arXiv:1305.0674v1 [cs.DS] 3 May 2013

LZ-Compressed String Dictionaries

Julian Arz and Johannes Fischer

KIT, Karlsruhe, Germany.
julian.arz@student.kit.edu, johannes.fischer@kit.edu

Abstract. We show how to compress string dictionaries using the Lempel-
Ziv (LZ78) data compression algorithm. Our approach is validated ex-
perimentally on dictionaries of up to 1.5 GB of uncompressed text.
We achieve compression ratios often outperforming the existing alter-
natives, especially on dictionaries containing many repeated substrings.
Our query times remain competitive.

1 Introduction

A string dictionary is a data structure that stores a set of words and identifies
each word with a unique identifier. It has to support two straightforward oper-
ations: return a word, given its ID (access), and return the ID of a given word
(lookup). Other operations, such as searching for all words with a certain suffix
or prefix or containing some substring, are optional. String dictionaries are a
basic tool for the processing and indexing of strings, whenever a mapping from
a set of words to a unique ID is needed.

Though being a ubiquitous problem, to the best of our knowledge not much
emphasis has been put on the size of string dictionaries. A likely explanation for
this is that in the past the set of strings to be stored in a dictionary were not big
enough to justify complex data structures (the baseline algorithms were suffi-
cient). For example, a typical application for string dictionaries are geographical
information systems, where all geographic names of a region need to be stored
in a dictionary. But even on a continental-size map the size of such a dictionary
is manageable with traditional techniques. However, this situation has changed
in recent years, as string dictionaries are becoming larger and larger, and also
because on mobile devices (e.g. GPS’s), available memory is still a critical factor.

A rather classical application arises in information retrieval. Huge amounts
of data have to be organized in a way that facilitates the extraction of small
fragments. In document retrieval systems for example, collections of text docu-
ments are indexed so that a user can query them, say find all documents where
a certain word occurs. Here, string dictionaries are used in an extended form: in-
verted indezres assign to every word present in the collection a list of documents
they appear in, and a first step for locating a given term is to search it in the
dictionary. These dictionaries can become quite big. While the total number of



words in the English language is estimated to about 1000000 [8], recent crawls
of web pages written in 10 different languages resulted in a data set of 200 mil-
lion different words. This can be due to typing errors, but also stems from the
fact that in some languages, for example in German, new words can be built by
the concatenation of two existing words.

In databases of web platforms (e.g. social networks), string attributes are
commonly used to store data such as user information, private messages or guest-
book entries. Tables can consist of several string attributes and a unique primary
key (ID), a number. This ID is usually stored as a foreign key in another table. A
user is then able to either search for a string to use its ID in another context, or
obtain the string to a given ID, which makes databases an ideal application for
string dictionaries. Often, database columns are indexed to hasten the search, at
the expense of additional space overhead. Column based internal memory data
bases are another natural example where string dictionaries arise and are a hot
research topic.

All of the given examples could profit from a reduction of the space overhead
of the used string dictionary. Thus, the question arises how string dictionaries
can be compressed. Two trivial solutions come to mind: First, we could regard a
set of separate words concatenated to one string, and compress this string using
any state of the art lossless data compression technique, e.g. deflate or other
algorithms. This results in great compression ratios, but poor efficiency for the
required operations, as in the worst case the whole text has to be decompressed to
access one word. Second, we could compress each word separately and use typical
string dictionary methods like hashing to provide the functionality. In that case,
the two operations were almost as fast as in traditional string dictionaries, but
the compression is far from optimal.

1.1 Related Work

The immediate solution to the string dictionary problem is to store the strings
in a trie, where the leaves are annotated with the identifiers. A related but more
practical idea is to sort the strings lexicographically and encode a string as a pair
(¢, ), where £ is the length of the longest common prefix with its lexicographic
predecessor and « is the remaining suffix. This idea is known as front coding. To
support fast access- and lookup-operations, every k’th string is stored wverbatim,
for some suitably chosen value of k. However, none of these simple methods
provides general-purpose compression.

