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Abstract

With the rapid growth of the world population, shortage in labor force
and change in the global climate, increasing food demand and food security
have become the top priorities that agriculture needs to solve urgently.
The rapid development of artificial intelligence and robotics technologies
make it possible as a key part of agricultural production. With the in-
creasing deployment of agricultural robots, the traditional manual spray
of liquid fertilizer and pesticide is gradually being replaced by agricultural
robots. Compared to conventional spray methods which adopt large angle
spray nozzles and undifferentiated spray strategy, precision target spray
has gained increasing attention as an important concept of precision agri-
culture, which brings in a more economical and environmentally friendly
solution. For robotic precision spray application in vegetable farms, accu-
rate plant phenotyping through instance segmentation and robust plant
tracking are of great importance and a prerequisite for the following spray
action. Regarding the robust tracking of vegetable plants, to solve the
challenging problem of associating vegetables with similar color and texture
in consecutive images, in this paper, a novel method of Multiple Object
Tracking and Segmentation (MOTS) is proposed for instance segmentation
and tracking of multiple vegetable plants. In our approach, contour and
blob features are extracted to describe unique feature of each individual
vegetable, and associate the same vegetables in different images. By as-
signing a unique ID for each vegetable, it ensures the robot to spray each
vegetable exactly once, while traversing along the farm rows. Comprehen-
sive experiments including ablation studies are conducted, which prove its
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superior performance over two State-Of-The-Art (SOTA) MOTS methods.
The proposed method achieves a Higher Order Tracking Accuracy (HOTA)
score higher than 70 and an Association Precision (AssPr) score higher
than 80. The execution speed of the method reaches 29 Frames Per Second
(FPS) on a consumer level hardware, which satisfies the real-time operation.
Compared to the conventional MOTS methods, the proposed method is
able to re-identify objects which have gone out of the camera field of view
and re-appear again using the proposed data association strategy, which is
important to ensure each vegetable be sprayed only once when the robot
travels back and forth. Although the method is tested on lettuce farm,
it can be applied to other similar vegetables such as broccoli and canola.
Both code and the dataset of this paper is publicly released for the benefit
of the community: https://github.com/NanH5837/LettuceMOTS.

Keywords: agricultural robot; precision agriculture; deep learning;
precision spray; instance segmentation; multi-object tracking and segmen-
tation; phenotyping

1 Introduction
With the world population growth and climate change, the urgent need for food
safety and sustainable production have put forward higher requirements for
agriculture. With the shortage of labor force and the limited area of arable land,
artificial intelligence and robotics technologies have gained significant attention
in agriculture recently. Agricultural robots are increasingly being deployed for
tasks including weeding (McCool et al., 2018), crop and weed detection (Bac
et al., 2017), and pesticide and fertilizer application (Adamides et al., 2017) etc.
Application of liquid pesticide and fertilizer is an important process in planting
vegetables. Conventional spraying techniques tend to apply liquid pesticide
and fertilizer uniformly on vegetable farms, which not only leads to a waste
of chemical, but also is not environmentally friendly. In comparison, precision
spray of individual plant can effectively resolve the above problem (Chebrolu
et al., 2017). Images captured by the vision sensor of the robot can be used to
detect vegetables and compute the location of the each vegetable, which guides
the robot to apply chemical to each individual vegetable. Accurate detection of
vegetables is prerequisite for robotic precision spray. However, only detection of
vegetables is usually not enough for robotic precision spray. With only detection
results of vegetables, robots usually have to move with a fixed distance every time
and spray all detected vegetables at each stop. In this way, robots also have to
make sure that there is no overlap between two camera field of views, as well as
no vegetable is missed between two consecutive camera filed of views. However,
ensuring such a fixed distance is normally difficult, and a vegetable plant is likely
to either get sprayed more than once, or be missed by the robot. Another way
to handle this problem is to use Global Navigation Satellite System (GNSS)
information or Simultaneous Localization and Mapping (SLAM) methods to
mark down geo-information of vegetables, so that each plant is assigned to a
unique ID. However, GNSS antenna introduces additional cost and is unstable
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inside greenhouse. Visual SLAM algorithms are generally not robust in the
semi-structured agricultural environment.

Figure 1: Overview of the proposed method. A downward facing RGB camera is
attached in front of the agricultural robot VegeBot, which collects a sequence of
images while traveling through a lettuce farm. The proposed method segments
and tracks each vegetable instance. Vegetable plants are firstly segmented with
YOLOv5 instance segmentation net. Then, shape features consisting of contour
and blob characteristics of plants are extracted to tackle the challenging data
association problem of plants with similar color and texture. Based on the
defined matching cost and Hungarian algorithm, accurate and robust tracking of
plants is obtained. The details of the proposed method are described in section 3.

To tackle this challenging problem in a better way, robots have to solve
the data association problem for the detected vegetables on the consecutively
captured images. When the same vegetable plants on the consecutively captured
images are correctly associated to each other and identified as one, unique IDs
are assigned to them and the robot can ensure to spray each plant only once. In
this way, it forms the classic Multiple Object Tracking (MOT)(Bewley et al.,
2016; Zhang et al., 2022) or MOTS problem (Voigtlaender et al., 2019; Gao et al.,
2022). Compared to MOT methods(Hu et al., 2022), which use bounding boxes
to detect vegetables, MOTS provides instance segmentation image mask, which
can be used to infer unique characteristics and phenotype of individual vegetable,
such as its size and shape, to determine optimal doze of chemical spray.

