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Abstract
An out-branching and an in-branching of a digraph D are called k-distinct if each of them has k
arcs absent in the other. Bang-Jensen, Saurabh and Simonsen (2016) proved that the problem of
deciding whether a strongly connected digraph D has k-distinct out-branching and in- branching
is fixed-parameter tractable (FPT) when parameterized by k. They asked whether the problem
remains FPT when extended to arbitrary digraphs. Bang-Jensen and Yeo (2008) asked whether
the same problem is FPT when the out-branching and in-branching have the same root.

By linking the two problems with the problem of whether a digraph has an out-branching
with at least k leaves (a leaf is a vertex of out-degree zero), we first solve the problem of Bang-
Jensen and Yeo (2008). We then develop a new digraph decomposition called the rooted cut
decomposition and using it we prove that the problem of Bang-Jensen et al. (2016) is FPT for all
digraphs. We believe that the rooted cut decomposition will be useful for obtaining other results
on digraphs.
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1 Introduction

While both undirected and directed graphs are important in many applications, there are
significantly more algorithmic and structural results for undirected graphs than for directed
ones. The main reason is likely to be the fact that most problems on digraphs are harder
than those on undirected graphs. The situation has begun to change: recently there appeared
a number of important structural results on digraphs, see e.g. [16, 17, 18]. However, the
progress was less pronounced with algorithmic results on digraphs, in particular, in the area
of parameterized algorithms.

In this paper, we introduce a new decomposition for digraphs and show its usefulness
by solving an open parameterized problem on digraphs by Bang-Jensen, Saurabh and
Simonsen [6]. We believe that our decomposition will prove to be helpful for obtaining further
algorithmic and structural results on digraphs.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of
in-degree zero (out-degree zero). The vertex s is the root of T. A vertex v of an out-tree
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(in-tree) is called a leaf if it has out-degree (in-degree) zero. If an out-tree (in-tree) T is a
spanning subgraph of a digraph D, then T is an out-branching (an in-branching) of D. It is
well-known that a digraph D contains an out-branching (in-branching) if and only if D has
only one strongly connected component with no incoming (no outgoing) arc [3].

A well-known result in digraph algorithms, due to Edmonds, states that given a digraph
D and a positive integer `, we can decide whether D has ` arc-disjoint out-branchings in
polynomial time [15]. The same result holds for ` arc-disjoint in-branchings. Inspired by this
fact, it is natural to ask for a “mixture" of out- and in-branchings: given a digraph D and
a pair u, v of (not necessarily distinct) vertices, decide whether D has an arc-disjoint out-
branching T+

u rooted at u and an in-branching T−v rooted at v. We will call this problem
Arc- Disjoint Branchings.

Thomassen proved (see [2]) that the problem is NP-complete and remains NP-complete
if we add the condition that u = v. The same result still holds for digraphs in which the
out-degree and in-degree of every vertex equals two [7]. The problem is polynomial-time
solvable for tournaments [2] and for acyclic digraphs [8, 10]. The single-root special case (i.e.,
when u = v) of the problem is polynomial time solvable for quasi-transitive digraphs1 [4]
and for locally semicomplete digraphs2 [5].

An out-branching T+ and an in-branching T− are called k-distinct if |A(T+)\A(T−)| ≥ k.
Bang-Jensen, Saurabh and Simonsen [6] considered the following parameterization of Arc-
Disjoint Branchings.

Input: A digraph D, an integer k.
Problem: Are there k-distinct out-branching T + and in-branching T −?

k-Distinct Branchings parametrised by k

They proved that k-Distinct Branchings is fixed-parameter tractable (FPT)3 when D
is strongly connected and conjectured that the same holds when D is an arbitrary digraph.
Earlier, Bang-Jensen and Yeo [9] considered the version of k-Distinct Branchings where T+

and T− must have the same root and asked whether this version of k-Distinct Branchings,
which we call Single-Root k-Distinct Branchings, is FPT.

The first key idea of this paper is to relate k-Distinct Branchings to the problem of
deciding whether a digraph has an out-branching with at least k leaves via a simple lemma
(see Lemma 4). The lemma and the following two results on out-branchings with at least k
leaves allow us to solve the problem of Bang-Jensen and Yeo [9] and to provide a shorter proof
for the above-mentioned result of Bang-Jensen, Saurabh and Simonsen [6] (see Theorem 6).

I Theorem 1 ([1]). Let D be a strongly connected digraph. If D has no out-branching with
at least k leaves, then the (undirected) pathwidth of D is bounded by O(k log k).

I Theorem 2 ([12, 19]). We can decide whether a digraph D has an out-branching with at
least k leaves in time O∗(4k).

1 A digraph D = (V, A) is quasi-transitive if for every xy, yz ∈ A there is at least one arc between x and
z, i.e. either xz ∈ A or zx ∈ A or both.

2 A digraph D = (V, A) is locally semicomplete if for every xy, xz ∈ A there is at least one arc between y
and z and for every yx, zx ∈ A there is at least one arc between y and z. Tournaments and directed
cycles are locally semicomplete digraphs.