Research on compressed string dictionaries is more recent, and we are aware
of only a few works tackling this problem. The first is the compressed permuterm
index [5] that builds on the Burrows-Wheeler transformation. It supports a rich
set of operations for IR tasks, but if restricted to our simple access/lookup
functionality its space is not competitive. Brisaboa et al. [2] evaluate the practical
performance of techniques like Huffman coding, hashing, front coding, grammar-
based compression, and full text indexing. In brief, they find that (a) front



coding with Hu-Tucker character compression and (b) Re-Pair-based indices
provide the best time/space trade-offs. The most recent work is due to Grossi
and Ottaviano [7] and builds on previous ideas of the first author [3]. It augments
the basic trie idea with path decomposition, and is shown to often perform better
than [2]. All approaches employ engineered implementations of succinct data
structures to achieve good practical performance.

1.2 Owur Contribution

We improve the empirical performance of dictionary-based compressed string
dictionaries, namely Lempel-Ziv (LZ) compressed string dictionaries. The only
existing dictionary-based approach is Re-Pair [2]. Compared to the latter, we
achieve very competitive compression rates, often better. Accesses are 2—4 times
slower, but lookups are up to twice as fast. Construction of our data structure is
one order of magnitude faster than Re-Pair. Compared to the path-decomposed
tries 7], we achieve about the same compression ratios, but often slower oper-
ations. A notable exception is a data set containing many often repeated sub-
strings, where we can compress to about a third of the original file size, whereas
the path-decomposed trie achieves only 1/2. In total, our approach proves to
be very robust due to the direct use of a general-purpose compressor from the
LZ-family.

2 Preliminaries

In this section we introduce known concepts and tools on which our data struc-
ture is based. We start by formally defining our problem as follows. Let & =
{50,.-.,8m-1} C X* be a set of m strings, and let n =), |s;| denote their
combined length. A string dictionary over S is a data structure that supports
the following operations:

— Lookup(s): return —1 if s € S or a unique identifier in [0, m) otherwise.
— Access(4): get the string with identifier ¢ € [0, m), Lookup(Access(i)) = 1.

2.1 LZ78 Data Compression

Our new algorithm is based on the LZ78 compression algorithm [11] for a string
S5[0,n), which we are going to describe next. The algorithm proceeds by parsing
S from left to right and dividing it into blocks (called phrases) that are one-
letter extensions of previously seen phrases. The set of current phrases is called
the phrase dictionary. At the beginning of the algorithm the phrase dictionary
contains only the empty string. Now assume that we have already parsed a prefix
S[0,4) of S, and that the phrase dictionary is D. Then the next phrase is chosen
to be S[i, j] such that S[i,j) is the longest string already in D. Further, the
new phrase S[i, j] is added to D. Due to the construction, the dictionary D is
prefix-closed and is naturally represented with a trie.



2.2 Succinct Data Structures

Consider a bit-string S[0,n) of length n. We define the fundamental rank- and
select-operations on S as follows: rank; (S, 4) gives the number of 1’s in the prefix
S10,14], and select; (S, 1) gives the position of the i’th 1 in S, reading S from left to
right (0 < i < n). Operations ranky (S, i) and selecty (S, 7) are defined similarly for
0-bits. The following lemma summarizes a by-now classic result; well-performing
practical implementations of this lemma exist, we used the SDS-Library [6].

Lemma 1 (see, e.g., [9]). A bit-string of length n can be represented in n+o(n)
bits such that rank- and select-operations are supported in O(1) time.

3 New Data Structure

We now present the theory of our new algorithm. We proceed by first showing a
data structure that supports the access-operation (Sect.[3.1]), and then modifying
this data structure to also support the lookup-operation efficiently (Sect. [3.2)).

3.1 Basic Idea: Supporting Access

We explain a first idea how to adapt the LZ78-parsing from Sect. to the
string dictionary problem. For ease of explanation, we assume that each string
s; is terminated by a unique letter #; ¢ 3. Then we can concatenate all strings
into a single large string S = s¢$7 . . . S;y—1 of length n, without losing information
about the word boundaries. The basic approach is to compress S with the LZ78-
parsing algorithm from Sect. and store the resulting LZ-trie. Note that due
to the unique separators #;, there is a phrase ending at the end of every string,
and hence every string also starts with a new phrase.