In this paper, a novel method of MOTS is proposed for instance segmentation
and tracking of multiple vegetable plants for precision spray application of
agricultural robots. The overview of the method is shown in Fig. 1. To tackle
the challenging problem of associating vegetables with similar color and texture
in consecutively captured images, their shape features, which consist of contour
and blob features, are extracted to describe a unique feature for each individual
vegetable and match the same vegetables in different images. By assigning a
unique ID for each vegetable, it ensures the robot to spray each vegetable exactly
once, while traversing along the farm rows. Compared to the conventional MOTS
methods, the proposed method is able to re-identify objects which have gone
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out of the camera field for a long time and re-appear again. With the proposed
plant shape feature and data association strategy, the plant which re-occurs
into the camera field of view is re-identified and its ID on its first occurrence
is recovered. It is common for most of agricultural robots to travel backward
when it needs to avoid unexpected obstacles or casually move out for refilling or
recharging. Therefore, this is important to ensure each vegetable is sprayed only
once, when the robot traverses back and forth and vegetables re-appear in the
camera images.

The contributions of this paper are summarized as follows:

1) Firstly, a novel MOTS method is proposed for tracking and segmentation
of vegetable plants for robotic precision spray. Based on the instance
segmentation of each vegetable plant, shape information of each plant is
extracted and matched for tracking individual plants. Specifically, the
contour information of a plant represented by Fourier Descriptor (FD) and
blob information of a plant represented by parameters of the fitted ellipse
are used to uniquely identify the plant. Shape features of all tracks are
stored, and during data association, not only the plants in the current
active tracks are searched, but also plants which have gone out of the
camera field of view but geographically close the plants in the current
camera field of view are searched. As a result, the proposed method can
effectively re-identify these re-occurred plants, and recover their previous
IDs.

2) A lettuce multi-object tracking and segmentation dataset, LettuceMOTS,
is constructed and publicly released. It contains 12 sequences, 1308 RGB
images with corresponding annotated labels, 314 object instances and
17562 masks. Based on the LettuceMOTS dataset, comprehensive experi-
ments including ablation studies are conducted, which show the superior
performance of the proposed method over two SOTA MOTS methods.

3) The implementation of the proposed method is also publicly released for
the benefit of the community.

The rest of the paper is organised as follows. In section 2, the related work of
plant segmentation in agriculture and MOTS methods are discussed. In section 3,
the details of the proposed method are illustrated. In section 4, the details of
data acquisition and structure of dataset are provided. In section 5, experimen-
tal validation of the proposed method, comparison against two SOTA MOTS
methods, and ablation studies are presented. section 6 presents conclusions and
a discussion about further work.

2 Related Work
Two main research fields related to the proposed method are accurate segmenta-
tion of plants and efficient tracking of them. Therefore, related work in terms of
plant segmentation and MOTS is presented in this section.
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2.1 Plant Segmentation
Plant segmentation requires the precise separation of plant from the background.
Early work utilizes hand-crafted feature for crop segmentation (Song and Yang,
2015). However, hand-crafted feature needs to be designed and adjusted accord-
ing to the specific application and situation, and is affected by factors such as
illumination change. In recent years, the emergence and application of Deep
Neural Network (DNN) have triggered fundamental changes in the field of com-
puter vision. This is because the more advanced and representative features are
extracted by a large number of convolutional layers and pooling operations. The
perception ability of robots has also been greatly improved with the continuous
advancement of DNN. Recently, many methods based on deep learning have
been proposed for plant segmentation and achieved impressive results (Bargoti
and Underwood, 2017; Milioto et al., 2018).

Bargoti and Underwood (2017) deployed a ground vehicle to collect images
in an apple orchard. Apple segmentation is conducted by utilizing multiscale
multilayered perceptrons and Convolutional Neural Network (CNN), and the
number of apples is counted with Watershed Segmentation and Cyclic Hough
Transforms. The results show that the combination of Watershed Segmentation
and CNN achieves the best counting performance, and the square correlation
coefficient is 0.826. Milioto et al. (2018) proposed a method for semantic
segmentation of sugar beet utilizing vegetation indexes. The results show that
it achieves image processing speed of 20Hz on a variety of robotic systems.
Khan et al. (2020) proposed CED-Net, a semantic segmentation approach to
classify plant. This method is based on a cascaded encoder-decoder network,
and outperforms other segmentation architectures at the time on four public
agricultural datasets. Bai et al. (2022) deployed a multi-network model to solve
the problem of cucumber segmentation and detection in multiple scenarios. They
first utilized the improved U-Net (Ronneberger et al., 2015) method to perform
pixel-level segmentation of cucumbers, and then performed the further detection
with the object detection algorithm.

These methods can accurately segment plants and locate them with pixel-
level accuracy. However, they do not solve the problem of tracking the same
plant on consecutive frames. Traditionally, agricultural robots have to move
a fixed distance, segment and spray all plants in the current camera field of
view, and move to the next stop. It has to ensure either two adjacent camera
field of views have minimum overlapping region and do not contain any same
plant, so as to achieve the purpose of neither repeating nor missing any plant.
However, it brings in extra harsh requirement of precise robot navigation, which
is normally difficult to achieve for most robotic platforms in the challenging
farm environment. This problem can be solved by MOT or MOTS technology,
which assigns an ID to each plant for continuous tracking, and sprays each plant
only once. With every plant being tracked, the precise navigation requirement is
effectively released, and navigation becomes uncoupled with perception to most
extent.
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2.2 Multiple Object Tracking and Segmentation
The main goal of MOT is to detect and associate the same object in an image
sequence (Luo et al., 2021). Currently, these methods are divided into two
categories, single-stage MOT methods (Zhang et al., 2021; Liang et al., 2022)
and two-stage MOT methods (Bewley et al., 2016; Wojke et al., 2017; Zhang
et al., 2022).

