Unified Extensible Firmware Interface
(UEFI) Specification
Release 2.10 Errata A

UEFI Forum, Inc.

Aug 08, 2024

CONTENTS

1 Introduction 1
1.1 Principle of Inclusive Terminology 1
1.2 UEFI Driver Model Extensions 0 it e e e 2
1.3 Organization o e e e e e e 2
LA Goals e 5
1.5 Target Audience i i e e e e e e e e e 7
1.6 UEFIDesign Overview ittt ettt 7
1.7 UEFI Driver Model e e e e 8

1.7.1 UEFI Driver Model Goals e 8

1.7.2 Legacy Option ROM Issues o i i i i i i e e e e e e e e e e 9

1.8 Migration Requirements o e e e e e e e e e e e 9
1.8.1 Legacy Operating System Support oot 10

1.8.2 Supporting the UEFI Specification on a Legacy Platform 10

1.9 Conventions Used in this Document e 10
1.9.1 Data Structure Descriptionso e 10

1.9.2 Protocol Descriptions e e e e e e e e e e e 10

1.9.3 Procedure Descriptions e e e e e e e e 11

1.9.4 Instruction Descriptions e 11

1.9.5 Pseudo-Code Conventions o v v i vt ittt e e e e e e e 11

1.9.6 Typographic Conventions i it i it e 12

1.9.7 Numberformats L e e e e e e 12
1.9.7.1 Hexadecimal 13

1.9.7.2 Decimal e 13

1.9.8 SI&Binaryprefixes e 13

1.9.9 Revision Numbers e e e e 14

2 Overview 15

2.1 BootManager e 16
2.1.1 UEFIImMages o i vttt e e e e e e 16

2.1.2 UEFL Applications o v i it it e e e e e e e e e e e e e e e e e e e 17

2.1.3 UEFIOSLoaders et et e e e e 18

2.1.4 UEFIDrivers i e e e e 18

2.2 Frmware COTe o v i i i e e e e e e e e e e e e e e e 19
221 UEFLServices v o v i i i e e e e e e e e e e 19

222 Runtime Services i e e e e e e 19

2.3 Calling Conventions v v v v i i e e e e e e e e e e e e e e e e e e 21
231 DataTypes . . . o v v i e e e e e e e e e e 21

232 TA-32Platforms L. e e e e e e e e e e e 23
2.32.1 Handoff State e 25

2.3.2.2 Calling Convention vttt e e e 25

233 Intel®Ttanium®-Based Platforms i 25
2.3.3.1 Handoff State 27
2.3.3.2 CallingConvention it i e e e e e 28

234 x64Platformso e 28
2.34.1 Handoff State 30
2.3.4.2 Detailed Calling Conventionsot 30
2.3.4.3 Enabling Paging or Alternate Translations in an Application 31

235 AArch32Platforms 31
23.5.1 Handoff State 33
2.3.5.2 Enabling Paging or Alternate Translations in an Application 34
2.3.5.3 Detailed Calling Convention 34

23.6 AArch64 Platforms 35
2.3.6.1 MEMOTY LYPES « v v v v v o e 38
2.3.6.2 Handoff State 39
2.3.6.3 Enabling Paging or Alternate Translations in an Application 39
2.3.6.4 Detailed Calling Convention 39

237 RISC-VPlatforms. 40
2.3.7.1 Handoff State 42
2.3.7.2 Enabling Paging or Alternate Translations in an Application 42
2.3.7.3 Detailed Calling Convention 42

23.8 LoongArch Platforms e 43
2.3.8.1 Handoff Statue 45
2.3.8.2 Detailed Calling Convention vt i e, 45

24 Protocolso e e 45
2.5 UEFIDriver Model e 49

25.1 Legacy Option ROMIssues. e 50
2.5.1.1 32-bit/16-Bit Real Mode Binaries 51
2.5.1.2 Fixed Resources for Working with Option ROMs 51
2.5.1.3 Matching Option ROMs to their Devices 52
2.5.14 Tiesto PC-AT System Design 52
2.5.1.5 Ambiguities in Specification and WorkaroundsBorn of Experience 52

