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Abstract

Mainstream state-of-the-art domain generalization algo-
rithms tend to prioritize the assumption on semantic in-
variance across domains. Meanwhile, the inherent intra-
domain style invariance is usually underappreciated and
put on the shelf. In this paper, we reveal that leveraging
intra-domain style invariance is also of pivotal importance
in improving the efficiency of domain generalization. We
verify that it is critical for the network to be informative on
what domain features are invariant and shared among in-
stances, so that the network sharpens its understanding and
improves its semantic discriminative ability. Correspond-
ingly, we also propose a novel “jury” mechanism, which
is particularly effective in learning useful semantic feature
commonalities among domains. Our complete model called
STEAM can be interpreted as a novel probabilistic graph-
ical model, for which the implementation requires conve-
nient constructions of two kinds of memory banks: semantic
feature bank and style feature bank. Empirical results show
that our proposed framework surpasses the state-of-the-art
methods by clear margins.

1. Introduction

Machine learning models are usually deployed in scenar-
ios where the test data are unknown beforehand. This phe-
nomenon can lead to dangerous consequences especially
when the predictions are used for life-threatening occasions
such as medical diagnosis. The prediction might be seri-
ously erroneous due to the distributional gap between train-
ing data and test data. It is therefore critical for machine
learning algorithms to maintain safe and reliable predictions
that generalize well across domains. The goal of domain
generalization (DG) approaches [20, 21, 41, 55] is to solve
this issue by leveraging labeled data from multiple training
domains. However, we observed that mainstream state-of-
the-art DG algorithms tend to only prioritize the semantic
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invariance assumption across domains, while the style in-
variance within each domain is usually ignored. In this pa-
per, we reveal that intra-domain style invariance is also of
pivotal importance to improve DG approaches. Particularly,
we propose a novel model to incorporate both intra-domain
style invariance and inter-domain semantic invariance for
DG tasks. The proposed framework is called STEAM,
which relies on a STyle and sEmAntic Memory mechanism
to practically implement our proposed assumptions.

In contrast to existing DG works [7, 53, 55], STEAM
further benefits from the hypothesis that instances from the
same domain should share style information. The moti-
vation is that the simple constraint helps efficiently disen-
tangle the style feature, and therefore eases the search for
true semantic feature with a reduced degree of freedom. To
reach this goal, we resort to the recently prevailing self-
supervised learning paradigm that makes our assumptions
practically accessible. Our first objective is to achieve intra-
domain style invariance by conveniently resorting to con-
trastive loss. Given the invariance assumption, style fea-
tures corresponding to each domain are discovered, and the
network can further learn semantic features along the direc-
tions mostly orthogonal to the domain styles. Since the se-
mantic feature is considered as the true causal factor affect-
ing the instance category, STEAM effectively helps reduce
overfitting to the domain styles through the above mecha-
nisms. Most importantly, we also force the network to re-
spect the conventional semantic invariance among domains.
Specifically, we require that each pair of samples from the
same class to compute a similarity score with all the seman-
tic features in “memory”. These two samples need to reach
a consensus on every such similarity score when sweeping
through all the stored semantic features. We name this pro-
cedure “jury” mechanism, and we elaborate the mathemati-
cal net effect of such mechanism in the paper.

To summarize, our contributions in this paper include: 1.
We explore the assumption of instance level intra-domain
style invariance and justify the empirical advantage by in-
corporating such assumptions into the DG framework. 2.
We propose a “jury” mechanism, which efficiently learns



domain-agnostic semantic features beneficial for classifica-
tion tasks. Such mechanism is capable of efficiently pre-
venting semantic features from overfitting to domain styles.
3. We observe that the proposed STEAM not only general-
izes well on DG benchmarks, but also can be conveniently
modified for domain adaptation (DA) problems.

2. Related Work
Domain Adaptation (DA) algorithms aim to exploit

both annotated training data in the source domain and un-
labeled samples in the target domain. Mainstream DA ap-
proaches [5, 11, 32, 31, 50] usually penalize distributional
misalignment between source and target data via, e.g., max-
imum mean discrepancy loss [23, 25] or adversarial loss
[3, 24, 38]. Given the success of DA algorithms, multi-
source domain adaptation (MSDA) methods [33, 48, 52]
consider scenarios where multiple sources are available for
training to better improve generalization.

Domain Generalization (DG) algorithms also assume
access to multiple labeled training source domains. How-
ever, target data is unavailable during training for DG ap-
proaches, leading to a more challenging yet a more practi-
cal setting than DA problems. Many early DG approaches
[20, 21, 28] borrowed the idea of distribution alignment
from DA to reduce the distributional gap between mul-
tiple training sources. Some recent DG methods con-
sider generating extra synthetic images given the multi-
ple source domains, so that test data distributed closely to
the training data are “in-distribution” with the training data
[1, 41, 42, 53]. Some methods decompose the network pa-
rameters into domain-specific and domain-invariant parts
during training, while only the domain-invariant parameters
are used for predictions at test time. For instance, [18] de-
velops a low-rank parameterized CNN model where each
layer of the network is decomposed into “common” and
“specific” components. In [34], only the last layer of the
network is decomposed to serve the goal of DG. Several
normalization and meta-learning strategies are also consid-
ered for domain generalization such as [19, 39, 55].

