
Digital Twin Placement for Minimum Application

Request Delay with Data Age Targets

Digital Twin Placement for Minimum Application
Request Delay with Data Age Targets

By Mehrad Vaezi

A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment

of the Requirements for the Master of Applied Sciences Degree.

McMaster University © Copyright by Mehrad Vaezi November 28, 2022

http://www.mcmaster.ca/

McMaster University

Master of Applied Sciences (2022)

Hamilton, Ontario (Department of Electrical and Computer Engineering)

TITLE: Digital Twin Placement for Minimum Application Request Delay with Data Age

Targets

AUTHOR: Mehrad Vaezi (McMaster University)

SUPERVISOR: Dr. Dongmei Zhao

CO-SUPERVISORS: Dr. George Karakostas and Dr. Terence D. Todd

NUMBER OF PAGES: x, 47

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
http://www.mcmaster.ca/

Abstract
Digital Twins are softwarized mirrors of physical systems. They can represent their

corresponding physical counterparts in real-world applications and reflect the behavior

of the latter under different scenarios with decent accuracy. In this thesis, we consider

the case where an application requests data from multiple digital twins, each representing

a physical system. The digital twins are hosted on execution servers located between

the application and the set of physical devices. Each digital twin has to be periodically

updated by its physical system and uses a portion of the execution server’s computing

resource to refresh itself. Due to the scarcity of computation resources of the execution

servers, in this thesis, we have tackled the problem of optimal digital twin placement

onto a limited set of execution servers. We are aiming at minimizing the latency of the

digital twins’ responses to the application’s requests while keeping the age of information

of served data below a certain threshold. We first formulate the problem as an integer

quadratic program (IQP) and then transform it into a semidefinite program (SDP).

We prove that the problem is NP-complete and propose polynomial-time approximation

algorithms that solve the problem with different trade-offs between the accommodation

of the application’s request latency and the achievement of data age targets.

iii

Acknowledgements
I would like to express my gratitude to my supervisors, Professors Dongmei Zhao,

George Karakostas, and Terence D. Todd who guided me throughout my graduate stud-

ies. I am also grateful to Dr. Douglas Down for his valuable comments as part of the

examining committee. Finally, I would also like to thank my friends and family for their

love and support.

iv

Contents

Abstract iii

Acknowledgements iv

List of Symbols vii

List of Abbreviations ix

Declaration of Authorship x

1 Introduction 1

1.1 Digital Twins and Definitions . 1

1.2 Digital Twin Placement Architectures . 3

1.3 Thesis Contributions and Organization . 5

2 Literature Review 8

2.1 Digital Twins in Industry . 8

2.2 Digital Twins and Machine Learning . 9

2.3 Network Performance Enhancement using Digital Twins 11

3 System Model and Problem Formulation 13

3.1 System Model . 14

3.2 Problem Formulation . 18

v

4 Proposed Solution and Algorithms 23

4.1 Problem Simplification and Relaxation . 23

4.2 Solution Method . 25

4.2.1 Rounding Algorithm . 26

4.2.2 Edge-pair Selection Algorithms . 28

4.2.3 Approximation Algorithms . 29

5 Simulation Results and Analysis 32

5.1 Simulation Setup . 32

5.2 Simulation Results . 33

5.2.1 Simulation Set 1 . 33

5.2.2 Simulation Set 2 . 37

5.2.3 Simulation Set 3 . 39

6 Conclusions and Future Work 42

Bibliography 44

vi

List of Figures

1 DT Placement Architectures. 4

2 Multiple DTs providing information to an application on behalf of their

corresponding PSs. Arrows and dashed lines are communication paths

that may consist of one or more router hops. 14

3 Timeline of PS-DT and DT-AS interactions. 15

4 System model for digital twin placement problem. 16

5 A bipartite Graph G = (A, B, E). 21

6 Performance of Algorithm 2, ϵu = 10%. 34

7 Performance of Algorithm 2, ϵu = 5%. 35

8 Performance of Algorithm 3 (M = 40). 36

9 Probability distribution of u. 37

10 Constraint violation of selection algorithms over a non-uniform distribu-

tion of u. 38

11 Performance of Constraint Slack SDP and Z-Congestion for M = 30

(ϵτ = 5%). 40

12 Performance of Constraint Slack SDP and Z-Congestion for M = 40

(ϵτ = 5%). 41

vii

List of Symbols

M Set of physical systems

N Set of execution servers

ddata
m,n Transmission delay of updates from PS m to ES n

ddown
m,n Transmission delay of application server’s request for data from DT m at ES n

dup
m,n Transmission delay of the response for application server’s request from DT m at ES n

cm,n Processing time of the update of DT m at ES n

Tm Update period of DT m

A⋆ Application’s maximum age-of-information tolerance

Xmn Decision variable for placing DT m on ES n

viii

List of Abbreviations

DT Digital Twin

PS Physical System

ES Execution Server

AS Application Server

AoI Age-of-Information

ix

Declaration of Authorship

I, Mehrad Vaezi, declare that this thesis titled, “Digital Twin Placement for Minimum

Application Request Delay with Data Age Targets” and the work presented in it are my

own.

x

Chapter 1

Introduction

1.1 Digital Twins and Definitions

The Digital Twin (DT) of a Physical System (PS) is a softwarized representation of that

system. The concept was initially introduced by Michael Grieves for lifecycle manage-

ment of products [1], [2] in manufacturing environments. Digital twins were built to

support simulation and prediction of the behavior of the physical systems from their

design and manufacturing to production and deployment until their end of life and dis-

posal.

The PS-DT relationship consists of three main elements:

• Physical System

• Digital Twin (Virtual System)

• Linkage

The physical system is broken into measurable features/attributes. For instance, an

aircraft has countless features such as speed, acceleration, altitude, engine temperature,

cabin air pressure etc., or a moisture meter that contains the average humidity of the

1

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

environment. The digital counterpart of the physical system is updated with the current

values of the features through the linkage medium and would reflect the same set of

features and attributes of the PS. The linkage is the synchronization bridge between

the PS and its DT. It is either one-directional in cases where the PS updates the DT

but receives no feedback from it 1 or bi-directional where the DT provides feedback to

the PS itself. Based on the PS-DT distance and time sensitivity of the application,

the linkage may be wired (e.g. a production line connected to a central computer in

a manufacturing environment) or wireless (e.g. an aircraft updating its DT in a cloud

server through satellite communication).

Ideally, a digital twin has to mirror every aspect of the physical system in real time.

That is, if the PS and its DT are triggered with the same input, they should produce

completely identical outputs at the same time. This, however, is often not feasible for

the DT of a complex physical system that consists of a large number of fast-changing

features. In practical scenarios, the quality of a DT can be affected by the available

resources including:

• Storage capacity

• Computation resources

• Network resources and communication bandwidth

As a case scenario, a moving vehicle contains numerous features such as its current

location, destination, velocity, available fuel, water temperature, tire air pressure, etc. A

functional DT of that vehicle has to store the past and present values of those features

in a large database. Furthermore, the DT would have to undergo substantial processing

of that data to come up with accurate predictions for the future status of the vehicle.

Typically, a DT can be located miles away from the PS inside a cloud server. In this
1In this case the DT responds to the requests of a third-party application representing the PS.

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

case, a certain amount of network bandwidth has to be allocated to the transmission of

updates from the PS to its DT. Time-sensitive applications require higher update fre-

quencies from the PS and have stringent latency constraints. These requirements result

in larger bandwidth consumption and require efficient network resource management

algorithms.

Consequently, creating a software representation that reflects every feature of the

physical system in real time requires massive amounts of communication, computation,

and storage resources. For that reason, based on the specifications of the application,

a subset of the features of a PS is reflected by its digital twin with a trade-off between

resource consumption and the performance of the DT.

1.2 Digital Twin Placement Architectures

In real-world use cases of digital twins, the DTs are often hosted inside servers that are

located between the physical system and the application servers. The digital twin acts as

an intermediary representation of the physical system and responds to the requests of the

applications using the data obtained from the PS. Depending on the requirements of the

applications and the complexity of the physical device, multiple digital twin placement

architectures can be visualized.

Centralized DT is the most basic architecture where only one server hosts the DT

of the physical system. Depending on the application’s demands, the DT may partially

mirror the PS or reflect the entire features in the physical device’s feature set. The choice

of the DT’s hosting server can be made based on the latency and available computation

capacity of the candidate servers. Figure 1(a) depicts this placement architecture.