2.5.2 Driver Initialization 53

253 HostBusControllers e 54

254 Device Drivers e e e e 56

255 BusDrivers e 57

2.5.6 Platform Components 57

257 Hot-PlugEvents. e 58

2.5.8 EFIServicesBindingo 59

2.6 Requirements o v v i i e e e e e e e e e e e e e e e e e e e 60

2.6.1 Required Elements e e e e 60

2.6.2 Platform-Specific Elements L e 61

2.6.3 Driver-Specific Elements e 64

2.6.4 Extensions to this Specification Published Elsewhere 66

2.6.5 Cryptographic Algorithm Requirement 67

3 Boot Manager 68
3.1 Firmware Boot Manager e 68

3.1.1 Boot Manager Programming 69

3.1.2 Load Option Processing e 70

3.1.3 Load Options e e e 71

3.1.4 Boot Manager Capabilities e 73

3.1.5 Launching Boot#### Applications 73

3.1.6 Launching Boot#### Load Options UsingHot Keys 73

3.1.7 Required System Preparation Applications 75

3.2 Boot Manager Policy Protocol e 75

3.2.1 EFI_BOOT_MANAGER_POLICY_PROTOCOL 75

3.2.2 EFI_BOOT_MANAGER_POLICY_PROTOCOL.ConnectDevicePath() 76

3.2.3 EFI_BOOT_MANAGER_POLICY_PROTOCOL.ConnectDeviceClass() 77

3.3 Globally Defined Variables e 78
34 BootOption Recovery e 83
3.4.1 OS-Defined Boot Option Recovery i it 83

3.4.2 Platform-Defined Boot Option Recovery 84

3.4.3 Boot Option Variables Default Boot Behavior 84

3.5 BootMechanisms L e e e e e 84
3.5.1 Bootviathe Simple File Protocol 84
3.5.1.1 Removable Media Boot Behavior 85

3.5.2 Bootviathe Load File Protocol 85
3.5.2.1 Network Booting e 86

3522 FutureBootMedia. 86

EFI System Table 87
4.1 UEFIImage Entry Point e 87
4.1.1 EFI_IMAGE_ENTRY_POINT i 87

42 EFITable Header e 89
4.2.1 EFIL_TABLE _HEADER i 89

43 EFISystemTable e e e e e e e e 90
43.1 EFLSYSTEM_TABLE e e e e 90

44 EFIBoot Services Table e e e e e e 92
44.1 EFI_BOOT_SERVICES it 92

4.5 EFIRuntime Services Table 96
4.5.1 EFI_RUNTIME_SERVICES e et 96

4.6 EFI Configuration Table & Properties Table 98
4.6.1 EFI_CONFIGURATION_TABLE i 98
4.6.1.1 Industry Standard Configuration Tables 99

4.6.1.2 JSON Configuration Tables 100

4.6.1.3 Devicetree Tables 100

4.6.2 EFI_RT_PROPERTIES _TABLE i 101

4.6.3 EFI_MEMORY_ATTRIBUTES_TABLE 102

4.6.4 EFI_CONFORMANCE_PROFILE_TABLE. 103

4.6.5 Other Configuration Tables 104

4.7 TImage Entry Point Examples e 104
47.1 Image Entry Point Examples e e 104

4772 UEFI Driver Model Example e 106

47.3 UEFI Driver Model Example (Unloadable) 107

4.7.4 EFI Driver Model Example (Multiple Instances) 109
GUID Partition Table (GPT) Disk Layout 111
5.1 GPT and MBR disk layout comparison L e 111
5.2 LBAOFormat e e e e e e 111
5.2.1 Legacy Master Boot Record (MBR) 111

522 OSTYPES « o v v v e e e e e e e e e e 113

523 Protective MBR e 114

5.2.4 Partition Information L e e 115

5.3 GUID Partition Table (GPT) Disk Layout, 115
53.1 GPTOVEIVIEW o i ittt e e e e e e e e e e e 115

532 GPTHeader e e e 117

5.3.3 GPT Partition Entry Array 0 0 i e e e e e e e e e e e 119

6 Block Translation Table (BTT) Layout
Block Translation Table (BTT) Background
Block Translation Table (BTT) Data Structures