Contrastive Learning has shown impressive perfor-
mance in the context of self-supervised learning [6, 10, 15,
27, 46, 47, 51]. Representative contrastive learning [15]
proposed efficient memory bank constructions so that the
historical features are conveniently stored and reused even if
batchsize is small. We feel inspired from these approaches
[15] where the memory bank help retain temporal consis-
tency between features, and we introduce such a memory
mechanism to best facilitate our motivations. However, our
approach is neither targeting a pre-train task nor an unsuper-
vised learning problem, in contrast to [10, 15, 47]. Rather,
we look into DG problems and we aim to learn the desired
feature invariances respecting our unique hypothesis. We
notice a related contrastive learning method in [27], that

enforces a particular prediction regularizer across augmen-
tations to improve in-class consistency. We argue that the
work in [27] is an unsupervised algorithm that completely
distinguishes its nature from our DG task, while the loss
proposed here also leads to an entirely different interpreta-
tion and application.

We observe that existing DG methods along the decom-
position path either: hinge on inter-domain semantic in-
variance features assumption, so that the network becomes
agnostic to styles; or they rely on style decomposition ap-
proaches to synthesize more data. In contrast, our proposed
method enjoys two exclusive novel assumptions: 1. We are
the first to impose instance level intra-domain style invari-
ance during the training. Having these domain-specific style
features at hand, we effectively reduce the degree of free-
dom of the problem in further learning the useful seman-
tic features. 2. We design a novel “jury” mechanism that
is different from any existing DG method, which achieves
significant improvement in domain generalization.

3. Method
In the regime of out of distribution (OOD) detection, it

has been shown that data distribution is heavily affected
by population-level background statistics [12, 29, 35, 40].
Owing to this issue, OOD inputs can rather be classified
into in-distribution classes with high confidence, given the
presence of dominant background noise. Recent observa-
tions [12, 29] have shown that deep generative models can
even assign a higher likelihood to OOD inputs. One rea-
son is that simple parameterization on marginal input dis-
tribution can be significantly confounded and dominated by
background statistics, and does not learn much useful pa-
rameterization on the variation of semantic features. Ac-
cordingly, work such as [35] aims to mute the effect of
these background statistics via the likelihood ratio method,
to achieve better OOD detection based on cleaner semantic
features. Although the literature on OOD detection inves-
tigates completely orthogonal topics and directions against
the DG community, we feel intrigued and motivated to re-
formulate domain generalization problems with novel back-
ground noise priors. The ultimate goal is to relieve the
network optimization on the background statistics, so that
the network steers away from its overfitting to these domain
specific background noise, while focusing on learning true
semantic distributional commonalities among domains.

We therefore do not seek to directly close the distribution
gap between data distributions across domains (that GAN
and MMD methods normally do). We impose prior knowl-
edge that instances from the same domain share hidden
invariant background statistics. Under this constraint, the
network reduces uncertainty and redundancy when search-
ing for semantic features that might be glimmering in com-
parison to the dominant background style statistics.
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Figure 1. Probabilistic graphical model comparisons for (a) con-
ventional causal model for DG (b) causal model for STEAM,
based on memory bank constructions. For STEAM, all the training
samples have an impact on deciding the semantic and style feature
for each instance. ŷd,i is the class prediction given feature cd,i.

3.1. Problem Formulation

For DG problems, we consider D source domains D =
{Dd}Dd=1, with each d-th domain Dd includes Nd training
pairs {(xd,i, yd,i)}Nd

i=1, where xd,i is the i-th sample in Dd,
and yd,i ∈ {1, 2, ..., nc} is the label of xd,i. nc is the num-
ber of classes shared across domains. The goal of DG ap-
proach is to learn a model from multiple labeled source do-
mains that generalizes well to an unseen target domain DT .

We define notations frequently used throughout the pa-
per. We assume each training sample is projected to fea-
ture embedding via CNN encoders [16, 22]. Specifically,
the image xd,i firstly is input into feature extractor: zd,i =
Ef (xd,i,θe,f ), where function Ef extracts image feature
zd,i out of xd,i by a CNN parameterization θe,f . A se-
mantic encoder Ec then reads in zd,i and produces seman-
tic feature cd,i = Ec(zd,i,θe,c). In parallel, a style en-
coder simultaneously inputs the zd,i feature and maps it
into style representation via sd,i = Es(zd,i,θe,s). We
define a classifier C(cd,i,ϕ), where function C is param-
eterized by ϕ and used to classify semantic features among
nc possible classes. Here, the above encoder parameters
Θe = {θe,f ,θe,c,θe,s} and classifier parameters ϕ are
CNN parameters learned during training. Subscript e asso-
ciated with each notation, e.g., θe,c, is intended to be remi-
niscent of “encoder”.

