
serves as the maximum possible distance. If one of the masks
is empty, the maximum possible distance is adopted.

Each component’s influence is controlled by a weight λ.
Finally, we retrieve the result that minimizes the total loss
Ltotal.:

Ltotal = λIoU×LIoU+λmIoU×LmIoU+λdist×Ldist (4)

E. Primitive proposal

In this step, we begin by addressing differences in the
number of parts between the retrieved template mesh and
the input. For example, if the input has a truck with four
wheels, but in the chosen template mesh, the truck has six
wheels. After rendering the result from the pose optimization
step, we filter out parts of the template mesh that lack a
corresponding mask in M . This correspondence is found by
calculating the euclidean distance between each visible part
in the rendered template mesh and the masks in M .

To generate the missing components, we make two key
assumptions. First, we assume left-right symmetry of the
target object to generate the occluded parts. If a part has
all vertices on either the left or the right side relative to
the center line of the original template mesh, and there
is no corresponding retrieved part on the opposite side,
that part is cloned and mirrored. The second assumption
is regarding internal components for certain objects where
specific affordances are desirable. These internal components
are usually absent in the images of the target object and in
the template meshes, requiring predefined rules to generate
a simplified version of them. Specifically, for the truck and
bus object categories, the part wheel should be connected
to another parallel wheel via a new part: an axle, since the
affordance roll is desirable to keep the functionality in the
craft assembly. The proposed axle is a cylinder with sufficient
length to connect the center of a pair of wheels, and the
radius is defined as 20% of the radius of the wheels. They are
created after proposing the primitive shapes for the wheels.

Once all parts of this adjusted model are obtained, each
one is simplified to a single type of primitive shape, either
a cuboid or a cylinder. Each part is aligned to the axis of

the coordinate system to approximate the minimal bounding
box as the axis-aligned bounding box. Four primitive shapes
candidates are generated based on the dimensions of this
bounding box: a cuboid shape, or three possible rotated
cylinders, where the planar faces are aligned with one of the
three possible directions. Then, we sample separate uniform
point clouds for each primitive shape candidate and for the
part to calculate the chamfer distance. The candidate with
the lowest distance is chosen as the simplified representation
of that part. Following this process to all parts, a primitive
shape model is obtained.

F. Scene matching

To compare the parts from the primitive shaped model with
the objects available in the scene, which are also considered
to be primitives, we designed a search algorithm, it aims to
find, for each part, an object in the scene that has the same
primitive shape type and that best matches the proportions
of that part, while also considering the overall proportions
between different parts. Since the parts in the model and
the objects in the scene don’t have the same scale, we first
try to find a single correspondence and then calculate the
relative dimensions of all other parts compared with this first
correspondence to ensure the proportions are kept locally and
globally. The algorithm is divided into three steps: 1) finding
the part with the largest dimensions in the model; 2) finding
the object in the scene that corresponds with the part from
step 1; 3) finding all remaining correspondences.

In the first step, all the parts from the primitive shaped
model P are analyzed in order to find the part with the single
largest dimension, pmax. Then all dimensions of all parts
from P are normalized using the largest dimension from
pmax, generating a set of normalized parts, PN . Similarly,
we need to normalize the dimensions of the objects in
the scene according to a single object, to make a direct
comparison with the parts in PN .

In the second step, given the scene S, each object ok in
the scene S is normalized using its own largest dimension,
generating the set S∗. Then, we aim to find the normalized
object that best matches the normalized pmax (pNmax) by
ranking them using the average absolute difference between
dimensions, where a lower difference corresponds to a higher
ranking. To avoid cases where the highest ranking object is
small compared to other objects in the scene, thus hindering
the selection of the following objects as they should be
smaller than this first object to keep the global proportion
of the craft, we also rank the objects in the scene according
to their volume, where a higher volume results in a higher
ranking. The object correspondence, omax, for pNmax is
chosen based on the highest average placement in both of
these rankings.

Finally, in the third step, all objects in S are normalized
using the largest dimension of omax, obtaining the set SN .
For each remaining part pNi in PN , we evaluate each
normalized scene object oNj in SN based on the difference
between their dimensions, ϵdim, and the difference between
their ratios, ϵratio. The former, ϵdim, is calculated by aver-



aging the absolute differences between the dimensions of
pNi and oNj . The error ϵratio is calculated by averaging
the absolute difference between the ratios of pNi and oNj .
The ratios are computed by dividing each dimension by the
maximum dimension of their respective part or object. This
comparison ensures the overall proportions are maintained,
which is particularly important for cylinder shapes to retain
the proportion between the radius and length.

The final total error is then calculated as the square root
of the sum of the squared errors. The scene object that
minimizes the total error and has not been selected yet is
chosen to represent the part pNi in the final craft. This process
concludes when a unique corresponding object in the scene
is found for each part.