6.1
6.2

6.3

6.2.1 BTTInfoBlock
6.22 BTTMapEntry
6.23 BTTFlog i
624 BTTDataArea
6.2.5 NVDIMM Label Protocol Address Abstraction Guid
BTT Theory of Operation
6.3.1 BTTArenas i
6.3.2 Atomicity of Data Blocksinan Arena
6.3.3 Atomicity of BTT Data Structures
6.3.4 Writing the Initial BTT layout
6.3.5 Validating BTT Arenas atstart-up
6.3.6 Validating the Flog entries at start-up
637 ReadPath
638 WritePath

7 Services — Boot Services
Event, Timer, and Task Priority Services

7.1

7.2

1.3

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9

EFI_BOOT_SERVICES.CreateEvent()
EFI_BOOT_SERVICES.CreateEventEx()
EFI_BOOT_SERVICES.CloseEvent()
EFI_BOOT_SERVICES.SignalEvent()
EFI_BOOT_SERVICES.WaitForEvent()
EFI_BOOT_SERVICES.CheckEvent()
EFI_BOOT_SERVICES.SetTimer()
EFI_BOOT_SERVICES.RaiseTPL()
EFI_BOOT_SERVICES.RestoreTPL()

Memory Allocation Services oL

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

EFI_BOOT_SERVICES.AllocatePages()
EFI_BOOT_SERVICES FreePages()
EFI_BOOT_SERVICES.GetMemoryMap()
EFI_BOOT_SERVICES.AllocatePool()
EFI_BOOT_SERVICES.FreePool()

Protocol Handler Services

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18

Driver Model Boot Services
EFI_BOOT_SERVICES.InstallProtocollnterface()
EFI_BOOT_SERVICES.UninstallProtocollnterface()
EFI_BOOT_SERVICES.ReinstallProtocollnterface()
EFI_BOOT_SERVICES.RegisterProtocolNotify()
EFI_BOOT_SERVICES.LocateHandle()
EFI_BOOT_SERVICES.HandleProtocol()
EFI_BOOT_SERVICES.LocateDevicePath()
EFI_BOOT_SERVICES.OpenProtocol()
EFI_BOOT_SERVICES.CloseProtocol()
EFI_BOOT_SERVICES.OpenProtocollnformation()
EFI_BOOT_SERVICES.ConnectController()
EFI_BOOT_SERVICES.DisconnectController()
EFI_BOOT_SERVICES.ProtocolsPerHandle()
EFI_BOOT_SERVICES.LocateHandleBuffer()
EFI_BOOT_SERVICES.LocateProtocol()
EFI_BOOT_SERVICES .InstallMultipleProtocollnterfaces() .
EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces()

122
122
124
124
126
127
128
128
128
129
130
130
131
131
132
133
133

136
137
140
143
146
147
148
149
149
150
152
152
155
157
157
161
162
163
165
166
168
169
170
171
173
174
175
181
182
184
188
190
191
194
194
195

