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Abstract

Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who 

experience severe to profound hearing loss. Recent studies have demonstrated a correlation 

between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been 

conducting investigations on this correlation and has been developing an image-guided cochlear 

implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One 

crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical 

CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets 

of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel 

method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the 

candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-

sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding 

algorithm to find a fixed-length path that consists of a subset of the candidates as the localization 

result. Validation on a large-scale dataset of clinical CTs shows that our proposed method 

outperforms the state-of-art CI electrode localization methods and achieves a mean error of 

0.12mm when compared to expert manual localization results. This represents a crucial step in 

translating IGCIP from the laboratory to large-scale clinical use.
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1. Introduction

Cochlear implants (CIs) are surgically implanted devices for treating severe-to-profound 

hearing loss (National Institute on Deafness and Other Communication Disorders, 2011). A 

CI uses an electrode array implanted within the cochlea to stimulate the spiral ganglion (SG) 

nerves to induce the sensation of hearing. The SG nerves are tonotopically ordered by 

decreasing characteristic frequency along the length of the cochlea (Greenwood, 1990; 

Stakhovskaya et al., 2007) (Shown in Figure 1). A SG nerve is stimulated when the 

frequency associated with it exists in the incoming sound (Wilson and Dorman, 2008). After 

the CI surgery, an audiologist needs to program the CI to determine the stimulation level of 

each individual electrode based on perceived loudness, and to select a frequency allocation 

table to determine which individual electrodes are activated when the incoming sound 

contains specific frequencies. CIs lead to remarkable success in hearing restoration for the 

vast majority of recipients with average post-implantation sentence recognition rates over 

70% correct for unilaterally implanted users and 80% correct for bilaterally implanted users, 

respectively (Gifford et al., 2014; Gifford et al., 2008). However, there is a significant 

number of users experiencing only marginal benefits. Recent studies have demonstrated that 

there exists a correlation between hearing outcomes and the intra-cochlear locations of CI 

electrodes (Aschendorff et al., 2005; Rubinstein, 2004; Skinner et al., 2007; Verbist et al., 

2005; Wanna et al., 2014; Wanna et al., 2011). One factor that negatively affects hearing 

outcomes is electrode interaction (or channel interaction). Electrode interaction leads to 

nerve groups being activated in response to multiple frequency bands (Boëx et al., 2003; Fu 

and Nogaki, 2005). Electrode interaction can be alleviated by deactivating the electrodes that 

cause electrode interaction (Noble et al., 2014 and Noble et al., 2016). In Figure 1 we show 

the CI electrodes and their activation patterns for a subject. As can be seen, by deactivating 

some electrodes (labelled with red crosses), electrode interaction can be reduced.

Our group has developed methods for image-guided cochlear implant programming (IGCIP) 

(Noble et al., 2013) to assist audiologists with CI programming. IGCIP uses image 

processing techniques we have developed to analyze the spatial relationship between the CI 
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electrodes and SGs for each individual recipients in order to estimate the occurrence of 

electrode interaction and select electrodes to deactivate to alleviate interaction. The major 

steps consist of (1) segmentation of the intra-cochlear anatomy, (Noble et al., 2011a, Noble 

et al., 2012, Reda et al., 2014a, Reda et al., 2014b), (2) localization of the implanted CI 

electrodes (Zhao et al., 2014, Noble and Dawant, 2015, Zhao et al., 2017), (3) analysis of the 

spatial relationship between the CI electrodes and the neural interface (Noble et al., 2013), 

and (4) automatic electrode configuration selection (Zhao et al., 2016, Zhao et al., 2015, 

Zhang et al., 2017b). Clinical studies have shown that hearing outcomes are significantly 

improved when the CI electrode deactivation plans generated by IGCIP are adopted (Noble 

et al., 2014, Noble et al., 2016). A critical step in the generation of an IGCIP plan is the 

localization of the CI electrodes in a CT image. Since the end-users are audiologists who 

generally do not have experience with medical images, automatic electrode localization 

techniques would drastically reduce the barrier to the need for audiologists to become expert 

in localizing electrodes in CT images. To fully translate IGCIP from the laboratory to large-

scale clinical use, an accurate, automatic electrode localization method is needed. Automatic 

methods are also needed to conduct studies on large scale image databases to continue 

investigating the relationship between hearing outcomes and the intra-cochlear locations of 

CI electrodes.

Automating the electrode localization procedure is challenging. The first challenge is that 

the image quality of the clinical CTs is limited. The resolution of clinical CT images is 

usually coarse (resolution obtained nowadays is typically 0.2 × 0.2 × 0.3 mm3) compared to 

the typical size of the CI electrodes which is on the order of 0.3 × 0.3 × 0.1 mm3. Due to 

partial volume effects, it is difficult to localize the small-sized CI electrode array in clinical 

CTs. The image resolution is also coarse relative to the spacing between electrodes. This 

makes it difficult to separate the individual electrodes from each other (Shown in Figure 2b). 

Further, because the electrodes are composed of radiodense platinum, beam hardening 

artifacts distort the intensities in the region around the electrode array, resulting in erroneous 

intensities assigned to voxels around the electrodes during reconstruction. This complicates 

the identification of individual electrodes in CTs. The second challenge is that even though 

the CI electrodes usually appear as high intensity voxel groups in CTs, it is difficult to select 

a threshold such that the thresholded image only contains voxels occupied by CI electrodes 

because voxels occupied by wire lead, receiver coils, and cortical bones are also usually 

assigned high intensity values. In this article, the non-electrode voxels with intensity values 

higher than a selected threshold are defined as “false positive” voxels. CT images are also 

reconstructed with different algorithms. In an image reconstructed with an “extended” 

Hounsfield Unit (HU) range (eCT), the metallic structures are assigned higher intensity 

values than the cortical bones. In an image reconstructed with a “limited” HU range (lCT), 

the maximum intensity is limited to the intensity of cortical bones. Thus, in an eCT, the false 

positive voxels are usually occupied by the metallic wire lead as shown in Figure 2a. In a 

lCT, there are many more false positive voxels as shown in Figure 2c. The third challenge is 

that there exist several models of electrode arrays, which lead to various intensity-based 

features in clinical CTs. A number of models are produced by each of three FDA-approved 

manufacturers: Med-El® (MD) (Innsbruck, Austria), Advanced Bionics® (AB) (Valencia, 

California, USA), and Cochlear® (CO) (Sydney, New South Wales, Australia). Arrays differ 
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by the number of electrodes, the size of electrodes, and the spacing between electrodes. 