For the recovery of the original strings in S, we link the phrases from one
string as follows. Suppose s; is parsed as s; = p§|pi]...|pL_,|, where the pg are
phrases. Note that each p§ corresponds to a unique node 11; in the LZ-trie. For
1 < j <k, we make a link from v} to v}_,. We call those links the predecessor
links. See Fig. |1] for an example. We can store an additional array A[0,m) such
that A[i] points to the node corresponding to the last phrase pi,_; of s; (the one
ending with #;).

Now the access-operation can be easily supported. Suppose we want to answer
Access(i), and that the parsing of s; is p|pi|.. . [pj_,|. Then we first go to node
v}, = Alt] and recover s;’s last phrase p}_, by following the path from v} _,
towards the root. Then we follow the predecessor link of v,i_l to v,i_2 and recover
the penultimate phrase. This goes on until we have recovered the first phrase
pi, which happens iff the predecessor link is nil. As a result, we have recovered
the 4’th string from right to left.



Fig.1: LZ-trie for the set of strings S = {a|bla|, ablaba|, abc|, abcb|, bal,
bac|bacb|, bacbalc|bal, bc|a|}, with the parsing indicated by “|”. All non-solid
lines are predecessor links enabling the efficient access to strings.

Unfortunately, this data structure does not readily support the lookup in
optimal O(|s|) time, because the parsing of phrases is not unique. For example,
consider querying for the string aba in the example of Fig.[1l Matching it greedily
in the LZ-trie we arrive at the node spelling the string aba, from which we cannot
derive a correct identifier. Indeed, what we should have done is matching aba as
it was parsed: first a, then b, and finally a#;, from which we could have derived
that 1’ is the true identifier of the string aba. However, the LZ-trie does not
seem to contain sufficient information to decide that after matching the first a
we should have started a new phrase.

3.2 Modification for Supporting Lookup

The problem of the previous section is that the parsing of a string s; depends on
the past, i.e., on the parsing of all strings s; for j < i. We resolve this problem by
reparsing the strings to make their parsing unique and enable a greedy parsing
of query strings. More precisely, we first construct the LZ-trie from Sect. [3.]]
(excluding the predecessor links and end-of-string markers #;). Then, we run
through the dictionary S again and reparse all strings by matching them greedily
in the existing trie. This implies that phrases can now be used multiple times.
The advantage is that the parsing is now unique in the following sense: say that s;
is parsed as s; = p|p}] ... |ps_;|, and that a different string s; = p)|p]] ... |p)_,|
is prefixed by pipi .. .péfl for some y < k. Then pi = pl for all z < y, and
further, if the longest common prefix between s; and s; extends r characters
into p;, then those r characters are also a prefix of p;



(a) The reparsed LZ-trie. (b) The resulting phrase trie.

Fig.2: The final data structures. The set of strings from Fig. |1 is now parsed
as § = {aba|, aba|bal, abc|, abcb|, ba|, bacbalc|b|, bacba|c|bal, be|a|}, which
corresponds to the strings S’ = {B, BF, C, D, F, GIE, GIF, HA} in the phrase
alphabet.

For example, string bacbacb in Fig. [I| is now parsed bacbalc|b instead of
bac|bacb. Although the new parsing is longer in this case, it is parsed similar to
the next string bacba|c|ba. See Fig. for the resulting LZ-trie, where phrases
that are a prefix of a different phrase are terminated with a special character
Wy ”

*” in order to make all phrases end at a leaf of the LZ-trie. (This allows us to
identify all phrases with leaf identifiers; in Fig. denoted by upper case letters.)

Two issues arise that have to be dealt with now:

— Some nodes from the original LZ-trie could now be superfluous, since they
are not reached anymore by any used phrase. Such nodes can simply be
deleted from the resulting trie.

— More seriously, it could happen that the greedy parsing cannot continue,
for example when a phrase is parsed longer than originally, but there is no
outgoing edge from the root with the next character. This problem can be
solved by initially inserting all single letters a € X' into the trie.

Due to the multiple use of phrases we cannot work with plain predecessor
pointers as before. To overcome this, we construct another trie consisting of the
parsed phrases in the new phrase alphabet. We call this second trie the phrase
trie. See Fig. for an example. (This trie contains exactly the predecessor
pointers, but arranged in a form more suitable for querying, as we shall see.)