T4 Image Services e e e e e 196
7.4.1 EFI_BOOT_SERVICES.Loadlmage() v i v v ittt e 198
7.4.2 EFI_BOOT_SERVICES.Startlmage() 200
7.4.3 EFI_BOOT_SERVICES.Unloadlmage() o v v v v v i ittt e e oo 201
744 EFI_IMAGE_ENTRY_POINT e e e e 202
7.4.5 EFI_BOOT_SERVICES.Exit() e e e e e e e e 203
7.4.6 EFI_BOOT_SERVICES.ExitBootServices() i vt i i i i .. 204
7.5 Miscellaneous Boot Services e e e e e e e 205
7.5.1 EFI_BOOT_SERVICES.SetWatchdogTimer() 206
7.5.2 EFI_BOOT_SERVICES.Stall() e et e e 207
7.5.3 EFI_BOOT_SERVICES.CopyMem()« vt 207
7.54 EFI_BOOT_SERVICES.SetMem()« i v i ittt i e e et e e e 208
7.5.5 EFI_BOOT_SERVICES.GetNextMonotonicCount() 209
7.5.6 EFI_BOOT_SERVICES.InstallConfigurationTable() 209
7.5.7 EFI_BOOT_SERVICES.CalculateCrc32() i i i it it i e e 210
Services — Runtime Services 212
8.1 Runtime Services Rules and Restrictions e 213
8.1.1 Exception for Machine Check, INIT,and NMI 214
8.2 Variable Services e e e e e e e e e e 214
8.2.1 GetVariable() e e e e e e 215
8.2.2 GetNextVariableName() 0 o i e e e e e e 217
8.2.3 SetVariable() e e e e e 219
8.2.4 QueryVariableInfo() e 224
8.2.5 Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor 225
8.2.6 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor 228
8.2.7 Hardware Error Record Persistence 230
8.2.7.1 Hardware Error Record Non-Volatile Store 230
8.2.7.2 Hardware Error Record Variables 230
8.2.7.3 Common Platform Error Record Format 231
8.3 Time Services e e e e e e e 231
8.3.1 GetTime() o o e e e 231
8.3.2 SetTime() o e e e e e e e 234
8.3.3 GetWakeupTime() o o v i i e e e e e e e 235
8.3.4 SetWakeupTime() o v v i i e e e e e e e e 236
8.4 Virtual Memory Services L e e e e e e 237
8.4.1 SetVirtualAddressMap() o o i e e e e e e 237
8.4.2 ConvertPointer() e e e e e 238
8.5 Miscellaneous Runtime Services o . e e e e e e e e e e e e e 240
85.1 ResetSystem e e 240
8.5.1.1 ResetSystem() o o e e e 240
8.5.2 Get Next High Monotonic Count ittt 241
8.5.2.1 GetNextHighMonotonicCount() i v i .. 241
85.3 Update Capsule i e e e e e e 242
8.5.3.1 UpdateCapsule() o i i 243
8.5.3.2 Capsule Definition 246
8.5.3.3 EFI_MEMORY_RANGE_CAPSULE_GUID 247
8.5.3.4 QueryCapsuleCapabilities() o v v it e e 249
8.5.4 Exchanging information between the OS and Firmware 250
8.5.5 Delivery of Capsules via file on Mass Storage Device 251
8.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of capsules
afterrestart L L L e 252
8.5.6.1 EFI_CAPSULE_REPORT_GUID 253

9 Protocols - EFI Loaded Image

9.1 EFI Loaded Image Protocol
EFI_LOADED_IMAGE_PROTOCOL
EFI_LOADED_IMAGE_PROTOCOL.Unload()
9.2 EFI Loaded Image Device Path Protocol . .
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

9.1.1
9.1.2

9.2.1

10 Protocols — Device Path Protocol
10.1 Device Path Overview
10.2 EFI Device Path Protocol
10.3 Device PathNodes

10.3.1
10.3.2

10.3.3

10.3.4

Generic Device Path Structures . . .
Hardware Device Path
10.3.2.1 PCI Device Path
10.3.2.2 PCCARD Device Path . . .

10.3.2.3 Memory Mapped DevicePath

10.3.2.4 Vendor Device Path
10.3.2.5 Controller Device Path . .
10.3.2.6 BMC Device Path
ACPI DevicePath
10.3.3.1 ACPI _ADR Device Path .
10.3.3.2 NVDIMM Device Path . .
Messaging Device Path
10.3.4.1 ATAPI Device Path
10.3.4.2 SCSI Device Path
10.3.4.3 Fibre Channel Device Path
10.3.4.4 1394 Device Path
10.3.4.5 USB Device Paths
10.3.4.6 SATA Device Path
10.3.4.7 USB Device Paths (WWID)
10.3.4.8 Device Logical Unit
10.3.49 1, O DevicePath
10.3.4.10 MAC Address Device Path
10.3.4.11 IPv4 Device Path
10.3.4.12 IPv6 Device Path
10.3.4.13 2. VLAN device path node
10.3.4.14 InfiniBand Device Path . .
10.3.4.15 UART Device Path