We name the proposed method “Style and Semantic
Memory Mechanism (STEAM)” for Domain Generaliza-
tion. The overall STEAM model can be interpreted as a
probabilistic graphical model in Fig. 1(b). Each semantic
feature cd,i and style feature sd,i both depend on statistics
(rectangles) from every other instances available in mem-
ory (given unlimited memory, the whole dataset then). Our
motivation is that human intrinsically define classes by con-
trasting. Take for instance, Labrador and Husky are both
defined as dogs, apparently because they share higher sim-
ilarity than with any other species. In comparison, conven-
tional DG methods as shown as in Fig. 1(a) only models
each instance’s semantic feature cd,i independently from
other cd′,j . Note STEAM hinges on enormous historical

training data. It is therefore critical that our loss function
breaks free from the limitation of batchsize. A simple so-
lution would be to directly store the learned features out of
the encoder into a static memory bank for later usage [47].
Unfortunately, similar to the observation in [15], we find
features stored in this way cannot retain any temporal rep-
resentation consistency due to the rapidly update of encoder
via backpropagation. We thus simultaneously maintain an
alternative memory encoder: Em = {Em,f , Em,c, Em,s}
with parameters Θm = {θm,f ,θm,c,θm,s} that is able to
slowly release the historical feature representations into the
memory bank in an momentum updated way.

Specifically, we make sure the constructed memory en-
coder shall involve identical architecture and functioning
components mirroring everything in Ec, Ef , Es above: We
have memory feature encoder: Em,f (·,θm,f ), memory
style feature encoder Em,s(·,θm,s), and memory seman-
tic feature encoder Em,c(·,θm,c). The only difference is
that the parameters Θe = {θe,f ,θe,c,θe,s} are updated
via backpropagation, whereas the parameters of memory
encoder Θm = {θm,f ,θm,c,θm,s} are only momentum
updated according to the changes of Θe. Subscript m is
intended to be reminiscent of “memory”. We elaborate the
usage of memory encoders in Section 3.2, and Section 3.3.

Generally, a bird’s-eye view of our whole framework is
illustrated in Fig. 2: We maintain an encoder to extract fea-
tures of input images, and use a parallel memory encoder
to generate and release memory features in the memory
bank. Within both encoder and memory encoder structure,
we both include a style encoder component and semantic
encoder component. We explain the usage of these compo-
nents in the following sections.

3.2. Intra-domain Invariance on Style Features

Our first objective is to impose cross-instance intra-
domain style invariance via a memory bank construction.
The plan is to maintain D domain specific style banks that
gradually become agnostic to semantics as the training pro-
gresses, while each style bank retains intra-domain invariant
and inter-domain contrastive style features at instance level.

We compute the style feature of each xd,i via memory
encoder: s̄d,i = Em,s(Em,f (xd,i,θm,f ),θm,s), and we
sequentially push each arriving s̄d,i into the “domain style
bank” V s

d. We define D number of parallel style mem-
ory banks V s=(V s

1, ...,V
s
d, ...,V

s
D, d ∈ [1, D]) and dy-

namically update each V s
d bank like queues: We push each

newly arriving style representation s̄d,i into the queue tail
of V s

d, and remove the oldest style feature from the queue
head as in [15]. Assuming the memory size of each bank
V s

d is a constant B. The entries stored in V s
d are denoted

with brand new subscripts as: [vs
d,1, ...v

s
d,j , ....,v

s
d,B ], j ∈

[1, B], where each vs
d,j dynamically stores the style feature

vector s̄d,· at the j position of the V s
d bank.
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Figure 2. The framework of STEAM. We train an encoder for style and semantic feature extraction. We maintain a memory encoder to
obtain D number of parallel style memory banks and one semantic memory bank. We use contrastive loss based on style banks to achieve
intra-domain style invariance. We construct a memory semantic feature bank (“jury”) to achieve inter-domain semantic invariance.

Recall that we desire to figure out the shared invariant
style features embedded behind each domain. To achieve
this goal, we require every style feature out of the style en-
coder sd,i = Es(Ef (xd,i,θe,f ),θe,s) to have high simi-
larity score with any stored style features from the same
domain in memory V s

d, whereas similarity score between
style feature sd,i and all features from other domain banks
V s

d′ , d′ ̸= d remains low. We find contrastive loss [15, 43]
a natural fit to fulfill this goal:

Ls = −
1

Zs

∑
d,i,j

log
exp(

〈
sd,i, v

s
d,j

〉
/τ)

exp(
〈
sd,i, v

s
d,j

〉
/τ) +

∑
d′ ̸=d

B∑
ℓ=1

exp(

〈
sd,i, v

s
d′,ℓ

〉
/τ)

,

(1)

where Zs = B ·
∑

d Nd normalizes sample number, τ is
a temperature parameter and ⟨x1,x2⟩ = xT

1 x2/∥x1∥∥x2∥
denote the cosine similarity between x1 and x2.

It is transparent that Eq. (1) is essentially a softmax func-
tion aiming to distinguish each (sd,i,v

s
d,j) intra-domain

pair from the total B×(D−1) number of (sd,i,vs
d′,ℓ), d

′ ̸=
d inter-domain pairs. As the training proceeds, the instance
level style feature sd,i compares with all the members in
the domain style bank vs

d,j , j ∈ [1, B], in order to reach
consensus on intra-domain style invariance of domain d.
In other words, Eq. (1) penalizes feature misalignment be-
tween sd,i and vs

d,j , whereas the style features from distinct
domains are pushed away, i.e., any increase in inner product
⟨sd,i,vs

d′,ℓ⟩, d′ ̸= d increases loss Eq. (1). These D number
of domain specific style banks therefore gradually become
agnostic to semantics during the training, as each bank V s

d

retains intra-domain invariant and inter-domain contrastive
style features at instance level.