Based on inter-electrode spacing, we classify CI electrode arrays into two broad categories: 

Closely-spaced and Distantly-spaced arrays. Closely-spaced arrays are such that individual 

electrodes cannot be resolved in the images and the set of electrodes thus form a single 

connected region as shown in Figure 2b. We have proposed a centerline-based snake-based 

localization method (Zhao et al., 2014) to localize individual electrodes in this type of array. 

This method fails for distantly-spaced arrays because electrodes do not form a single 

connected region as shown in Figure 2a. Other groups have also investigated methods for 

localizing CI electrodes in CTs (Braithwaite et al., 2016, Bennink et al., 2017). Bennink et 

al. proposed a method for localizing closely-spaced arrays by using the a-priori knowledge 

of the CI array geometry. Braithwaite et al. proposed a method for localizing distantly-

spaced arrays in CTs by using spherical measures. However, both of the two methods 

require manual initialization. Thus, they cannot be directly adopted by IGCIP for large-scale 

clinical use.

The graph-based path finding method (GP) we present in this article is designed to localize 

individual electrodes in distantly-spaced arrays. It builds upon and substantially improves a 

limited graph-based method (lGP) (Noble and Dawant, 2015) proposed by our group. In 

Section 2, we describe this method in detail. In Section 3, we present the localization results 

of GP, lGP and a preliminary implementation of GP (pGP) (Zhao et al., 2017) that does not 

provide sub-voxel accuracy. This is done on a large-scale dataset of clinically acquired CT 

images of subjects implanted with 4 different types of CI arrays. In Section 4, we analyze 

the results generated by GP, lGP, and, pGP. In Section 5, we summarize our work and 

discuss possible directions for extending it.

2. Methods

2.1 Dataset

In Appendix A, we show the geometric models for three representative types of distantly-

spaced electrode arrays, where distances between contacts were determined using publicly 

available documents provided by the manufacturers when available and otherwise were 

found by direct measurement using a surgical microscope and digital calipers. In Table 1, the 

specifications of the distantly-spaced CI electrode arrays included in this study are 

summarized. Table 2 lists the datasets we use in this study. Dataset 1 consists of whole head 

CTs of 177 patients from an IRB-approved adult cochlear implant imaging database at 

Vanderbilt University. Among these 151 are eCTs and the remaining 26 are lCTs. 144 of the 

151 eCTs are acquired with a Xoran xCAT® flat panel scanner at the Vanderbilt University 

Medical Center (VUMC). The typical voxel size for Xoran eCTs is 0.4 × 0.4 × 0.4mm3. The 

remaining 7 eCTs are acquired with various scanners at various institutions. The typical 

voxel sizes for these 7 eCTs is 0.28 × 0.28 × 0.35mm3. The 26 lCTs are also acquired with 

various conventional scanners at various institutions. The typical voxel size for lCTs is 0.23 

× 0.23 × 0.34mm3. The coarsest voxel size for lCT in our dataset is 0.46 × 0.46 × 0.50mm3. 

The scanners that are used to acquire the CTs above include Xoran xCAT, Siemens 

Somatom Definition AS, Siemens Somatom Force, Siemens Sensation 64, Siemens 

Somatom Emotion 16, Philips iCT 128, Philip Brilliance 64, Philips Mx8000 IDT16, Philips 
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Comer-256, GE LightSpeed VCT, and GE Medical System BrightSpeed. Since our method 

includes several parameters, we randomly select 52 CTs from Dataset 1 that contain 

different types of electrode arrays for a parameter tuning process. The rest of the 125 CTs 

from Dataset 1 are used to validate the localization accuracy of our proposed method. Since 

we have only 7 eCTs and 26 lCTs acquired with scanners other than Xoran xCAT, we 

include 1 out of these 7 eCTs and 2 out of these lCTs in the training dataset. The rest of the 

6 eCTs and 24 lCTs from other scanners are included in the testing dataset to confirm the 

ability of our proposed method to generalize to other scanners and acquisition parameters. In 

Dataset 1, an image processing expert with more than 4 years of experience with cochlear 

implant electrode localization manually localized all of the electrodes three times. Among 

the three sets of manual localization results, we randomly select two and average them to 

serve as the ground truth localization results. The remaining third manual localization result 

is used to estimate the rater’s consistency error (RCE) defined as the distance between the 

ground truth and the third localization.

Dataset 2 consists of 14 CTs of a cochlear implant imaging phantom. We use Dataset 2 to 

directly evaluate the robustness of GP to various acquisition parameters (Chakravorti, et al., 

2017). The phantom was created using a cadaveric skull implanted with CIs in both left 

(AB1) and right (AB2) ears. For each side, we have acquired 14 CT scans with a range of 

acquisition parameters (the HU range, resolution, dose, and type of the implanted arrays) 

and with different scanners. For this data set, a high-dose, high-resolution, extended HU 

scan was used to create the ground truth. Three experts, including two image processing 

experts and one radiologist, provided a total of 10 sets of manual localization results for the 

high-resolution volume that were averaged to create the ground truth. In our previous study 

(Chakravorti, et al., 2017), we found mean inter-rater differences were 0.06 ± 0.03mm. 

Because we found in this multi-rater study that inter-rater variability in electrode localization 

is low we relied on a single rater to define the ground truth for Dataset 1. For each side in the 

13 other CT images of Dataset 2, multiple (three or more) expert localizations were averaged 

to produce a localization that represents the best possible localization achievable by an 

expert given the quality of that particular CT image. Comparing this expert localization to 

the ground truth permits measuring errors that are most likely due to the quality of the target 

image, i.e., the image-based localization error (IL), whereas comparing the automatic 

localization to the ground truth provides an estimate of the total error including errors due to 

image quality as well as to the algorithm. More details on this analysis can be found in our 

previous study (Chakravorti et al., 2017).