3 Fixed-parameter tractability of k-Distinct Branchings means that the problem can be solved by an
algorithm of runtime O∗(f(k)), where O∗ omits not only constant factors, but also polynomial ones,
and f is an arbitrary computable function. The books [11, 13] are excellent recent introductions to
parameterized algorithms and complexity.
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The general case of k-Distinct Branchings seems to be much more complicated. We first
introduce a version of k-Distinct Branchings called k-Rooted Distinct Branchings,
where the roots s and t of T+ and T− are fixed, and add the arc ts to D (provided the arc
is not in D) to make D strongly connected. This introduces a complication: we may end
up in a situation where D has an out-branching with many leaves, and thereby potentially
unbounded pathwidth, but the root of the out-branching is not s. To deal with this situation,
our goal will be to reconfigure the out-branching into an out-branching rooted at s. In order
to reason about this process, we develop a new digraph decomposition we call the rooted cut
decomposition. The cut decomposition of a digraph D rooted at a given vertex r consists of
a tree T̂ rooted at r whose nodes are some vertices of D and subsets of vertices of D called
diblocks associated with the nodes of T̂ .

Out strategy is now as follows. If T̂ is shallow (i.e., it has bounded height), then any
out-branching with sufficiently many leaves can be turned into an out-branching rooted at s
without losing too many of the leaves. On the other hand, if T̂ contains a path from the root
of T̂ with sufficiently many non-degenerate diblocks (diblocks with at least three vertices),
then we are able to show immediately that the instance is positive. The remaining and most
difficult issue is to deal with digraphs with decomposition trees that contain long paths of
diblocks with only two vertices, called degenerate diblocks. In this case, we employ two
reduction rules which lead to decomposition trees of bounded height.

The paper is organized as follows. In the next section, we provide some terminology and
notation on digraphs used in this paper. In Section 3, we prove Theorem 6. Section 4 is
devoted to proving that Rooted k-Distinct Branchings is FPT for all digraphs using
cut decomposition and Theorems 1 and 2. We conclude the paper in Section 5, where some
open parameterized problems on digraphs are mentioned. Due to space constraints, we only
provide a short version of Section 4.3 in the main text. A complete version is available online4.

2 Terminology and Notation

Let us recall some basic terminology of digraph theory, see [3]. A digraph D is strongly
connected (connected) if there is a directed (oriented) path from x to y for every ordered pair
x, y of vertices of D. Equivalently, D is connected if the underlying graph of D is connected.
A vertex v is a source (sink) is its in-degree (out-degree) is equal to zero. It is well-known
that every acyclic digraph has a source and a sink [3].

In this paper, we exclusively work with digraphs, therefore we assume all our graphs, paths,
and trees to be directed unless otherwise noted. For a path P = x1x2 . . . xk of length k−1 we
will employ the following notation for subpaths of P : P [xi, xj ] := xi . . . xj for 1 ≤ i ≤ j ≤ k
is the infix of P from xi to xj . For paths P1 := x1 . . . xkv and P2 := vy1 . . . y` we denote
by P1P2 := x1 . . . xkvy1 . . . y` their concatenation. For rooted trees T and some vertex x ∈ T ,
Tx stands for the subtree of T rooted at x (see Figure 1).

We will frequently partition the nodes of a tree around a path in the following sense
(cf. Figure 1): Let T be a tree rooted at r and P = x1 . . . x` a path from r = x1 to
some node x` ∈ T . The fins of P are the sets {Fxi}xi∈P defined as Fxi := V (Txi) \
V (Txi+1) for i < ` and Fx`

:= V (Tx`
).

I Definition 3 (Bi-reachable Set). A set B in a digraph D is bi-reachable from a vertex r if
for all v ∈ B there exist two internally vertex-disjoint paths from r to v.

4 https://arxiv.org/abs/1612.03607
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Figure 1 Subtree notation Tx for x ∈ T (left) and the fins Fx1 , . . . , Fx` for a path x1 . . . x` in T

(right).

Given a digraph D and a vertex r, we can compute the set of vertices that are bi-reachable
from r in polynomial time using network flows.

3 Strongly Connected Digraphs

Let us prove a simple fact on a link between out/in-branchings with many leaves and k-
Distinct Branchings, which together with a structural result of Alon et al. [1] and an
algorithmic result for the maximum leaf out-branching problem [12, 19] gives a short proof
that both versions of k-Distinct Branchings are FPT for strongly connected digraphs.

I Lemma 4. Let D be a digraph containing an out-branching and an in-branching. If D
contains an out-branching (in-branching) T with at least k+ 1 leaves, then every in-branching
(out-branching) T ′ of D is k-distinct from T .

Proof. We will consider only the case when T is an out-branching since the other case can
be treated similarly. Let T ′ be an in-branching of D and let L be the set of all leaves of T
apart from the one which is the root of T ′. Observe that all vertices of L have outgoing arcs
in T ′ and since in T the incoming arcs of L are the only arcs incident to L in T , the sets of
the outgoing arcs in T ′ and incoming arcs in T do not intersect. J

We will use the following standard dynamic programming result (see, e.g., [6]).

