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Abstract

Metric learning has received conflicting assessments
concerning its suitability for solving instance segmentation
tasks. It has been dismissed as theoretically flawed due
to the shift equivariance of the employed CNNs and their
respective inability to distinguish same-looking objects.
Yet it has been shown to yield state of the art results for
a variety of tasks, and practical issues have mainly been
reported in the context of tile-and-stitch approaches, where
discontinuities at tile boundaries have been observed.
To date, neither of the reported issues have undergone
thorough formal analysis. In our work, we contribute a
comprehensive formal analysis of the shift equivariance
properties of encoder-decoder-style CNNs, which yields
a clear picture of what can and cannot be achieved with
metric learning in the face of same-looking objects. In
particular, we prove that a standard encoder-decoder
network that takes d-dimensional images as input, with l
pooling layers and pooling factor f , has the capacity to
distinguish at most fdl same-looking objects, and we show
that this upper limit can be reached. Furthermore, we show
that to avoid discontinuities in a tile-and-stitch approach,
assuming standard batch size 1, it is necessary to employ
valid convolutions in combination with a training output
window size strictly greater than f l, while at test-time it
is necessary to crop tiles to size n · f l before stitching,
with n ≥ 1. We complement these theoretical findings by
discussing a number of insightful special cases for which
we show empirical results on synthetic and real data.
Code:https://github.com/Kainmueller-Lab/
shift_equivariance_unet

*equal contribution

1. Introduction

Metric learning is a popular proposal-free technique
for instance segmentation that often yields state-of-the-art
results, particularly in applications from the biomedical
domain for which proposal-based techniques do not ap-
ply [6, 7, 11, 13, 14, 19, 24]. In discord with its empirical
success, numerous works from the computer vision commu-
nity have noted a theoretical deficiency of metric learning
for instance segmentation, namely that same-looking ob-
jects cannot be distinguished by means of shift equivariant
CNNs [15, 19]. Empirical attempts at tackling this apparent
deficiency include leveraging pixel coordinates or encod-
ings of said as additional inputs or features [11, 18, 19, 27],
or limiting the problem to distinguishing neighboring ob-
jects [6, 12], while related theoretical work is limited to dis-
cussions of shift equivariance properties of individual CNN
layers like pooling [2, 25, 28] and upsampling [20].

What is thus lacking to date is a comprehensive for-
mal analysis of the shift equivariance properties of the
encoder-decoder style CNNs typically employed for metric-
learning-based instance segmentation, as well as an assess-
ment of respective implications concerning the capacity of
said CNNs to distinguish same-looking objects. To this end,
in this paper, we prove that an encoder-decoder-style CNN
with l pooling layers and pooling factor f is periodic-f l

shift equivariant, and in consequence has the capacity to
distinguish at most fdl instances of identical appearance in
d-dimensional input images.

Concerning practical issues, biomedical applications of-
ten deal with large 3d input images and thus apply CNNs for
instance segmentation in a tile-and-stitch manner to cope
with GPU memory constraints. Here, issues with disconti-
nuities in predictions at output tile boundaries, which lead
to false splits of objects, have been reported [13, 21]. How-
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ever, again, a formal analysis of the causes is lacking to
date. To this end, we show that the potential for discontinu-
ities to arise is intricately tied to the shift equivariance prop-
erties of the employed CNNs. We focus on metric learning
with discriminative loss as a showcase [7], because it facili-
tates theoretical insights via cleanly visible effects: Training
for constant embeddings within individual instances conve-
niently entails that discontinuities in predictions manifest
as jumps. Our respective theoretical analysis entails sim-
ple rules for designing CNNs that are necessary to avoid
discontinuities when predictions are obtained in a tile-and-
stitch manner.

2. Analysis of Shift Equivariance Properties

We first define the broad family of U-Net-style encoder-
decoder CNNs [22] we consider, followed by a definition of
periodic-t shift equivariance. Based on these prerequisites,
we prove periodic-f l shift equivariance of U-Nets.