2.2 Overview

The workflow of GP, our proposed method, is outlined in Figure 3. (1) We locate the volume 

of interest (VOI) that contains the cochlea region by registering the whole head CT to a 

reference image. (2) Next, we up-sample the VOI and the subsequent procedures are 

performed on the VOI. (3) Then, we determine the value of a set of parameters that will be 

used in the following steps using a-priori knowledge of the geometry of the array model. We 

call these parameters electrode spacing distance (ESD)-based parameters. As has been 

shown in Table 1, the distances between individual electrodes are known for each model. For 

a specific electrode array, we denote the distance between the centers of the ith and the (i
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+1)th electrodes as Di and we define {Di} as the set of inter-electrode distances. We then 

define M sets of ESD-based parameters associated with this array corresponding with the 

{dm,m=1,..,M} unique distance values in {Di}. For example, an AB2 array (shown in 

Appendix A) has M = 2 different ESDs, d1 = 2.5mm and d2 = 1.1mm because D1 =2.5mm 

and D2 = D3 = ⋯ = D16 = 1.1 mm. ESD-based parameter values are used to tune filters or 

detection thresholds and produce M feature images, each optimized to detect electrodes 

separated by the corresponding distance di. (4) Next, we identify the regions-of-interest 

(ROIs) that contain voxels occupied by the CI electrodes by using the M feature images. (5) 

Then, we perform a voxel thinning method on each of the ROIs to extract the medial axis 

points as candidates of interest (COIs). At this stage, COIs consists of voxels occupied by 

electrodes and false positive voxels. (6) Once the COIs are extracted, we perform a coarse 

path-finding algorithm to find a fixed-length candidate path linking N COIs that minimizes a 

cost function to coarsely localize the electrodes. (7) Finally, we use a second path-finding 

algorithm to locally refine the location of each individual coarsely localized electrode. Each 

of these steps are detailed in the following subsections. In the remainder of this article the 

value of all the parameters denoted with Greek letters are determined through a parameter 

tuning process described in subsection 2.6.

2.3 COI generation

The first step in our method is to identify the VOI that contains the cochlea region (a local 

region ~30cm3 around the cochlea). We achieve this by automatically registering (Zhang et 

al., 2017a) a reference image where the VOI bounding box is defined to the target CT. After 

determining the VOI, we up-sample it to a voxel size of 0.1 × 0.1 × 0.1mm3 and then 

compute a feature image If based on it. The feature image If is used for generating the ROIs 

and is computed as:

I f (v) = λB(dm)
IB(v) − TB(αB % )

TB(αB % ) + λI(dm)
I(v) − T I(αI % )

T I(αI % ) (1)

where I is the intensity image of the VOI, IB is the response to a blob filter applied to the 

VOI that is inspired by Frangi’s vesselness filter (Frangi et al., 1998). As does Frangi, we 

use the value of the three eigenvalues (L1, L2 and L3) of the 3 × 3 Hessian matrix at a voxel 

v to define the filter:

IB(v) =
B1(v) ⋅ B2(v) ⋅ B3(v), L1, L2, L3 < 0
0, otherwise

, (2)

The three terms in Eqn. (2) are defined as B1 = 1 − exp −
∑i = 1

3 Li
2

S1
2 , 

B2 = exp −
r12 + r23 + r13

S2
, and B3 = 1 − exp −

Lmin
S3

, where rij = ∣Li – Lj∣, Lmin = min(−L1, 

−L2, −L3), S1 = TI(αI), S2 = 5000, S3 = 40000. In Eqn. (1), TI(αI%) is a function which 
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takes a percentage value αI% as input argument and generates an intensity threshold applied 

to I that corresponds to the top αI% of the cumulative histogram. S2 and S3 were empirically 

selected. The term B1 enhances the voxels with high intensity. The terms B2 and B3 enhance 

the voxels that have spherical structures. The scales for our blob filter are selected as [0.2, 

0.4] mm with a step of 0.04mm, which is the typical range for the CI electrode radius. In 

Eqn. (1), as is TI(αI%), TB(αB%) is a function that generates a threshold applied to IB that 

corresponds to the top αB% of the cumulative histogram of IB. λI(dm) and λB(dm) are 

functions of the ESD-based parameters dm that return two weighting scalars. Because the 

weighting scalars returned by λI(dm) and λB(dm) are related to dm, our method allows 

different weighting scalars to be assigned to the intensity and the blob filter response of the 

VOI depending on the spacing between electrodes. This is important because, for closer 

electrodes, heavier reliance on the blob filter image is necessary to differentiate electrodes. 

For more distant electrodes, the more reliable intensity image can be emphasized in the cost 

function and the blob filter image is less important. Thus, λI and λB are defined as:

λI(dm) = ( − κIdm + βI)H( − κIdm + βI), (3)

λB(dm) = (κBdm − βB)H(κBdm − βB), (4)

where βI, κI βB, κB are positive weighting scalars. H(·) is the Heaviside function.

Each feature image If created with the corresponding dm is then thresholded at 0. The 

thresholded regions are the ROIs for electrodes with a ESD value dm. Next, we apply a voxel 

thinning method (Bouix et al., 2005) to the ROIs to generate the COIs associated with dm. 

For each ROI, the voxel thinning method generates a series of points that are ordered 

sequentially as medial axis lines. Since we have up-sampled the VOI before generating 

feature images, ROIs, and COIs; the COIs we generate also have higher resolution than the 

COIs that would be generated by using the ROIs produced by the original VOI. Figure 4 

shows the difference between medial axis points generated by the voxel thinning method 

simply on the thresholded VOI without up-sampling and the medial axis points generated by 

our voxel thinning method on the up-sampled VOI. As can be seen, by up-sampling the VOI, 

our method permits to generate COIs with sub-voxel resolution. Among the COIs generated 

by using the up-sampled VOI (magenta), there exist candidate points that are closer to the 

actual locations of implanted electrodes (blue) than the COIs generated at voxel resolution 

(green). By up-sampling the VOI to a resolution higher than 0.1 × 0.1 × 0.1mm3, we could 

generate COIs with even higher resolution. However, we found empirically that the selected 

resolution leads to an adequate resolution for the COIs with an acceptable computational 

efficiency.

For a CT of a CI recipient implanted with an array with M ESD values {dm,m=1,..,M}, GP 

generates M sets of ROI groups, one for each ESD value. For each ROI, one set of COIs is 

generated. The complete set of COIs for the M ESD values are denoted as {C}d1, {C}d2, … , 

{C}dM. We denote a COI that is the kth medial axis point on the medial axis line of the jth 
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ROI in the mth ROI group as cm
j, k. These COIs serve as the candidate nodes in a graph search 

problem used to coarsely localize the individual electrodes. In the following descriptions, we 

note p as a candidate path, pi as the ith COI on the path p, and {C}dm
j  as the set of COIs that 

are on the medial axis line of the jth ROI in the mth ROI group associated with dm.