SORT proposed by Bewley et al. (2016) is a simple and fast tracking system.
It predicts the position of targets in the current frame through the Kalman
filter (Kalman, 1960), and matches them with the Hungarian algorithm (Kuhn,
1955). Wojke et al. (2017) proposed DeepSort based on Sort, which integrates the
appearance model to obtain the feature embedding of the object. It further solves
the tracking failure problem caused by occlusion. The downside of the method
is that it handles detection and feature extraction tasks separately, which slows
down the its processing. Wang et al. (2020) presented the first MOT system that
placed object detection and feature embedding in the same task network, and
achieved near real-time running speed. By utilizing two homogeneous branches
to perform detection and feature extraction tasks separately, Zhang et al. (2021)
overcame unfairness of the operation of the two tasks and achieved high detection
and tracking accuracy.

MOTS extends the perception accuracy of MOT further, by replacing the
bounding box to pixel-wise instance segmentation. Voigtlaender et al. (2019)
first came up with the concept of MOTS and proposed a baseline method
named TrackR-CNN. It extends the Mask R-CNN (He et al., 2017) with three-
dimensional convolution to combine contextual information and deploys associa-
tion head to extract instance embedding for data association. Xu et al. (2020)
proposed PointTrack, which performed the tracking-by-instance segmentation
paradigm. It first obtains high-quality instance segmentation results with spatial
embedding (Neven et al., 2019), and then extracts instance features from the
segmentation results through an unordered 2D point cloud. Based on PointTrack,
Gao et al. (2022) deployed SENet (Hu et al., 2017) as an instance segmentation
network, and utilized IDNet to extract object embedding for lightweight and
high efficiency. These methods show accurate and robust results in tracking cars
and pedestrians of large variance in color and texture. However, to track plants
in farms, which have similar color and texture, color and texture embedding is
prone to failure. Furthermore, these methods discard objects which have gone
out of the camera field of view after a long time, and assign new IDs to them if
they re-occur again. For robotic precision spray application, this means repeated
spray for the same plant.

Specifically for agricultural application, several MOTS methods have been
successfully applied. de Jong et al. (2022) presented a MOTS dataset containing
apple instances using wearable cameras and drone recordings. Experimental
results of two open-source methods show that tracking apples with similar color
and texture is challenging. Qiang et al. (2022) proposed a tracking method for
leafy plants. They first apply a weakly supervised instance segmentation of leafy
vegetables through semi-supervised learning. Mask Intersection over Union (IoU)
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and bipartite graph matching are then used for data association and tracking.
However, this method only uses the mask IoU as a position feature, which is more
similar to MOT, and does not take full advantage of the information obtained
by the pixel level instance mask.

3 Method

3.1 Feature Exaction
The overview of the proposed method is shown in Fig. 2. It adopts the famous
YOLOv5 architecture to obtain instance segmentation of vegetables. YOLOv5
is preferred among various other instance segmentation nets due to its high
accuracy and lightweight, which is important for the real time requirement for
robotic operation. The output size of the net is a matrix of N ×H ×W , where
N represents the number of objects, H and W are the height and width of the
input image, respectively. The mask value of the plant is 1, and that of the
background is 0.

In agricultural scenarios, tracking of plants is generally difficult when con-
ventional color and texture features are used (Hu et al., 2022; de Jong et al.,
2022). Our previous work (Hu et al., 2022) presented a location information
based feature extraction method based on the geometric relationship between the
target plant and its neighboring plant. The method overcomes the challenging
tracking problem of plants with similar appearance, but it requires presence
of multiple plants on an image to extract such location feature. The proposed
method pushes perception accuracy further to the pixel level, gaining more useful
information such as plant shapes, which can be used to differentiate different
plants.

The proposed method uses FD to extract plant contour information based
on instance segmentation mask of each plant. The FD is a shape description
method based on the Fourier transform of the shape contour and can represent
the shape information in the frequency domain. In addition, blob feature of
each plant is extracted by fitting an ellipse to its image mask. The blob feature
is represented by the ratio of the major and minor axes, denoted as R, and
center rotation angle, denoted as θ. θ angle is normalized to keep R and θ
similar in magnitude. The combination of FD of contour information and ellipse
parameters of blob information serves as the shape information of the plant. It
allows maximum information to be obtained with a small size number description
dimension, which ensures less memory consumption. It is important for the
shape information descriptor to be less in size, since descriptors of all plants are
stored for tracking re-occurred plants.

As shown in Fig. 2. Firstly, contour of the plant is extracted based on its
instance segmentation mask, using Suzuki85 border following algorithm (Suzuki
and Abe, 1985). The contour descriptor FD, and blob descriptor R and θ are
computed based on this. The extracted contour in t frame is represented by its
image coordinates as follows:

7



Figure 2: Details of feature extraction. YOLOv5 instance segmentation yields
masks and bounding box coordinates of all plants in the image. Based on the
plant mask, the plant contour is extracted. Then FD is applied to the plant
contour to obtain contour feature, and an ellipse is fitted to the plant contour to
obtain blob feature. The shape feature of the plant is obtained by combining
the contour and blob features.

Ct
n = {(xn, yn)|n = 0, 1, · · · , N − 1} . (1)

The FD derived in the form of centroid distance is used in this paper, which
can better describe the shape features of the object (Zhang and Lu, 2003). The
centroid of the contour point is first calculated as follows,

xc =
1

N

N−1∑
n=0

xn, yc =
1

N

N−1∑
n=0

yn, n = 0, 1, . . . , N − 1, (2)

where xc and yc are the X and Y coordinates of the contour centroid. The
distance from the contour point to the centroid is computed as follows,

rn =
√
(xn − xc)2 + (yn − yc)2, n = 0, 1, . . . , N − 1. (3)

Then, a discrete Fourier transform for the centroid distance rn is applied as
follows,

Γk =
1

N

N−1∑
n=0

rne
−j2πkn

N , k = 0, 1, . . . , N − 1. (4)
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With a set of obtained Γks composed of complex numbers, the contour
descriptor FD of the plant is computed by carrying out translation, rotation,
and scale invariance operation as follows,

Γ̄i =
∥Γk∥
∥Γ1∥

, i = k − 2, k = 2, 3, . . . , N − 1. (5)

Note the first element Γ0 is not used. Since the size of Γ̄i is not fixed, the first I
elements of it is selected to represent its contour descriptor vector as follows,

Γ̂I =

 Γ̄0

...
Γ̄I−1

 , (6)

In the baseline form of the proposed method, the first 5 elements, i.e. I = 5, are
selected to make a balance between performance and speed.