IV. EVALUATION

A. Implementation details

To fine-tune the pre-trained EVA02 model, we collected
images from ImageNet and remove instances where the target
object is excessively small, occluded or computer-rendered.
The final dataset has 1193 images, manually annotated for
the part classes listed in Table I, with 945 images allocated
for training. It is trained for 40k steps, with the image size set
to 512x512 pixels and batch size to 2. All other parameters
are left at their default values. For evaluation, both object
detection and mask segmentation confidence thresholds are
set to 0.75.

In the Pose Optimization step, each retrieved template
mesh is trained for 100 steps, with 40 initial views, with a
learning rate of 0.1. To further avoid local optima issues, five
batches for each template mesh are trained simultaneously.
For the total loss evaluation, from Eq. 4, we set λIoU = 0.75,
λmIoU = 0.15 and λdist = 0.15, manually optimized
according to the results for a small validation set.

Regarding the available objects in the scene, we assume
their shape and dimensions are known. The considered
objects have either a cuboid or cylinder shape. Then, two
scenes are generated:

Scene I: a diverse scene with 20 types of primitives, each
with 10 instances, for a total of 200 available objects.

Scene II: a more restricted scene with 10 types of primi-
tive, with a total of 20 objects. The dimensions and shapes
are collected from real-life objects such as cardboard boxes,
plastic tubes, wood cylinders etc.

B. Metrics

In the Craft Assembly Task, the final craft depends on the
available objects in the scene, leading to different results
for different scenes even if the input image is the same.
Therefore no ground truth solution is available for direct
comparison. To analyze the success rate (SR) of our method,
we consider three different metrics. First, for 3D alignment,
we evaluate the viewpoint accuracy [24] (VP Acc) at 30°.
Then, we consider if the number of instances for each
part class label correspond to the ground truth (Part Acc).
Finally, we evaluate the 2D alignment by checking if the
silhouette IoU is above a threshold (Sil. Acc), here set to

0.5, since they will inherently be different due to the non-
exact correspondence nature of the task. If our proposed
craft satisfies these three metrics, we count it as a successful
proposal, otherwise we consider it as a failure.

Additionally, to further analyze the similarity with the
input image, we evaluate the part IoU. In this case, we
render our craft with the ground truth pose, to ensure the
comparison is fair. We compare these results against a heuris-
tic approach, which is used to generate two baselines. This
heuristic is provided with the ground truth part segmentation
annotations, the objects in the scene, annotated camera poses,
and the exact number of parts for the target object in the
input images. It explores all possible combinations of objects,
pruning those where the shape of the selected object and
the part don’t match, or violate specific object classes rules,
such as: ”all furniture legs of a chair or a table must have
the same dimensions” and ”all wheels of a truck or a bus
must have the same dimensions”. For each of the remaining
combinations, the objects are positioned using pre-defined
rules and are rendered using the annotated camera poses,
resulting in mask-segmented renderings such as the outputs
of the pose optimization step. Then, they are evaluated using
two metrics, generating two baselines:

mIoU baseline: Average mask IoU across all parts classes
present in the ground truth annotation.

mEmax baseline: E-measure [25], metric used in fore-
ground masks evaluation, calculated per-part class masks and
averaged.

These baselines select combinations that are directly op-
timized for 2D alignment with the input, assuming the pose
and amount of parts are correct. To mitigate localization is-
sues, the area inside the bounding box of the rendered object
and the ground truth annotations are cropped and extended
to a 256x256 pixels size during evaluation, preserving the
aspect ratio with padded black areas.

C. Experimental results

Qualitative results of both our method and the baselines for
Scene I are illustrated in Fig. 3, alongside the evaluation of
the metrics for determining if the craft is successful. Among
the baselines, mIoU appear to better maintain the overall part
proportions, while mEmax tend to over-fit a few parts. Our
method also seems to preserve overall proportions, however,
although we allow template mesh deformation during the
pose optimization step, it doesn’t produce significant varia-
tion in the primitive-shaped model, resulting in most parts
proportions being the same as the original template mesh.

For quantitative evaluation, we report the results for the
success rate and the part IoU comparison in Table II. For
Scene I, we evaluated 248 images withheld from training,
while in Scene II, 193 images are evaluated. The variation
of images used for each scene evaluation is caused by limita-
tions in the available objects in Scene II. Specifically, some
instances in the truck object class need 6 or more wheels,
however there aren’t sufficient objects in the scene that could
act as wheels. Consequently, such cases are excluded.



Fig. 3. Renders of the final combinations for the baselines and our method.
We also show the evaluation results for each metric for our proposed craft.