We consider CNNs consisting of l downsampling and
l upsampling blocks. A downsampling block consists of
a number of conv+nonlinearity layers, followed by max-
pooling with downsampling factor (i.e. kernel size and
stride) f . An upsampling block consists of a number of
conv+nonlinearity layers, followed by upsampling by factor
f , either via nearest-neighbor interpolation (fixed upsam-
pling) or via transposed convolution (learnt upsampling).
At each downsampling level of the U-Net, skip connections
concatenate the output of the downsampling block before
pooling to the input of the respective upsampling block af-
ter upsampling, except for the bottom level (also called bot-
tleneck). In the following, we refer to any achitecture of
the above family as a U-Net, and to a U-Net with specific
weights as a U-Net instance. A U-Net has the capacity
to have some property iff there exists an instance of that
U-Net with said property. If not noted otherwise, we as-
sume that a U-Net outputs all predictions for an image in
one go. Sliding-window / tile-and-stitch mode will be dis-
cussed in Section 2.1. Furthermore, if not noted otherwise,
we assume valid convolutions in all conv layers. Non-valid
padding will be discussed in Section 2.2.

Formally, a U-Net is a function U that maps a discrete,
d-dimensional input image I with resolution Xin

1 × ... ×
Xin

d and Cin channels to an output image with resolution
Xout

1 × ...×Xout
d and Cout channels:

U :RXin
1 ×..×Xin

d ×Cin→RXout
1 ×..×Xout

d ×Cout

I 7→ U(I)=(ux(I))x∈Xout
1 ×..×Xout

d
,

(1)

where

ux : RXin
1 ×...×Xin

d ×Cin → RCout

I 7→ ux(I) = U(I)(x)
(2)

denotes the function that yields the output at output location
x ∈ Xout

1 × ... × Xout
d . Concerning functions ux, two

distinct notions of equality can be defined:

Definition 1 (Absolute and Relative Equality). Two func-
tions ux1

, ux2
are absolute-equal iff ∀I : ux1

(I) = ux2(I),
and absolute-distinct otherwise. Two functions ux1 , ux2

are relative-equal iff ∀I : ux1(I) = ux2(Tx2−x1(I)), with
T∆x(I(x)) := I(x −∆x) denoting an image shift by ∆x.
Otherwise ux1

and ux2
are relative-distinct.

We provide examples for absolute and relative equality of
U-Net functions in Suppl. Sec. 1. Following [28], we define
periodic-t shift equivariance as follows:

Definition 2 (Periodic-t Shift Equivariance). A function
F that maps an input image I to an output image F(I)
is periodic-t shift equivariant iff F(T∆x(I)) = T∆x(F(I))
∀∆x ∈ {(z1 · t, ..., zd · t) | zi ∈ Z}, and t is the smallest
number for which this holds.

Lemma 1 (Relative-distinct functions u of a U-Net).
Every U-Net has the capacity to implement fdl relative-
distinct functions u, but not more.

Proof 1. Part I: For any U-Net, we construct an instance
and an image I with unique outputs ux−∆x(T−∆x(I)) for all
∆x ∈ {0, .., f l − 1}d, proving that every U-Net has the ca-
pacity to implement at least fdl relative-distinct functions.
Part II: We prove that every U-Net is equivariant to image
shifts f l, and hence no U-Net has the capacity to implement
more than fdl relative-distinct functions.
Proof part I: We construct a U-Net instance and an input
image I which yields fdl relative-distinct output function
values, as described in the following. Fig. 1 shows a sketch
of our construction for d = 1. First, for any given U-Net,
construct an instance U with fixed upsampling (i.e. all up-
sampling kernel weights set to 1), all convolutions set to
identity, and ignore skip connections by setting respective
convolution kernel entries to 0. For a d-dimensional input
image I, this U-Net instance yields outputs

ux(I) = max{I(⌊x/f l⌋·f l+∆x) |∆x ∈ {0, ..., f l−1}d}.