3.3. Inter-domain Invariance on Semantic Features

We have tentative style features at hand. We now turn
to our second objective: to learn inter-domain semantic in-
variant feature via another memory bank. Bear in mind that
these semantic features are considered the true causal vari-
ables that determine the semantics of samples independent
of domains. We define x+

d,i to be a “variant” of each train-
ing input xd,i. We call x+

d,i a “variant” of xd,i, because it
is considered as semantically identical to xd,i. The sample

x+
d,i is randomly chosen from all possible D domains that

either is from the same class of xd,i, or simply is selected
from the augmentation pool (RandAug [13]) of image xd,i.

Feature cd,i is considered the true causal variable that de-
termines the semantics of training samples. We desire that
a semantic feature cd,i = Ec(Ef (xd,i,θe,f ),θe,c) to re-
turn a high similarity score with the semantic feature of any
possible x+

d,i, whereas cd,i remains distinct to samples from
other classes. We certainly cannot build nc classes number
of parallel semantic banks analogously to what we did for
style banks, because there might be millions of classes. We
correspondingly come up with a novel “jury” mechanism
that relaxes our objective.

Construction of Semantic Jury Memory Bank. The
semantic “jury” bank’s construction relies on memory en-
coders: We sequentially push any arriving semantic mem-
ory feature c̄+d,i = Em,c(Em,f (x

+
d,i,θm,f ),θm,c) into the

single semantic feature memory bank V c regardless of
whose “variant” c̄+d,i is and which domain d is. We up-
date the entries in V c, again, like maintaining a queue
structure: entries stored in V c are denoted as: V c =
[vc

1, ...v
c
j , ...,v

c
B ], j ∈ [1, B]. Note features cd,i and c̄+d,i are

semantically identical, as they represent the different sam-
ples from the same class. But how far are cd,i and c̄+d,i in
the semantic embedding space?

We leave the judgment to the “jury”. All the queuing se-
mantic features in the bank have the right to bid, contribute,
and weigh their contribution into the similarity measure-
ment between c̄+d,i and cd,i. Mathematically, we denote the
probability p(xd,i;θe,c,θe,f ,V

c) = [pe1, ...p
e
j , ..., p

e
B ], j ∈

[1, B] as similarity score between cd,i with respect to all
stored semantic features in semantic memory V c, where
each probability entry pej is defined as:

pej =
exp(

〈
cd,i,v

c
j

〉
/τ)∑

vc∈V c exp(⟨cd,i,vc⟩ /τ) . (2)

Similarly, we also compute p(x+
d,i;θm,c,θm,f ,V

c) =

[pm1 , ..., pmB ], which is the similarity scores between c̄+d,i
with respect to each of the member in the V c:

pmj =
exp(⟨c̄+d,i,v

c
j⟩/τ)∑

vc∈V c exp(
〈
c̄+d,i,v

c
〉
/τ)

. (3)



The motivation here is that, the “jury” V c would
cross check every “jury” member’s similarity score with
both c̄+d,i and cd,i. The bank V c summaries these two
distribution respectively into p(xd,i;θe,c,θe,f ,V

c) and
p(x+

d,i;θm,c,θm,f ,V
c) as in Eq. (2) and Eq. (3). The

assumption here is that, if x+
d,i and xd,i truly share invari-

ant semantic features, then their similarity score across the
entire semantic feature bank V c shall be as close as pos-
sible, too. We therefore penalize cross entropy between
p(x+

d,i;θm,c,θm,f ,V
c) and p(xd,i;θe,c,θe,f ,V

c):

Lc = −
1

Zc

∑
d,i

p(x
+
d,i; θm,c, θm,f ,V

c
) log p(xd,i; θe,c, θe,f ,V

c
),

(4)

where Zc =
∑

d Nd normalizes over samples.
Eq. (4) penalizes misalignment between probability
p(xd,i;θe,c,θe,f ,V

c) and p(x+
d,i;θm,c,θm,f ,V

c) via
similarity cross-checks with all the features stored in the
V c. As a result, features in the current V c jointly vote
on distributional similarity between x+

d,i and xd,i. This
strategy strongly contrasts with conventional contrastive
learning, where for MoCo like mechanisms, only a single
positive key is considered for each query, whereas negative
keys in the memory bank are only considered as negative
and contrastive to the positives.