Regarding the success rate evaluation, in the VP Acc
evaluation of the bus and table, we take into account their
symmetry, as most of their models don’t have distinguishing
features between the front or back of the object. Most object
classes presented failure in one of the metrics. For truck,
although the pose and overall silhouette are often correct,
a typical point of failure is retrieving all wheels from the
input during the segmentation step. This is mainly observed
in images where the truck has 8 or more wheels, as we can
observe in the significant increase in Part Acc in Scene II,
after removing such images from the evaluation due to lack
of available objects. For chair, it typically fails in the Sil.
Acc, where our craft often has shorter furniture leg compared
to the input, causing poor alignment of the silhouettes.
For table, it also fails in the Sil. Acc, in this case, the
table surface being shorter in length than the input causes
the misalignment. Finally, for bus, we achieve a high success
rate, possibly due to the simplicity in shape and overall
proportions not varying as much.

For the part IoU, the mIoU baseline should achieve the
highest possible score since it is directly optimized for this
metric, acting as an approximation of an optimal solution.
To be able to directly compare 2D similarity, we render our
results with the ground truth pose, reporting it as ”Ours w/
gt”. In both scenes, our method achieves comparable scores
to the mEmax baseline, but under performed when compared
to the mIoU baseline. We believe the issues observed in
the success rate analysis, specifically about the Sil. Acc,
are amplified here since the alignment is conducted per-
part class. A possible future improvement is allowing per-
part deformation during or after pose optimization, to fine-
tune the dimensions of the parts, making the system more

TABLE II
SUCCESS RATE CONSIDERING MULTIPLE METRICS AND AVERAGE PART

IOU EVALUATION OF OUR METHOD AND BASELINES.

SCENE I
Success Rate Part IoU

Class VP Acc Part Acc Sil. Acc SR mEmax mIoU Ours w/ gt
Truck 0.726 0.258 0.935 0.177 0.273 0.427 0.262
Bus 0.939 0.949 1 0.899 0.399 0.434 0.368
Chair 0.676 0.794 0.442 0.265 0.199 0.377 0.251
Table 0.731 0.865 0.654 0.481 0.385 0.456 0.288
Average 0.806 0.737 0.834 0.543 0.337 0.429 0.309

SCENE II
Success Rate Part IoU

Class VP Acc Part Acc Sil. Acc SR mEmax mIoU Ours w/ gt
Truck 0.500 0.875 0.625 0.375 0.178 0.315 0.203
Bus 0.939 0.949 1.0 0.899 0.279 0.281 0.254
Chair 0.676 0.794 0.529 0.323 0.184 0.322 0.307
Table 0.731 0.865 0.461 0.288 0.318 0.322 0.275
Average 0.819 0.896 0.756 0.611 0.269 0.300 0.267

adaptable without increasing the number of template meshes.
We also show some qualitative examples of our method

applied to novel instances that do not match the template
meshes in Fig. 4. In the case of truck and bus, the main
difference is in the wheels amount and positioning, re-
spectively. As for the chair examples, their legs structure
is differs significantly from the template meshes. For the
table example, it includes a part (drawer at the bottom)
that is not considered in our original dataset. Overall, the
part segmentation is accurate, but the pose estimation fails
in cases where the structure of the object is significantly
different from the meshes, such as the case where the chair
legs are at an angle, generating a very distinct silhouette.

D. Real world implementation

We show an implementation of the system in a real world
setting, using two UR3e arms for manipulation, and some
objects from Scene II as the available scene objects. The
assembly motions are manually defined, and perception of
the real world environment was captured beforehand using
an Intel® RealSense™ SR305 camera. The qualitative result
for the image of a bus in Scene II is shown in Fig. 5.

Fig. 4. Qualitative examples of our method applied to novel instances.
Although the final craft cannot match the input, due to structural differences
in our template meshes, the segmentation and pose can still be retrieved.



Fig. 5. Example of implementation in a real world environment for
the input image of a bus. During assembly, some adjustments to avoid
collision are done through pre-defined rules. The render area is maximized
for better visualization. A video demonstration for this input is available at:
https://youtu.be/tjz2d NuxB8

V. CONCLUSIONS

Our proposed approach for the Craft Assembly Task offers
robust solutions by utilizing template meshes to address the
lack of ground truth data for this task. It achieved comparable
performance to baselines that approximate optimal solutions.
While our method effectively utilizes template meshes to
reduce the need for extensive datasets, it has limited adapt-
ability for object instances that substantially differ from
the available templates. Scaling the proposed system to
new object classes requires labeling part classes in images
and template meshes. This could be facilitated by using
automated segmented tools, such as Grounded-SAM [26], for
images, and PointNeXt [27], for point clouds of the meshes,
as a starting point to, then, refine the annotations.

In our future work, we hope to address these limitations by
exploring Large Language Models (LLMs) for 3D reasoning.
A possible extension towards a more general system would
be using LLMs with 3D model generation capabilities [28]
to first generate a 3D model from the RGB image and
then using its reasoning capabilities to infer about the part
segmentation and necessary internal components.
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