Second, construct a single-channel image I such that I(x)
is strictly increasing for increasing positions x w.r.t. an or-
dering of positions along diagonals first by the sum of their
components and second by their components in increasing
order (cf. [5, 23]):

xi > xj ⇐⇒


∑
k

x
(k)
i >

∑
k

x
(k)
j if

∑
k

x
(k)
i ̸= ∑

k

x
(k)
j

x
(k)
i > x

(k)
j if

∑
k

x
(k)
i =

∑
k

x
(k)
j

and x
(l)
i = x

(l)
j ∀l < k

(3)
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Figure 1: Illustration of a U-Net instance and a 1-dimensional image I such that the functions u∆x are relative-distinct for all
∆x with 0 ≤ ∆x < f l.

For this image, the maximum intensity in any image pixel
block of edge length f l is found at the maximum position
(f l − 1, ..., f l − 1)d. Consequently, as each distinct pixel
block of edge length f l covers a unique maximum position,

∀x ∀∆xi ̸= ∆xj ∈{0, ..., f l − 1}d :

ux−∆xi
(T−∆xi

(I)) ̸= ux−∆xj
(T−∆xj

(I)),
(4)

i.e. the constructed U-Net instance implements fdl relative-
distinct functions u. Proof part II: See Suppl. Sec. 2.

Corollary 1 (Periodic-f l Shift Equivariance of U-Nets).
Every U-Net has the capacity to be periodic-f l shift equiv-
ariant.

Proof 2. Directly follows from the proof of Lemma 1, which
shows in Part I that every U-Net has the capacity to be non-
equivariant to any shifts < f l, and in Part II that every
U-Net is shift equivariant to shifts f l.

2.1. Tile-and-stitch mode

In practice, to deal with limited GPU memory, a U-Net is
commonly trained on fixed-size input image tiles, yielding
fixed-size output tiles. At test time, the output for a full in-
put image is then obtained in a tile-and-stitch manner, where
it is common to employ the same tile size as during training,
yet larger tile sizes are sometimes employed as inference is
less memory-demanding than training.

Concerning shift equivariance in a tile-and-stitch ap-
proach with output tile size w during inference, we get (1)
periodic-f l shift equivariance within output tiles, and (2)
trivially, periodic-w shift equivariance across output tiles.
Periodic-f l shift equivariance across the whole output only
holds if w is a multiple of f l.

2.2. Non-valid padding

The concept of shift equivariance runs counter to the
concept of non-valid padding, as the latter does not allow
for “clean” input image shifts: Shifting+padding, in gen-
eral, changes the input image beyond the shift. As a no-
table consequence, e.g., zero padding renders a CNN with
sufficiently large receptive field location-aware [10, 1], thus
eviscerating shift equivariance. See [10] for an in-depth dis-
cussion of zero-padding and other padding schemes.

3. Analysis of the Impact on Metric Learning
for Instance Segmentation

We assess implications of a U-Net’s periodic-f l shift
equivariance on the application of instance segmentation via
metric learning with discriminative loss [7]. The respective
loss function has three terms, a pull-force that pulls pixel
embeddings towards their respective instance centroid, a
push force that pushes centroids apart, and a penalty on em-
bedding vector lengths. Given predicted embeddings, in-
stances are inferred by mean-shift clustering. For more de-
tails, see [7]. First, we assess how many “same-looking” in-
stances a U-Net trained with discriminative loss can distin-
guish. We call two instances “same-looking” iff the image
itself is invariant to shifting by the offset between instance
center points. Second, we show the necessity to follow a
concise set of simple rules to avoid inconsistencies in a tile-
and-stitch approach.

3.1. Distinguishing Same-looking Instances (thus
Avoiding False Merges)

Corollary 2. A U-Net has the capacity to distinguish at
most fdl same-looking instances.

Proof 3. Lemma 1 entails that a U-Net can assign at most



(a) Object spacing 16 pixels, i.e. a multiple of f l = 8. Learnt upsampling.