I Lemma 5. Let H be a digraph of (undirected) treewidth τ . Then k-Distinct Branchings
and Single-Root k-Distinct Branchings on H can be solved in time O∗(2O(τ log τ)).

Note that if a digraph D is a positive instance of Single-Root k-Distinct Branchings
then D must be strongly connected as an out-branching and an in-branching rooted at the
same vertex form a strongly connected subgraph of D.

I Theorem 6. k-Distinct Branchings and Single-Root k-Distinct Branchings on
strongly connected digraphs can be solved in time O∗(2O(k log2 k)).

Proof. The proof is essentially the same for both problems and we will give it for Single-
Root k-Distinct Branchings. Let D be an input strongly connected digraph. By
Theorem 2 using an O∗(4k)-time algorithm we can find an out-branching T+ with at least
k + 1 leaves, or decide that D has no such out-branching. If T+ is found, the instance of
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Single-Root k-Distinct Branchings is positive by Lemma 4 as any in-branching T−
of D is k-distinct from T+. In particular, we may assume that T− has the same root as
T+ (a strongly connected digraph has an in-branching rooted at any vertex). Now suppose
that T+ does not exist. Then, by Theorem 1 the (undirected) pathwidth of D is bounded
by O(k log k). Thus, by Lemma 5 the instance can be solved in time O∗(2O(k log2 k)). J

4 The k-Distinct Branchings Problem

In this section, we fix a digraph D with terminals s, t and simply talk about rooted out-
branchings (in-branchings) whose root we implicitly assume to be s (t). Similarly, unless
otherwise noted, a rooted out-tree (in-tree) is understood to be rooted at s (t).

The problem k-Distinct Branchings in which T+ and T− must be rooted at s and
t, respectively, will be called the Rooted k-Distinct Branchings problem. Clearly, to
show that both versions of k-Distinct Branchings are FPT it is sufficient to prove the
following:

I Theorem 7. Rooted k-Distinct Branchings is FPT for arbitrary digraphs.

In the rest of this section, (D, s, t) will stand for an instance of Rooted k-Distinct
Branchings (in particular, D is an input digraph of the problem) and H for an arbitrary
digraph. As noted in the previous section, the case in which s = t implies strong connectivity
and is therefore already solved. Consequently, we will assume that s 6= t in the following.
Let us start by observing what further restrictions on D can be imposed by polynomial-time
preprocessing.

4.1 Preprocessing
Let (D, s, t) be an instance of Rooted k-Distinct Branchings with s 6= t. Recall that D
contains an out-branching (in-branching) if and only if D has only one strongly connected
component with no incoming (no outgoing) arc. As a first preprocessing step, we can decide
in polynomial time whether D has a rooted out-branching and a rooted in-branching. If not,
we reject the instance. Note that this in particular means that in a non-rejected instance,
every vertex in D is reachable from s and t is reachable from every vertex.

Next, we test for every arc a ∈ D whether there exists at least one rooted in- or
out-branching that uses a as follows: since a maximal-weight out- or in-branching for an
arc-weighted digraph can be computed in polynomial time [14], we can force the arc a to be
contained in a solution by assigning it a weight of 2 and every other arc weight 1. If we verify
that a indeed neither appears in any rooted out-branching or in-branching, we remove a
from D and obtain an equivalent instance of Rooted k-Distinct Branchings.

After this polynomial-time preprocessing, our instance has the following properties: there
exists a rooted out-branching, there exists a rooted in-branching, and every arc of D appears
in some rooted in- or out-branching. We call such a digraph with a pair s, t reduced.

Lastly, by the following lemma we may assume that our instance is strongly connected
by incurring a factor of two in the application of Lemma 4.

I Lemma 8. Let (D, s, t) be reduced and let D′ be the digraph obtained from D by adding
the arc ts to it unless ts is already in D in which case D′ = D. Then (D′, s, t) is a positive
instance of Rooted k-Distinct Branchings if and only if so is (D, s, t). Furthermore,
if D′ contains an out-tree (in-tree) with at least ` leaves, then D contains an out-tree (in-tree)
with at least `/2 leaves.

ICALP 2017
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Proof. We may assume that D′ 6= D. For the first claim, simply note that any rooted
out-branching of D′ cannot use the arc ts and the same holds for rooted in-branchings. For
the second claim, assume T is an out-tree in D with ` leaves. Assume ts ∈ T (otherwise the
claim follows trivially). Let T1 and T2 be the two out-trees obtained by deleting the arc ts
from T . Both are out-trees in D and one of them contains at least `/2 leaves, as claimed. J

The first claim of Lemma 8 shows that we may assume that D is strongly connected in
Rooted k-Distinct Branchings. This implies the following simple claim required for
further references.

I Lemma 9. Let D be an input digraph of Rooted k-Distinct Branchings. Then every
rooted out-tree with q leaves can be extended into a rooted out-branching with at least q leaves.

In summary, we enforce the following properties for (D, s, t) by polynomial- time prepro-
cessing:
1. Every arc of D is contained in at least one rooted in-branching or rooted out-branching,
2. D is strongly connected.