10.3.4.16 Vendor-Defined Messaging Device Path
10.3.4.17 UART Flow Control MessagingPath
10.3.4.18 Serial Attached SCSI (SAS) Device Path
10.3.4.19 Serial Attached SCSI (SAS) Extended Device Path

10.3.4.20 iSCSI Device Path

10.3.4.21 NVM Express namespace messaging device pathnode
10.3.4.22 Uniform Resource Identifiers (URI) Device Path
10.3.4.23 UFS (Universal Flash Storage) device messaging devicepathnode
10.3.4.24 SD (Secure Digital) Device Path oL

10.3.4.25 EFI Bluetooth Device Path
10.3.4.26 Wireless Device Path . . .

10.3.4.27 eMMC (Embedded Multi-Media Card) Device Path
10.3.4.28 EFI BluetoothLE DevicePath

10.3.4.29 DNS Device Path
10.3.4.30 NVDIMM Namespace path
10.3.4.31 REST Service Device Path

256
256
256
258
258
258

260
260
260
261
262
263
263
263
264
264
264
265
265
267
267
268
268
268
268
270
271
272
273
273
274
274
275
275
276
276
277
277
278
279
281
281
290
291
291
291
292
292
292
292
293
293
293

vi

10.3.5

10.3.6
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9

10.6 EFI Device Path Display Format Overview

10.6.1

10.6.2

10.6.3
10.6.4
10.6.5

Device Path Generation Rules

Device Path Utilities Protocol

10.3.4.32 NVMe over Fabric (NVMe-oF) Namespace Device Path
10.3.4.33 NVMe over Fabric (NVMe-oF) Namespace Device Path Example

Media Device Path
10.3.5.1 HardDrive e e e e e e e e e e e e
10.3.5.2 CD-ROM Media Device Path
10.3.5.3 Vendor-Defined Media Device Path
10.3.5.4 File Path Media Device Path
10.3.5.5 Media Protocol Device Path
10.3.5.6 PIWG Firmware File
10.3.5.7 PIWG Firmware Volume
10.3.5.8 Relative Offset Range
10.3.5.9 RAM Disk

BIOS Boot Specification Device Path

Housekeeping Rules
Rules with ACPI _HID and _UID
Rules with ACPI _ADR
Hardware vs. Messaging Device Path Rules
Media Device PathRules L
Other Rules

EFI_DEVICE_PATH_UTILITIES_PROTOCOL
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultilnstance()

Design Discussion
10.6.1.1 Standardized Display Format
10.6.1.2 Readability
10.6.1.3 Round-Trip Conversion
10.6.1.4 Command-Line Parsing
10.6.1.5 Text Representation Basics
10.6.1.6 Text Device Node Reference

Device Path to Text Protocol
10.6.2.1 EFI_DEVICE_PATH_TO_TEXT_PROTOCOL

EFI_DEVICE_PATH_TO_TEXT_ PROTOCOL.ConvertDeviceNodeToText()

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()

Device Path from Text Protocol
10.6.5.1 EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL
10.6.5.2 EFI_DEVICE_PATH_FROM_TEXT_ PROTOCOL.ConvertTextToDeviceNode()
10.6.5.3 EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDevicePath(

11 Protocols — UEFI Driver Model

11.1
11.1.1

EFI Driver Binding Protocol

EFI_DRIVER_BINDING_PROTOCOL

11.1.2 EFI_DRIVER_BINDING_PROTOCOL.Supported()

11.1.3 EFI_DRIVER_BINDING_PROTOCOL.Start()
11.1.4 EFI_DRIVER_BINDING_PROTOCOL.Stop()
11.2 EFI Platform Driver Override Protocol

