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Abstract—Federated learning enables multiple clients to collab-
oratively contribute to the learning of a global model orchestrated
by a central server. This learning scheme promotes clients’ data
privacy and requires reduced communication overheads. In an
application like network traffic classification, this helps hide the
network vulnerabilities and weakness points. However, federated
learning is susceptible to backdoor attacks, in which adversaries
inject manipulated model updates into the global model. These
updates inject a salient functionality in the global model that
can be launched with specific input patterns. Nonetheless, the
vulnerability of network traffic classification models based on
federated learning to these attacks remains unexplored. In this
paper, we propose GABAttack, a novel genetic algorithm-based
backdoor attack against federated learning for network traffic
classification. GABAttack utilizes a genetic algorithm to optimize
the values and locations of backdoor trigger patterns, ensuring
a better fit with the input and the model. This input-tailored dy-
namic attack is promising for improved attack evasiveness while
being effective. Extensive experiments conducted over real-world
network datasets validate the success of the proposed GABAttack
in various situations while maintaining almost invisible activity.
This research serves as an alarming call for network security
experts and practitioners to develop robust defense measures
against such attacks.

Index Terms—Backdoor attack, trigger design, federated learn-
ing, network traffic classification, genetic algorithm.

I. INTRODUCTION

Network traffic classification (NTC) categorizes network
traffic observations based on their features and characteristics
to infer certain properties. NTC is an integral part of network
management commonly employed by network administrators
and service providers. A direct outcome of NTC is giving
an insight into the types of activities, applications, and pro-
tocols used network-wide. This information is essential for
optimizing the network resources and identifying any poten-
tial threats or malicious actions. Classical NTC approaches
include port-based classification, deep packet inspection [[]],
and statistical classification [2]. Similar to the case with many
other application areas, machine learning (ML) models have

been successfully utilized in NTC due to their outstanding
performances as data-driven approaches [3].

Conventional ML models used in NTC share a common lim-
itation; depending on manually crafted features that typically
require experts’ knowledge, practice, and time. As an example,
[4]] utilizes support vector machines (SVM) operating on 250
network flow features proposed in [5]]. A common drawback of
these approaches is also requiring a reasonable size of training
data to train the model.

To resolve the limitations of standard ML models for
NTC, recent research considers a growing interest in federated
learning (FL) [6]], [[7] as a framework for model training. FL
aggregates user-end ML model contributions to obtain a global
model. Since FL allows local training on the client side, it
achieves two main advantages; promoting the client’s privacy,
and saving the network bandwidth as only model coefficients
are communicated [8]. These are attractive features for an
application like NTC since NTC data can easily reveal network
vulnerabilities and weaknesses. Accordingly, several works
have recently considered FL for NTC [9]-[13]].

Despite the attractive advantages of FL, it is widely believed
to be inherently vulnerable to adversarial and poisoning attacks
[8]] similar to the case of virtually all ML settings due to
their data dependency. In a security-critical application like
NTC, malicious actors have strong incentives to attack NTC
models to tweak their cyber attacks [[I4]. A key incentive is
to limit their cyber attacks to be within legitimate network
traffic [15] thereby bypassing NTC-based network intrusion
detection and firewalls. This highlights the importance of
understanding what creates this vulnerability and developing
efficient countermeasures accordingly.

Even though FL keeps data at clients, FL. NTC models can
enable multiple clients to access model parameters and thus
empower malicious intervention. While recent literature has a
few works on establishing the vulnerability of NTC models to
adversarial attacks, their susceptibility to backdoor attacks is



yet studied. Particularly, the vulnerability of the recent FL-
based NTC approach is not addressed. A backdoor injects
a salient functionality into a target model. This functionality
is only activated if a certain trigger pattern is available in a
test input. To keep the attack evasive, the target model should
behave normally with benign inputs [16]]. While various exist-
ing backdoor attacks perform relatively well on effectiveness,
evasiveness is a more challenging goal [17], [18].

Contributions Motivated by the above discussion; we
present the following contributions.

« Establishing the vulnerability of FL-based NTC models to
backdoor attacks characterized by specially crafted triggers
injected in training and activated in inference.

o GABAttack: a new algorithm for backdoor attack against
FL optimizing the locations and values of trigger patterns in
network traffic data based on genetic algorithm optimization.
GABAttack offers attack transferability and produces input-
tailored dynamic triggers enhancing attack evasiveness.

o« A comprehensive set of experiments to investigate the
performance of GABAttack in real-world NTC attack in
terms of effectiveness evasiveness.
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Fig. 1. GABAttack: BD pattern injection in (a) where the adversary modifies
the training data of compromised clients to inject a backdoor functionality in
the model updates submitted to the server. Attack launching in (b).