4.2 Decomposition and Reconfiguration
We work towards the following win-win scenario: either we find an out-tree with Θ(k)
leaves that can be turned into a rooted out-tree with at least k + 1 leaves, or we conclude
that every out-tree in D has less than Θ(k) leaves. We refer to the process of turning an
out-tree into a rooted out-tree as a reconfiguration. In the process we will develop a new
digraph decomposition, the rooted cut-decomposition, which will aid us in reasoning about
reconfiguration steps and ultimately lead us to a solution for the problem.

To make the notion of a bi-reachable set easier to use, the decomposition will employ a
slightly broader notion as follows.

I Definition 10. Let H be a digraph with at least two vertices, and let r ∈ V (H) such that
every vertex of H is reachable from r. Let B ⊆ V (H) be the set of all vertices that are
bi-reachable from r. The directed block (diblock) Br of r in H is the set B ∪N+[r], i.e., the
bi-reachable vertices together with all out-neighbors of r and r itself.

Note that according to the above definition a diblock must have at least two vertices.
The following statement provides us with an easy case in which a reconfiguration is

successful, that is, we can turn an arbitrary out-tree into a rooted out-tree without losing
too many leaves. Later, the obstructions to this case will be turned into building blocks of
the decomposition.

I Lemma 11. Let Bs ⊆ V (D) be the diblock of s and let T be an out-tree of D whose root r
lies in Bs with ` leaves. Then there exists a rooted out-tree with at least (`− 1)/2 leaves.

Proof. We may assume that r 6= s. In case T contains s as a leaf, we remove s from T for
the remaining argument and hence will argue about the `− 1 remaining leaves.

If r is bi-reachable from s, consider two internally vertex-disjoint paths P,Q from s to r.
One of the two paths necessarily avoids half of the ` − 1 leaves of T ; let without loss of
generality this path be P . Let further L be the set of those leaves of T that do not lie on P .
If r ∈ N+(s), let P = sr.

We construct the required out-tree T ′ as follows: first, add all arcs and vertices of P
to T ′. Now for every leaf v ∈ L, let Pv be the unique path from r to v in T and let P ′v be
the segment of Pv from the last vertex x of Pv contained in T . Add all arcs and vertices
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of P ′v to T ′. Observe that x 6= v as v cannot be in T ′ already. Since Pv and thus P ′v contains
no leaf of L other than v, in the end of the process, all vertices of L are leaves of T ′. Since
|L| ≥ (`− 1)/2, the claim follows. J

Note that the definition of diblocks can be understood in terms of network flows. Let v 6= r.

Consider the vertex-capacitated version of H where r and v both have capacity 2, and every
other vertex has capacity 1, for some v ∈ V (H) \ {r}. Then v is contained in the diblock of
r in H if and only if the max-flow from r to v equals 2 (note that if v ∈ N+(r), then such
a flow exists trivially since arcs have infinite capacity). Dually, by Menger’s theorem, v is
not contained in the diblock if and only if there is a vertex u /∈ {r, v} such that all r-v paths
P intersect u. This has the following simple consequence regarding connectivity inside a
diblock.

I Lemma 12. Fix r ∈ V (H) and let Br ⊆ V (H) be the diblock of r in H. Then for every
pair of distinct vertices x, y ∈ Br, there exist an r-x-path Px and an r-y-path Py that intersect
only in r.

Proof. If r ∈ {x, y}, then clearly the claim holds since every vertex in Br is reachable from
r. Otherwise, add a new vertex z with arcs xz and yz, and note that the lemma holds if and
only if z is bi-reachable from r. If this is not true, then by Menger’s theorem there is a vertex
v ∈ Br, v 6= r, such that all paths from r to z, and hence to x and y, go through v. But as
noted above, there is no cut-vertex v /∈ {x, r} for r-x paths, and no cut-vertex v /∈ {y, r} for
r-y paths. We conclude that z is bi-reachable from r, hence the lemma holds. J

Next, we will use Lemma 12 to show that given a vertex r, the set of vertices not in the
diblock Br of r in H partitions cleanly around Br.

I Lemma 13. Let r ∈ V (H) be given, such that every vertex of H is reachable from r. Let
Br ⊂ V (H) be the diblock of r in H. Then V (H) \Br partitions according to cut vertices in
Br, in the following sense: For every v ∈ V (H) \Br, there is a unique vertex x ∈ Br \ {r}
such that every path from r to v intersects Br for the last time in x. Furthermore, this
partition can be computed in polynomial time.

Proof. Assume towards a contradiction that for v ∈ V (H)\Br there exist two r-v-paths P1, P2
that intersect Br for the last time in distinct vertices x1, x2, respectively. We first observe
that r /∈ {x1, x2}, since the second vertices of P1 and P2 are contained in Br by definition.
By Lemma 12, we may assume that P1[r, x1] ∩ P2[r, x2] = {r}. But then P1 and P2 intersect
for the first time outside of Br in some vertex v′ (potentially in v′ = v). This vertex is,
however, bi-reachable from r, contradicting our construction of Br. Hence there is a vertex
x ∈ Br such that every path from r to v intersects Br for the last time in x, with x 6= r, and
clearly this vertex is unique. Finally, the set Br can be computed in polynomial time, and
given Br it is easy to compute for each x ∈ Br the set of all vertices v ∈ V (H) (if any) for
which x is a cut vertex. J

We refer to the vertices x ∈ Br that are cut vertices in the above partition as the bottlenecks
of Br. Note that r itself is not considered a bottleneck in Br. Using these notions, we can
now define a cut decomposition of a digraph H.