For complex physical systems, there can be multiple digital twins each reflecting a

segment of the PS. A Distributed DT architecture can be applied in cases when different

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

applications are interested in different subsets of the features of the PS. For instance, a

traffic management application might need information regarding the speed and location

of the vehicles while a predictive maintenance application is interested in real-time data

from internal parts of the vehicles. Nevertheless, this architecture can also be used

when the DTs are scattered across several edge servers for the sake of distributing the

computation load of the digital twins. Figure 1(b) depicts this placement architecture.

(a) Centralized DT (b) Distributed DT

(c) Network of DTs

Figure 1: DT Placement Architectures.

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

With the advent of the IoT technologies, end devices are interacting with each other

more frequently. In a Network of DTs architecture, digital twins of end devices commu-

nicate with other DTs on behalf of the physical devices. This gives the end devices the

opportunity of using the computation resources of hosting servers and speed up their

communication through high-speed backhaul links of those servers. An example for this

architecture is collaborative driving, where the digital twin of a vehicle collaborates with

the DTs of other cars and obtains an understanding of the whole environment [3]. This

architecture has been also used in space-air-ground networks (SAGIN) [4], [5].

A Network DT (digital twin of a network) is a single entity that represents an entire

network. A network DT can be built by aggregating the information of a network of

DTs which can later be used for maintenance of the network in general. Network DTs

are especially applicable in the trending topic of software-defined networking (SDN)

where the network DT is accessed by the central network controller in order to gather

information for network management decisions and maintenance.

1.3 Thesis Contributions and Organization

In real-world scenarios, the digital twins can be placed between an application and

the physical device and communicate with the application on behalf of the PS. The

application server would request fresh status information of the physical device, e.g., real-

time location and speed of a vehicle. Using the digital twins, the PS would periodically

update its digital twin while the application server receives responses from the DT with

lower latency. This resembles the centralized architecture of Figure 1(a) discussed in the

previous section.

Time-sensitive applications impose constraints on the Age-of-Information (AoI) of

the data that they receive from the digital twins. In other words, data that is not

fresh enough will be rendered useless by the application. As the number of the physical

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

devices increase, the scarcity of available hosting servers that satisfy the AoI target of

the application becomes evident and a crucial issue. Therefore, the candidate servers

have to be efficiently allocated to the digital twins such that the physical devices can

update their DTs on time while the DT sends fresh enough data to the application server

according to its requirements.

There are prior works such as [6], [7] where digital twins are placed on a set of servers

to serve particular applications. Wang et al. [6] study a similar system model for optimal

placement of service entities in a virtual reality (VR) application. VR service entities

differ with digital twins in the sense that DTs have to be periodically updated by their

physical systems. Since the received data needs to be processed before the next update

arrives, this adds an update constraint for the digital twins which does not exist for the

VR service entities. Their optimization problem aims at minimizing the service delay of

the entities modeled as the placement cost of the hosting edge servers. They, however,

do not take into account the AoI tolerance constraint of the application. Furthermore,

they use a naive linear constraint to model the CPU sharing among the service entities

resulting in an integer linear program (ILP), while in this work, the DTs share the

server’s CPU according to a time-sharing policy which will make the problem an integer

quadratic program (IQP).

Lu et al. [7] have presented deep-learning-based algorithms for a similar digital twin

placement problem. A set of digital twin server locations is first obtained and the digital

twins are then migrated between these servers when needed. They assume that digital

twins are light, and, therefore, homogeneous in the sense that they are all of the same size,

which may not hold in general. The computational resource allocation model also does

not account for the time each digital twin consumes the server CPU. The optimization

problem for placement uses the average user-DT interaction delay as its objective which

can result in unfair resource allocation policies.

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

In this thesis, we address the aforementioned problem of efficient digital twin place-

ment. Specifically, the system model consists of an application, the set of physical

devices, and the set of host servers located between them. Our objective is to minimize

the response time of the host servers to the application. Furthermore, the DT placement

policy has to accommodate the AoI tolerance of the application server. We employ a

time-sharing resource allocation model for computational resources at the servers which

results in an integer quadratic problem. The integer quadratic program (IQP) is trans-

formed into a semidefinite program (SDP). It is subsequently proven that the problem is

NP-complete. As a result, we have proposed polynomial-time approximation algorithms

that solve the problem with trade-offs between the adaptation of the application’s data

age target and the data serving time from the hosting servers to the application. The

performance of the proposed approximation algorithms are compared with the globally

optimum solution through computer simulations.

The rest of the thesis is organized as follows. Chapter 2 reviews the available lit-

erature on digital twins and applications that have exploited this concept. Chapter 3

introduces the system model and formulates an optimization problem that describes the

objective and constraints of the aforementioned problem. Chapter 4 describes our so-

lution approach and proposes approximation algorithms that are used for obtaining a

solution for the problem. Chapter 5 presents simulation results and their analysis and

evaluation. Chapter 6 discusses possible future work and concludes the thesis.

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 2

Literature Review

In this chapter, we review the literature related to digital twins. Papers on digital twins

can be divided into two main categories, namely, papers that propose a method to de-

sign and implement a digital twin for a certain physical system such as a factory or an

airplane, and those that use the digital twins in their general terms and definitions to

optimize and enhance a series of operations such as routing and mobile computation

offloading. In the first section of this chapter, we review the work done on smart man-

ufacturing and industry. The second section is dedicated to reviewing the papers that

employ digital twins in machine learning applications. The final section reviews the state

of the art on optimizing network performance using digital twins.

2.1 Digital Twins in Industry

The concept of digital twins was first introduced for industrial production by Michael

Grieves in [1], [2]. The objective was to establish a technology that could imitate the

entire lifecycle of a product from the initial stages of design and testing to the production

and operation and ultimately disposal of the product. Since then, digital twins have

become increasingly popular in industry 4.0 and smart manufacturing. Digital twins

8

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

combined with big data analytics provide a test bed for simulation and fault diagnosis

of products before the actual manufacturing takes place. [2], [8]–[12].

Cyber-physical systems are the main trend in industry 4.0 and smart manufactur-

ing. These are systems that consist of a physical system and a virtual system. The

two systems are in constant interaction with each other. Any major change that will

be applied to the physical system, needs to be tested and analyzed beforehand in the

virtual system. Therefore, both systems have to evolve together over time and remain

synchronized [13], [14]. Since modern cyber-physical systems require scalable storage,

computation, and communication capabilities, they are often deployed on cloud-based

architectures. The key properties of a cloud-based cyber-physical system, namely, com-

putation, control, and communication are analytically described in [15]. They propose

a reference model for cloud-based cyber-physical systems that can be employed in the

design of such systems.

Starting with the paper published by NASA [16], aviation applications also began

to use DTs. In [16], [17] it is mentioned that prior to using DTs, aircraft sustainment

management was done based on statistical distributions of material properties, heuristic

design philosophies, and physical testing of the aircraft. Due to the inefficiency of those

methods under extreme requirements and dynamic environments, DTs attracted more

popularity in aircraft design. Digital twin applications in aviation include ultra-high

fidelity simulations of structural deflections of the aircraft in response to dynamic flight

conditions which enables mirroring the entire life-cycle of the physical object.

2.2 Digital Twins and Machine Learning

Machine learning is a popular technique in the digital twin paradigm. A DT can host and

train a learning model and use it in its decision-making and predictions. Reinforcement

learning in particular is useful when the PS provides feedback on the predictions made

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

by the DT. In [18], the DT of a network acts as a critic and provides feedback to the

decisions made by a reinforcement learning model. The model is subsequently used for

making optimal offloading decisions for the IoT devices in the network.

In [19], digital twins of manufacturing cells are created and used for simulating system

behavior and predicting possible faults. The twin sends automation commands to the

physical system consisting of sensors, PLC, and actuators and receives feedback signals

in return. In its simulation, the DT utilizes a deep reinforcement learning model which

uses the feedback signals to come up with efficient manufacturing strategies.