But why not directly penalize the inner product
⟨cd,i, c̄+d,i⟩ or the likes which seems a more obvious op-
tion? If one takes a closer look at Eq. (4), the net effect
of the “jury” mechanism is that, any feature member, say
vc
j in the bank V c having a relatively high similarity score

with both cd,i and c̄+d,i would vote for agreement on this
similarity, and then vc

j becomes confident to contribute it-
self to jointly supervise the optimization direction to further
improve semantic invariance among cd,i, c̄+d,i and vc

j . The
strength of this vote depends on vc

j’s similarity score with
each cd,i and c̄+d,i. This makes one reminiscent of popu-
lar multi-view contrastive learning strategy [8, 43], where
introducing more views for each instance is always ben-
eficial for learning. Conversely, all feature members in
the jury showing low similarity scores with both cd,i and
c̄+d,i would automatically tend to contrast itself away from
both cd,i and c̄+d,i. The loss therefore inherently summa-
rizes the compounding effect of all features in the bank via
such joint similarity cross-check mechanism, in compari-
son to any conventional contrastive learning approaches that
banks are only considered “negative”. We notice a related
work [27], that also enforces invariant prediction regularizer
across augmentations. We argue that the work in [27] is a
completely unsupervised algorithm that distinguishes itself
from our DG task. Notably, the proposed bank definition
here out of the specific DG invariance hypothesis is also or-
thogonal to [27], and the loss Eq. (4) proposed here leads
to entirely different interpretation and implementation.

To make sure the features are indeed semantically dis-

criminative, we apply supervised classification loss on xd,i:

Lcls = − 1

N

N∑
i=1

yd,i logC(cd,i,ϕ), (5)

where classifier C(cd,i,ϕ) predicts the class of sample xd,i

by only using its semantic feature cd,i.

3.4. Decoupling Semantics from Styles

Last but not least, current loss on semantic features cd,i
is completely disconnected from its style features sd,i, and
cannot benefit from the style invariance assumption at all.
A simple solution to fix this is to enforce orthogonality [4]
between cd,i and sd,i. Let Hc and Hs be matrices whose
rows are the semantic representations cd,i and style repre-
sentations sd,i from xd,i. We constrain the semantic feature
to go towards the orthogonal direction against style features,
such that the semantic encoder Ec(·,θe,c) and classifier
C(cd,i,ϕ) could mostly avoid overfitting to the style fea-
tures. This is formalized into the squared Frobenius norm:

Lo = ∥HT
c Hs∥2F . (6)

3.5. Overall Loss Function

Taking into account all the discussions above, the even-
tual loss function is:

L = Lcls + Ls + Lc + Lo, (7)

where all present losses are equally weighted. The
overall loss is backpropagated through the network in a
batchwise manner. The parameters of encoder Θe =
{θe,f ,θe,c,θe,s} and classifier ϕ are updated via back-
propagation, whereas the parameters of memory encoder
Θm = {θm,f ,θm,c,θm,s} are momentum updated as:

Θm = α×Θm + (1− α)×Θe, (8)

where α ∈ [0, 1) is a momentum coefficient. We only use
obtained encoder parameters θe,f ,θe,c and classifier pa-
rameters ϕ during test time inference.

3.6. Extension to MSDA

Another advantage of the proposal is that, loss Eq. (7)
can be transferred to deal with multi-source domain adap-
tation (MSDA) tasks with few modifications. The only dif-
ference is that for target data without any annotations, only
those augmentation images of xd,i are used to define x+

d,i

and there is no classifier applied on target data semantic fea-
tures, as the class label is not available. Except for this dif-
ference, all target data can be conveniently plugged into our
algorithm with a domain ID, d ∈ [1, D]. The training pro-
cedure then progresses under the exactly same losses and
network constructions as we did for DG tasks.



Table 1. Performance (%) comparisons with the state-of-the-art approaches for DG.

Method
Digits-DG PACS Office-Home

MNIST MNIST-M SVHN SYN Avg Art Cartoon Photo Sketch Avg Artistic Clipart Product Real World Avg
MMD-AAE [20] 96.5 58.4 65.0 78.4 74.6 75.2 72.7 96.0 64.2 77.0 56.5 47.3 72.1 74.8 62.7
CCSA [28] 95.2 58.2 65.5 79.1 74.5 80.5 76.9 93.6 66.8 79.4 59.9 49.9 74.1 75.7 64.9
JiGen [7] 96.5 61.4 63.7 74.0 73.9 79.4 75.3 96.0 71.6 80.5 53.0 47.5 71.5 72.8 61.2
CrossGrad [41] 96.7 61.1 65.3 80.2 75.8 79.8 76.8 96.0 70.2 80.7 58.4 49.4 73.9 75.8 64.4
Epi-FCR [19] - - - - - 82.1 77.0 93.9 73.0 81.5 - - - - -
EISNet [45] - - - - - 81.9 76.4 95.9 74.3 82.1 - - - - -
L2A-OT [53] 96.7 63.9 68.6 83.2 78.1 83.3 78.2 96.2 73.6 82.8 60.6 50.1 74.8 77.0 65.6
DecAug [1] - - - - - 79.0 79.6 95.3 75.6 82.4 - - - - -
MixStyle [55] 96.5 63.5 64.7 81.2 76.5 84.1 78.8 96.1 75.9 83.7 58.7 53.4 74.2 75.9 65.5
Vanilla 95.8 58.8 61.7 78.6 73.7 77.0 75.9 96.0 69.2 79.5 58.9 49.4 74.3 76.2 64.7
STEAM 96.8 67.5 76.0 92.2 83.1 85.5 80.6 97.5 82.9 86.6 62.1 52.3 75.4 77.5 66.8