I Definition 14 (Rooted cut decomposition and its tree). Let H be a digraph and r a vertex
such that every vertex in H is reachable from r. The (r-rooted) cut decomposition of H is a
pair (T̂ ,B) where T̂ is a rooted tree with V (T̂ ) ⊆ V (H) and B = {Bx}x∈T̂ , Bx ⊆ V (H) for
each x ∈ T̂ , is a collection of diblocks associated with the nodes of T̂ , defined and computed
recursively as follows.

ICALP 2017
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Figure 2 An example of a rooted cut decomposition.

1. Let Br be the diblock of r in H, and let L ⊆ Br \ {r} be the set of bottlenecks in Br.
Let {Xx}x∈L be the corresponding partition of V (H) \Br.

2. For every x ∈ L, let (T̂x,Bx) be the x-rooted cut decomposition of H[Xx ∪ {x}].
3. T̂ is the tree with root node r, where L is the set of children of r, and for every x ∈ L

the subtree of T̂ rooted at x is T̂x.
4. B = {Br} ∪

⋃
x∈L Bx.

Furthermore, for every node x ∈ T̂ , we define B∗x =
⋃
y∈T̂x

By as the set of all vertices
contained in diblocks associated with nodes of the subtree T̂x.

Figure 2 provides an illustration to Definition 14.

I Lemma 15. Let a digraph H and a root r ∈ V (H) be given, such that every vertex of
H is reachable from r. Then the r-rooted cut decomposition (T̂ , {Bx}x∈T̂ ) of H is well-
defined and can be computed in polynomial time. Furthermore, the diblocks cover V (H),
i.e.,

⋃
x∈T̂ Bx = V (H), and for every node x ∈ T̂ , every vertex of B∗x is reachable from x in

H[B∗x].

Proof. By Lemma 13, the root diblock Br as well as the set L ⊆ Br of bottlenecks and the
partition {Xx}x∈L are well-defined and can be computed in polynomial time. Also note that
for each x ∈ L, r /∈ Xx ∪ {x}, and every vertex of Hx := H[Xx ∪ {x}] is reachable from x

in Hx by the definition of the partition. Hence the collection of recursive calls made in the
construction is well-defined, and every digraph Hx used in a recursive call is smaller than
H, hence the process terminates. Finally, for any two distinct bottlenecks x, y ∈ L we have
V (Hx) ∩ V (Hy) = ∅. Thereby, distinct nodes of T̂ are associated with distinct vertices of H,
|T̂ | ≤ |V (H)|, and the map x 7→ Bx is well-defined. It is also clear that the whole process
takes polynomial time. J

We collect some basic facts about cut decompositions.

I Lemma 16. Let a digraph H and a vertex r ∈ V (H) be given, and let (T̂ , {Bx}x∈T̂ ) be
the r-rooted cut decomposition of H. Then the following hold.
1. The sets {Bx \ {x}}x∈T̂ are all non-empty and partition V (H) \ {r}.
2. For distinct nodes x, y ∈ T̂ , if x is the parent of y in T̂ then Bx ∩ By = {y}; in every

other situation, Bx ∩By = ∅.
3. For every node x ∈ T̂ , the following hold:

(a) If y is a child of x in T̂ , then any arc leading into the set B∗y from V (H) \B∗y will
have the form uy where u ∈ Bx.

(b) If y, y′ are distinct children of x in T̂ , then there is no arc between B∗y and B∗y′ .
In particular, every arc of H is either contained in a subgraph of H induced by a diblock Bx,
or it is a back arc going from a diblock By to a diblock Bx, where x is an ancestor of y in T̂ .
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Proof. For the first claim, the sets Bx \ {x} are non-empty by definition; we show the
partitioning claim. By Lemma 13, for every v ∈ V (H) \ {r} either v ∈ Br \ {r} or there is
exactly one bottleneck x ∈ Br such that v ∈ Xx in the construction of the decomposition.
Also note that in the latter case, v 6= x since x ∈ Br. Applying the argument recursively and
using that the diblocks cover V (H), by Lemma 15, we complete the proof of the partitioning
claim.

For the second claim, the partitioning claim implies that if v ∈ Bx ∩By for distinct nodes
x, y ∈ T̂ , then either v = x or v = y, i.e., v must be a bottleneck. This is only possible in the
situation described.