304

vii

11.2.1 EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver() 356

11.2.2 EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath() 357

11.2.3 EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded() 358

11.3 EFI Bus Specific Driver Override Protocol 359

11.3.1 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 359

11.3.2 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver() 360

11.4 EFI Driver Diagnostics Protocol e 361

11.4.1 EFI_DRIVER_DIAGNOSTICS2 PROTOCOL 361

11.4.2 EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics() 362

11.5 EFI Component Name Protocol, 364

11.5.1 EFI_COMPONENT_NAME2 PROTOCOL, 364

11.5.2 EFI_COMPONENT_NAME2 PROTOCOL.GetDriverName() 365

11.5.3 EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName() 366

11.6 EFI Service Binding Protocol 367

11.6.1 EFI_SERVICE_BINDING_PROTOCOL 367

11.6.2 EFI_SERVICE_BINDING_PROTOCOL.CreateChild() 368

11.6.3 EFI_SERVICE_BINDING_PROTOCOL.DestroyChild() 371

11.7 EFI Platform to Driver Configuration Protocol 375

11.7.1 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL 375

11.7.2 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query() 376

11.7.3 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Response() 377

11.7.4 DMTF SM CLP ParameterTypeGuid 379

11.8 EFI Driver Supported EFI Version Protocol 380

11.8.1 EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL 380

11.9 EFI Driver Family Override Protocol 381

11.9.1 Overview o e e e e e e e e e 381

11.9.1.1 EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL 382

11.9.1.2 EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion() 383

11.10 EFI Driver Health Protocol e 383

11.10.1 EFI_DRIVER_HEALTH_PROTOCOL i 383

11.10.2 EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus() 385

11.10.3 EFI_DRIVER_HEALTH_PROTOCOL.Repair() 388

11.10.4 UEFI Boot Manager Algorithms 390

11.10.4.1 All Controllers Healthy i 390

11.10.4.2 Process a Controller Until Terminal StateReached 391

11.10.4.3 Repair Notification Function 392

11.10.4.4 Process Message List L o 392

11.10.4.5 Process HIL Form o s 393

11.10.5 UEFI Driver Algorithms e 393

11.10.5.1 Driver Entry Point Updates 393

11.10.5.2 Add global variable 393

11.10.5.3 Update private context Structure v v v vttt 393

11.10.5.4 Implement GetHealthStatus() service 394

11.10.5.5 Implement Repair() service 394

11.11 EFI Adapter Information Protocol 394

11.11.1 EFI_ADAPTER_INFORMATION_PROTOCOL 394

11.11.2 EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_GET_INFO() 395

11.11.3 EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_SET_INFO() . . . 396
11.11.4 EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES()397

11.12 EFI Adapter Information Protocol Information Types, 398

11.12.1 Network Media State i e 398

11.12.2 Network Boot o e 398

11.123 SANMAC AAAIess vttt e e e e e e e e e e e e e e e e 399

11.12.5 Network Media Type o o o oo s e e 400

11.12.6 Coherent Device Attribute Table (CDAT) Type v o v i v v i i i e oo o 401

12 Protocols — Console Support 402
12.1 Console /O Protocol e e 402
1211 OVerview o o e e e e e e e 402

12.1.2 Consoleln Definition e 403

12.2 Simple Text Input Ex Protocol 403
12.2.1 EFI_SIMPLE_TEXT_INPUT_EX PROTOCOL 403

12.2.2 EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset() 404

12.2.3 EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx() 405

12.2.4 EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState() 407

12.2.5 EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify() 408

12.2.6 EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify() 409

12.3 Simple Text Input Protocol e 409
12.3.1 EFIL_SIMPLE_TEXT_INPUT_PROTOCOL i 410

12.3.2 EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset(). v v 410

12.3.3 EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke() 411

12.3.4 ConsoleOut or StandardError 412

12.4 Simple Text Output Protocol e 412
12.4.1 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL 412

12.42 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset() 414

12.4.3 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString() 415

12.4.4 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString() 418

12.4.5 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode() 418

12.4.6 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode() 419

12.47 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() 420

12.4.8 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen() 422

12.4.9 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition() 422
12.4.10 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor() 423

12.5 Simple Pointer Protocol 424
12.5.1 EFIL_SIMPLE_POINTER_PROTOCOL e 424

12.5.2 EFI_SIMPLE_POINTER_PROTOCOL.Reset() v v v v v i i i i 425
12.5.3 EFI_SIMPLE_POINTER_PROTOCOL.GetState() 426

12.6 EFI Simple Pointer Device Paths 427
12.7 Absolute Pointer Protocol L e e e e e 430
12.7.1 EFI_ABSOLUTE_POINTER_PROTOCOL 430