2.4 Coarse path-finding algorithm

The coarse path-finding algorithm aims at finding a fixed-length path of N COIs 

representing the electrodes on the array, where N is the number of the electrodes on the 

array. While a standard technique such as Dijkstra’s algorithm (Dijkstra, 1959) is typically 

used for path-finding problems because it guarantees finding a globally optimum solution, 

we instead use a custom path-finding algorithm that provides no such guarantee because it 

permits using non-local geometric-based constraints during the search. At each iteration of 

our proposed path-finding algorithm, a grow stage and a prune stage are included. At the 

first iteration, the algorithm uses every node in {C}D1 as a seed COI representing a 

candidate path that are each of length 1 in a candidate path group {p}. The candidate path 

group {p} is used to store the candidate paths during the path-finding algorithm. At the ith 

iteration, in the grow stage, each candidate path in {p} is grown into a new set of candidate 

paths by connecting each of the “reachable” COIs in {C}Di to it. Reachability of a COI to a 

candidate path is defined in Appendix B. The new set of candidate paths replace {p} before 

the prune stage. Because the number of candidate paths in {p} would grow exponentially at 

each iteration and the problem would become computationally intractable if left unchecked, 

we use a prune stage to reduce the set of candidate paths after the grow stage. This is done 

by computing at each iteration the value of a candidate path cost function and keeping the 

ηmax best candidate paths in {p} in the prune stage. The cost function consists of a shape-

based cost term and an intensity-based cost term, which capture the geometric and intensity 

features of the electrode arrays in clinical CTs. After N-1 iterations, {p} consists of 

candidate paths of length N, and each node in these paths corresponds to a candidate 

electrode position. Node positions of the path with the lowest cost are used as coarse 

electrode positions. Figure 5 shows a grow stage step for one candidate path with 3 

reachable COIs. Among the three reachable COIs for path p, the path formed by adding c2 

leads to the lowest overall cost.

At the ith iteration, candidate path p has i – 1 COIs. The cost for adding a new COI c into 

path p is:

CO1(c, p) = ρCI1(c) + CS1(c, p) (5)

where ρ is a weighting scalar to specify how much we rely on the intensity-based term 

CI1(c) relative to the shape-based cost term CS1(c, p). N is the total number of electrodes in 

the array. The intensity based cost term CI1(c) is defined as:
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CI1(c) = w ⋅ μI
Imax − I(c)

Imax
+ μB

IBmax − IB(c)
IBmax

+ μV
IVmax − IV(c)

IVmax
, (6)

where I(c), IB(c), and IV(c) are the image intensity, blob filter response, and vesselness filter 

response at COI c; and Imax, IBmax, IVmax are the maximum values of those images for all 

the COIs, respectively. The blob filter is as described in Eqn. (2). The vesselness filter is 

Frangi’s vesselness filter (Frangi et al., 1998) with a scale of 0.25mm. μI = 1, μB = λB, and 

μV = λI are weighting scalars. We include the image intensity because voxels occupied by 

metallic electrodes are usually assigned high intensity. The blob filter response is included 

because the electrodes often have a blob-like appearance. When dm increases, IB becomes 

more reliable and μB increases. We also include the vesselness filter response because the 

electrodes sometimes have a tubular appearance if there is not much contrast between them 

in CT images. When dm decreases, IV becomes more reliable and μV increases. w is a 

multiplier we use to punish solutions for which the first electrode is selected as a COI with 

low blob filter response. We do so to capture the fact that the first electrode usually has a 

high blob filter response because it only has a neighbor in one direction. At the ith iteration, 

w is defined as:

w =
100, i = 1 and IB(c) < TB(αB′ % )
1, otherwise

, (7)

where TB(αB′ % ) is a function that defines a threshold value applied to IB that corresponds to 

the top αB′ % of the cumulative histogram of the blob filter response. The value w at the first 

iteration is empirically determined with the heuristic that the most basal electrode is usually 

inserted in a shallow position of the cochlea, which makes its intensity-based feature 

obvious. Next, the shape-based cost term CS1(c, p) evaluates the geometric features of a 

candidate path p when a COI c is added. It is defined as:

CS1(c, p) = μdCd c, pi − 1 + μs Ca c, pi − 1, pi − 2 + Cins c, pi − 1 (8)

where Cd(·), Ca(·), and Cins(·) are the distance-based, smoothness-based, and the angular 

depth of insertion (DOI) based cost terms, respectively. The first term Cd(c, pi–1) is defined 

as:

Cd(c, pi − 1) = ∣ dist(c, pi − 1) − Di − 1 ∣ , (9)

μd =
μd1, if dist(c, pi − 1) < Di − 1

μd2, if dist(c, pi − 1) ≥ Di − 1
(10)
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where dist(c, pi–1) is the Euclidean distance between a COI c to the endpoint of a candidate 

path p. Eqn. (9-10) punish the candidate path from growing an edge that is shorter or longer 

than the expected distance. Ca(c, pi–1, pi–2) is determined as:

Ca(c, pi − 1, pi − 2) = (∠(c, pi − 1, pi − 2) − ∠i − 1)H(∠(c, pi − 1, pi − 2) − ∠i − 1), (11)

where H(·) is the Heaviside function, ∠(c, pi–1, pi–2) is the bending angle formed by adding 

c to the last two endpoints pi–1, pi–2 of an existing candidate path p and is defined as:

∠(c, pi − 1, pi − 2) = 1 −
(c − pi − 1) ⋅ (pi − 1 − pi − 2)

dist(c, pi − 1) ⋅ dist(pi − 1, pi − 2) (12)

and ∠i − 1 is a heuristically selected threshold bending angle value. Eqn. (11) punishes paths 

with bending angles that are sharper than the threshold value. From the ground truth 

localization results in our training dataset, we observed that (1) the electrodes inserted 

deeper in the cochlea have a sharper bending angle than the electrodes that are inserted 

shallower because the curvature of the cochlea increases with increasing DOI, and (2) arrays 

from the MD family have sharper bending angles than arrays from the AB family due to a 

larger spacing distance between electrodes for MD arrays. Thus, we determine ∠ values for 

arrays from AB (∠AB( ⋅ )) and MD (∠MD( ⋅ )) families separately. ∠AB( ⋅ ) and ∠MD( ⋅ ) are set 

as:

∠AB(i) =
0.30 , i ≤ EHalf
0.59 , i > EHalf

, (13)

∠MD(i) =
0.56 i ≤ EHalf
1.27 , i > EHalf

, (14)

where EHalf = N
2  is used to empirically distinguish the electrodes that are inserted deeply 

versus shallowly in the cochlea. The values in Eqn. (13) and Eqn. (14) were selected as 

130% of the maximum bending angles observed among training AB and MD arrays when i 
≤ EHalf and i > EHalf. The DOI cost Cins(c, pi–1) is defined as:

Cins(c, pi − 1) = H DOI(pi − 1) − DOI(c) + H ∣ DOI(c) − DOI(pi − 1) ∣ − 180° (15)

where DOI(c) is the angular depth of insertion value for COI c. As the cochlea has a spiral 

shape with 2.5 turns, the depth of any position within the cochlea can be quantified in terms 

of an angle from 0 to 900 degrees. To obtain the DOI(·) values, we register a pre-
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implantation CT, in which the intra-cochlear anatomy is segmented, to our post-implantation 

target CT. For recipients that do not have pre-implantation CTs, our group also has 

developed a method to segment the intra-cochlear anatomy from post-implantation CTs 

directly (Reda et al., 2014). These two methods are used to generate a DOI map for each 

individual voxel in the post-implantation CT. The first term in Eqn. (15) punishes paths in 

which a newly added COI c has a DOI(c) value that is smaller than the endpoint pi–1 on the 

path p. The second term in Eqn. (15) punishes adding a COI c into an existing path p when 

the COI c is more than a half turn (180°) ahead or behind the endpoint of p. The DOI term 

constrains the candidate path to grow in the correct direction and to not cross two turns of 

the cochlea. We have observed that in some training cases, several electrodes fall on the 

boundary of two turns of the cochlea and using the nearest neighboring voxel of those COIs 

for DOI estimations can be inaccurate. We have designed a solution for the computation of 

the DOI cost term that is robust to boundary COIs and these details are presented in 

Appendix C.

With the cost function defined above, GP runs the first path-finding algorithm to coarsely 

localize the location of the electrodes. Then, the candidate path with the lowest overall cost 

is selected as the coarsely localized electrode array.

2.5 Path refinement

The process described in sub-section 2.4 coarsely localizes the electrodes. The second path 

finding procedure is used to refine the coarse result in a local region around each coarsely 

localized electrode. In this step, the method defines a set of COIs {c}i around each coarsely 

localized electrode pi by sampling a fine rectangular grid of points (Shown in Figure 6). The 

set of candidate COIs around the ith coarsely localized electrode is defined as:

{c}i = pi + φq[x, y, z]
x, y, z ∈ [ − φr, φr] (16)

In the path refinement algorithm, our method aims at localizing N electrodes after N 
iterations. We use a candidate path group {p} which is similar to the one being described in 

sub-section 2.4 to store the candidate paths during the path finding algorithm. At the first 

iteration, all the nodes in {c}1 are treated as seed nodes which represent candidate paths with 

length 1. At the ith iteration, the method grows the candidate paths by adding the candidate 

nodes {c}i to the existing candidate paths in the candidate path group (Shown in Figure 6). 

Then the method prunes the candidate path group by keeping only ηmax2 paths with the 

lowest cost in the group after each iteration. The cost function to evaluate the quality of a 

new candidate path constructed by adding a COI c to an existing candidate path p consists of 

an intensity-based cost term and a shape-based cost:

Cost2(c, p) = CI2(c) + CS2(c, p) (17)

The intensity-based cost term CI2(c) is defined as:
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CI2(c) = − φIGσ I(c) + φBIB(c) (18)

where Gσ(I(c)), and IB(c) are the Gaussian filter response, and the blob filter response at c, 

respectively, σ is the scale of the Gaussian filter. The shape-based cost is defined as:

CS2(c, p) = ∣ dist(c, p) − Di − 1 ∣ ⋅
φd1, dist(c, p) < Di − 1
φd2, dist(c, p) ≥ Di − 1

(19)

where dist(c, p) is the Euclidean distance between node c to the endpoint electrode on path 

p. After N iterations, the path with the lowest overall cost is selected as the final localization 

result generated by GP.

2.6 Parameter tuning for GP

The parameter tuning process was performed by using the CTs in our training dataset. The 

initial values of the parameters were heuristically determined. Then, parameters were 

optimized sequentially and iteratively until a local optimum was reached for each parameter 

with respect to the mean localization errors in the training dataset. The parameters used in 

the coarse localization step were optimized first and then the parameters used in the 

refinement step were optimized. After determining the optimized values of all the 

parameters, we fixed those parameter values and performed validation study of the GP on 

the testing dataset.

2.7 Evaluation of methods

In our validation study, we compared the performance of the proposed method GP with the 

baseline method lGP (Noble and Dawant, 2015) and a preliminary implementation of GP 

(pGP) (Zhao et al., 2017) on our testing dataset in Dataset 1 with 125 clinical CTs implanted 

with different types of distantly-spaced electrode arrays. The baseline method lGP relies 

solely on image intensity of the VOI to generate ROI and COIs. Because of this limitation, 

we expect it to generate less accurate results for most eCTs and unacceptable results for 

most 1CTs because the false positive COIs in 1CTs are assigned the same maximum 

intensity as the true positive COIs. pGP is a preliminary implementation of GP. It uses a set 

of two fixed weighting scalars (λB and λB in Eqn. (1)) to generate feature images for ROIs 

and COIs generation. For 1CTs, to reduce false positives among COIs pGP performs image 

opening on the ROIs with an empirically selected kernel size, which may accidentally 

remove true positive COIs. With GP, a cost function term is used as a soft-constraint so that 

true positive COIs are not eliminated. In contrast to lGP and pGP, GP generates COIs with 

sub-voxel resolution, which should permit more accurate results with the subsequent path-

finding algorithms. To evaluate the difference between electrode localization methods, we 

performed a paired t-test with Bonferroni correction on the mean localization errors 

generated by lGP, pGP, GP and RCE on all the possible pairs. We visually confirmed that 

these data approximately form normal distributions with different means to ensure the usage 

of t-test is appropriate.
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We used Dataset 2 to evaluate the localization robustness of all the automatic electrode 

localization methods to different CT acquisition parameters and the different models of CI 

electrode arrays. We performed paired t-tests with Bonferroni correction on the mean 

localization errors generated by lGP, pGP, GP, and IL on all the possible pairs to evaluate the 

statistical differences among them.

3. Results

3.1 Parameter tuning

Table 3 lists the parameter values after the tuning process. To show the effectiveness of the 

parameters we selected, the parameter sweeping procedure is visualized in Figure 7 with 

respect to the mean localization errors in log-scale. Each parameter was swept from 0 to the 

double of its final selected value with uniform step size. Two exceptions are ηmax and ηmax2. 

For ηmax and ηmax2, we start by setting them as 1 because the two path-finding algorithms 

need to store at least one candidate path.