Now Access(i) works slightly differently: jump to the i’th leaf of the phrase trie
and find the phrases of s;. Those phrases can now be easily recovered using the
LZ-trie, since there they correspond to leaves. The time is the optimal O(]s;]).

The advantage of the new structure is that it also enables optimal Lookup(s):
first, parse s greedily using the LZ-trie, e.g. s = po|p1]...|pk—1|. Then we try
matching the parsed phrases in the phrase trie; this takes O(k) time (assuming
perfect hashing). If matching is successful and ends in a leaf, we return the
identifier stored there (the string ID). Otherwise s does not occur in S. The
total time for this process is optimal O(]s]).

4 Implementation Detalils

In this section we describe our implementation that builds on the data structure
from Sect. [3] As often in algorithmic engineering, we sometimes deviate from
the theoretical proposal and sacrifice the optimal running times in exchange for
a faster practical performance.

4.1 Representation of the LZ-Trie

The choice of the LZ-trie implementation offers a trade-off between time for each
of the two operations and space overhead. Besides a trie, other data structures
are possible as well: the required operations are access and longest_prefix
(finding the longest element which is a prefix of a given string).

We present two representations. The first is a well-tuned existing trie imple-
mentation, the path-decomposed tries of Grossi and Ottaviano [7]. One thing to
remark is that while the path decomposition has the advantage of fast operation
times due to high cache locality, its drawback is that in its original form, only the
leaves of the original trie can be accessed, whereas the inner nodes are “hidden”
in the path decomposition. Instead of appending a unique character “x” to the
end of each phrase as in Sect. we identify a phrase with a tuple consisting of
the subpath it ends on in the path decomposition and the offset, counting from
the beginning of this subpath. We map these tuples to ordinary numbers using
two bit vectors enhanced with rank/select-support. We found this to be more
space efficient than the explicit end-of-string character.

The second representation is based on a front coding dictionary, as the one
described in Sect. We support longest_prefix using a characteristic of our
LZ-parsing: when a parsed string s and a phrase p have an lcp 7, the longest
prefix is at least as long as r. We search the given string in the dictionary,
first with a binary search on the explicitly stored entries and then with a linear
search in a bucket. If this search does not find prefix, we either search the lcp
of that bucket’s first entry and the string, or abort the search (and return —1)
based on the already compared strings. Thus, at most two search operations are
performed.



L=0,48 S = FIEIFA
L B =110101
S = BBFCDFGIEGIFHA S = BCDFBAHAGIEGIF C =1100101011010010
B =11011110010010
(a) Normal. (b) Sorted by length. (c) First phrases omitted.

Fig. 3: The linearized phrase trie, where (b) and (c) show two optimization tech-
niques. Information in gray need not be stored explicitly.

4.2 Representation of the Phrase Trie

Due to the potentially very large alphabet (p, the number of different phrases,
can be very high), existing trie implementations cannot be used efficiently for
storing the phrase trie. Instead, we chose a different approach, as explained next.

We linearize the phrase trie by juxtaposing all parsed phrases into a string
S, see Fig. for the running example. In order to know where a string s;
starts, we store an additional bit vector B of the same length as S, where a
']’ indicates the beginning of a string. Then the parsing of the i’th string can
be found by select; (B,i), and hence the access-operation can be easily sup-
ported. On the other hand, for Lookup(s) we now have to search the parsing
of s = polp1|...|pk—1| in S; we do this by a binary search with the help of
select-operations over B. As an example, consider searching s = bc|balal, which
corresponds to s’ = HFA in the phrase alphabet. Since there are n = 8 strings
in S, we first go to the 4th (middle) string by select; (B, 4), see that it is D, and
since it is alphabetically smaller than the parsed query string HFA, we continue
the search in the right half. To make the binary search work, the parsed strings
are sorted before writing them to S.

Two optimizations can be applied to this base variant of the linearized phrase
trie. The first is to rearrange the parsed strings in S such that they are first
sorted by their length (number of phrases), and then lexicographically. The bit
vector B can then be discarded, since the string beginnings can be calculated
arithmetically within a range of strings of equal length (see Fig. . We need an
additional small array L to know where the phrases of a given length begin in S.
The access-operation uses this array to find the range containing the requested
index. For the lookup-operation, we can identify the correct range directly by
counting the number of phrases the searched string was parsed into. Thus, during
the binary search we omit the select-operations which, although constant-time,
introduce a considerable time overhead due to several table lookups.