12.7.2 EFI_ABSOLUTE_POINTER_PROTOCOL.Reset() v v v v v vt 432

12.7.3 EFI_ABSOLUTE_POINTER_PROTOCOL.GetState()o v 433

12.8 Serial /O Protocol e e e e e e e 434
12.8.1 EFI_SERIAL_IO_PROTOCOL ittt e e 434

12.8.2 Serial Device Identification L e 437

12.8.3 Serial Device Type GUIDs i e e e e e e e e e e 437
12.8.3.1 EFI_SERIAL_IO_PROTOCOL.Reset() oo v 438

12.8.3.2 EFI_SERIAL_IO_PROTOCOL.SetAttributes() 439

12.8.3.3 EFI_SERIAL_IO_PROTOCOL.SetControl() 440

12.8.3.4 EFI_SERIAL_IO_PROTOCOL.GetControl() 441

12.8.3.5 EFI_SERIAL_IO_PROTOCOL.Write() 442

12.8.3.6 EFI_SERIAL_IO_PROTOCOL.Read() 443

12.9 Graphics Output Protocol 444
129.1 BltBuffer o e 444
12.9.2 EFI_GRAPHICS_OUTPUT_PROTOCOL it 446
12.9.2.1 EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() 450

12.9.2.2 EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode() 451

12.9.2.3 EFI_GRAPHICS_OUTPUT_PROTOCOL.BIt() 451

12.9.2.4 EFI_EDID_DISCOVERED_PROTOCOL 453

12.9.2.5 EFI_EDID_ACTIVE_PROTOCOL 454

12.9.2.6 EFI_EDID_OVERRIDE_PROTOCOL 455

12.9.2.7 EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() 455

12.10 Rules for PCI/AGP Devices o o i ittt e e e e e 457
13 Protocols — Media Access 459
13.1 LoadFile Protocol e e 459
13.1.1 EFI_LOAD_FILE_PROTOCOL ettt et e 459
13.1.2 EFI_LOAD_FILE_PROTOCOL.LoadFile() 460

13.2 LoadFile2 Protocol e 461
13.2.1 EFI_LOAD_FILE2 PROTOCOL it ittt 461
13.2.2 EFI_LOAD_FILE2_PROTOCOL.LoadFile() 462

13.3 File System Format e e 463
13.3.1 System Partition e e e e e e e e e 463
13.3.1.1 File System Format e 463

13.3.1.2 FileNames e e e e e e e 464

13.3.1.3 Directory Structure e e 464

13.3.2 Partition Discovery e e e 465
13.3.2.1 ISO-9660 and El Torito i i 466

13.3.3 Number and Location of System Partitions 467
1334 MediaFormats e e 467
13.3.4.1 Removable Media 467

13342 Diskette o . e e 467

13343 HardDrive L e 468

13.344 CD-ROMand DVD-ROM i i 468

13.3.45 Network 468

13.4 Simple File System Protocol 468
13.4.1 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL 468
13.4.2 EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume() 469

13.5 File Protocol e e e 470
13.5.1 EFIL_FILE_PROTOCOL e e e 470
13.5.2 EFI_FILE_PROTOCOL.OpPen() v v v v v ittt et e e e e e e e e 472
13.5.3 EFI_FILE_PROTOCOL.CIoSe() . . « « v v v v vt e e e e e e e e e e s e e e 474
13.5.4 EFI_FILE_PROTOCOL.Delete() o v v ittt e e e e e e e e e e 474