Federated learning, as a modern approach in machine learning, preserves the privacy

of users and their information. This is attained by allowing the users to train a learning

model on their own devices and send only the model to a centralized server instead

of feeding their raw data to the server responsible for training the model. This can

furthermore reserve a great amount of communication and computation resources for

the network. In [20], the digital twin of an edge network responsible for user scheduling

and bandwidth allocation updates its state through the learning models sent by the end

devices. The devices train a federated learning model of their own and eventually these

models are aggregated inside the digital twin server.

In [21], a digital twin reflecting the dynamic characteristics of an air-ground network

is designed. Ground devices, including vehicles and mobile phones, train their local

federated learning models. These local learning models are aggregated in the air network

consisting of several drones. The air network, containing computation resources that can

be used for offloading the ground network’s computational tasks, updates its digital twin,

which subsequently decides on offloading policies of the ground devices.

In [22], the digital twin models the slices of the shared resources of a network using

a graph neural network. The inter-dependencies of the slices are captured by the graph

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

neural network which helps the digital twin to predict the generated traffic of each slice

and estimate the end-to-end metrics of the slices.

2.3 Network Performance Enhancement using Digital Twins

Modern networks consist of a vast number of devices and intermediate nodes. Due

to the heterogeneity and dynamic nature of these networks together with the time-

sensitivity of the applications that use those networks, efficient network management

algorithms, and intelligent technologies have been made use of in the control of these

networks. In the last five years, digital twins have become increasingly popular in the

network management literature by providing real-time information and perspective of

the network to the network controller [23].

The major part of the applications of DTs in network management has been on

edge computing and task offloading of mobile devices. Digital twins of mobile users

are created and stored and periodically updated in a nearby edge server. A central

network controller learns about the current state of the network and resource demands

of mobile devices by contacting the edge servers that are hosting the digital twins. The

central controller can then decide on the offloading policies and computational resource

allocation schemes based on the learned information [24], [25].

Vehicular networks have also benefited from digital twins. Internet of Vehicles (IoV)

consists of a large number of connected vehicles that either distributively share their

real-time states or update a central server with their states so that each vehicle can

obtain a picture of its surrounding environment and use it in its decision makings.

Reference [26] has proposed an architecture for the network of connected vehicles that is

built upon the virtual representation of the vehicles (DTs). This architecture is used by

traffic administrators for traffic scheduling and prediction. A DT-based architecture for

a network of autonomous driving vehicles is proposed in [3] and [27]. Every autonomous

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

vehicle is represented by its digital twin in the virtual space where DTs collaborate to

proactively decide on the driving policies of the vehicles.

Reference [28] combines deep learning with digital twins for a vehicular edge comput-

ing management framework where cars can offload their computational tasks to vehicles

with computing power. The digital twin of the network holds the digital twins of cars

reflecting the cooperation between them. It is equipped with a multi-agent deep learning

engine responsible for making offloading decisions while taking the inter-vehicle latency

and task processing deadlines. The learning model is constantly trained with the fresh

data fed by the digital twins of the vehicles.

Data-driven routing is a modern approach to network routing where the data within

the packets is taken into account for dispatching the packets as opposed to using the

header information only. Reference [29] has designed a digital twin network architecture

used for analysis and simulation of network traffic management decisions. This virtual

model is constantly updated with real-time data and stores the entire history of the

network up to the current time. They have proposed a learning-based data-driven routing

algorithm that is trained by the real-time data provided by the digital twin in the training

stage. Ultimately, in the deployment stage, the trained algorithm makes specialized

routing decisions according to the current traffic status.

The 6th generation of mobile networks will feature edge intelligence and extremely

low latency. To meet these demands, [7], [30] have designed a digital twin model of the

wireless network helping in the mitigation of unreliable and long-distance communica-

tions between end users and edge servers. The digital twin model of the network already

present in the edge servers assists a server in optimally placing the DTs of the mobile

end users and migrating them to minimize the user-server communication latency.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 3

System Model and Problem

Formulation

Centralized DT (Figure 1(a)) is a DT placement architecture where a digital twin in-

teracts with an application on behalf of the physical system it is representing. The

digital twin, placed somewhere between the PS and the application server, is period-

ically updated by the PS with its latest state changes. This is referred to as PS-DT

synchronization. The DT, after processing the received updates, sends them to the ap-

plication server which has requested information regarding the PS.

In this architecture, the direct communication between applications and real systems

is replaced by two communication paths namely, a PS-DT path plus a DT-Application

path. Since the DT is located closer to the application server, the latter will experience

lower response delays from the DT compared to response latencies from the PS. Nev-

ertheless, if the DT is located too close to the application, the PS-DT synchronization

latency will start to increase which will degrade the freshness of information provided

to the application.

As the number of physical devices increases, more DTs will populate the available

servers (circles in Figure 2) and consume more computational resources of these servers.

13

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Each server must be able to process the incoming updates of the hosted DTs in a timely

manner so that the DTs will remain synchronized with their corresponding PS. On the

other hand, the server should respond to application requests without too much latency.

A real-life scenario for this system model is the case where the PSs are sensors installed

around a manufacturing plant and a maintenance application, responsible for accident

prevention, periodically requests fresh data from the sensors. In this thesis, the DT

placement problem is investigated. Our objective is to minimize the maximum response

delay experienced by the application subject to data age targets set by the application

server over the information it receives.

Figure 2: Multiple DTs providing information to an application on be-
half of their corresponding PSs. Arrows and dashed lines are communi-
cation paths that may consist of one or more router hops.

3.1 System Model

The system model consists of a set of M physical systems M = {PS1, PS2, . . . , PSM },

the set of N execution servers N = {ES1, ES2, . . . , ESN } that can host digital twins,

and an application server (shown in Figure 2). The application server (AS) requires data

input from the set of physical systems. Every PS is associated with a digital twin that

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

receives the data request of AS and responds to it using the information obtained from

the PS. The digital twin of PSm (DTm) has to be placed in one execution server. We

will denote DTm placed in ESn by the pair (m, n). A digital twin will impose communi-

cation costs to the network (for receiving updates from the PS and sending them to the

application server) and computation costs to its hosting ES (for processing the received

updates). Figure 3 demonstrates the timeline of interactions between a PS, its DT, and

the AS.

Figure 3: Timeline of PS-DT and DT-AS interactions.

At the beginning of the timeline, PSm sends a state update to its DT at ESn (in-

dicated by the orange color in the Figure). The transmission delay of this update is

denoted by ddata
m,n . At t = t1, the update is available at ESn in its raw form and needs

to be processed by the DT. Assuming that the CPU frequency of ESn and the required

CPU cycles for processing the update are known, it will take cm,n seconds for the update

to be processed. This is the case where only one DT rests inside the ES and is free to

use the entire computing power of the server. If, however, there is more than one DT in

an ES, we apply the time-sharing policy to maintain fairness among the hosted DTs.

The time-sharing policy dictates that once a digital twin has used one cycle of the

server’s processor, it has to wait for the other DTs to use one CPU cycle to be able to

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

use another cycle of the CPU. As a result of this policy, If there are kn digital twins in

ESn, it will take at most kncm,n seconds for the CPU to finish processing the update of

DTm. 1 Back in the timeline, the update is fully processed at t = t2 = t1 + kncm,n and

PSm and its DT are now state-synchronized.

As the state of a physical system changes over time, the corresponding digital twin

needs to get periodic updates to remain synchronized with the PS. In our system model,

we assume that PSm sends an update to DTm every Tm seconds. Thus, as indicated in

the timeline, the second, third, and fourth updates are sent at t = Tm, t = 2Tm, and

t = 3Tm respectively (shown by the colors blue, green, and red).

Suppose the application server sends an information request to the digital twin at a

certain time. Once the request is made, it will take ddown
m,n seconds for it to reach the

edge server (t = t4). As soon as the ES receives the request, it will start sending the last

processed state information to the AS for a duration of dup
m,n seconds. In the timeline,

ESn receives the request at t = t4 < t5. Since the second update is still being processed,

the server sends the state information of the previous state of the digital twin i.e. the

orange update. The discussed system model is summarized in Figure 4.

-

+

Figure 4: System model for digital twin placement problem.
1Note that this is an upper bound for the processing delay since we have implicitly assumed that DTs

always have an update that is waiting to be processed.

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

It is seen from the timeline 3 that the state of a DT should be at most one state

behind the state of its PS. For this constraint to hold, the incoming updates have to

reach the hosting edge server and get processed before the next one arrives i.e.

ddata
m,n + kncm,n ≤ Tm (3.1)

if DTm is located at ESn and there are kn DTs at ESn in total.