For Claim 3(b), first consider the diblock Br and the partition {Xx} given by Lemma 13.
We show that for any two distinct sets Xx, Xy of the partition, there is no arc between Xx

and Xy. Suppose for a contradiction that there is such an arc uv, u ∈ Xx, v ∈ Xy. By
Lemma 12, there are paths Px and Py in Br that intersect only in r, and by Lemma 15, there
are paths Pu from x to u in Xx and Pv from y to v in Xy. But then the paths PxPuuv and
PyPv form two r-v paths that are internally vertex-disjoint, showing that v ∈ Br, contrary
to our assumptions. Since the decomposition is computed recursively, this also holds in every
internal node of T̂ .

For Claim 3(a), let uv be an arc such that u /∈ B∗y and v ∈ B∗y . Moreover, let u ∈ Bx′
and v ∈ By′ . By construction of cut decomposition, there is a path P̂ from x′ to y′ in T̂
containing nodes x and y. Let x′′ be the second node in P̂ (just after x′). Thus, there is a
path P from x′′ to v in H containing the vertices of P̂ apart from x′.

Assume that u 6= x′′. Then by Lemma 12, there is an x′-u-path P ′ and an x′-x′′-path P ′′
of H which intersect only at x′. Then x′P ′uv and P ′′P are internally vertex-disjoint paths
from x′ to v. This means that v must be in Bx′ , a contradiction unless x′ = x, u ∈ Bx and
v = y. If u = x′′, then P and uv are internally vertex-disjoint paths from u to v. This means
that v must be in Bx′′ , a contradiction unless x′ = x and v = y. J

As we saw, for every diblock By, y ∈ T̂ , any path “into” the diblock must go via the bottleneck
vertex y. By induction, for any v ∈ By, every node of T̂ from r to y represents a bottleneck
vertex that is unavoidable for paths from r to v. More formally, the following holds in cut
decompositions:

I Lemma 17. Let (T̂ , {Bx}x∈T̂ ) be the cut decomposition of H rooted at r. Fix a diblock Bx
for x ∈ T̂ . Consider a path P in H from r to v ∈ Bx and let x1 . . . x` be the sequence of
bottleneck vertices that P encounters. Then P̂ = x0x1 . . . x` with x0 = r is the path from r

to x in T̂ .

Proof. We prove the claim by induction over the depth d of x in T̂ . If r = x then any path
from r to v ∈ Br contains r itself and hence the base case for d = 0 holds.

Consider a diblock Bx, x ∈ T̂ where x has distance d to r in T̂ and let y be the parent
of x in T̂ . We assume the induction hypothesis holds for diblocks at depth d− 1, hence it
holds for By in particular. Because x ∈ By, this implies that every path from r to x will
contain all ancestors of x in T̂ . Since by construction every path from r to a vertex v ∈ Bx
needs to pass through x, the inductive step holds. This proves the claim. J

As an immediate consequence, we can identify arcs in cut decompositions that cannot
participate in any rooted out-branching.

I Corollary 18. Let (T̂ , {Bx}x∈T̂ ) be the cut decomposition of rooted at r and let R := {uv ∈
A(H) | u ∈ Bx and x ∈ T̂v} be all the arcs that originate in a diblock Bx and end in an
ancestor v of x on T̂ . Then for every out-tree T rooted at r we have A(T ) ∩R = ∅.
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Proof. Fix a bottleneck vertex v ∈ T̂ of the decomposition and let the arc uv be in an
out-tree T rooted at r. There must exist a path Psu from s to u that is part of T . By
Lemma 17, this path will contain the vertex v. But then v is an ancestor of u in T and
therefore the arc uv cannot be part of T , which is a contradiction. J

The decomposition actually restricts paths even further: a path that starts at the root and
visits two bottleneck vertices x, y (in this order) cannot intersect any vertex of B∗y before
visiting y and cannot return to any set B∗z , z ∈ T̂ , after having left it.

I Lemma 19. Let (T̂ , {Bx}x∈T̂ ) be the cut decomposition of H rooted at r. Fix a diblock Bx
for x ∈ T̂ . Consider a path P from r to v ∈ Bx and let P̂ = x0 . . . x` be the path from r = x0
to x = x` in T̂ . Let further F0, . . . , F` be the fins of P̂ in T̂ . Then the subpath P [xi, xi+1] \
{xi+1} is contained in the union of diblocks of Fi for 0 ≤ i < `.

Proof. By Lemma 17 we know that the nodes of P̂ appear in P in the correct order, hence
the subpath P [xi, xi+1] is well-defined. Let us first show that the subpath P [xi, xi+1]\{xi+1}
cannot intersect any diblock associated with T̂xi+1 . By Lemma 16, the only arcs from Bxi

into diblocks below xi+1 connect to the bottleneck xi+1 itself. Since xi+1 is already the
endpoint of P [xi, xi+1], this subpath cannot intersect the diblocks of T̂xi+1 . This already
proves the claim for x0; it remains to show that it does not intersect diblocks of V (T̂ )\V (T̂xi

)
for i ≥ 1. The reason is similar: since the bottleneck xi is already part of P [xi, xi+1], this
subpath could not revisit Bxi

if it enters any diblock By for a proper ancestor y of xi in
T̂ . We conclude that therefore it must be, with the exception of the vertex xi+1, inside the
diblocks of the fin Fi. J

I Corollary 20. For every vertex u ∈ V (H) and every set X ⊆ V (H) \ (V (T̂ ) ∪ {u}) of
non-bottleneck vertices there exists a path P from r to u such that |P ∩X| ≤ |X|/2.