4. Experiments

4.1. Evaluation on Domain Generalization

Datasets. We perform DG tasks via extensive evalu-
ations on the following benchmarks: (1) Digits-DG [53]
includes 4 domains (MNIST [17], MNIST-M [14], SVHN
[30] and SYN [14]) with an evident domain shift in font
style, stroke color and background. (2) PACS [18] is a
widely used domain generalization benchmark, which is
composed of four domains (Art Painting, Cartoon, Photo
and Sketch). Each domain includes samples from 7 different
categories, including a total of 9, 991 samples. (3) Office-
Home [44] contains around 15, 500 images of 65 classes,
distributed across 4 domains (Artistic, Clipart, Product and
Real world). (4) DomainNet [33] is a recently established
large-scale dataset for multi-source domain adaptation and
domain generalization, which includes about 0.6 million
images in 345 classes distributed across 6 domains (i.e., Cli-
part, Infograph, Quickdraw, Painting, Real, Sketch).

For a fair comparison with prior works, we follow the
standard leave-one-domain-out evaluation procedure as in
[7, 18, 19], where one domain is chosen as the unseen target
and the remaining domains are used as source domains for
training. For Digits-DG, PACS and Office-Home, the au-
thors of [53, 54, 55] have specified particular train and val
splits for each domain to ensure a fair comparison. They
use the entire train + val target data as the test data. We use
the same data split definition for our experiments. For Do-
mainNet, according to [9], we employ their dataset division
and report the accuracy on the test split of target domain.

Implementation details. Following the backbone set-
ting of [53], we use 4 conv layers and a softmax layer for
Digits-DG dataset. ReLU and 2 × 2 max-pooling are in-
serted after each convolution layer. The model is trained
with SGD, initial learning rate of 0.05 and batch size of 128
for 50 epochs. For both PACS and Office-Home, we use
ResNet-18 pretrained on ImageNet as the CNN backbone,
as in [53, 55]. We train the model with SGD, initial learning
rate of 0.002 and batch size of 30 for 60 epochs. The learn-
ing rate is further decayed by the cosine annealing rule. For
DomainNet, we experiment with ResNet-18 and ResNet-50
backbone architectures, as in [9]. For all experiments, the
semantic encoder, style encoder and classifier are all imple-

mented using a fully connected (FC) layer. The size of style
and semantic memory bank is set as 2, 048.

Baselines. To evaluate our method, we consider com-
parisons with the following approaches: (1) Vanilla simply
trains the plain classification model on all available source
domains using all annotations, the model is then directly
used to classify target samples. (2) CrossGrad [41] per-
turbs input using adversarial gradients from a domain clas-
sifier. (3) CCSA [28] explores a contrastive semantic align-
ment loss for domain-invariant representation learning. (4)
MMD-AAE [20] imposes an MMD loss on the hidden lay-
ers of an autoencoder. (5) JiGen [7] utilizes an auxiliary
self-supervision loss so that the features can be used to
solve the Jigsaw puzzle task. (6) Epi-FCR [19] designs
an episodic training strategy. (7) EISNet [45] develops a
momentum metric learning scheme with the K-hard nega-
tive mining to improve the network generalization ability.
(8) L2A-OT [53] synthesizes extra data from pseudo-novel
domains to augment the source domains. (9) DecAug [1]
generates extra data augmentations through perturbing the
disentangled style feature and semantic features. (10) DMG
[9] learns domain specific masks for generalization on dif-
ferent domains. (11) MixStyle [55] mixes instance level
feature statistics of training samples across various sources
to introduce more domain diversity via synthesizing.

Results on Digits-DG. Table 1 shows that, our method
exhibits clear advantages over the existing state-of-the-art
methods. Please note that our model is especially effec-
tive and commanding on challenging DG directions, e.g.,
MNIST-M and SVHN, as they seem to have large domain
variations compared with other directions. This is a valid
justification that the instance level style invariance along
with the proposed “jury” mechanism together is a legit-
imate idea to deal with domain generalization problems.
Compared with the methods that hinge on marginal dis-
tribution alignment across domains, e.g., MMD-AAE and
CCSA, our model even demonstrates around 8.5% perfor-
mance boost on average. This well validates our assumption
in Section 3.2, that intra-domain style invariance seems to
be a more practical and suitable hypothesis in presence of
computing background statistics hidden in domain styles.
In other words, the prior knowledge on intra-domain style
invariance effectively reduce the uncertainty when search-



Table 2. Leave-one-domain-out results on DomainNet for DG.

Method Clp Inf Pnt Qdr Rel Skt Avg.

R
es

N
et

-1
8

Vanilla 56.5 18.4 45.3 12.4 57.9 38.8 38.2
Multi-Headed [9] 55.4 17.5 40.8 11.2 52.9 38.6 36.1
MetaReg [2] 53.6 21.0 45.2 10.6 58.4 42.3 38.5
DMG [9] 60.0 18.7 44.5 14.1 54.7 41.7 39.0
STEAM 58.3 22.1 47.4 14.4 58.6 45.9 41.1

R
es

N
et

-5
0

Vanilla 64.0 23.6 51.0 13.1 64.4 47.7 44.0
Multi-Headed [9] 61.7 21.2 46.8 13.8 58.4 45.4 41.2
MetaReg [2] 59.7 25.5 50.1 11.5 64.5 50.0 43.6
DMG [9] 65.2 22.1 50.0 15.6 59.6 49.0 43.6
STEAM 64.6 27.0 54.0 15.8 65.6 52.2 46.5

ing for optimal network parameters so that the parameters
reduces overfitting to domain styles.