To extract the blob feature of the plant, an ellipse formulated below is fitted
to plant mask,

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (7)

where A, B, C, D, E, and F are the six parameters of the ellipse. When the
nth contour point (xn, yn) of the plant mask is considered, the corresponding
fitting error En is,

En =
[
x2
n xnyn y2n xn yn 1

]

A
B
C
D
E
F

 . (8)

Then the sum of squared errors of all contour points, ES , is used to represent
ellipse fitting error,

ES =

N−1∑
n=0

En
2, n = 0, 1, . . . , N − 1. (9)

When, ES is minimized, we have the parameters of the optimum ellipse fitting.
The algebraic distance algorithm (Fitzgibbon and Fisher, 1995) is used to

minimize the objective function ES . Based on the obtained ellipse, the ratio
R of the long and short axes, and rotation angle θ of the ellipse are used to
construct the blob feature.

Finally, the shape feature of the plant is the combination of the contour
feature Γ̂I in eq. (6) and the blob feature represented by R and θ of the ellipse.
It is formulated as follows,

Fs =

Γ̂I

R
θ

 , (10)
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In addition to the proposed shape information of the plant, the position
information of the plant in the image frame is also utilized, as many MOTS
methods do. The position information is specifically represented by parameters
of the coordinates of the bounding box containing the plant mask, which is
denoted as follows,

B =
[
Bx

1 By
1 Bx

2 By
2

]
, (11)

where Bx
1 , By

1 are the horizontal and vertical coordinates of the upper left corner
of the bounding box, and Bx

2 , By
2 are the horizontal and vertical coordinates of

the lower right corner of the bounding box.
During tracking process, the bounding box of a plant in the current frame is

predicted by Kalman filter first. When data association is successfully carried out,
the bounding box is updated accordingly. The shape feature of the successfully
tracked plant is updated to that in the current frame. Note that since the plant
at top or bottom of the image does not appear completely, they are discarded to
maintain the performance of tracking process.

3.2 Data Association
Data association is the process of matching the objects in two frames, and it is
critical for tracking plants. It mainly includes two steps, which are calculating the
matching cost between different objects and using the bipartite graph matching
to associate objects according to the matching cost. The data association process
is summarized in Fig. 3. In the figure, the plant shape features are extracted
by plant instances in the current image frame. Track refers to plants in the
previously captured images frames, which has been successfully assigned unique
IDs. After the data association process, a plant in the current frame either is
assigned to a track if is successfully match to it, or initialized a new track if it is
not matched to any previously constructed track.

In order to re-identify the re-occurred plant and recover its original ID,
information of all tracks is stored in the proposed method, as opposed to only
keeping active tracks in conventional MOTS methods. However, objects of the
current image frame are not matched against all tracks stored in the memory,
but only matched to active tracks and their geographical neighbours, since there
is no sudden jump for camera field of view. By effectively reducing the number
of matching candidates, the execution time and chance of incorrect matching
can be efficiently minimized. Since the IDs of tracks are initialized in numerical
order while the robot traverses through the farm, geographically neighbouring
plants have their IDs close to each other. There, the search scope of the tracks
can be restricted within the range defined as follows,

RNG = [IDmin − s, IDmax + s], (12)

where IDmin and IDmax are the minimum and maximum values of the suc-
cessfully tracked object IDs in the previous frame, respectively. The variable
s controls the search scope and it is related to the maximum number of new
objects that can potentially show up in the next frames. It is set to 6 in the
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Figure 3: Data association process. Shape features of plants in the current
image frame are extracted. Meanwhile, tracks which are geographically close
to the current active tracks, which are successfully matched to plants in the
previous frame, are selected for match candidates. Matching cost is computed
between plant features and tracks, and the matching cost matrix is constructed.
Hungarian algorithm is used to resolve the optimum data association problem
based on the matching cost matrix.

implementation according to the speed of the robot, which ensures sufficient
number of neighbouring plants are considered, and filters out plants that are too
far away.

To tackle the challenging problem of matching plants with similar appearance,
establishing an effective matching cost is key to data association. The proposed
matching cost consists of a position matching cost and a shape matching cost.

Firstly, for position matching cost, Generalized Intersection over Union (GIoU)
is adopted to calculate the position relationship between the two bounding boxes
of plants as follows,

GIoU = IoU − |AreaC −AreaUnion|
|AreaC |

, (13)

where AreaC is the area of the smallest rectangle containing two coordinate
boxes, and AreaUnion is the area of the union of two bounding boxes. Since
the range of IoU is between 0 and 1, the position similarity based on IoU is
less distinguishable than GIoU adopted by the proposed method. The value of
GIoU goes to -1 when the distance between two boxes is infinite, and goes to 1
otherwise. Then, the calculation of the position matching cost can be defined as
follows,

11



δp = −G(Bt−1
i , Bt

j), (14)

where δp is the matching cost of positions, G represents the GIoU in eq. (13)
between the two bounding boxes. When calculating the position matching cost,
Kalman filter is used to obtain the predicted position of the plant bounding
box in the current frame. Bt−1

i and Bt
j represent the bounding box position

predicted by Kalman filter of the plant in the t − 1 frame, and the bounding
box position of the detected plant in the t frame, respectively. However, when a
track is out of camera field of view, Bt−1

i represents the position of the bounding
box in the last frame before the plant disappears.