(b) Object spacing 15 pixels, co-prime with f l = 8. Learnt
upsampling.

(c) Object spacing 15 pixels, co-prime with f l = 8. Fixed
upsampling.

Figure 2: A U-Net with l pooling layers and pooling factor f cannot distinguish any instances in an f l-periodic d-dimensional
image of same-looking instances (a). However, it can distinguish up to fd·l instances in a p-periodic image of same-looking
instances for p, f l co-prime (b,c). Showcase: l = 3, f = 2, f l = 8, fdl = 64. The red box in the input image (top left) shows
the valid output window. Analogous results can be achieved for the same object spacings and l = 4, f = 2 (not shown).

fdl different embeddings to a representative pixel of an ob-
ject instance (say the “central pixel”), namely when posi-
tioned at the fdl different relative locations w.r.t. its max-
pooling regions. This holds true iff same-looking instances
are located at offsets p with p, f l co-prime.

Whether a U-Net is also able to assign same embeddings
to all pixels within any instance, thus yielding fdl correct
segments, is up to its capacity and the success of training.

Corollary 3. A U-Net cannot distinguish same-looking in-
stances located at offsets n · f l, n ∈ N.

Proof 4. Periodic-f l shift equivariance of the U-Net entails
that it necessarily assigns same embeddings to pixels at
same relative locations in the objects.

Fig. 2 showcases Corollaries 2 and 3 on images of peri-
odically arranged disks, for which we trained U-Nets with
discriminative loss to predict embeddings ∈ R3. In partic-
ular, it shows that the upper bound of separating fdl same-
looking instances, as stated in Corollary 2, can be reached.

3.2. Avoiding False Split Errors in Tile-and-Stitch

In the following, we analyze the impact of output tile size
on training with discriminative loss, as well as on inference

in a tile-and-stitch manner. To this end, we assess which of
the fdl potentially relative-distinct output functions of a U-
Net contribute to the loss, and which pairs of functions that
predict directly neighboring outputs in a stitched solution
contribute to an instance’s pull force loss term during train-
ing. Fig. 3 exemplifies our analysis on a 1-d input image
that contains a couple of two-pixel-wide instances.
Training output tile size < f l: In this case, some of the
fdl output functions of the U-Net never contribute to the
loss, i.e. they are not explicitly trained. In effect, they may
yield nonsensical predictions when used during inference.
Training output tile size = f l: In this case, all output
functions of the U-Net are considered during training in
each batch. However, some pairs of functions that predict
neighboring outputs during inference are never considered
as neighbors during training. E.g. for d = 1, u0 and uf l−1

never predict directly neighboring embeddings during train-
ing, and hence never contribute to the pull force loss term as
direct neighbors. They do, however, predict directly neigh-
boring embeddings during inference, no matter if stitching
f l-sized output tiles or employing larger output tiles (po-
tentially alleviating the need for stitching) during inference.
Consequently, in this case, embeddings predicted at neigh-
boring pixels at f l-grid-boundaries may be inconsistent.
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Figure 3: Stitching errors occur when two relative-distinct output functions ui and uj are adjacent to each other during
inference, but not during training. Shown here is a 1-d sketch with l = 3, f = 2, i.e. with f l = 8 relative-distinct output
functions ui, and an exemplary input image containing two instances shown as black filled pixels (where each instance is
two pixels wide). In (a) u7 is adjacent to u0 at the stitching boundary during inference, but during training they were never
adjacent due to training output tile size f l. This is fixed in (b) where the training output tile size is > f l, but during inference
u2 is adjacent to u0 which never occurred during training. In (c) the U-Net was trained as in (b) with training output tile size
> f l; During inference, however, output tiles are cropped to n · f l to ensure that only functions that were adjacent to each
other during training are adjacent at tile boundaries, thus allowing to overcome inconsistencies.