Proof. Assume that u ∈ Bx and let P̂ = x0 . . . x` be a path from x0 = r to x` = x

in T̂ . Let further F0, . . . , F` be the fins of P̂ in T̂ . We partition the set X into X1, . . . , X`

where Xi = X ∩ Fi for 0 ≤ i ≤ `. Lemma 19 allows us to construct the path P iteratively:
any path that leads to u will pass through bottlenecks xi, xi+1 in succession and visit only
diblocks associated with Fi in the process. Since there are two internally vertex-disjoint
paths between xi, xi+1 for 1 ≤ i ≤ `, we can always choose the path that has the smaller
intersection with Xi. Stringing these paths together, we obtain the claimed path P . J

We want to argue that one of the following cases must hold: either the cut decomposition
has bounded height and we can ‘re-root’ any out-tree with many leaves into a rooted out-tree
with a comparable number of leaves, or we can directly construct a rooted out-tree with
many leaves. In both cases we apply Lemmas 4 and 9 to conclude that the instance has a
solution. This approach has one obstacle: internal diblocks of the decomposition that contain
only two vertices.

I Definition 21 (Degenerate diblocks). Let {Bx}x∈T̂ be the cut decomposition rooted at s.
We call a diblock Bx degenerate if x is an internal node of T̂ and |Bx| = 2.

Let us first convince ourselves that a long enough sequence of non-degenerate diblocks
provides us with a rooted out-branching with many leaves.

I Lemma 22. Let (T̂ , {Bx}x∈T̂ ) be the cut decomposition rooted at s of H and let y be a
node in T̂ such that the path P̂sy from s to y in T̂ contains at least ` nodes whose diblocks
are non-degenerate. Then H contains an out-tree rooted at s with at least ` leaves.
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Proof. We construct an s-rooted out-tree T by repeated application of Lemma 12. Let
x1, . . ., x` be a sequence of nodes in P̂sy whose diblocks are non-degenerate, and for each
1 ≤ i < ` let x+

i be the node after xi in P̂sy. We construct a sequence of s-rooted out-trees
T1, . . ., T` such that for 1 ≤ i ≤ `, the vertex xi is a leaf of Ti, and Ti contains i leaves. First
construct T1 as a path from s to x1, then for every 1 ≤ i < ` we construct an out-tree Ti+1
from Ti as follows. Let vi ∈ Bxi \ {xi, x+

i }, which exists since Bxi is non-degenerate, and
let Pxix

+
i
, Pxivi

be a pair of paths in H[B∗xi
] from xi to x+

i and to vi respectively, which
intersect only in xi. Such paths exist by Lemma 12, and since xi is a leaf of Ti, Lemma 17
implies that Ti is disjoint from B∗xi

\ {xi}. Hence the paths can be appended to Ti to form a
new r-rooted out-tree Ti+1 in H which contains a leaf in every diblock Bxj

, 1 ≤ i. Finally,
note that the final tree T` contains two leaves in Bx`−1 , hence T` is an r-rooted out-tree with
` leaves. J

The next lemma is the last assertion that we will use to prove shortly that Rooted k-
Distinct Branchings is FPT for digraphs D whose cut decomposition rooted at s contains
no degenerate diblocks.

I Lemma 23. Let (T̂ , {Bx}x∈T̂ ) be the cut decomposition of D rooted at s such that T̂ is of
height d and let T be an out-tree rooted at some vertex r with ` leaves. Then we can construct
an out-tree Ts rooted at s with at least (`− d)/2 leaves.

Proof. Assume that r is contained in the diblock Bx of the decomposition and let xp . . . x1 =
P̂sx be a path from s = xp to x = x1 in T̂ . Let L be the leaves of T and let L′ := L \ P̂sx.
Clearly, |L′| ≥ `− d. Applying Corollary 20 with X = L′ and u = r, we obtain a path Psr
in D from s to r that avoids half of L′. We construct Ts in a similar fashion to the proof
of Lemma 11. We begin with Ts = Psr, then for every leaf v ∈ L′ \ Psr, proceed as follows:
let Pv be the unique path from r to v in T and let P ′v be the segment of Pv from the last
vertex x of Pv contained in Ts. Add all arcs and vertices of P ′v to Ts. Since Pv and thus
P ′v contains no leaf of L′ other than v, in the end of the process, all vertices of L′ \ Psr are
leaves of Ts. Since |L′ \ Psr| ≥ |L′|/2, we conclude that Ts contains at least (`− d)/2 leaves,
as claimed. J

The next lemma demonstrates that using Lemma 23 and a number of other results we can
prove that if the height d of the cut decomposition of D is upper-bounded by a function in
k, then Rooted k-Distinct Branchings on D is FPT. This shows that to prove that
Rooted k-Distinct Branchings in general it suffices to consider separately the cases of
bounded d and unbounded d. To provide an appropriate bound on d we will use further
results on degenerate diblocks proved in Section 4.3.