In our system model, a third-party application sends information requests to the

digital twins that are residing on the edge servers. Naturally, the application expects to

receive near real-time information from the physical devices. Therefore, while placing the

digital twins, we have to account for the age of information 2 (AoI) that the application

sees and try to keep it as small as possible. We assume that the application accepts data

that is at most A⋆ seconds old. The worst-case age of information has to be less than

this bound. According to the timeline in Figure 3, the worst-case age of information

happens when the application’s request for DTm’s data hits the edge server just before

DTm has finished processing the most recent update i.e. t4 < t5 and t5 − t4 ≈ 0. The

age of information for the orange data at t = t4 ≈ t5 is Tm + ddata
m,n + kncm,n. With an

additional ES-AS transmission delay of dup
m,n seconds, the age of information constraint

can be written as:

Tm + ddata
m,n + kncm,n + dup

m,n ≤ A⋆ (3.2)

Before formulating the optimization problem, we will point out an assumption re-

garding the data transmission delays. Similar to assumptions made in [6], we assume

that the transmission delays are independent of the placement strategy and the number
2Age of Information is defined as the elapsed time from the moment data is generated until it reaches

the application server.

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

of DTs placed in each edge server. This is because the total communication load on the

network imposed by the DTs is far less than the actual capacity of the underlying links

that are connecting the edge servers.

3.2 Problem Formulation

The decision variables of our problem are defined as binary variables Xmn ∈ {0, 1} for

m ∈ {1, 2, . . . , M} and n ∈ {1, 2, . . . , N} where Xmn = 1 if DTm is placed on ESn and

Xmn = 0 if not. We can write the number of digital twins that are hosted in ESn as

kn = ∑M
m=1 Xmn. As a result, constraint (3.1) can be changed to

Xmn(ddata
m,n + cm,n

M∑
m=1

Xmn) ≤ Tm (3.3)

and constraint (3.2) to

Xmn(Tm + ddata
m,n + cm,n

M∑
m=1

Xmn + dup
m,n) ≤ A⋆ (3.4)

Our objective is to provide the requested information to the application server as

soon as possible. The application will get data from DTm at ESn, ddown
m,n + dup

m,n seconds

after it sends a request for it. Our approach is to minimize the maximum experienced

delay by the AS among all the digital twins that the application requests data from;

namely the optimal placement is

X⋆ = arg min
X

max
m

{(ddown
m,n + dup

m,n)Xmn} (3.5)

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

A common practice in min max objectives is to replace the maxm by a new decision

variable, which we call τ , and add a constraint where every (ddown
m,n + dup

m,n)Xmn is less

than τ .

The digital twin placement problem is formulated as the following Integer Quadratic

Program (IQP):

min
X,τ

τ (IQP)

s.t.
N∑

n=1
(ddown

m,n + dup
m,n)Xmn ≤ τ, ∀m ∈ M (3.6)

Xmn(ddata
m,n + cm,n

M∑
k=1

Xkn) ≤ Tm, ∀m ∈ M, n ∈ N (3.7)

Xmn(Tm + ddata
m,n + cm,n

M∑
k=1

Xkn + dup
m,n) ≤ A⋆, ∀m ∈ M, n ∈ N (3.8)

N∑
n=1

Xmn = 1, ∀m ∈ M (3.9)

Xmn ∈ {0, 1}, ∀m ∈ M, n ∈ N (3.10)

τ ≥ 0 (3.11)

The LHS of constraint (3.6) is the application’s experienced latency when requesting

data from DTm. By minimizing τ , we are minimizing the maximum of such latencies.

Constraints (3.7) and (3.8) are the digital twin update constraints and application’s data

age constraints respectively. Constraint (3.9) implies that every digital twin has to be

placed in exactly one edge server. This will also prevent the optimization to zero out

the X matrix.

By re-writing constraints (3.7) and (3.8) in the following form

Xmn

M∑
k=1

Xkn ≤
Tm − Xmnddata

m,n

cm,n
(3.12)

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Xmn

M∑
k=1

Xkn ≤
A⋆ − Xmn(ddata

m,n + dup
m,n)

cm,n
(3.13)

we obtain the same LHS for both constraints. The Xmn term can be removed from

the RHS of both constraints because for Xmn = 0 the constraints are always satisfied

and we only need to take care of the case when Xmn = 1. We can now merge the two

constraints by defining a new RHS um,n:

um,n = min
{

Tm − ddata
m,n

cm,n
,
A⋆ − (ddata

m,n + dup
m,n)

cm,n

}
(3.14)

By applying the aforementioned changes the new formulation is

min
X,τ

τ (IQP’)

s.t.
N∑

n=1
(ddown

m,n + dup
m,n)Xmn ≤ τ, ∀m ∈ M (3.15)

Xmn

M∑
k=1

Xkn ≤ um,n, ∀m ∈ M, n ∈ N (3.16)

N∑
n=1

Xmn = 1, ∀m ∈ M (3.17)

Xmn ∈ {0, 1}, ∀m ∈ M, n ∈ N (3.18)

τ ≥ 0 (3.19)

In the rest of this chapter, we will prove the NP-completeness of (IQP’). By fixing the

τ to a specific τ̂ value, all Xmn in (3.15) with coefficients ddown
m,n + dup

m,n > τ̂ are forced

to be 0 according to constraints (3.17) and (3.18). The τ variable can take any value

from the [ddown + dup]M×N matrix. We define Dsorted = {τ̂1, τ̂2, . . . , ˆτMN } as the sorted

array of the elements of [ddown + dup]M×N matrix. By fixating τ = τ̂ according to a

binary search on Dsorted, we can simplify the problem of (IQP’) to the question of the

feasibility of constraints (3.16)-(3.18) i.e. at every stage of the binary search, if the

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

problem is feasible, we ignore the half with larger τ values and vice versa.

Every value of τ = τ̂ , in effect, defines a bipartite graph G = (A, B, E) (shown in

Figure 5) with nodes in A corresponding to DTs, the nodes in B corresponding to ESs,

and an edge (m, n) ∈ E only if ddown
m,n + dup

m,n ≤ τ̂ . For every value of τ , the problem

(IQP’) is simplified to the feasibility problem of constraints (3.16)-(3.18) on a bipartite

graph (Xmn := 0 whenever (m, n) /∈ E and Xmn := 1 whenever (m, n) ∈ E). The

following theorem proves that this feasibility problem is NP-complete.

Figure 5: A bipartite Graph G = (A, B, E).

Theorem 1. Determining the feasibility of (3.16)-(3.18) on a bipartite graph is an NP-

complete problem.

Proof. The problem is clearly in NP since given a {0, 1}-assignment for Xmn variables,

the feasibility of constraints (3.16)-(3.18) can be checked in polynomial time.

We reduce the Boolean Satisfiability problem (also Satisfiability or SAT) to our prob-

lem. SAT problem asks whether there is a truth assignment that satisfies a given CNF3

formula. Given a CNF formula with n variables and m clauses, we construct a bipartite

graph as follows:

The left-side set of nodes A consists of n + m nodes, one for each variable or clause.
3Conjunctive Normal Form or Clausal Normal Form

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

On the right-side set of nodes B there are 2n nodes, one pair of nodes for every pair

of literals xi, x̄i corresponding to i-th variable. For every clause l, there is an edge

between l ∈ A and the node of every literal used by l in B. For example, for clause

l = (x2 ∨ x̄5 ∨ x8) there are edges (l, x2), (l, x̄5), (l, x8). For each such edge (m, n) we

set um,n := ∞. Also, for the i-th variable node in A, we add edges (i, xi), (i, x̄i) with

ui,xi = ui,x̄i := 1. By construction, if Xi,xi = 1, then Xl,xi
= 0 for any clause l that uses

literal xi, due to (3.16) for m = i, n = xi i.e. only variables Xk,x̄i
will be allowed to take

value 1 where clauses k use literal x̄i; the case Xi,x̄i = 1 is symmetric.

Now it is easy to see that the given CNF formula is satisfiable iff there is a {0, 1}-

assignment to variables X that also satisfies (3.16)-(3.18). If the formula is satisfiable,

set Xi,xi = 1 and Xi,x̄i = 0 if xi = 0 or Xi,xi = 0 and Xi,x̄i = 1 if xi = 1. Furthermore,

each clause l must contain a literal xi or x̄i that is set to 1, thus we can set Xl,xi
= 1 or

Xl,x̄i
= 1 without violating any of the constraints. We set all other variables Xm,n := 0.