3.2 Electrode localization accuracy

We run GP, lGP, pGP on a standard Windows Server PC [Intel (R), Xeon (R) CPU X5570, 

2.93 GHz, 48GB Ram]. The average running time for GP from CT registration to electrode 

localization is ~40 seconds, which is longer than pGP (~8 seconds) and lGP methods (~5 

seconds). GP has a longer run time because it up-samples VOIs to generate COIs with sub-

voxel resolution. This COI generation process takes ~32 seconds. The two path-finding 

algorithms in GP take ~8 seconds.

We define a “failure” as a case for which a method fails to find a fixed-length path from the 

COIs it generates or for which the method generates a solution that has a maximum error 

that is larger than one voxel diagonal. Among 125 clinical CTs in our testing dataset, lGP, 

pGP, and GP fails for 74, 47, and 5 cases, respectively. One major reason for the methods to 

fail is that COIs cannot be produced for one or more electrodes, and thus the subsequent 

coarse path-finding algorithm is not able to find a fixed-length path with N COIs 

representing the electrodes on the array that obeys the hard reachability constraints. Among 

the failures by lGP, pGP, and GP, 6, 13, and 2 cases are due to this reason, respectively. 

Figure 8a shows the quantitative analysis of the localization results generated by lGP, pGP, 

GP, and the rater’s consistency errors (RCEs) in boxplots. Besides the cases for which no 

path could be found, the proposed method generates coarse localization results with a mean 

error of 0.15mm and final localization results with a mean error of 0.12mm. The mean of 

GP’s final localization error is close to the mean RCE error, which is 0.09mm. Figure 8b 

shows the distribution of the number of cases that have localization errors that fall into the 

intervals [0, 25%), [25%, 50%), [50%, 75%), [75%, 100%), and larger than or equal 100% 

of the voxel diagonal, as well as the failure cases. As can be seen from Figure 8b, GP 

generates 120 out of 125 (96%) localization results that have maximum errors within one 

voxel diagonal, which is close to the RCE (100%) and outperforms pGP (58%) and lGP 

(41%). Example results of the GP, lGP, and pGP methods are shown in Figures 9 and 10.
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The t-test values obtained when comparing the mean localization errors of GP, lGP, pGP and 

RCE are as follows: 8.36 × 10−12 for lGP-pGP, 1.07 × 10−15 for lGP-GP, 3.21 × 10−16 for 

lGP-RCE, 2.20 × 10−8 for pGP-GP, 8.16 × 10−9 for pGP-RCE, and 1.24 × 10−1 for GP-RCE. 

These results show that the results generated by GP are significantly different from those 

obtained with lGP and pGP but are not significantly different from RCE.

3.3 Robustness to acquisition parameters

Table 4 lists the mean localization errors of the automatic methods along with the image-

based localization error for Dataset 2. Five results from lGP and three results from pGP were 

not included in these results because they were too inaccurate and could lead to spurious 

inferences. From Table 4, we find that among GP, lGP, and pGP, GP generated the electrode 

localization results with the lowest mean localization error for all groups of CT images. The 

error of GP is close to the image-based localization error IL. From the t-test results, we 

found that both lGP and pGP add significant algorithmic errors beyond the image-based 

localization errors for both AB1 and AB2, which is not unexpected. However, the automatic 

localization error obtained with GP is not significantly different from the image-based 

localization errors (IL).

4. Discussion

4.1. Sensitivity of parameters

From Figure 7a, we observe that every parameter contributes to the coarse localization step 

and setting any of them to 0 increases the mean localization error. This indicates that the cost 

terms we have designed are useful, and the parameters we selected are effective in achieving 

low localization errors. Among the parameters in the coarse path-finding algorithm, αI, αB, 

βI, βB, κI, κB and μd2 are sensitive because adjusting them from their selected values results 

in much larger errors. Aside from μd2, the other sensitive parameters are all related to feature 

image construction and COIs generation, which shows that the COI generation step plays a 

crucial role for the following path-finding algorithms to localize the array. ηmax, ρ, αB′ , μd1, 

γ1, γ2, and μS are not sensitive around the selected values. However, using the selected 

values for those parameters leads to a local mean localization error minimum on the training 

dataset in our parameter tuning process. From Figure 7b, we can observe that the refined 

localization errors are relatively flat around the selected values of each individual 

parameters. The most sensitive parameter is the scale σ for the Gaussian blur filter. The 

other parameters are not sensitive around their selected values. However, setting any 

parameter as 0 increases the mean localization error on the training dataset.

4.2. Electrode localization accuracy

Figure 9 shows an example case (eCT implanted with an AB2 array) in which the GP 

localization method (panel c) was able to very accurately localize the electrode locations 

among the correct set of COIs, even when some false positive COIs are present. For the 

same case, the lGP method generates an inaccurate result (panel a). This is because the 

threshold selected for generating the ROIs and COIs is not high enough to eliminate many 

false positive voxels in the VOI, and lGP only relies on the image intensity for COIs 
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generation. We also performed pGP on the same case but it fails to generate a result (Figure 

9b). pGP uses the blob filter response to enhance the high intensity blob-like structures in 

the VOI, but because pGP uses a single set of fixed weighting scalars for image intensity and 

blob filter response to construct a feature image rather than ESD-based parameters, the 

method removes some ROIs that have less blob-like features because they are relatively 

closely-spaced. Consequently, the method fails to find a fixed length path with 17 COIs 

representing all the electrodes on the array. GP generates two sets of COIs for two ESD 

values. As can be seen, for d = 0.95mm, the COIs generation relies more on the image 

intensity, which results in more false positives but is less likely to miss electrodes. For d = 

3.0mm, the COIs generation step relies on the blob filter response, which enhances the 

distantly-spaced electrodes that have a more obvious blob-like shape in the CT image. GP 

also up-samples the VOI, which permits the generation of more accurate COIs.

In Figure 10, we show the only 2 cases for which GP fails to generate localization results 

(Shown in Figure 10a-f) and 2 example cases for which GP generate localization results with 

maximum errors more than one voxel diagonal (Shown in Figure 10g-h). These are 

complicated cases for which all the automatic methods fail. Panels (a)-(c) and panels (d)-(f) 

show three sets of localization results generated by GP, pGP, and lGP for two cases 

implanted with AB1 arrays. In Case 1, the CT has abnormal intensity features due to beam 

hardening artifact. Around the most apical electrodes, several false positive voxels are 

assigned similar high intensity values as the voxels occupied by the actual electrodes. 