The goal of this optimization is thus not so much a reduction in space (as B
is small compared to S) but rather an acceleration of the lookup-operation. In
our experiments we found that most of the strings are parsed into two or three
phrases (mean =~ 2.7), but a small percentage is parsed into more (up to the
hundreds) of phrases. To account for this, we chose to sort by length only the



strings with a small number of phrases (at most 5), and handle all larger strings
as before (with the bit vector B, which is now very short). The additional time
overhead for the access-operation is then negligible.

The second optimization is to omit the first phrase from every string in a
lexicographically sorted range of S. Then we need an additional bit vector C' that
encodes how many strings start with a given character in the phrase alphabet.
This can be done, e.g., by writing a 1 for every phrase character, followed by k
0’s if there are k strings starting with that phrase (see Fig. . Preparing C for
select queries (on both 0- and 1-bits) then allows to recover the original contents
of S. For Access(i), we count the number of 1-bits up to the i’th 0-bit in C to
retrieve the first phrase. For the remaining phrases, we proceed similarly for B.
During the lookup-operation, we only need to search in the range of parsings
starting with pp. We find this range with a select; (C, pp).

This optimization turned out to be very effective for large dictionaries, since
with p phrases we save n lg p bits by dropping the first phrases, whereas array C
occupies only p + n bits, much less than nlgp for large n and typical values of
p = O(n/lgn). The lookup-operation is faster as well, because less comparisons
are performed during the binary search.

Both optimizations can be combined. Then for each range of strings with equal
parsing length £ a bit vector Cp is used. Again we only support the ranges up to
a certain number of phrases. If there are n, strings in a range, the size of Cy is
ng + p bits, opposed to the savings of /n, bits for omitting B in that range. Thus
this combination yields better compression rates only if the number of strings in
one range is large enough to compensate for the p bits added for every supported
range.

5 Experimental Results

We perform several experiments on real world data as well as a synthetic data set
to evaluate our algorithm. We also compare our data structure to other relevant
structures for compressed string dictionaries.

Setting. We use the following data sets, of which URLs were also used in two
previous experiments [2,/7], and Wiki was used only by Grossi and Ottaviano [7]:

Wiki consists of all page titles of the English Wikipedia of April 2011,

URLs are the URLSs of a 2002 crawl by the UbiCrawler [1] on the .uk domain,

DNA is the DNA data set from Pizza&Chili Corpus [4], split into strings of 30
characters, and

synth-aBa is a data set we constructed artificially. These are strings of the
form a Bas, where the o;’s are randomly chosen strings which occur multiple
times. Strings 8 are short strings to separate these blocks. See Appendix [A]
for technical details on this data set. This data set was chosen to show that



Table 1: Comparison of the size of LZ-parse before and after the reparsing. All
values are 10°.

synth-afSa Wiki URLs DNA

before after before after before after before after

#Nodes 24340 15722 13597 12536 46716 34032 24832 24054
#Phrases (p) 24340 6873 13597 8624 46716 17652 24832 18105
#Parsing 24340 21324 13597 19782 46716 55008 24832 37123

path decomposition does not always result in better compression ratios than
purely dictionary-based methods.

Our testing machine is an AMD Opteron 8350, equipped with 4 cores (of which
we only use one) and 64 GiB of main memory. The CPU is clocked with 2.0 GHz
and is supported by 2 MiB Cache. The machine is running Ubuntu 10.04.4 LTS
(kernel 2.6.32). All algorithms were implemented in C++ and compiled using the
GNU C++ compiler version 4.4.3 with optimization level -O3. We chose 1,000,000
random indices and strings from each data set for the timing of the operations.
All measured times are averaged over 3 runs.