For the shape matching cost, the cosine distance is utilized to indicate the
cost score between two shape features, which is defined as follows,

δs = D(F t−1
s i,F

t
sj)

= 1−
F t−1

s iF t
sj

∥F t−1
s i∥2∥F t

sj∥2
,

(15)

where D refers to the cosine distance between the two plant shape features.
Fs

t−1
i and F t

sj represent the shape feature vectors of two plants in t− 1 frame
and t frame, as defined in eq. (10). Lower shape matching cost means two plants
in the consecutive frames are more likely to be the same plant. When the two
features are exactly the same, the cosine distance reaches 0.

When the robot traverses on farm, the plant that disappears from the camera
field of view is not tracked, and only plants detected in the current frame are
tracked. For plants being actively tracked, both shape and position similarities
are effective for matching, while only the shape similarity is effective for re-
identifying the re-occurred plants. The overall matching cost combining both
shape and position matching cost is formulated as follows,

δ = δs(1 + αδp), (16)

where δ refers to the overall matching cost, and scalar α controls the influence of
the position matching cost. For currently active tracks, the position information
is more effective for matching, so α is set to be 1. For tracks that are currently
inactive, their shape features are more effective and α is set to be 0.

In addition, thresholds are applied to both position and overall matching costs
to further filter out false positive matches whose position and overall matching
costs are way too large. Threshold operation is formulated as follows,

δ =

{
δ δ < Tall and δp < Tp

∞ otherwise
, (17)

where Tall and Tp are maximum thresholds for overall and position matching
costs, respectively. Based on empirical results, Tall and Tp in the implementation
are set to 0.1 and 0.4, respectively.

Finally, based on the overall matching cost δ, Hungarian algorithm (Kuhn,
1955) is utilized for data association of multiple plants.
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4 LettuceMOTS Dataset
In addition to the proposed MOTS method, this paper presents and publicly
releases a challenging lettuce MOTS dataset, LettuceMOTS, captured by an
agricultural robot. This section describes the agricultural robot and its sensor
used in data acquisition and the structure of the dataset.

4.1 Data Acquisition
All images in LettuceMOTS were collected from a lettuce farm in Tongzhou
District, Beijing, China, in September to October 2022 as shown in Fig. 4(a).
The distance between two adjacent lettuces in the same row is about 0.15 m to
0.25 m, and the distance between adjacent rows is about 0.25 m to 0.3 m. The
maximum weed density is close to 10 per square meter due to regular weeding.

(a) (b)

Figure 4: Details of data acquisition. Fig. 4(a) shows the lettuce farm where
the data collection took place. Fig. 4(b) shows the setup of the data acquisition
process based on VegeBot.

Images are collected by VegeBot, a four-wheel-steer and four-wheel-drive
agricultural robot designed and manufactured by China Agricultural University
to perform autonomous operation in vegetable farms. The key parameters
related to VegeBot are listed in table 1. As is shown in Fig. 4(b), the VegeBot
is equipped with two vision sensors, and a RTK-GPS sensor for GNSS based
global localization. An Intel RealSense D435i depth camera with IMU sensor is
mounted in front of the robot tilted downward for localization and autonomous
navigation. A RGB monocular camera is mounted on top front location of
the robot facing straight downward for segmenting and tracking vegetables for
precision spray application.

The VegeBot can adopt two motion control modes: vision-based motion
autonomous navigation and manual drive with a remote controller. In order to
ensure the quality of the acquired images, the robot is remotely control during
data acquisition process. Since the velocities and steering angle of the robotic
four wheels can be controlled independently, the robot can move in a variety of

13



motion modes. At the time of data collection, Ackerman steering is adopted for
the robot to travel straight forward or backward along the farm lanes.

Table 1: Key parameters of VegeBot

Parameter Value
Length 1.2 m
Width 1.1 m
Height 1.1 m
Weight approx. 350 kg

Max Load 200 kg
Max Speed 0.8 m/s

The RGB camera used in this paper is installed approximately 1.4 m away
from the ground. The camera has a 1/2.8-inch SONY IMX317 CMOS sensor.
Its maximum resolution and pixel size are 3840 × 2160 and 1.62 µm × 1.62
µm, respectively. The camera is able to capture images at 30 FPS when the
resolution is set to be 3840 × 2160 or 120 FPS when the resolution is set to be
1920 × 1080. The lens of the camera has a field of view (FOV) of 100 degrees
and the f-number of 2.7.

Data collection is carried out at three different growth stages of the lettuce.
Views of the lettuce farm and typical captured images at three periods are shown
in Fig. 5. The robot travels at a mostly constant velocity within a range between
0.35 m/s to 0.4 m/s. The robot moves both forward and backward, and there are
vegetables, which re-occur after they have gone out of camera field of view for a
long time, as a result. This makes our dataset more challenging than existing
MOTS datasets. The camera captures images with a resolution of 1920×1080
at 15 FPS, and images were cropped into the resolution of 810×1080 to remove
irrelevant areas. Images are collected in natural light, and the exposure time of
the camera is automatically determined.