Meanwhile, the inactive electrode has low intensity and blob filter response. This causes all 

three localization methods to miss the inactive electrode and wrongly select one of the false 

positives as the most apical electrode. In Case 2 shown in Figure 10d-f, the inactive 

electrode lies much closer than usual to the first active electrode because the array is kinked 

between the electrodes. This leads to poor localization results generated by all the three 

methods. Figure 10g-h shows 2 cases on which GP fails to generate a path. This is because 

the electrode arrays in these two cases are folded. The ROIs generated by GP could not 

distinguish the electrodes that are pushed together. These 4 cases indicate our method is not 

robust to extreme cases with severe imaging artifacts or where the array is kinked or folded.

4.3. Robustness to CT acquisition parameters

As is presented in sub-section 3.2, the mean localization errors of GP and IL are close and 

the Bonferroni corrected p value of the paired t-test between them is larger than 0.05. This 

indicates that with GP, we have achieved the best level of localization accuracy that can be 

reasonably expected with these images given the imaging technique employed. The accuracy 

also isn’t unduly affected by the variations of the parameters when compared to the image-

based localization errors. Unlike lGP and pGP, GP does not produce poor localizations in 

case of low resolution or low dose images. The proposed method is thus highly accurate and 

robust to changes in CT acquisition parameters.

4.4. Limitations and future works

One limitation of this study is that the generation of COIs is highly dependent on intensity-

based features. As is shown in Figure 10, abnormal intensity-based features could lead to 

failure or inaccurate localization results. Another limitation of our proposed method is that it 
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is not robust to electrode arrays that are kinked or folded. Future work will be aimed at 

addressing this limitation.

The proposed GP method fully automates the localization of distantly spaced electrodes for 

IGCIP and achieves accurate localization results on most of the CTs in our dataset. This 

enables the translation of IGCIP methods for clinical use by end-users such as audiologists 

who in general are not trained in medical imaging. However, the sensitivity of the 

improvement in hearing outcomes when using IGCIP with respect to the electrode 

localization error remains unknown. In the future, we plan to conduct a prospective clinical 

study to evaluate the sensitivity of IGCIP and hearing outcomes with respect to different 

levels of electrode localization errors (Zhao et al., 2018).

5. Conclusion

In this study, we propose an automatic graph-based method for localizing distantly-spaced 

CI electrode arrays in clinical CTs with sub-voxel accuracy. We use a method to generate 

candidate voxels of interests that are around electrodes at a sub-voxel resolution and use two 

path-finding algorithms to find a fixed-length path whose nodes represent electrodes on the 

array. We perform a parameter tuning process for our proposed method on a training dataset 

with clinical CTs implanted with different types of distantly-spaced arrays. The results of the 

validation studies on a large-scale testing dataset including 125 clinical CTs, and 28 

phantom CTs show the accuracy and robustness of our proposed method. Comparing with 

the other two previously developed methods, our proposed GP achieves the lowest mean 

localization error of 0.12mm and fails to generate localization results with maximum errors 

within one voxel for only 5 cases. Our proposed automatic method generates localization 

results that are not significantly different from the localization results generated by an 

expert. The validation study on 28 CTs acquired from a cochlear implant imaging phantom 

indicate that our proposed method is robust to CT acquisition parameters. The overall 

localization errors of GP are significantly different from the errors of the previously 

developed methods and are close to the rater consistency errors.

To our best knowledge, GP is the most accurate automatic CI electrode localization method 

available. This represents a crucial step for fully automating our IGCIP techniques and 

translating IGCIP into clinical use. It also enables us to conduct comprehensive large scale 

studies on the correlation between hearing outcomes and the intra-cochlear locations of CI 

electrodes.
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Three types of distantly-spaced CI electrode arrays provided by the two major manufacturers

Appendix B. Reachability of a COIs to a candidate path

At the ith iteration, a candidate path p consists of i – 1 COIs. In the grow stage, a COI cm
j, k is 

considered “reachable” for a candidate path p if it obeys the following 5 hard constraints. 

First, it should be such that γ1Di − 1 < dist(pi − 1, cm
j, k) < γ2Di − 1. In this equation, dist(pi–1, c) 

is defined as the Euclidean distance between a COI cm
j, k and the endpoint pi–1 of the 

candidate path p. This constrains the distance between the current endnode of the path and 

the candidate node to be close to the expected a-priori distance Di–1. The second constraint 

imposes that cm
j, k is only reachable for p if Di–1 = dm. This constrains the candidate node to 

belong to the corresponding ESD value. The third constraint imposes that cm
j, k ∉ p, which 

forbids to add a COI to a path if the COI is already in the path, keeping the path from 

looping back upon itself. The fourth constraint imposes that if pi − 1 ∉ {C}Di − 1
j  (the ROI for 

cm
j, k), then it is only permitted to add ci

j, k to p if pz ∉ {C}Di − 1
j , ∀Z ∈ [1, i – 2]. This 

constraint does not allow the path to return to the ROIs that the candidate path p has already 

visited. The last constraint imposes that if pi–1, pi–2 ∈ {C}Di − 1
j  and dm = Di–1, cm

j, k is only 

reachable for p if pi–2, pi–1 and cm
j, k are monotonically ordered in the medial axis line 

{C}Di − 1
j . This constraint prevents the path from looping back within an ROI, since COIs 

belonging to a ROI should be ordered identically to the ROI’s medial axis.
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Figure C.1. 
One example of the boundary problem when computing DOI(·). The 11th electrode falls on a 

boundary between two turns of the cochlea. On the right side, the color-coded angular DOI 

map around the electrode is shown. The DOI map is generated by resampling a 3 × 3 × 3 

voxel rectangular grid around the closest voxel to the 11th electrode.

Appendix C. Solution for the computation of the DOI cost term of the COIs 

on the boundary of two turns of the cochlea

During the COIs generation step, due to (1) the registration errors between pre- and post-

implantation CTs, (2) the localization errors for intra-cochlear anatomy segmentation, and 

(3) the limited accuracy of voxel thinning method for generating COIs from ROIs, the DOI 

values of the COIs close to the boundary of two turns of cochlea could be inaccurately 

estimated. Figure C.1 shows one example that is implanted with a MD2 array. In Figure C.1, 

we label the DOI(·) values for each individual ground truth location of the electrodes. As we 

can see, the 11th electrode is on the boundary between the second turn and the first turn of 

cochlea. The DOI of the COIs for the 11th electrode would be estimated incorrectly if using 

a nearest neighbor approach. In the path-finding algorithm, this will lead to a large cost 

value when growing a path from the 10th electrode to the COIs for the 11th electrode. To 

solve this issue, for each COI, we find the maximum and minimum (DOIMax and DOIMin) 

among the DOI values for each voxel in a 3 × 3 × 3 neighborhood around its nearest 

neighbor voxel. If DOIMax – DOIMin ≥ 180°, the COI is near a border and so we create an 

additional “phantom” COI for the original COI at the same location in the image. The DOI 

values of the phantom COI and the COI are assigned DOIMax and DOIMin, respectively. 