Reparsing. Table|l] gives numbers on the size of the LZ-trie before and after the
reparsing. #Nodes is the number of nodes in the (uncompacted) trie. The smaller
numbers after reparsing are a result of cutting off entire subtrees from the LZ-
trie. The second row gives the number of nodes representing phrases (lower after
reparsing since not every prefix of a phrase is necessarily also a phrase). The
row “#Parsing” gives the size of the parsing. All these numbers are equal before
the reparsing as every node in the trie corresponds to a phrase and every phrase
is used exactly once in the parsing. We observe that the reparsing reduces the
size of the LZ-trie by about 27% for URLs and 8% for Wiki. For our synthetic
data set, the reduction is 35%. These results confirm the intuition that the
LZ-based reparsing strategy excels for collections of strings where sufficiently
long substrings occur multiple times, e.g. “http://”, “index” or “.html” for
URLs. The size of the parsing is increased by between 18% and 50%, but this
change is not reflected in the size of the trie, and it is the role of our phrase trie
implementation to cope with this increase.

Other Data Structures. We compare our data structure to previously known
techniques. We did not include uncompressed dictionaries (like TX-trie [10]) in
our evaluation, as they were already shown to use much more space in previous
studies [2,|7]. LZT is our approach of the reparsed LZ-trie, using the implemen-
tation described in Sect. [d] We examine the trade-offs for two different repre-
sentations of the LZ-trie, one using path decomposition (LZT-pd) and the other
using front coding with bucket size 16 (LZT-fc). Table [2| gives more information
about the distribution of space consumption on our two components. In all cases,

10



Table 2: The compression ratio of our data structure broken down into its two
components. All percentages are in relation to the original file size.
(a) LZ-Trie represented by PDT (LZT-pd) (b) by front coding (LZT-fc)

synth-afa Wiki URLs DNA synth-afa Wiki URLs DNA

File Size [MB] 212 171 1439 400 212 171 1439 400
LZ-Trie [%] 11.1 11.6 3.3 8.6 15.8 20.5 7.7 19.1
Phrase Trie [%] 23.8 23.0 88 214 23.8 23.0 8.8 214
Combined [%)] 349 34.6 12.2 30.0 39.6 434 16.4 40.5

the phrase trie representation accounts for about than two thirds of the overall
space (slightly more than two thirds for LZT-pd, and slightly less for LZT-fc).

Tables [3al to present the experimental comparison with other approaches.
PDT is the centroid path-decomposed trie 7] in the compressed variant. The
comparison between LZT and PDT is interesting, as we actually use the PDT
in our implementation. There is a remarkable duality between the two: PDT
uses a grammar-based compression on a (linearized) trie built on all strings,
while LZT builds a trie on a grammar-based compression scheme. Re-Pair, front
coding (FC) and Hu-Tucker front coding (HTFC) are examined in |2]. We exper-
imentally deduced the best bucket size to be 8 for both FC and HTFC, slightly
favoring the compression.

We observe that the compression ratio of LZT-pd is among the lowest for all
data sets and is at most 12 % higher than the best for each set. Remarkably,
it achieves the best compression ratio for the URLs data set. The nature of
this set (long common prefixes) should intuitively favor the front coding—based
data structures, but they do not detect the common substrings which are not at
the beginning of the strings. For our synthetic data set the difference to PDT
is even more pronounced, as our data structure compresses to 34.0%, whereas
PDT achieves only 53.2% compression rate. Re-Pair is even slightly better in
this case, but the construction is more than 15 times longer. As expected, the
compression comes at the cost of higher times for the operations. This is because
the strings are parsed into an average of 2.3-4 phrases (depending on the data
set), and therefore this amount of elementary trie operations has to be performed,
while PDT only requires one such operation. The variant LZT-fc alleviates this
deficiency by sacrificing slightly more space in exchange for much faster access-
times. Lookup-times are also sped up (though not as significantly, but still faster
than Re-Pair).

11



Table 3: Comparison of our data structure with others.

