Masked Autoencoders Are Scalable Vision Learners
Abstract
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2021
- DOI:
- arXiv:
- arXiv:2111.06377
- Bibcode:
- 2021arXiv211106377H
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Tech report. arXiv v2: add more transfer learning results