4.2 Dataset Structure
The format and structure of LettuceMOTS follow the famous KITTI MOTS
format (Geiger et al., 2012, 2013). The annotation tool CVAT (https://github.
com/opencv/cvat) is used to label the captured images. CVAT is developed and
open sourced by Intel, and its tracking, interpolation and fine tuning labeling
method reduces manual labeling time significantly. The resulting annotation file
of TXT format has the following format,

instance = {frameid, objectid, category, imageheight, imagewidth, RLE}, (18)

where frameid is the ID number of the frame, objectid is the ID number of the
object, and categoryid is the ID number of the category of object. category is 1
for vegetable. imageheight and imagewidth are the height and width of the image
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(a) (b) (c)

(d) (e) (f)

Figure 5: Overview of the lettuce farm and typical captured images at 3 different
growth stages of lettuces. Lettuces are at the growth stage of seeding, rosette,
cupping and head in subfigures (a) and (d), (b) and (e), and (c) and (f),
respectively.
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in which the plant is located. RLE is a string of numeric encoding containing
the plant mask information.

Figure 6: Structure of LettuceMOTS dataset. The images and instances fold-
ers under train and test folders contain the captured RGB images and their
corresponding instance segmentation masks for different image sequences. The
instance_txt folder contains MOTS annotation for plant segmentation and track-
ing for different image sequences.

The file structure of LettuceMOTS is shown in Fig. 6. It contains a total
of 1308 frames, 314 objects, and 17562 manual annotated masks. The 12
sequences of the dataset are numbered from 0000 to 0011, with each growth
period containing four sequences. Among them, three of them serve as the
training set, and the other one serves as the test set. Detailed information about
LettuceMOTS can be found in table 2.

5 Experimental and Results

5.1 Implementations Details
As mentioned in section 3.1, YOLOv5(Ultralytics, 2022) is chosen to segment
images. For segmentation of vegetables, the YOLOv5m model is selected to
make a balance between accuracy and efficiency. It is fine tuned on the training
set of the LettuceMOTS based on the pre-trained model based on COCO dataset
provided by its author. SGD is used as the optimizer during training and the
initial learning rate is set to be 1e−2. All other training parameters follow default
parameters provided by YOLOv5.
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For comparison purpose, two open source SOTA MOTS methods TrackR-
CNN and PointTrack(The following open source implementations are used in the
experiment. TrackR-CNN: https://github.com/VisualComputingInstitute/
TrackR-CNN and PointTrack: https://github.com/detectRecog/PointTrack)
are tested. They are fine tuned on the training set of LettuceMOTS based on
the pre-trained model provided by the author. For PointTrack, learning rates of
segmentation networks and tracker are set to 5e−6 and 2e−3, respectively. The
learning rate of TrackR-CNN is set to be 5e−7. All other hyper parameters follow
the default implementation. All three methods, including the proposed method,
are trained for 100 epochs to ensure fairness. The training and inference of all
methods are conducted on a computer with a NVIDIA GeForce RTX 2080Ti
GPU and a Intel® CoreTM i7-10700K CPU.

5.2 Evaluation Metrics
The segmentation and tracking performance of the three methods are evaluated
separately. The performance of instance segmentation is measured by Average
Precision (AP), which is widely used by many classic datasets, e.g. COCO
dataset (Lin et al., 2014). This metrics adopts AP , AP 50 and AP 75 to show
accuracy of segmentation. AP 50 and AP 75 are the AP at IoU of 0.5 and 0.75,
respectively. AP is the average of ten AP IoU s, with IoU ranging from 0.5 to
0.95 and an increase of 0.05 every step.

The evaluation of MOTS is relatively more complex than segmentation. In
this paper, HOTA proposed by Luiten et al. (2021) is utilized for the evaluation
of tracking tasks, which balances the performance of segmentation and tracking.
HOTA can better reflect the human’s visual perception for MOTS evaluation.
It is calculated by Detection Accuracy Score (DetA) and Association Accuracy
Score (AssA) as follows,

HOTA =
√
DetA ·AssA, (19)

where DetA and AssA represent comprehensive metrics of segmentation accuracy
and association accuracy. The association metrics are defined as follows,

AssA =
AssRe ·AssPr

AssRe+AssPr −AssRe ·AssPr
, (20)

where Association Recall (AssRe) reflects how good predicted trajectories cover
ground truth trajectories, while AssPr reflects the ability of predicted trajectories
to continuously track the same ground truth trajectories. The detailed description
of DetA, AssA, AssRe and AssPr can be found in the original work (Luiten
et al., 2021), which is omitted here for the brevity of the paper.

In this paper, we compute the above mentioned MOTS evaluation metrics
using the KITTI MOTS official kit(https://github.com/JonathonLuiten/
TrackEval).
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5.3 Validation Results
5.3.1 Results and Comparison

Firstly, we evaluate the segmentation results of the three MOTS methods with
AP metrics, and results are shown in table 3. It can be seen from the table that
PointTrack has the highest AP score for segment accuracy. When IoU is 0.5 and
0.75, YOLOv5 has the best segmentation performance among three methods.
TrackR-CNN does not get the highest score, but achieves good and balanced
result.

Table 3: Segmentation performance of the proposed method and comparison to
two state-of-the-art MOTS methods.

Dataset Method AP ↑ AP50 ↑ AP75 ↑

0003
TrackR-CNN 0.592 0.967 0.770
PointTrack 0.662 0.852 0.851

Ours(YOLOv5) 0.595 0.983 0.796

0007
TrackR-CNN 0.720 0.957 0.919
PointTrack 0.824 0.940 0.940

Ours(YOLOv5) 0.757 0.979 0.961

0011
TrackR-CNN 0.805 0.958 0.938
PointTrack 0.852 0.968 0.954

Ours(YOLOv5) 0.843 0.977 0.955
1 Symbols ↑ after the evaluation metrics indicate the value

of it is the higher the better. The bold numbers show the
best performing method.