Training output tile size >f l: All possible direct neigh-
borhoods of output functions are considered during training,
given that inference output tile size is a multiple of f l.
Inference output tile size ̸= n · f l: Similar to the case of
training output tile size = f l, functions that predict neigh-
boring outputs on two sides of a stitching boundary have
never contributed to the same pull force term as neighbors
during training (assuming batch size 1). Consequently, in-
consistencies may occur at stitching boundaries.
Inference output tile size = n·f l: Tile-and-stitch process-
ing is guaranteed to not be causal for any inconsistencies, as
formalized by the following Corollary:

Corollary 4. If valid padding and output tiles of size n ·
f l are employed, tile-and-stitch is equivalent to processing
whole images at once.

Proof 5. This directly follows from identical arrangements
of respective output functions, namely arrangement into a
regular grid of d-dimensional blocks of size fdl.

Zero padding: A U-Net with zero padding, training out-

put window size w, and sufficiently large receptive field
implements up to wd relative-distinct functions [10]. As-
suming batch size 1, this yields inconsistencies at stitch-
ing boundaries analogous to the valid-padding cases dis-
cussed above. Related work has attributed this effect to zero
padding [9, 21], yet to our knowledge, mitigation has been
limited to using larger tiles during inference [9, 21]. Valid
padding has been investigated as a potential remedy [21],
yet to no avail due to a lack of formal analysis.
Necessary rules to avoid inconsistencies at stitching
boundaries: Following from the above considerations,
in general, to avoid inconsistencies in a tile-and-stitch ap-
proach, at training time, assuming standard batch size 1 and
valid convolutions, it is necessary to train with output win-
dow size > f l. Furthermore, at test time, it is necessary
to crop output tiles of size ̸= n · f l to some n · f l before
stitching (n ≥ 1). Fig. 4a-4c showcases the necessity of
following the rules on synthetic images of periodically ar-
ranged disks.

For the case of zero padding, training with batch size > 1



(a) Output tile size 16(= f l)

(b) Output tile size 20(> f l), not cropped before stitching (c) Output tile size cropped to 16(= f l) before stitching

(d) Sample mcf-z-stacks-03212011 f22 s from the BBBC006 cell
nuclei dataset [16]

(e) Output tile size 148(> f l),
not cropped before stitching

(f) Output tile size cropped to
144(= n · f l) before stitching

Figure 4: Stitching issues, and how to fix them, for a U-Net with l = 4 and f = 2, and a p-periodic input image with p, f l

co-prime. (a) Training with output window size w = f l yields inconsistencies at f l-grid boundaries (black dashed lines) in
larger outputs. To avoid inconsistencies, not only is it necessary to (b) train with w > f l, which still yields inconsistencies at
stitching boundaries when naively stitching w-sized tiles, but also to (c) crop tiles to size n · f l before stitching, which solves
the issue. (d-f) The same effect occurs on real data: (d) Excerpt from BBBC006 cell nuclei dataset [16]: Naive stitching (e)
yields false split errors at tile boundaries, while correct stitching (f) fixes them. (See Suppl. Fig. 1 for resp. embeddings.) Note
that slight differences between (e) and (f) within tiles occur because predictions stem from different U-Net output functions.

is necessary to avoid inconsistencies, where training output
tiles in a batch have to be directly neighboring. Note, how-
ever, that batch size > 1 is uncommon due to GPU mem-
ory limitations, and hence may entail further architectural
changes to be feasible.

3.3. Location awareness

Corollary 5. A U-Net with valid padding and learnt upsam-
pling has the capacity to assign a unique ID to each pixel
in an output window of size fdl, independent of the specific

input image.