It is easy to verify that this assignment satisfies all constraints (3.16)-(3.18). Conversely,

if there is a value assignment to variables Xm,n that satisfies (3.16)-(3.18), then this

assignment forces Xi,xi = 1, Xi,x̄i = 0 or Xi,xi = 0, Xi,x̄i = 1 for each i-th variable; we

translate this assignment to xi = 0 or xi = 1 respectively. The assignment of each clause

node l to exactly one node of its literal(s) in the bipartite graph is consistent with our

truth assignment and satisfies each clause.

As a result of Theorem 1, we do not expect that there is a polynomial-time algorithm

that solves (IQP’).

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 4

Proposed Solution and

Algorithms

In this chapter, we first simplify problem (IQP’) to a relaxed semi-definite program

(SDP) and then propose approximation algorithms to round the fractional solution of

the SDP to integral binary values.

4.1 Problem Simplification and Relaxation

We will linearize problem (IQP’) by defining a new binary variable Zn
km ∈ {0, 1} that will

replace the product XknXmn. The following linear constraints are a valid replacement

for the quadratic constraint Zn
km = XknXmn:

Zn
km = Zn

mk, ∀k, m ∈ M, n ∈ N

Zn
mm = Xmn, ∀m ∈ M, n ∈ N

Zn
km ≤ Xmn, ∀k, m ∈ M, n ∈ N

Xmn + Xkn − Zn
km ≤ 1, ∀k, m ∈ M, n ∈ N

23

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

By applying the change of variables to (IQP’) the new formulation becomes:

min
X,Z,τ

τ (SDP)

s.t.
∑

n

(ddown
mn + dup

mn)Xmn ≤ τ, ∀m ∈ M (4.1)

∑
k

Zn
km ≤ um,n, ∀m ∈ M, n ∈ N (4.2)

∑
n

Xmn = 1, ∀m ∈ M (4.3)

Zn
km = Zn

mk, ∀k, m ∈ M, n ∈ N (4.4)

Zn
mm = Xmn, ∀m ∈ M, n ∈ N (4.5)

Zn
km ≤ Xmn, ∀k, m ∈ M, n ∈ N (4.6)

Xmn + Xkn − Zn
km ≤ 1, ∀k, m ∈ M, n ∈ N (4.7)

Xmn, Zn
mk ∈ {0, 1}, ∀k, m ∈ M, n ∈ N (4.8)

τ ≥ 0 (4.9)

Zn ∈ PSD, ∀n ∈ N (4.10)

A feasible solution to (SDP) will set Zn
km = XknXmn, ∀k, m, n the X matrix of which

is a feasible solution to (IQP’). Matrices Zn are positive semi-definite (PSD) for all n

since Zn = Xn(Xn)T , where Xn is the n-th column of matrix X = [xmn]. Therefore, we

can add the constraint

Zn ∈ PSD, ∀n ∈ N (4.11)

which will turn the linearized problem into a semi-definite program (SDP).

We apply a relaxation of binary integer variables by replacing (4.8) with

Xmn, Zn
km ≥ 0, ∀k, m ∈ M, n ∈ N (4.12)

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

The problem (SDP) now becomes a convex SDP (note that constraints Xmn ≤ 1 and

Zn
km ≤ 1 are implied by (4.3) and (4.6)) and can be solved in polynomial time by common

SDP solvers. The final Relaxed SDP problem is summarized as follows:

min
X,Z,τ

τ (Relaxed SDP)

s.t. (4.1) − (4.7), (4.9) (4.13)

Xmn ≥ 0, ∀m ∈ M, n ∈ N (4.14)

Zn
km ≥ 0, ∀k, m ∈ M, n ∈ N (4.15)

Zn ∈ PSD, ∀n ∈ N (4.16)

If (Relaxed SDP) is infeasible for a given input, this implies that the original (IQP’)

problem is infeasible as well. However, the infeasibility of input on (IQP’) does not

necessarily mean that (Relaxed SDP) is infeasible for that input.

4.2 Solution Method

The formulation of problems (IQP’) and (Relaxed SDP) treats (3.16) and (4.2) respec-

tively as a hard constraint, i.e., they would be satisfied if at least one feasible solution

was available. In real-world systems, considering the dynamic nature of the system pa-

rameters that correspond to the input of our problem, a feasible solution may not exist

for all parameter settings. Furthermore, checking the feasibility of the problem is itself

NP-complete as proven in Theorem 1. Therefore, we propose polynomial-time approx-

imation algorithms that return approximate solutions in terms of the objective τ and

violation of constraint (4.2).

The algorithms give precedence either to achieving a better objective value τ (to the

detriment of constraint (4.2)) or to attaining a smaller violation of constraint (4.2) (to

the detriment of the objective τ). We will later test the algorithms on instances where

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

problem (IQP’) is feasible, even though the algorithms provide an approximate solution

to the infeasible instances of problem (IQP’) and only require Relaxed SDP problem to

be feasible.

4.2.1 Rounding Algorithm

We start by describing Algorithm 1 which rounds a fractional solution of the Relaxed

SDP problem to an integral assignment of DTs to ESs. This rounding subroutine will be

the main component of the algorithms we propose for solving the problem or detecting

its infeasibility (Algorithms 2 & 3).

After obtaining the fractional solution X, Z of the Relaxed SDP problem, Algorithm

1 is used to round it to an integral solution. In lines 2-6, all the integral Xmn’s from the

solution to the Relaxed SDP problem are fixed, i.e., DTm is assigned to ESn if Xm,n = 1

and it will never be assigned to ESn if Xm,n = 0. After the for-loop, set SM contains

the DTs that are still fractionally assigned to different ESs.

In line 8, while SM ≠ ∅, the algorithm picks DTm from SM and a pair of ESs n1, n2

with 0 < Xm,n1 , Xm,n2 < 1 according to different edge-pair selection algorithms that will

be described in subsection 4.2.2.

In lines 9-13, we set Xm,n1 := Xm,n1 + Xm,n2 and Xm,n2 := 0 and remove DTm from

the set of fractional DTs SM if Xmn1 = 1. Note that this update may violate some

constraints, therefore, the algorithm goes through a series of operations to satisfy the

violated constraints again. This includes increasing Tm and A⋆ to satisfy constraint

(4.2) in lines 14-28 and adjusting the Zn
k,m values based on the updated Xm,n’s to

satisfy constraints (4.6) and (4.7) in lines 29-36. Note that fixing constraints (4.7) after

constraints (4.6) ensures that the latter will still be satisfied.

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Algorithm 1 Rounding Algorithm
Require: Fractional solution X, Z ≥ 0 of (Relaxed SDP)

1: SM := M
2: for all m ∈ SM do
3: if Xm,n ∈ {0, 1} for some n then
4: SM := SM \ {m}
5: end if
6: end for
7: while SM ≠ ∅ do
8: Select(m, n1, n2) ▷ Edge-pair selection algorithms
9: Xm,n1 := Xm,n1 + Xm,n2

10: Xm,n2 := 0
11: if Xm,n1 = 1 then
12: SM := SM \ {m}
13: end if
14: for all m ∈ M, n ∈ N do
15: u⋆

m,n := um,n

16: if constraint (4.2) is violated then
17: uA := A⋆−(Tm+ddata

m,n +dup
m,n)

cm,n

18: uT := Tm−ddata
m,n

cm,n

19: if uT < LHS < uA then ▷ LHS of (4.2)
20: Increase Tm until uT = LHS
21: else if uA < LHS < uT then
22: Increase A⋆ until uA = LHS
23: else if uT , uA < LHS then
24: Increase Tm and A⋆ until uA = uT = LHS
25: end if
26: um,n = min{uA, uT }
27: end if.
28: end for
29: for all k, m ∈ M, n ∈ N do
30: if constraint (4.6) is violated then
31: Zn

k,m, Zn
m,k := Xm,n

32: end if
33: if constraint (4.7) is violated then
34: Zn

k,m, Zn
m,k := Xm,n + Xk,n − 1

35: end if
36: end for
37: end while
38: Output: X, Z, and ∆u

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Line 15 records the original um,n as u⋆
m,n and line 26 records the updated um,n. Let

∆u = max
m,n

um,n − u⋆
m,n

u⋆
m,n

(4.17)

be the maximum violation of um,n due to the rounding. The algorithm outputs the

rounded X, Z, and ∆u.