II. BACKGROUND

FL-based NTC FL [19] is a setting for distributed ML
where n clients collaboratively learn a global model ¢. In
a training round ¢t € {1,...,T}, each client 7 € {1,...,k}
trains a model ¢; on its local data D; with based on the
previous global model ¢,_;. The client model (or its update
over the previous global model) is then communicated to
the central server. This server aggregates all client model
updates to obtain an updated global model, and the process
is repeated in the next FL round. Since FL is based on
communicating model coefficient updates rather than data
points, it naturally promotes data privacy while substantially
reducing the communication overhead compared to standard
distributed learning. Thus, FL has gained popularity in a
wide spectrum of applications ranging from healthcare [[20] to
autonomous driving [21]] and, more recently, NTC [9]—[13]]. In
an NTC context, FL is used for data privacy reasons [9]. FL is
enhanced with an attention mechanism for better client model

aggregation in [22]. Other works [[10]], [23]] use FL-based NTC
for device identification. These works assume honest clients
and overlook the possibility of having some clients potentially
compromised by malicious actors as depicted in Fig. [T}
Genetic algorithm (GA) [24] is a meta-heuristic search
algorithm that has been widely used in many application areas.
The idea behind GA is based on alternating between the
generation of new candidate solutions and selecting the best
among them. These operations are inspired by the processes
of evolution and natural selection in evolutionary theory. The
deployment of GA requires first encoding data (either inputs
or solutions) into chromosomes. A chromosome represents
the information of a given solution. GA then starts from an
arbitrary set of initial candidate solutions referred to as the
parents. Then, the parent set is iteratively refined by yielding
new solutions referred to as the offspring. Fundamentally,
GA uses the processes of mutation and crossover to obtain
offspring from parents. Next, in each iteration, the set of
parents is updated by the inclusion of specific members of
the offspring, replacing specific elements in the parent set.
This is done based on a certain fitness function. For the sake
of diversity and exploration, GA balances between greedily
selecting the best candidates and keeping a few “bad” ones.
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Fig. 2. Chromosome construction and encoding, where 1 though z1g are
the elements of the target feature input and v though w3 are trigger values
at locations Locl through Loc3.

III. THREAT MODEL

We consider an FL-based NTC system [9]—[13] composed
of N clients orchestrated by a server as shown in Fig. [I[a).
FL is operated in rounds where in each round ¢, the server
randomly selects K = C.N,C < 1 clients to participate in the
training process. We characterize the threat model in terms of
the adversary’s objectives, knowledge, and capabilities. The
objective of the adversary is to craft effective and evasive
(salient) backdoor attacks on the target model. The adversary is
assumed to possess a few of the FL clients and to use them to
inject the backdoor during training and launch it during testing
times. So, the adversary controls the training data and training
operations for its clients only. Specifically, the adversary can
manipulate the training data points and their labels at these
clients as shown in Fig. Eka). Besides, it knows the initial
model broadcast to them by the server. For launching the
attack as shown in Fig. [I[b), the adversary needs to know
what network data to target. We assume that the adversary
can observe legitimate packets by “sniffing the network™ and
therefore record the feature values of legitimate traffic as
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Fig. 3. GABAttack in flowchart description.

commonly assumed in adversarial attack works against NTC
models [14], [25]].

IV. THE PROPOSED GABATTACK

Fig. [1] illustrates the workflow of the GABAttack. First,
GABAttack is used to inject a backdoor functionality in the
target model during training (part a). Then, it is used to launch
an attack during the run time of the model (part b). The goals
GABAttack aims at when generating backdoor patterns are
effectiveness and evasiveness, as represented below.