Proof 6. Proof by construction: Set the first convolution to
weights zero and bias 1. This yields a constant feature map.
Set all other convolutions to identity. Thus, a feature map
in the bottleneck layer will be constant. Ignore skip con-
nections by setting respective convolution kernel entries to
zero. Construct upsampling filter kernels p1 . . . pl by fill-
ing them with non-repeating prime numbers. For this, l · fd

prime numbers are needed. Each of the fdl output functions



Figure 5: A U-Net with valid padding and learnt upsampling can learn to assign a unique ID to each pixel in an output window
of size f l, independent of the input image. This is not possible with nearest-neighbor upsampling. Showcase: l = 4, f = 2,
input image I ≡ 1. Output: repeating pattern of fdl = 256 unique IDs.

ui of this U-Net instance yields a product over a unique set
of l distinct prime numbers. As the decomposition of any
number into prime factors is unique, respective outputs ef-
fectively assign a unique ID to each output pixel.

Fig. 5 showcases the level of location awareness that can
be reached with a U-Net with valid padding and learnt up-
sampling, trained via metric learning with discriminative
loss [7] to segment pixels as individual instances given a
constant input image. This confirms that a U-Net instance
akin to the construction in Proof 6 can be trained. A compa-
rable effect of location awareness, albeit with conceptually
different cause, has been described for zero-padding [10],
which we showcase in Suppl. Fig. 2

Assigning unique IDs to pixels is yet another example
of reaching the upper bound of distinguishing fdl instances
(cf. Fig. 2), namely for the extreme case that each pixel in a
constant input image forms an individual instance. How-
ever, this can only be achieved with learnt upsampling,
or non-valid padding (cf. [10]). This is because for valid
padding and fixed upsampling, a constant input image is al-
ways mapped to a constant output image.

To our knowledge, our work is first to report location
awareness given valid padding, thereby raising the question
whether approaches that explicitly consider pixel locations
or some other form of pixel IDs as additional inputs might
be obsolete in case of valid padding and learnt upsampling.

4. Practical Impact
We empirically assessed the practical impact of periodic-

t shift equivariance on instance segmentation on synthetic
images with added noise and deformations (Sec. 4.1), as
well as on benchmark data (Sec. 4.2).

4.1. Noise and Small Deformations

A U-Net with l levels and pooling factor f fails to dis-
criminate any instances in an infinite image of periodic-f l

arranged objects (cf. Fig. 2a). However we showcase in

Suppl. Figs. 3a, 3b that it may suffice to add slight Gaussian
noise or small random elastic deformations to the input im-
age to “fix” the shift equivariance problem. Here, we gener-
ate noise or deformations randomly, on-the-fly per training
step as well as at test time. Hence the observed effect is not
due to over-fitting to a particular noisy/deformed image.

However, note that neither noise nor elastic deformations
do anything to fix the issue of inconsistencies in a tile-and-
stitch approach if stitching is not performed according to the
rules derived in Sec. 3.2, as illustrated in Suppl. Figs. 3c, 3d.

4.2. Quantitative Evaluation on Benchmark Data

Avoiding False Splits: We assessed the practical impact of
correct tile-and-stitch on avoiding false split errors on three
cell nuclei segmentation datasets, namely BBBC006 [16],
DSB2018 [26, 4], and nuclei3d [8, 17] (see Suppl. Sec. 3 for
details). We assessed AP 0.5, as well as false split- and false
merge errors as defined in [3]. We performed tile-and-stitch
with a range of output window sizes. Correct tile-and-stitch,
i.e. with output window size n · f l, drastically reduces false
splits and increases AP 0.5 accordingly, as plotted in Fig. 6,
and exemplified in Fig. 4d-4f and Suppl. Fig. 1.
Distinguishing Instances: We assessed the practical im-
pact of periodic-f l shift equivariance on distinguishing in-
stances on BBBC006. If periodic-f l shift equivariance were
of practical impact here, we would (1) expect to see false
merge errors of distant, i.e. non-touching, objects (whereas
touching objects may be merged for other, confounding rea-
sons), and (2) we would expect distant false merges to oc-
cur for similar-looking objects. On average, for 97.3 in-
stances per test image, 3.8 false merge errors occur, and
merged instances do not look similar by eye, as exemplified
in Fig. 7. This empirical study cannot prove that periodic-f l

shift equivariance is not of practical impact on distinguish-
ing instances – this would only follow if there were no false
merges, which is unlikely due to chance alone. However, it
does suggest that the impact is negligible.