4.2.2 Edge-pair Selection Algorithms

We use five different methods for the choice of m, n1, n2 in line 8 of Algorithm 1.

• Random Selection: We pick a DT m from SM and two ESs n1 and n2 from N

with 0 < Xm,n1 , Xm,n2 < 1 uniformly at random.

• X-Congestion: The metric ∑
m Xmn is used as a measure of the congestion

of ESn. Let n2 = arg maxn
∑

m Xmn (n2 is the most congested ES) and m =

arg maxk Xkn2 . Set n1 = arg minn Xm,n (we break ties arbitrarily).

• Z-Congestion: The metric ∑
k,m Zn

km is used as a measure of the congestion of

ESn. Let n2 = arg maxn
∑

k,m Zn
km and n1 = arg minn

∑
k,m Zn

km. m is selected as

before.

• Constraint Slack SDP: Let (m, n2) = arg minm,n{um,n} i.e. (m, n2) is the DT-

ES pair for which the slack of constraint (4.2) is minimum. Note that if any of these

constraints are tight, the minimum slack is 0. Set n1 = arg maxn um,n, i.e., for the

chosen m, n1 is the ES that has the maximum slack among all the constraints

(4.2). The intuition behind this selection of m, n1, and n2 is that the algorithm

is trying to take away assignment “weight” from tight (or near tight) constraints

and assign it to constraints with lots of slack.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

• Constraint Slack QP: Consists of the same operations as in Constraint Slack

SDP only now we consider the slack of constraints (3.16).

Note that every iteration of the main loop of Algorithm 1 (lines 7-37) rounds at least one

of the O(MN) variables and each iteration takes O(MN) time for an overall running

time of O(M2N2).

4.2.3 Approximation Algorithms

Algorithm 1 is used as a subroutine to develop the following approximation algorithms

that work towards restricting deviations of fractional u or τ (Algorithms 2 and 3 respec-

tively) compared to the optimal solution.

Algorithm 2 Finding solution with sub-ϵu violation
Require: Dsorted = {τ̂1, τ̂2, . . . , τ̂MN }, ϵu

1: τ̂f = min in Dsorted s.t. Relaxed SDP is feasible ▷ Binary search in Dsorted

2: τ̂s = min in {τ̂f , τ̂f+1, . . . , τ̂MN } s.t. ▷ Binary search
• Xf , Zf = solution of Relaxed SDP problem with τ = τ̂s

• X, Z, ∆u = Algorithm 1(Xf , Zf)
• ∆u ≤ ϵu

3: if no τ̂s is found then
4: return INFEASIBLE
5: else
6: return X
7: end if

Algorithm 3 Finding solution with sub-ϵτ violation
Require: Dsorted = {τ̂1, τ̂2, . . . , τ̂MN }, ϵτ

1: τSP
opt = fractional optimum of Relaxed SDP

2: Find max s such that τ̂s ≤ τSP
opt (1 + ϵτ)

3: if no τ̂s is found then
4: return INFEASIBLE
5: end if
6: Xf , Zf = solution of Relaxed SDP problem with τ = τ̂s

7: X, Z, ∆u = Algorithm 1(Xf , Zf)
8: return X

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Let τQP
opt be the optimum τ of (IQP’), therefore, optimum τ of (SDP) as well. We

observe that τQP
opt ∈ {dup

m,n + ddown
m,n : m ∈ M, n ∈ N }. Each of these MN possible

values for τQP
opt corresponds to a restriction of the set of possible assignments of DTs

to ESs. As previously defined, Dsorted = {τ̂1, τ̂2, . . . , τ̂MN } is the sorted list of values

{dup
m,n + ddown

m,n : m ∈ M, n ∈ N } in ascending order (note that if there are repetitions

of values for different m, n combinations then |Dsorted| < MN , nevertheless, for the

clarity of our presentation, we will assume that all these values are distinct). By fixating

τ := τ̂s ∈ Dsorted Relaxed SDP problem becomes a feasibility problem as follows: In

order to satisfy (4.1), Xmn = 0 has to be set for all m and n with dup
m,n + ddown

m,n > τ̂s.

Therefore, the following constraints are added:

Xmn = 0, ∀m, n : dup
m,n + ddown

m,n ∈ {τ̂s+1, . . . , τ̂MN } (4.18)

and are considered together with constraints (4.2)-(4.7) and (4.14)-(4.16). A feasible

(and fractional) solution to this feasibility problem can be obtained in polynomial time.

If the problem is infeasible, we proceed with a smaller value of τ . Recall that we have

assumed that the Relaxed SDP is feasible, thus there is at least one value of τ for which

we will obtain a fractional feasible solution.

In Algorithm 2, binary search is used in order to discover the smallest τ̂f ∈ Dsorted

that maintains the feasibility of the Relaxed SDP problem. This is done after solving at

most O(log(MN)) SDPs. Note that τ̂f ≤ τQP
opt , since the first is the fractional optimum

and the latter is the integral optimum. A second binary search is applied to the set

{τ̂f , τ̂f+1, . . . , τ̂MN } in order to find the smallest τ̂s for which ∆u ≤ ϵu when the rounding

of Algorithm 1 is applied (ϵu is the constraint violation tolerance). If no such solution

is found for the given tolerance, the algorithm will return infeasible.

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

In Algorithm 2, we were aiming to find a solution with sub-ϵu constraint violation.

Similarly, an ϵτ bound can be applied to the objective τ as follows: Let

∆τ(x) =
x − τSP

opt

τSP
opt

(4.19)

where τSP
opt is the (fractional) optimum of the Relaxed SDP. After calculating τSP

opt , al-

gorithm 3 chooses the largest τ̂s from the set Dsorted with ∆τ(τ̂s) ≤ ϵτ . The Relaxed

SDP problem for τ = τ̂s is solved and the fractional solution is rounded using Algorithm

1. If no such τ̂s exists, the algorithm returns infeasibility. If X is the returned solution

matrix by algorithms 2 and 3, we denote the obtained τ from X by τ̂ and define

∆τ ′ =
τ̂ − τQP

opt

τQP
opt

(4.20)

where τQP
opt is the optimal objective value of IQP’.

Note that finding ∆τ ′ requires the solution of the original NP-complete problem IQP’ and

will be used only in the simulations and algorithms do not rely on it in their operations.

We have used the MOSEK optimization toolbox to solve IQP’ and Relaxed SDP in our

simulations.

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 5

Simulation Results and Analysis

5.1 Simulation Setup

In this chapter, we evaluate the performance of our proposed algorithms via computer

simulation. The algorithms are implemented using the five selection methods described

in subsection 4.2.2. Since the solutions involve different relaxations of the constraints,

the performance comparisons include the resulting constraint violation. Three sets of

computer simulations were done to examine the performance of the algorithms from

different perspectives. In the presented figures, each point represents an average of 50

simulation runs. Since constraint (3.16) consists of M × N separate constraints, at each

simulation run, the maximum violation of that set is used in the averaging.

In the experiments, we will assume that the ESs are categorized into three groups:

Group 1 which is nearest to PSs and furthest from the AS, Group 2 which is at a medium

distance from the PSs and AS (compared to the other two groups), and Group 3 that

is nearest to AS and furthest from the PSs. The delays for each group are defined

accordingly:

• PS-ES delays ddata are uniformly distributed in ranges of [5ms, 10ms], [12.5ms, 17.5ms],

and [20ms, 25ms] for groups 1, 2, and 3 respectively.

32

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

• Application request delays ddown are uniformly distributed in ranges of [0.7ms, 1.1ms],

[0.4ms, 0.8ms], and [0.1ms, 0.5ms] for groups 1, 2, and 3 respectively.

• ES-AS response delays dup are uniformly distributed in ranges of [16ms, 20ms],

[10ms, 14ms], and [4ms, 8ms] for groups 1, 2, and 3 respectively.

These ranges are chosen based on the fact that the network backbone of 5G is ca-

pable of supporting bit rates ranging from 5 Gbits/s up to 10 Gbits/s under stable and

uncongested network conditions and some link processing overheads [31].