_ ¢($t) =Ut
o(z) = { 6(z) = bo(x)

where ¢ is a backdoored model corresponding to a being
model ¢y, x is a benign input, x; is a triggered input, and
ys is the targeted label of x;. According, the backdoor attack
problem can be formulated as follows.

ef fectiveness
evasiveness

arg¢gliD11 EM (Dm; ¢*) + P HAﬁl - Agen ||2 (1)

where D,, denotes the data of a malicious client, p is a
hyperparameter, £y is Cross-entropy loss for main task, and
Al,, denotes benign clients’ averaged model updates. In
this paper, Al is estimated using a shared global model.
We assume that the aggregated global model is similar to
the benign client’s local model as the shared global model
converges to a point with a high testing accuracy. It should be
noted that the addition of a regularization term is not sufficient
to ensure that the malicious weight update is close to that of
the benign agents since there could be multiple local minima
with similar loss values.

GABAttack employs a GA-based approach for optimizing
both the values of the added trigger elements and their place-
ment in the data. This requires first developing a chromosome
encoding of the GA. Fig. [2 shows the proposed chromosome
encoding process along with the backdoor pattern placement.

A direct measure of an attack’s effectiveness is the attack
success rate (ASR) defines as follows.

I(¢(z1) = yu)

num

ASR = 2)
where z, is a triggered input, y; is the targeted model outcome,
num is the total number of attacked inputs, and I is an
indicator function.

As for evasiveness, one can quantify it as the drop in
model accuracy working on benign data after having a trigger
functionality. Thus, it can be calculated as

CAD = acc(¢p(X),Y) — acc(¢(X),Y) 3)

where acc is an accuracy function, X is a set of benign training
data with Y true labels, ¢q is a benign trained model, and ¢ is
its backdoored version. Accordingly, we define the following
GA fitness function to incorporate ASR and CAD.

f = ASR —y CAD &)

where ~ balances the trade-off between ASR and CAD.

The main steps of GABAttack are outlined in the flowchart
of Fig.[3| Along with maintaining attack effectiveness and eva-
siveness, there are several advantages of GA in optimizing the
triggers. First, GA is naturally a global optimization algorithm
that is likely to generate globally optimized outcomes. Second,
it allows searching over the set of possible candidates without
the need for establishing this set ahead of time.

V. EXPERIMENTS

We examine the performance of GABAttack first in a
centralized setting assuming white-box model access and then
in the intended usage in an FL setting with the same datasets
and models.



A. Experimental setup

We consider the widely used Moore [5]] dataset in all the ex-
periments. This dataset uses 216 features used in training and
inference. As for the classes, the top six classes are assumed;
WWW, MAIL, FTP-DATA, FTP-CONTROL, DATABASE, SER-
VICES, and ATTACK. As for the simulation platform, exper-
iments are run over Google’s Colab with Keras 2.8.0 with
Tensorflow Backend, and Python 3.7.13.

For the centralized setting, we assume the poisoning occurs
on the data the model directly uses for training, where it is
combined with clean data with the correct label. The model
is trained for 3 epochs, with a batch size of 100 and a
learning rate of 0.001. For the FL experiments, the data is
distributed across the clients following an IID nature. In each
FL round, 10 clients are assumed to be participating in the
model training. The benign clients are assumed to follow the
traditional procedure of training the model and that they are
training the model over 3 epochs with a batch size of 100
data points. Malicious clients perform two operations; first,
they run GABAttack on their whole training data to get the
best trigger values and locations. Then only 50% at maximum
is cut from their training data and poisoned with the trigger.
The second operation is model training, in which the malicious
clients combine the clean data and the poisoned data and then
use the combined data to train their models. Following similar
training parameters to the benign clients, it is assumed that
each malicious client trains its model for 3 epochs, with a
batch size of 100, and a learning rate of 0.001.

The model accuracy and ASR are recorded to measure the
attack’s success. In the FL setting, it is reported for malicious
clients, and the same metrics are reported for the global model.
Furthermore, the global model accuracy on the benign data is
recorded at the end of each FL round. However, since this is
a dynamic attack, where each malicious client has its trigger
and poisons the data in a different location, this presents a
challenge of how to measure the attack success on the global
model. Thus, the attack success in the FL is measured in the
global model for each trigger in an attack round.

Classification models We use the following three models.
The first model, shown in Fig. E‘[a) is a neural network with
one long short-term memory (LSTM) layer of 100 hidden
units, following a fully connected layer. The second model
is a neural network that contains a layer of 1D convolution
layer, then an LSTM layer with 100 units, followed by a
fully connected layer. The structure of C'onvolutionalp sy
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Fig. 4. The architectures of the Simpler, s1ar, Convolutional, st nr, and
Complex sty models in (a), (b), and (c), respectively.
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is shown in Fig. [4[b). The third model as shown in Fig. @{c), is
a neural network that has an LSTM layer with 100 units, then
another LSTM layer with 64 units. The model includes 2 fully-
connected layers. The three models are created incrementally
in terms of the depth and the number of parameters in each
model, i.e., their complexity.