Then, tracking performance of the proposed method is compared against the
two SOTA MOTS methods with the test set of LettuceMOTS using the MOTS
metrics mentioned in section 5.2. Results are shown in table 4. It can be seen that
our method yields superior performance than the other two methods in general.
Specifically, our method gets the highest scores on all three test sets in terms of
HOTA, AssA and AssPr. It yields low DetA scores, since the proposed method
discards plants on top or bottom of the captured images that do not appear
completely. As mentioned in section 3.1, we impose such constraint to minimize
the false positive data association, especially for re-identifying re-occurred plants,
since the plants with incomplete appearance show quite different shape feature.
PointTrack yields the lowest AssPr because the same ID is assigned to multiple
objects, and hence is not successful in tracking the same plant. Since PointTrack
also introduces offset, position, and IoU as clues during data association, ID
switch rarely occurs and high AssRe scores are achieved. TrackR-CNN shows
frequent ID switches when tracking the same object, and thus yields lower AssRe
scores.

Qualitative examples of three MOTS methods are shown in Fig. 7. We
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Table 4: Performance of the proposed method and comparison to two SOTA
MOTS methods.

Dataset Method HOTA(%) ↑ DetA(%) ↑ AssA(%) ↑ AssRe(%) ↑ AssPr(%) ↑

0003
TrackR-CNN 50.016 77.757 32.332 57.965 39.485
PointTrack 45.381 74.369 27.854 62.372 31.683

Ours 71.989 70.827 73.561 74.792 84.318

0007
TrackR-CNN 59.918 84.195 42.709 55.134 63.978
PointTrack 60.261 88.537 41.066 85.325 42.636

Ours 72.083 71.419 72.843 73.565 89.998

0011
TrackR-CNN 62.042 88.480 43.543 61.389 63.052
PointTrack 58.374 91.481 37.447 76.977 41.083

Ours 70.095 68.868 71.433 71.597 95.167
1 Symbols ↑ after the evaluation metrics indicate the value of it is the higher the better. The bold

numbers show the best performing method.

discuss the tracking ability of three methods with their performance on test set
0011 as an example. The purple arrows above images represent forward and
backward directions of the robot. The number in the upper right corner of each
plant is assigned ID of that plant. 30 frames are skipped between every two
neighbouring rows of images. For each method, the two images at left and right
side are captured in the same positions when the robot travels forward and
backward. As can be seen from Fig. 7, TrackR-CNN and PointTrack yield false
positive association of a plant which just goes out of camera field of view to a
newly appeared plant. This is because these methods utilize instance embedding
to associate objects. In our case, since vegetables are quite similar to each other
in terms of color and texture, methods based on instance embedding are prone
to false positive data association. In addition, these two methods do not track
plants which have gone out of camera field of view for a long time. As a result,
they tend to assign new IDs when these plants appear again as the robot travels
backward. It is reflected by plant IDs in the right columns of images of these two
methods when the robot travels backward tend to be larger than those of the
same plants in the left column of the images. We also can see that, PointTrack
tends to mistakenly assign a previously assigned ID, which belongs to a plant
previously appeared but has just gone out the camera field of view, to a newly
appeared plant. Since PointTrack matches objects mostly based on color and
texture and plants have quite similar color and texture, PointTrack mistakenly
believes that the newly appeared plant is the plant which just has disappeared.

In comparison, the proposed method yields superior data association perfor-
mance, thanks to its extraction of vegetable shape feature which makes vegetable
plants more differentiable with each other. In addition, limiting the searching
range of tracks to those which are geographically close to current active tracks,
i.e. tracks associated to plants in the previous camera image, also contributes
to reducing false positive matches and increasing data association accuracy
significantly.
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The inference speed of the three methods are shown in table 5. Our method
yields the fastest running speed of approximately 29 FPS. In terms of tracking
speed alone, our method yields the highest processing speed exceeding 140 FPS,
since it is not a learning-based method. It can be run only on a CPU, which is
easier to deploy on the robot.

Table 5: The inference speed of the proposed method and comparison to two
SOTA MOTS methods.

Dataset Method Time(ms) ↓ FPS ↑
Segment Tracking Total Segment Tracking Total

0003
TrackR-CNN 581.67 20.49 602.16 1.72 48.83 1.66
PointTrack 69.39 44.90 114.29 14.41 22.27 8.75

Ours 27.80 6.45 34.16 35.97 155.22 29.29

0007
TrackR-CNN 543.20 20.82 564.02 1.84 48.02 1.77
PointTrack 61.48 36.89 98.36 16.27 27.11 10.16

Ours 27.50 6.60 34.02 36.35 151.56 29.41

0011
TrackR-CNN 487.04 20.18 507.22 2.05 49.61 1.97
PointTrack 67.26 40.36 107.62 14.87 24.78 9.29

Ours 28.07 7.00 34.93 35.64 143.05 28.62
1 Symbols ↑ and ↓ after the evaluation metrics indicate the value of it is the higher the

better or the lower the better, respectively. The bold numbers show the best performing
method.

5.3.2 Ablation Studies

Finally, in order to validate the effectiveness of the proposed contour feature in
terms of FD of plant contour and blob feature in terms of R and θ values of the
fitted ellipse, we carry out an ablation study of the feature used. Specifically,
performance of the proposed method using only contour feature and only blob
feature is compared to using both of them, i.e. the baseline of the proposed
method.

The results are shown in table 6. It can be seen that the baseline of the
proposed method combining both contour and blob features yields the best
performance compared to using only contour or blob feature in all three test sets
of different growth stages. This validates that both contour and blob features
are critical and effectively contribute to the performance gain brought by the
proposed method.

Next, we study the influence of the length of FD vector of the contour
feature to the performance of tracking plants, by varying the length of FD vector.
Specifically, different lengths of FD vector of 1, 3, 7, 9 are tested and compared
with the baseline approach with the length of FD vector of 5. Results are shown
in table 7, where FDi indicates FD with the length of i. It can be seen that
the performance of the method does not increase when the length of FD vector
is larger than 5. Therefore, the baseline configuration of the proposed method
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Table 6: Performance of the method using different plant shape features.