5.2 Simulation Results

5.2.1 Simulation Set 1

In the first set of simulations, 2 ESs are assigned to group 1, 4 ESs to group 2, and 2

ESs to group 3. The size of data sent by a PS to its DT at each data update cycle is

25MB, the data size sent from a DT to the application server is 20MB, and the size of

the application’s request is 1MB [32]. Additionally, Tm is uniformly distributed in the

range [60ms, 80ms] for each PS and application’s data age target A⋆ is 200ms.

Algorithm 2 was run by varying the number of PSs. The results are plotted in

figures 6(a) and 6(b) for ϵu = 10% and figures 7(a) and 7(b) for ϵu = 5%. Figure 6(a)

shows that all of the selection methods can keep ∆u below ϵu up to M = 40 while Z-

Congestion, Constraint Slack SDP and Random Selection can go up to M = 50. Figure

6(b) demonstrates that Z-Congestion and Constraint Slack SDP are able to keep ∆τ ′

below 20%, unlike the other three methods.

The same trend can be seen in figures 7(a) and 7(b) as well. Figures 6(b) and 7(b)

show that as M gets large, the selection methods offer larger ∆τ ′ values (M ∈ [45, 50])

for a fixed ϵu boundary on constraint violation. We can also see that the case with

ϵu = 10% (figure 6(b)) provides smaller ∆τ ′ compared to the case with ϵu = 5% (figure

7(b)) which matches the trade-off between ϵu and ∆τ ′.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

20 25 30 35 40 45 50

Number of PSs (M)

0

5

10

15

20

25

30

35

40

 u
 (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(a) ∆u versus M

20 25 30 35 40 45 50

Number of PSs (M)

0

10

20

30

40

50

60

70

80

90

100

' (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(b) ∆τ ′ versus M

Figure 6: Performance of Algorithm 2, ϵu = 10%.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

20 25 30 35 40 45 50

Number of PSs (M)

0

5

10

15

20

25

30

35

40

 u
 (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(a) ∆u versus M

20 25 30 35 40 45 50

Number of PSs (M)

0

50

100

150

 (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(b) ∆τ ′ versus M

Figure 7: Performance of Algorithm 2, ϵu = 5%.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

Algorithm 3 was tested for ϵτ ∈ [0, 60%] in figure 8. As expected, constraint violation

∆u is maximum at ϵτ = 0% and starts to decrease as ϵτ increases. This trade-off

between ϵτ and ∆u is well reflected by Z-Congestion, Constraint Slack SDP, and Random

Selection methods.

0 10 20 30 40 50 60

 (percentage)

0

5

10

15

20

25

30

35

 u
 (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

Figure 8: Performance of Algorithm 3 (M = 40).

Based on figures 6-8, we observe that X-Congestion and Constraint Slack QP show

poor performance compared to the other methods with Random Selection being able to

obtain smaller constraint violations than the latter two. Z-Congestion and Constraint

Slack SDP are the two best-performing methods among our selection algorithms that

consistently reach smaller τ violations for a fixed ϵu and smaller constraint violations for

a fixed ϵτ . This can be explained by pointing out the fact that the linear operations of

(9) in Algorithm 1 are applied to quadratic constraints in X-Congestion and Constraint

Slack QP unlike the case for Z-Congestion and Constraint Slack SDP. Since Xmn ≤ 1,

under a quadratic term, ∆Xmn is significantly reduced and does not convey the same

effect as in Z-Congestion and Constraint Slack SDP which use linear constraints.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

5.2.2 Simulation Set 2

To further investigate the performance of the rounding methods, we ran another set of

simulations. The network topology remains the same as in the previous set of simula-

tions. Instead of specifying the values of Tm and A⋆, um,n values are randomly generated

according to the distribution in figure 9 which emulates a normal distribution. The re-

sults of running Algorithm 2 and 3 on the generated instances are plotted in figures 10(a)

and 10(b). Similar to the results of simulation set 1, Z-Congestion gives consistently

lower ∆u values compared to the other rounding methods.

Figure 9: Probability distribution of u.

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

20 25 30 35 40 45 50

Number of PSs (M)

0

5

10

15

20

25

30
 u

 (
p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(a) Algorithm 2 (ϵτ = 5%)

20 25 30 35 40 45 50

Number of PSs (M)

0

5

10

15

20

25

30

35

40

 u
 (

p
e
rc

e
n
ta

g
e
)

Random Selection

X-Congestion

Z-Congestion

Constraint Slack SDP

Constraint Slack QP

(b) Algorithm 3 (ϵu = 5%)

Figure 10: Constraint violation of selection algorithms over a non-
uniform distribution of u.

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

5.2.3 Simulation Set 3

Previous simulation results indicated that Z-Congestion and Constraint Slack SDP are

superior to the others. Therefore, in the last set of simulations, we compare the perfor-

mance of Z-Congestion and Constraint Slack SDP on the same network model as before

but with a different number of ESs at each set. More specifically, let s1, s2, and s3 be the

number of ESs in groups 1, 2, and 3, respectively. We consider the following (s1, s2, s3)

tuple combinations indexed from 1 to 9: (2, 2, 4), (4, 2, 2), (2, 4, 2), (2, 0, 6), (6, 0,

2), (4, 0, 4), (0, 0, 8), (0, 8, 0), and (8, 0, 0). The performance results after running

Algorithm 3 are given in figures 11 and 12 for M = 30 and 40, respectively. The figures

contain ∆A⋆ and ∆Tm violations that are calculated by comparing the original values

of A⋆ and Tm with the ones obtained from the output solution of the algorithms (note

that ∆T = maxm∈M ∆Tm).

As shown in the figures, Z-Congestion consistently exhibits lower constraint violation

than Constraint Slack SDP because Z-congestion achieves better load-balancing among

the ESs. This happens for the reason that the constraint slacks used by Constraint Slack

SDP depend on the server characteristics and parameters, while Z-Congestion ignores

them and takes into account solely the load of the DTs on the ESs. We observe that if

the DT assignment decisions rely on both server characteristics and server load, as done

by Constraint Slack SDP, the heuristic can be misled into decisions that leave the ESs

unbalanced. Clearly, if all ESs share the same amount of resources and characteristics,

the two heuristics would have the same performance. This, however, is not the case in

general and in our simulations.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

1 2 3 4 5 6 7 8 9

Network Topology Index

0

1

2

3

4

5

6

7

8

9

10
 A

*
 (

p
e
rc

e
n
ta

g
e
)

Z-Congestion

Constraint Slack SDP

(a) ∆A⋆

1 2 3 4 5 6 7 8 9

Network Topology Index

0

1

2

3

4

5

6

 T
 (

p
e
rc

e
n
ta

g
e
)

Z-Congestion

Constraint Slack SDP

(b) ∆T

Figure 11: Performance of Constraint Slack SDP and Z-Congestion for
M = 30 (ϵτ = 5%).

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

1 2 3 4 5 6 7 8 9

Network Topology Index

0

5

10

15

20

25
 A

*
 (

p
e
rc

e
n
ta

g
e
)

Z-Congestion

Constraint Slack SDP

(a) ∆A⋆

1 2 3 4 5 6 7 8 9

Network Topology Index

0

2

4

6

8

10

12

14

16

18

 T
 (

p
e
rc

e
n
ta

g
e
)

Z-Congestion

Constraint Slack SDP

(b) ∆T

Figure 12: Performance of Constraint Slack SDP and Z-Congestion for
M = 40 (ϵτ = 5%).

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 6

Conclusions and Future Work

In this dissertation, we have tackled the problem of digital twin (DT) placement such

that the application’s data request latency targets are best accommodated. The objec-

tive is to minimize the data request response time at the application server subject to

both the data age from the physical system to the application server and the data update

period between the physical systems and the DT execution servers. The problem was

first formulated as an integer quadratic program (IQP), which was then transformed into

a semidefinite program (SDP). Given the NP-completeness of the optimization problem,

exact solutions are unavailable for practical systems. Practical polynomial-time ap-

proximation algorithms were introduced for solving the placement problem that provide

different trade-offs between the accommodation of the application input timing latency

and the achievement of data age targets. Through several sets of simulations, it is shown

that the Z-Congestion algorithm outperforms the rest in obtaining minimum constraint

violation and timing latency.