Aside from DOI values, the phantom COI has the same information as the original COI. 

Thus, the path-finding algorithm has equal chance to visit the phantom COI and the original 

COI and evaluate the cost value for the candidate path with two estimates of the DOI values.
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HIGHLIGHTS

• Cochlear implant programming relies on the intra-cochlear locations of 

electrodes

• An automatic method to segment electrode arrays in post-implantation CTs

• It uses two graph-based path-finding algorithms to segment CI electrodes in 

CTs

• The accuracy of the method is close to the manual localizations produced by 

experts

• The method is robust with respect to various CT acquisition parameters
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Figure 1. 
Visualization of the intra-cochlear anatomy and CI electrode array. Panel (a) shows the scala 

tympani in red and the modiolus in green. The modiolus is the interface between the 

auditory nerves of the SG and the intra-cochlear cavities. Panel (b) illustrates the stimulation 

patterns produced by electrodes on one array. The modiolar surface is color-coded with the 

tonotopic place frequencies of the SG in Hz.
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Figure 2. 
Shown are examples of distantly (a) and closely (b) spaced arrays in eCTs. Panel (c) shows 

an example of a distantly-spaced array in a lCT.
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Figure 3. 
Workflow of GP.
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Figure 4. 
Quality comparison between the COIs generated by our method on the feature image at sub-

voxel resolution and at voxel resolution on the VOI.
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Figure 5. 
A simplified example of the coarse path-finding algorithm in GP. At the ith iteration, the 

existing path p consisting of i-1 nodes has 3 reachable COIs c1, c2, and c3. The path-finding 

algorithm computes the shape-based cost and intensity-based cost for the three COIs, and 

adding ci
2 to the existing path will result in lowest cost. Compared to c2, c1 has acceptable 

shape-based features but its intensity-based cost is high. Although c3 has the lowest 

intensity-based cost, the sharp turn formed by c3 and p makes its shape-based cost high.
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Figure 6. 
Visualization of the path-refinement process at iteration 13 for an existing candidate path. 

This path grows by adding all the COI nodes (the re-sampled rectangular grids) around the 

13th electrode to it. The prune step keeps only ηmax2 candidate paths with lowest costs for 

the next iteration.
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Figure 7. 
Visualization of errors when testing each parameter used in the coarse path-finding 

algorithm (a) and the path refinement (b) in GP. Each parameter is tested over a range from 0 

to the double of the optimal values.
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Figure 8. 
Panel (a) shows the boxplot (in log-scale) of mean (blue) and maximum (magenta) coarse (I) 

and refined (II) localization errors of the automatically generated results by lGP, pGP, GP 

and the rater’s consistency errors (RCEs). Panel (b) shows the bar plot of the number of 

cases on which lGP, pGP, GP, and RCE achieves maximum final localization errors lower 

than 25% (blue), lower than 50% (green and blue), lower than 75% (magenta, green, and 

blue), lower than 100% (yellow, magenta, green, and blue), over 100% (red) the length of a 

voxel diagonal. Failure cases where no result could be generated are shown in black.
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Figure 9. 
Visualization of localization results generated by (a) lGP and by (c) GP. In (b), pGP fails to 

generate a fixed-length path as final localization result because the COIs are missing around 

two electrodes.
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Figure 10. 
Panel (a)-(c) and (d)-(f) show localization results generated by GP, lGP, and pGP for two 

cases, respectively. Panel (g) and (h) show two failure cases for GP.
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Table 1.

Specifications of different FDA-approved distantly-spaced CI electrode arrays in our dataset

Manufacturer Brand Total electrodes Electrode spacing distance (mm)

Med-El
Standard (MD1) 12 2.4

Flex28 (MD2) 12 2.1

Advanced Bionics

1J (AB1) 17 (1 inactive electrode) 1.1 and 2.5

Mid-Scala (AB2) 17 (1 inactive electrode) 0.95 and 3.0

Helix (AB3) 18 (2 inactive electrodes) 0.85 and 3.0
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Table 2.

Datasets used in this study

Dataset # Purpose Type of array Number of eCTs Number of lCTs Total number of CTs

Dataset 1 (177 CTs)

Training (52 CTs)

AB1 15 0 15

AB2 9 1 10

AB3 3 0 3

MD1 11 0 11

MD2 12 1 13

Validation (125 CTs)

AB1 19 6 25

AB2 25 7 32

AB3 4 0 4

MD1 17 0 17

MD2 36 11 47

Dataset 2 (28 CTs) Robustness test
AB1 9 5 14

AB2 9 5 14
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Table 3.

The selected values for parameters in GP

Coarse path-finding algorithm Path refinement algorithm

ηmax 1200 ηmax2 500

αI (%) 0.048 (%) ϕq 0.03

αB(°b) 0.028 (%) ϕr 3

βI 2.72 σ 0.275

κI 1.82 ϕI 32

βB 1.14 ϕB 16

κB 1.21 ϕd1 0.6

γ1 0.6 ϕd2 2.5

γ2 1.2

ρ 2.0

αB′ ( % ) 0.007 (%)

μd1 10

μd2 6

μS 450
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Table 4.

Mean localization errors for each image group in mm.

HU range Resolution Dose Array

lCTs eCTs Low Mid Mid High AB1 AB2

lGP 1.59 ± 1.97 0.14 ± 0.10 1.59 ± 1.97 0.15 ± 0.10 1.22 ± 1.83 0.18 ± 0.11 0.50 ± 1.17 0.56 ± 1.22

pGP 0.40 ± 0.42 0.19 ± 0.06 0.20 ± 0.07 0.33 ± 0.36 0.38 ± 0.38 0.17 ± 0.06 0.26 ± 0.27 0.45 ± 0.43

GP 0.13 ± 0.06 0.08 ± 0.05 0.13 ± 0.06 0.08 ± 0.05 0.12 ± 0.06 0.10 ± 0.06 0.10 ± 0.06 0.11 ± 0.07

IL 0.11 ± 0.05 0.07 ± 0.04 0.10 ± 0.06 0.07 ± 0.04 0.10 ± 0.05 0.08 ± 0.04 0.08 ± 0.05 0.14 ± 0.15
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