Results on PACS. This part of results is shown in Ta-
ble 1. Our method achieves the best performance on all
test domains. Note the recently proposed EISNet also in-
volves the usage of a feature memory. However, the mem-
ory in EISNet is only used for the sake of hard triplets se-
lection without consideration on feature invariance. In De-
cAug [1], similar semantic-style orthogonal regularization
loss was used. However, orthogonality is perhaps the most
widely used tool everywhere, and we simply employ or-
thogonality as an auxiliary regularizer. Nevertheless, our
motivation and hypothesis are completely different from
DecAug, highlighting the outstanding performance given
our instance-level style invariance and “jury” mechanism.

Results on Office-Home. The results are shown in Ta-
ble 1. Our STEAM achieves the best average performance.
Notably, the simple vanilla model shows strong results on
this benchmark. Most of baselines provide only marginal
improvements than vanilla model that are under 1.0%. As
discussed in L2A-OT, this might be owing to the fact that
Office-Home is relatively a large composition of data, com-
pared with PACS and Digits-DG, thus offering inherently
bigger domain diversity in training data already. In contrast,
our method shows the best performance on average with an
impressive 2.1% improvement over the Vanilla.

Results on DomainNet. DomainNet is considered as
perhaps the most challenging benchmark, owing to its
dataset size, both in terms of image number and cate-
gory numbers. Table 2 shows that, on DomainNet dataset,
the Vanilla baseline achieves competitive results in com-
parison to domain generalization methods MetaReg and
DMG, while our method again surpasses all competitors.
We observe that our model is leading in the table with
improved average performance, especially when ResNet-
18 and ResNet-50 are used as the backbone architectures,
showing respectively 2.1% and 2.5% accuracy improve-
ment. At this point, it is worthy to mention that our method
has achieved better robustness, for consistently offering bet-
ter performance than other baselines.

Table 3. Domain adaptation results on PACS.

Method Art Cartoon Photo Sketch Avg
Source-only 74.9 72.1 94.5 64.7 76.6
DANN [14] 81.9 77.5 91.8 74.6 81.5
MDAN [52] 79.1 76.0 91.4 72.0 79.6
WBN [26] 89.9 89.7 97.4 58.0 83.8
MCD [37] 88.7 88.9 96.4 73.9 87.0
M3SDA [33] 89.3 89.9 97.3 76.7 88.3
CMSS [49] 88.6 90.4 96.9 82.0 89.5
STEAM 94.0 93.7 99.3 85.1 93.0

Table 4. Domain adaptation results on miniDomianNet.

Method Clipart Painting Real Sketch Avg
Source-only 63.4 49.9 61.5 44.1 54.7
MCD [37] 62.9 45.7 57.5 45.8 53.0
DCTN [48] 62.0 48.7 58.8 48.2 54.4
DANN [14] 65.5 46.2 58.6 47.8 54.6
M3SDA [33] 64.1 49.0 57.7 49.2 55.0
MME [36] 68.0 47.1 63.3 43.5 55.5
DAEL [54] 69.9 55.1 66.1 55.7 61.7
STEAM 71.4 61.9 71.1 60.9 66.3

4.2. Evaluation on Domain Adaptation

Datasets and implementation details. To justify
STEAM’s validity on the application of MSDA, we im-
plement STEAM under the problem definition described in
Section 3.6. We firstly consider evaluation on PACS dataset
again with the same problem definition and setting of [49].
Next, we follow [54] and use miniDomainNet for evalua-
tion, which is a sampled subset of DomainNet and reformat-
ted into a smaller image size (96×96). In general, miniDo-
mainNet consists of 4 domains (Clipart, Painting, Real and
Sketch) across 126 classes, which mostly resembles data
diversity of the original DomainNet. For PACS, we use
ResNet-18 pretrained on ImageNet as the CNN backbone,
by following training protocols in [49]. Batch size is 32.
For miniDomainNet, we use ResNet-18 as the CNN back-
bone, the same used as in [54]. Similarly, we use SGD with
momentum as the optimizer, and the learning rate decays
according to cosine annealing rule. The model is trained
with an initial learning rate of 0.005 for 60 epochs. For
each mini-batch, we sample from each domain 64 images.

Results. Given the standard test protocol in [33] on
PACS, we use one domain as target and the remaining
as sources. Classification accuracy on the target domain
test set is reported. We compare our STEAM with two
state-of-the-art multi-source domain adaptation approaches:
M3SDA [33] and CMSS [49]. In addition, we also present
the following methods as our baselines: DANN [14],
MDAN [52], WBN [26], MCD [37]. The results are shown
in Table 3. Our method achieves the state-of-the-art average
accuracy of 93.0%. On the most challenging sketch domain,
we obtain 85.1%, clearly outperforming other baselines.
On the miniDomainNet, we compare with the same meth-
ods presented in DAEL [54], including MCD [37], DCTN



Table 5. Ablation on Digits-DG. MT, MM, SV, and SY indicates
MNIST, MNIST-M, SVHN, and SYN, respectively.