I Lemma 24. Let (T̂ , {Bx}x∈T̂ ) the cut decomposition rooted at s of height d. If d ≤ d(k) for
some function d(k) = Ω(k) of k only, then we can solve Rooted k-Distinct Branchings
on D in time O∗(2O(d(k) log2 d(k))).

Proof. By Theorem 2, in time O∗(2O(d(k))) we can decide whether D has an out-branching
with at least 2k + 2 + d(k) leaves. If D has such an out-branching, then by Lemma 23 D
has a rooted out-tree with at least k + 1 leaves. This out-tree can be extended to a rooted
out-branching with at least k + 1 leaves by Lemma 9. So by Lemma 4, (D, s, t) is a positive
instance if and only if D has a rooted in-branching, which can be decided in polynomial time.

If D has no out-branching with at least 2k+2+d(k) leaves, by Theorem 1 the pathwidth of
D is O(d(k) log d(k)) and thus by Lemma 5 we can solve Rooted k-Distinct Branchings
on D in time O∗(2O(d(k) log2 d(k))). (Note that for the dynamic programming algorithm of
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Lemma 5 we may fix roots of all out-branchings and all in-branchings of D by adding arcs
s′s and tt′ to D, where s′ and t′ are new vertices.) J

4.3 Handling degenerate diblocks
A full version of this section can be found in the complete version of the paper. Here is a key
notion for our study of degenerate diblocks.

I Definition 25 (Degenerate paths). Let (T̂ , {Bx}x∈T̂ ) be a cut decomposition of D. We call
a path P̂ in T̂ monotone if it is a subpath of a path from the root of T̂ to some leaf of T̂ . We
call a path P̂ in T̂ degenerate if it is monotone and every diblock Bx, x ∈ P̂ is degenerate.

Let (D, s, t) be a strongly connected reduced instance of Rooted k-Distinct Branchings.
As observed in Section 4.1, we can verify in polynomial time whether an arc participates
in some rooted in- or out-branching. Let Rs ⊆ A(D) be those arcs that do not participate
in any rooted out-branching and Rt ⊆ A(D) those that do not participate in any rooted
in-branching. Since (D, s, t) is a reduced instance, we necessarily have that Rs ∩Rt = ∅.

I Lemma 26. Let P̂ = x1 . . . x` be a degenerate path of (T̂ , {Bx}x∈T̂ ) of D rooted at s.
Then the following properties hold: every rooted out-branching contains A(P̂ ), every arc xjxi
with j > i is contained in Rs, and there is no arc from xi (i < `) to By in D, where y is a
descendant of xi on T̂ , except for the arc xixi+1.

Let us fix a single degenerate path P̂ = x1 . . . x`. We categorize the arcs incident to P̂ as
follows: let A+ contain all ‘upward arcs’ that originate in P̂ and end in some diblock By
where y is an ancestor of x1, let A0 contain all ‘on-path arcs’ xjxi, j > i, and let A− contain
all ‘arcs from below’ that originate from some diblock By where y is a (not necessarily proper)
descendant of x`. By the lemma above this categorization is complete.

We will need the following reduction rules for (D, s, t):

Reduction Rule 1: If there are two arcs xiu, xju ∈ A+ ∩Rt with i < j, remove xju.

Reduction Rule 2: If P̂ [x, y] ⊆ P̂ is such that no vertex in P̂ [x, y] is a tail of arcs in A+∪A0,
contract P̂ [x, y] into a single vertex.

Now we can state the main lemma of the section which finally enables us to proof the main
result of this paper.

I Lemma 27. Let P̂ be a degenerate path in an instance reduced with respect to Rules 1
and 2. If t 6∈ P̂ , then |P̂ | ≤ 14k + 3. Otherwise, |P̂ | ≤ 28k + 7.

Proof of Theorem 7. By Lemma 8, we may assume that D is strongly connected. Consider
the longest monotone path P̂ of T̂ . By Lemma 22, if P̂ has at least k + 1 non- degenerate
diblocks, then D has a rooted out-tree with at least k + 1 leaves. This out-tree can be
extended to a rooted out-branching with at least k+1 leaves by Lemma 9. Thus, by Lemma 4,
(D, s, t) is a positive instance if and only if D has a rooted in-branching, which can be decided
in polynomial time.

Now assume that P̂ has at most k non-degenerate diblocks. By Lemma 27 we may
assume that before, between and after the non-degenerate diblocks there are O(k) degenerate
diblocks. Thus, the height of T̂ is O(k2). Therefore, by Lemma 24, the time complexity for
Theorem 7 is O∗(2O(k2 log2 k)). J
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5 Conclusion

We showed that the Rooted k-Distinct Branchings problem is FPT for general digraphs
parameterized by k, thereby settling open question of Bang-Jensen et al. [6]. The solution in
particular uses a new digraph decomposition, the rooted cut decomposition, that we believe
might be useful for settling other problems as well. We did not try to optimize the running
time of the algorithm of Theorem 7. Perhaps, a more careful handling of degenerate diblocks
may lead to an algorithm of running time O∗(2O(k log2 k)).
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