Figure 6: Output tile size vs. false splits and AP 0.5 on three cell nuclei datasets, covering 2d and 3d image data. 2d: Left:
BBBC006 [16], middle: the DSB2018 [26] subset of BBBC038v1 [4]. 3d: Right: nuclei3d [8, 17]

Figure 7: Exemplary distant-merged objects do not look
alike in raw images (excerpts from BBBC006 [16]), making
periodic-f l shift equivariance an unlikely culprit.

5. Discussion and Conclusion

Our work provides a formal analysis of the impact of
shift equivariance properties of common encoder-decoder
style CNNs on the task of metric learning for instance seg-
mentation. Contrary to a range of works that have dismissed
it as fundamentally flawed due to the assumed shift equiv-
ariance of CNNs, our theoretical analysis reveals the precise
shift equivariance properties of U-Net style CNNs, from
which follows that a U-Net with l levels and downsampling
factor f is indeed able to distinguish up to fdl identical-
looking (in terms of their respective receptive fields) in-
stances in a d-dimensional image, given that object spac-
ing is co-prime to f l in any dimension. In particular, our
work refutes some findings of Novotny et al. [19] on sim-
ilar synthetic imagery of periodically arranged discs (cf.
their Fig. 3c in [19]): They attribute the observed “near-
random”, noise-like patterns within instances to the as-
sumed ill-suitedness of metric learning for the task of in-
stance segmentation, whereas our results on comparable
data exhibit clean clusters in all cases (cf. our Fig. 2). As
for differences in our model and theirs, they omit the push
force in their “simplified” discriminative loss, while we em-
ploy it, thus avoiding that constant embeddings across all
instances constitute a global optimum. Furthermore, they
employ k-means clustering with k the correct number of in-
stances, while we employ mean shift clustering, thus avoid-
ing that clustering results are ill-defined in case of constant
embeddings across instances (cf. our Fig. 2a). Concerning
the specific patterns within the disks in their Fig. 3c, a shift
equivariant CNN would necessarily yield identical patterns
for identical instances. Instead, the figure shows multiple
periodically alternating distinct patterns within instances,

which violates their general assumption of shift equivari-
ance, but is consistent with our theory, given that their trun-
cated ResNet50 architecture is periodic-4 shift equivariant
as it employs one max pooling layer with f=2 and one con-
volutional layer with stride 2 (where stride works analogous
to pooling in terms of its effect on shift equivariance).

Beyond our formal analysis of shift equivariance prop-
erties, we show empirically on synthetic data that adding
barely visible amounts of noise or elastic deformation can
enable a U-Net to distinguish objects even at ”unfortunate”
object spacing f l. Furthermore, we show on real data that,
while distant objects are falsely merged sporadically, this
cannot straightforwardly be attributed to shift equivariance,
as we do not find respective merged instances to look simi-
lar by visual inspection.

We deem of even greater impact to practitioners our the-
oretical analysis of inconsistencies that have been reported
when performing metric learning with discriminative loss
for instance segmentation in a tile-and-stitch approach due
to large, GPU-memory-busting inputs. To this end, our the-
oretical analysis of shift equivariance allows us to derive
a simple set of rules that necessarily have to be followed
to avoid inconsistencies at stitching boundaries when per-
forming inference on large data. While our impact analysis
in this work is tailored to metric learning with discrimina-
tive loss, the same theory of shift equivariance yields sim-
ilar implications for other pixel-wise prediction tasks for
which tile-and-stitch issues with inconsistencies have been
reported, like semantic segmentation (as e.g. studied em-
pirically in [21]) or image registration. In particular, the
proven equivalence between whole-image prediction and
tile-and-stitch prediction with output tile size n · f l holds
independent of the specific training task.
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