Dataset Feature HOTA(%) ↑ DetA(%) ↑ AssA(%) ↑ AssRe(%) ↑ AssPr(%) ↑

0003
Contour 64.816 70.827 59.699 63.673 72.945

Blob 65.325 70.827 60.668 63.956 75.993
Baseline 71.989 70.827 73.561 74.792 84.318

0007
Contour 70.285 71.419 69.247 70.331 87.920

Blob 64.633 71.419 58.579 62.295 77.420
Baseline 72.083 71.419 72.843 73.565 89.998

0011
Contour 66.485 68.868 64.278 66.303 87.968

Blob 32.185 68.868 15.126 26.055 27.901
Baseline 70.095 68.868 71.433 71.597 95.167

1 Symbols ↑ after the evaluation metrics indicate the value of it is the higher the better. The
bold numbers show the best performing method.

adopts FD vector length of 5 to balance between accuracy and speed.

Table 7: Performance of the method with different lengths of FD vector for plant
contour feature.

Dataset Feature HOTA(%) ↑ AssA(%) ↑ AssRe(%) ↑ AssPr(%) ↑

0003

FD1 56.982 45.970 50.302 66.101
FD3 69.360 68.186 70.079 80.894

Baseline (FD5) 71.989 73.561 74.792 84.318
FD7 71.989 73.561 74.792 84.318
FD9 71.989 73.561 74.792 84.318

0007

FD1 56.252 44.340 49.359 65.862
FD3 71.914 72.509 73.256 90.229

Baseline (FD5) 72.083 72.843 73.565 89.998
FD7 72.083 72.843 73.565 89.998
FD9 71.656 71.983 72.873 89.210

0011

FD1 50.500 37.125 44.436 61.218
FD3 69.960 71.157 71.322 95.167

Baseline (FD5) 70.095 71.433 71.597 95.167
FD7 70.095 71.433 71.597 95.167
FD9 70.095 71.433 71.597 95.167

1 Symbols ↑ after the evaluation metrics indicate the value of it is the higher the better.
The bold numbers show the best performing method.

2 FDi refers to taking the first i element of FD descriptors. For example, FD5 takes
the first 5 elements of FD descriptors etc.

Another interesting question to be answered is whether we can achieve the
same tracking performance by increasing the length of FD vector of the contour
feature and using such contour feature alone, i.e. without using the blob feature.
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Therefore, we test tracking performance of the method using only contour feature
of different lengths of FD vector, and compare them with the baseline approach
using the FD length of 5 and blob feature. The results are shown in table 8,
where FDi w/o blob denotes the proposed method using the contour feature
with FD vector of length i and without using blob feature. It can be seen from
the results that the baseline approach of using both contour and blob feature
still yields the best performance. Although increasing the length of FD vector
increases the tracking performance, the performance gain stops when length of
vector reaches a certain number, which is not as good as the baseline approach
in general.

Table 8: Comparison of tracking performance of different numbers of FDs with
baseline combined feature in the proposed method.

Dataset Feature HOTA(%) ↑ AssA(%) ↑ AssRe(%) ↑ AssPr(%) ↑

0003

FD1 w/o blob 33.389 15.818 24.912 26.390
FD3 w/o blob 52.820 48.413 52.409 69.232
FD5 w/o blob 64.816 59.699 63.673 72.495
FD7 w/o blob 66.699 63.272 66.515 76.267
FD9 w/o blob 66.699 63.272 66.515 76.267

Baseline (FD5 and blob) 71.989 73.561 74.792 84.318

0007

FD1 w/o blob 26.712 10.025 18.818 19.118
FD3 w/o blob 68.008 64.840 66.240 85.860
FD5 w/o blob 70.285 69.247 70.331 87.920
FD7 w/o blob 71.656 71.983 72.873 89.210
FD9 w/o blob 71.656 71.983 72.873 89.210

Baseline (FD5 and blob) 72.083 72.843 73.565 89.998

0011

FD1 w/o blob 21.064 6.462 17.438 9.513
FD3 w/o blob 56.244 46.016 51.241 69.247
FD5 w/o blob 66.485 64.278 66.303 87.968
FD7 w/o blob 70.095 71.433 71.597 95.167
FD9 w/o blob 70.095 71.433 71.597 95.167

Baseline (FD5 and blob) 70.095 71.433 71.597 95.167
1 Symbols ↑ after the evaluation metrics indicate the value of it is the higher the better. The bold

numbers show the best performing method.
2 FDi stands for taking the first few descriptors, for example, FD5 is taking the first five descriptors

as features etc.

6 Conclusions
To solve the challenging problem of associating vegetables with similar color and
texture in consecutive images, in this paper, we propose a novel MOTS method
for segmenting and tracking of vegetables for robotic precision spray application
in agriculture. The proposed method exploits shape feature of plants consisting
of their contour and blob features, rather than conventional color and texture
features, and yields superior tracking performance over conventional MOTS
methods in the challenging data association problem of vegetable plants with
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similar color and texture. In addition, the proposed method stores all constructed
tracks, and searches within tracks which are all geographically close to vegetables
in the current camera field of view during every data association step. Such a
tracking strategy enables it to be able to re-identify re-occurred plants again,
which is important to avoid spraying these plants more than once when the
robot traverses back and forth. Comprehensive experiments and ablation studies
are conducted to validate the superior performance of the proposed method, as
well as various property of it. Furthermore, the dataset and implementation of
the method are publicly released. Potential future work includes applying the
proposed method to visual SLAM and building an object level SLAM system
for robust localization and mapping in vegetable farms.
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