In our system model and problem formulation, we have implicitly assumed that the

physical devices are immobile and their distance and communication delay with their

digital twins remain constant. This assumption cannot be made in dynamic environ-

ments such as streets and highways. For instance, the communication latency of a vehicle

42

Master of Applied Sciences– Mehrad Vaezi; McMaster University– Department of
Electrical and Computer Engineering

and its digital twin can increase as the vehicle moves further away from the ES that is

hosting its DT. As a potential future work for this thesis, the optimal digital twin place-

ment problem can be investigated where the physical systems are moving objects and

the digital twins have to be migrated between execution servers in order to accommodate

the age of information target of the application.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Bibliography

[1] M. Grieves, Product Lifecycle Management: Driving the Next Generation of Lean

Thinking. New York, NY, USA: McGraw-Hill Education, 2005.

[2] M. Grieves, Digital twin: Manufacturing excellence through virtual factory repli-

cation, Digital Twin White Paper, 2014.

[3] H. Yilong, M. Xiaoqing, S. Zhou, N. Cheng, Z. Yin, T. H. Luan, and Y. Chen,

Collaboration as a service: Digital twins enabled collaborative and distributed

autonomous driving, IEEE Internet of Things Journal, 1–1, 2022.

[4] J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, Space-air-ground integrated network:

A survey, IEEE Communications Surveys & Tutorials, vol. 20(4), 2714–2741, 2018.

[5] H. Cui, J. Zhang, Y. Geng, Z. Xiao, T. Sun, N. Zhang, J. Liu, Q. Wu, and X. Cao,

Space-air-ground integrated network (sagin) for 6g: Requirements, architecture

and challenges, China Communications, vol. 19(2), 90–108, 2022.

[6] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, Service entity placement for

social virtual reality applications in edge computing, in IEEE INFOCOM 2018-

IEEE Conference on Computer Communications, IEEE, 2018, 468–476.

[7] Y. Lu, S. Maharjan, and Y. Zhang, Adaptive edge association for wireless digital

twin networks in 6g, IEEE Internet of Things Journal, vol. 8(22), 16 219–16 230,

2021.

[8] Q. Qi and F. Tao, Digital twin and big data towards smart manufacturing and

industry 4.0: 360 degree comparison, IEEE Access, vol. 6, 3585–3593, 2018.

44

Bibliography

[9] F. Tao and M. Zhang, Digital twin shop-floor: A new shop-floor paradigm towards

smart manufacturing, IEEE Access, vol. 5, 20 418–20 427, 2017.

[10] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, Digital twin-driven

product design, manufacturing and service with big data, International Journal of

Advanced Manufacturing Technology, vol. 94(9), 3563–3576, 2018.

[11] J. Lee, E. Lapira, B. Bagheri, and H. Kao, Recent advances and trends in pre-

dictive manufacturing systems in big data environment, Manufacturing Letters,

vol. 1(1), 38–41, 2013, issn: 2213-8463.

[12] B. A. Talkhestani, N. Jazdi, W. Schloegl, and M. Weyrich, Consistency check to

synchronize the digital twin of manufacturing automation based on anchor points,

Procedia CIRP, vol. 72, 159–164, 2018, 51st CIRP Conference on Manufacturing

Systems, issn: 2212-8271.

[13] F. Tao, Q. Qi, L. Wang, and A. Nee, Digital twins and cyber–physical systems

toward smart manufacturing and industry 4.0: Correlation and comparison, Engi-

neering, vol. 5(4), 653–661, 2019.

[14] H. Park, A. Easwaran, and S. Andalam, Challenges in digital twin development for

cyber-physical production systems, Cyber Physical Systems. Model-Based Design.

Cham, Switzerland: Springer, 28–48, 2018.

[15] A. K. Masudul, E. Saddik, and Abdulmotaleb, C2PS: A digital twin architec-

ture reference model for the cloud-based cyber-physical systems, IEEE Access,

vol. 5, 2050–2062, 2017.

[16] E. Glaessgen and D. Stargel, The digital twin paradigm for future NASA and

U.S. air force vehicles, in the 53rd Structures, Structural Dynamics, and Materials

Conference, 2012.

45

Bibliography

[17] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood, Reengineering

aircraft structural life prediction using a digital twin, International Journal of

Aerospace Engineering, 1–14, 2011.

[18] D. Yueyue, Z. Ke, M. Sabita, and Z. Yan, Deep reinforcement learning for stochas-

tic computation offloading in digital twin networks, IEEE Transactions on Indus-

trial Informatics, vol. 17(7), 4968–4977, 2020.

[19] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali, and R. Harik,

A digital twin to train deep reinforcement learning agent for smart manufacturing

plants: Environment, interfaces and intelligence, Journal of Manufacturing Sys-

tems, vol. 58, 210–230, 2021.

[20] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, Communication-efficient

federated learning and permissioned blockchain for digital twin edge networks,

IEEE Internet of Things Journal, vol. 8(4), 2276–2288, 2021.

[21] W. Sun, N. Xu, L. Wang, H. Zhang, and Y. Zhang, Dynamic digital twin and

federated learning with incentives for air-ground networks, IEEE Transactions on

Network Science and Engineering, vol. 9(1), 321–333, 2022.

[22] H. Wang, Y. Wu, G. Min, and W. Miao, A graph neural network-based digital twin

for network slicing management, IEEE Transactions on Industrial Informatics,

vol. 18(2), 1367–1376, 2022.

[23] D. Zhao, T. Todd, G. Karakostas, M. Vaezi, K. Noroozi, H. Wu, and X. Shen,

Digital twins from a networking perspective, IEEE Internet of Things, 2022.

[24] T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, Digital-twin-assisted task of-

floading based on edge collaboration in the digital twin edge network, IEEE In-

ternet of Things Journal, vol. 9(2), 1427–1444, 2022.

46

Bibliography

[25] W. Sun, H. Zhang, R. Wang, and Y. Zhang, Reducing offloading latency for

digital twin edge networks in 6G, IEEE Transactions on Vehicular Technology,

vol. 69(10), 12 240–12 251, 2020.

[26] H. Chunhua, F. Weicun, Z. Elan, H. Zhi, W. Fan, Q. Lianyong, and B. M. Z.

Alam, Digital twin-assisted real-time traffic data prediction method for 5g-enabled

internet of vehicles, IEEE Transactions on Industrial Informatics, vol. 18(4), 2811–

2819, 2022.

[27] Z. Wang, X. Liao, X. Zhao, K. Han, P. Tiwari, M. J. Barth, and G. Wu, A digital

twin paradigm: Vehicle-to-cloud based advanced driver assistance systems, in 2020

IEEE 91st Vehicular Technology Conference (VTC2020-Spring), IEEE, 2020, 1–6.

[28] K. Zhang, J. Cao, and Y. Zhang, Adaptive digital twin and multiagent deep rein-

forcement learning for vehicular edge computing and networks, IEEE Transactions

on Industrial Informatics, vol. 18(2), 1405–1413, 2022.

[29] Z. Wei, S. Wang, D. Li, F. Gui, and S. Hong, Data-driven routing: A typical

application of digital twin network, in 2021 IEEE 1st International Conference on

Digital Twins and Parallel Intelligence (DTPI), 2021, 1–4.

[30] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, Low-latency federated

learning and blockchain for edge association in digital twin empowered 6G net-

works, IEEE transactions on Industrial Informatics, vol. 17(7), 5098–5107, 2021.

[31] 5G Backbone, https://www.etsi.org/technologies/5G.

[32] P. Tiwari, Mobility digital twin with connected vehicles and cloud computing,

2021.

47

https://www.etsi.org/technologies/5G

	Abstract
	Acknowledgements
	List of Symbols
	List of Abbreviations
	Declaration of Authorship
	Introduction
	Digital Twins and Definitions
	Digital Twin Placement Architectures
	Thesis Contributions and Organization

	Literature Review
	Digital Twins in Industry
	Digital Twins and Machine Learning
	Network Performance Enhancement using Digital Twins

	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Solution and Algorithms
	Problem Simplification and Relaxation
	Solution Method
	Rounding Algorithm
	Edge-pair Selection Algorithms
	Approximation Algorithms

	Simulation Results and Analysis
	Simulation Setup
	Simulation Results
	Simulation Set 1
	Simulation Set 2
	Simulation Set 3

	Conclusions and Future Work
	Bibliography