(a) synth-aBa (5.4 x 10° strings) (b) Wiki (8.5 x 10° strings)
constr cmpr access lookup constr cmpr access lookup
[s] [70] [ns/ID] [ns/str] [s] (0] [ns/ID] [ns/str]
LZT-pd 1778 349 153 16.7 LZT-pd 99.0 346 9.9 10.7
LZT-fc 96.0 39.6 5.4 12.8 LZT-fc 53.7 434 3.3 8.2
Re-Pair 2959.7 31.0 3.8 14.4 Re-Pair 1017.6 41.5 3.8 14.4
PDT 291.0 53.2 4.1 4.1 PDT 85.3 32.1 4.1 4.1
FC 0.55 68.0 0.59 2.0 FC 0.79 60.2 0.62 2.1
HTFC 2.52 494 4.8 7.0 HTFC 2.35 43.2 2.6 5.0
(c) URLs (18.5 x 10° strings) (d) DNA (12.9 x 10° strings)
constr cmpr access lookup constr cmpr access lookup
[s] [70] [ns/ID] [ns/str] [s] (0] [ns/ID] [ns/str]
LZT-pd 3119 122 158 16.7 LZT-pd 217.8 30.0 16.0 16.0
LZT-fc 197.8 16.4 4.7 14.4 LZT-fc 120.1  40.5 3.9 11.5
Re-Pair 12069.7 12.4 4.2 31.0 Re-Pair 15537.4 37.2 2.3 12.7
PDT 244.2  13.6 6.3 6.2 PDT 188.1 26.7 5.9 5.9
FC 2.8 327 0714 35 FC 1.3 69.7 059 23
HTFC 9.9 244 5.7 9.9 HTFC 5.3 309 2.5 5.1

6 Conclusions

We proposed a new LZ-like parsing for string dictionaries that allows greedy trie-
based pattern matching. In our implementation we combined this parsing with
space-efficient representation techniques for the resulting two tries. Our data
structure competes with other data structures regarding query times, and it often
achieves better compression ratios, particularly for string collections containing
highly repetitive patterns. Our work was not focused on the trie implementation.
Representations better suited for phrases of an LZ-parse can achieve even better
results. We also aim to investigate other parsings and grammars which might
have convenient characteristics.

Acknowledgments

We thank Giuseppe Ottaviano for providing his data sets, and Francisco Claude
and Miguel Angel Martinez for the source codes of their implementations. Fur-
ther thanks go to Pawel Gawrychowski for interesting discussions on this topic.

12



References

10.

11.

P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully
distributed web crawler. Software: Practice & Experience, 34(8):711-726, 2004.
N. R. Brisaboa, R. Cénovas, F. Claude, M. A. Martinez-Prieto, and G. Navarro.
Compressed string dictionaries. In Proc. SEA, volume 6630 of LNCS, pages 136—
147. Springer, 2011.

P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter. On searching com-
pressed string collections cache-obliviously. In Proc. PODS, pages 181-190. ACM,
2008.

P. Ferragina and G. Navarro. The Pizza&Chili Corpus. http://pizzachili.dcc.
uchile.cl/texts/dna/.

P. Ferragina and R. Venturini. The compressed permuterm index. ACM Transac-
tions on Algorithms, 7(1):Article No. 10, 2010.

S. Gog. Succinct Data Structures Library. http://simongog.github.io/sdsl/.
R. Grossi and G. Ottaviano. Fast compressed tries through path decompositions.
In Proc. ALENEX, pages 65-74. SIAM Press, 2012.

J.-B. Michel et al. Quantitative analysis of culture using millions of digitized books.
Science, 331(6014):176-182, 2011.

J. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762-776, 2001.

D. Okanohara. Tx: Succinct trie data structure. http://code.google.com/p/
tx-trie/.

J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. Inform. Theory, 24(5):530-536, 1978.

A Synthetic Data Sets

synth-afa. Let X = {a,...,z} and X% = {I,...,@}. We have | 2| = 26,
‘Eﬁ‘ =32 and ¥*NYP = (). We define two pools (a.k.a. multisets) of substrings.
Every element of a pool is only used once in a constructed string. Let I" be a
pool of randomly generated strings out of (Za)lﬁ. Each string occurs 32 times.
Another pool @ is built upon all lexicographically ordered strings of length 6 over
the alphabet X%. There are (362) of these strings. Each of these strings occurs
6 times, so the size of & is 6(%) = 5437152. Then, synth-afa consists of |@|
strings of the form ajSas, where the «; are taken at random from I" and the 3
from @. Thus, I' has to be twice as large as @, which means it has to contain
|®| /16 = 339 822 different strings.

13


http://pizzachili.dcc.uchile.cl/texts/dna/
http://pizzachili.dcc.uchile.cl/texts/dna/
http://simongog.github.io/sdsl/
http://code.google.com/p/tx-trie/
http://code.google.com/p/tx-trie/

	LZ-Compressed String Dictionaries