Method Lcls Ls Lo Lc MT MM SV SY Avg.

Vanilla
√

95.8 58.8 61.7 78.6 73.7

Vanilla-style
√ √ √

96.3 63.6 69.3 82.4 77.9

Vanilla-semantic
√ √

96.0 65.2 74.5 86.2 80.5

STEAM
√ √ √ √

96.5 67.5 76.0 92.2 83.0

[48], DANN [14], M3SDA [33], MME [36]. The results
are shown in Table 4. Our method achieves 66.3% average
accuracy, again, justifying significant advantages out of our
interesting invariance hypothesis.

4.3. Further Analysis

Ablation study. We investigate the impact of each
component in Eq. (7) by comparing several variations of
STEAM using the Digits-DG and PACS datasets. Vanilla:
a conventional supervised learning formulation that uses all
source domains for training, i.e., with training loss Lcls;
Vanilla-style: we add intra-domain style invariance loss
and orthogonal regularization to Vanilla model, i.e., train
using loss Lcls + Ls + Lo; Vanilla-semantic: we only
add inter-domain invariance constraint on semantic fea-
tures, i.e., training loss Lcls + Lc; STEAM: our complete
training scheme, with training loss defined in Eq. (7). Note
we don’t separate the Ls and Lo here, but please see sup-
plementary file for more related ablation studies.

Table 5 and 6 display the results. Notably, we observe
three phenomenons: (1) Vanilla-style outperforms Vanilla
by average 4.2% and 3.5% on Digits-DG and PACS, sup-
porting the advantage of “intra-domain style invariance”
hypothesis for domain generalization alone; (2) Vanilla-
semantic also surpasses over Vanilla by 6.8% on Digits-
DG, and 4.9% on PACS, which well validates the effective-
ness of semantic invariance imposed through “jury” mecha-
nism alone. (3) By leveraging on both intra-domain style
invariance and inter-domain semantic invariance assump-
tions, our entire STEAM framework further drastically im-
proves the performance across all settings, indicating the
complementary roles of these two factors.

Design choices for STEAM. We now explore alterna-
tive definitions for each loss term, to better understand the
essence behind STEAM. (1) Domain classification: we
replace the entire style bank and associated instance level
contrastive loss described in Eq. (1) by a domain clas-
sifier. We then use the domain classifier to predict the
domain label, so that the style features becomes domain-
discrinimative. (2) L2-matching: we replace Eq. (4), by
directly minimizing the l2-distance of each semantic fea-
ture pairs ∥cd,i − c̄+d,i∥22 where cd,i and c̄+d,i share identi-
cal class label. (3) Contrastive: we define semantic fea-
tures c̄+d,i as the positive key of cd,i, with random instances
sampled from the memory encoders forming V c as nega-
tive samples. We then perform conventional instance level

Table 6. Ablation on PACS for domain generaliztion. A, C, P, and
S indicates Art, Cartoon, Photo, and Sketch, respectively.

Method Lcls Ls Lo Lc A C P S Avg.

Vanilla
√

77.0 75.9 96.1 69.2 79.5

Vanilla-style
√ √ √

80.2 78.7 96.5 76.6 83.0

Vanilla-semantic
√ √

83.3 77.6 96.7 80.1 84.4

STEAM
√ √ √ √

85.5 80.6 97.5 82.9 86.6
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Figure 3. Study on different design choices of STEAM.

Info-NCE loss on (cd,i, c̄
+
d,i).

Fig. 3 shows that NONE of the above replacements us-
ing alternative losses have achieved any better design than
our original STEAM framework. The Domain classifica-
tion achieves some descent test accuracy though (worse
than STEAM), while apparently the idea of instance level
style invariance is a much stronger prior than simply requir-
ing the style features to be linear separable. L2-matching
performs worse than our STEAM, meaning directly mini-
mizing the geometry distance within each (cd,i, c̄

+
d,i) pair

has ignored important information to be inter-semantically
contrastive. Finally, if we would use plain Info-NCE loss as
in contrastive learning, i.e., Contrastive, worse performance
is observed, showing the superiority of our proposed “jury”
mechanism for inter-domain semantic invariance learning.

5. Conclusion
In this paper, we propose a novel algorithm capitalizing

on both Style and sEmAntic memory mechanism (STEAM)
for domain generalization tasks. Importantly, we find lever-
aging on intra-domain style invariance can lead to a signifi-
cant improvement on the efficacy of domain generalization.
The intra-domain style invariance prior can help improve
the learning of semantic features, owing to reduced over-
fitting to domain styles during training. We introduce effi-
cient memory bank construction policies for both style and
semantic features that store useful statistics for computing
our losses. Specifically, our semantic feature bank serves
as a “jury” and helps effectively improve intra-class invari-
ance cross different domains. Empirical results verify our
assumption on various benchmarks.
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[40] Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia,
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