B. Experiments
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Fig. 5. Attack performance when the percentage of adversary clients is 20%.

The first point that is investigated is the attack success over
different models, that is, testing if the attack can succeed in
deep and complex models and the attack transferability to
complex models. It is worth noting that several experiments are
conducted using traditional ML, such as SVM, and decision
trees, but we do not present their results as they perform
poorly on the main classification task, and are thus of low
practical interest. For this experiment, in the FL setting, it is
assumed that 10% of the clients participating in the pool are
malicious and the attack is initiated on the fourth round. It is
also assumed that adversary clients run independently.

Table. Il demonstrates the centralized model accuracy on the
aforementioned models as well as the ASR. For the training
setting here, it is assumed that the model is trained from
scratch. It is seen that the attack succeeds in the cases without
compromising the model accuracy on the benign data. It is
noted that the models considered show better results on the
data than most models presented in the literature.

TABLE I
CENTRALIZED MODEL RESULTS.

ComplexsTMm
95.59%
100.0%

Convolutional s
95.75%
100.0%

SimplersTm
93.16%
99.%

Accuracy
ASR

Next, we examine the attack performance metrics in the
FL setting. Fig [5] shows the ASR versus FL round with
the three models considered. It can be seen that the ASR
succes is cummunceurate with model’s compeleixty. This can
be interprested in view of the fact that model complexity
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Fig. 6. Attack performance when the percentage of adversary clients is 50%.

opromises for accomodating for both the main task and the
backdoor functionality. Moreover, the attack is geneally high-
lyasuccessful for the three models cosnidered. As for attack
evasiveness, Fig. [6] shows the glodbal model accuracy with
the three models. It can be seen that the most complex model
exhibits less model acucracy in the first inital rounds. However,
the model accuracy is maiantanied for the three models. This
result assures the evasiveness of the attack.

As for the centralized setting, the ASR is at its highest on
the attack round, which is around 99.98% on average, but it
slightly decreases on the following rounds, reporting 98.73%
and 98.20%, respectively. The results presented in this section
show that the GABAttack’s attack is successful in terms of
both attack’s effectiveness and evasiveness.

VI. RELATED WORK

Backdoor Attack on FL Models In backdoor attacks,
the adversary manipulates the local models of compromised
clients to obtain poisoned models to be then aggregated into
the global model. There are many works of backdoor attacks
on FL. Several recent works demonstrate the susceptibility of
the FL model to backdoor attacks. These works assume that
some FL clients are compromised by the adversary and under
its control [26]], [27]. Some works concentrate on scaling the
impact of malicious clients’ contributions to the global model
in what is known as model replacement attacks [28]]. Other
works focus on keeping the attack as stealthy as possible [[29].

Adversarial attack on NTC models is still in its early
stages. The current research body in this area focuses mainly
on developing adversarial examples to manipulate NTC out-
comes. Along this line, [30] employs the well-known Carlini
and Wanger method [31] to generate such adversarial exam-
ples. Next, [32] investigates a range of established adversarial
attacks in targeting NTC models thus demonstrating their
vulnerability. Subsequently, [33]] leverages mutual information
to identify the optimal features to perturb to manipulate NTC
classification. It can be seen that this research body focuses
on interference-time evasive attacks and overlooks backdoor

attacks. Besides, to the best of our knowledge, there are no
attacks on FL-based NTC.

VII. CONCLUSION

In this paper, we propose GABAttack, a new backdoor
attack against FL-based NTC models. The proposed GABAt-
tack uses a genetic algorithm as a means for tuning the
values and locations of backdoor trigger patterns to best fit
the input and the model if known. Thus, this is an input-
tailored dynamic attack promising improved attack evasive-
ness. Extensive experiments conducted over real-world NTC
data with varying model complexities validate the success
of the proposed GABAttack in terms of attack effectiveness
and evasiveness. This work establishes the vulnerability of
FL-based NTC models to backdoor attacks and calls for
devising viable defense measures against such attacks. Future
work will include the design of a coordinated attack across
adversary-compromised clients and better ways of balancing
the effectiveness-evasiveness trade-offs in the attack.
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