13.5.5 EFIL_FILE_PROTOCOL.Read() o o i v i ittt ittt 475
13.5.6 EFI_FILE_PROTOCOL.WTrite() v v v v v v i e e e e e e e e e e e 476
13.5.7 EFI_FILE_PROTOCOL.OpenEX() v v v v v ittt e e e e e e e 477
13.5.8 EFI_FILE_PROTOCOL.ReadEX() i ittt 479
13.5.9 EFI_FILE_PROTOCOL.WriteEX() o ottt i e e e e 480
13.5.10 EFI_FILE_PROTOCOL.FlushEx() o i e 481
13.5.11 EFI_FILE_PROTOCOL.SetPosition()« v v v ittt ittt e e 482
13.5.12 EFI_FILE_PROTOCOL.GetPosition() v i vt e it i e 483
13.5.13 EFI_FILE_PROTOCOL.GetInfo() oo ittt 484
13.5.14 EFI_FILE_PROTOCOL.SetInfo() it 485
13.5.15 EFI_FILE_PROTOCOL.Flush() i 486
13.5.16 EFI_FILE_INFO e e e e e e e e 486
13.5.17 EFI_FILE_SYSTEM_INFO e e e 488
13.5.18 EFI_FILE_SYSTEM_VOLUME_LABEL 489

13.6 Tape Boot Support L 489
13.6.1 TapeI/O Support e 489
13.6.2 TapeI/OProtocol e 489
13.6.2.1 EFI_TAPE_IO_PROTOCOL i 490

13.6.2.2 EFI_TAPE_IO_PROTOCOL.TapeRead() 491

13.6.2.3 EFI_TAPE_IO_PROTOCOL.TapeWrite() v v v v v v .. 492

13.6.2.4 EFI_TAPE_IO_PROTOCOL.TapeRewind() 493

13.6.2.5 EFI_TAPE_IO_PROTOCOL.TapeSpace()« v v v v v v v v v .. 494

13.6.2.6 EFI_TAPE_IO_PROTOCOL.TapeWritetFM() 495

13.6.2.7 EFI_TAPE_IO_PROTOCOL.TapeReset() 496

13.6.3 Tape Header Format e e e e e e 497

13.7 DiskI/OProtocol e e e e 498
13.7.1 EFI_DISK_IO_PROTOCOL e e e e e e e e e 498
13.7.2 EFI_DISK_IO_PROTOCOL.ReadDisk() 499

13.7.3 EFI_DISK_IO_PROTOCOL.WriteDisk() 500

13.8 Disk /O 2 Protocol e e e e 501
13.8.1 EFI_DISK_IO2_PROTOCOL e e e e e s e e 501
13.8.2 EFI_DISK_IO02_PROTOCOL.Cancel() i i it i i ittt i e 502

13.8.3 EFI_DISK_I02_PROTOCOL.ReadDiskEx() 503
13.8.4 EFI_DISK_IO2_PROTOCOL.WriteDiskEx() 504

13.8.5 EFI_DISK_IO2_PROTOCOL.FlushDiskEx() 505

13.9 Block /O Protocol e e e e 506
13.9.1 EFI_BLOCK_IO_PROTOCOL e e e e e e e 507
13.9.2 EFI_BLOCK_IO_PROTOCOL.Reset() o v v ittt et e e e 509

13.9.3 EFI_BLOCK_IO_PROTOCOL.ReadBlocks() 510

13.9.4 EFI_BLOCK_IO_PROTOCOL.WriteBlocks() 511

13.9.5 EFI_BLOCK_IO_PROTOCOL.FlushBlocks() o i i i it 512

13.10 Block /O 2 Protocol e e e e 513
13.10.1 EFI_BLOCK_IO2_PROTOCOL e e e e e e e e e 513
13.10.2 EFI_BLOCK_IO2_PROTOCOL.Reset() o o i it it ettt 514
13.10.3 EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx() 514
13.10.4 EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx() 516
13.10.5 EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx() 517

13.11 Inline Cryptographic Interface Protocol 518
13.11.1 EFI_BLOCK_IO_CRYPTO_PROTOCOL e .. 518
13.11.2 EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset() 522
13.11.3 EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities() 523
13.11.4 EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration() 524
13.11.5 EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration() 525
13.11.6 EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended() 526
13.11.7 EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended() 528
13.11.8 EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks() 529

13.12 Erase Block Protocol e e 530
13.12.1 EFI_ERASE_BLOCK_PROTOCOL e e e e e e e 530
13.12.2 EFI_ERASE_BLOCK_PROTOCOL.EraseBlocks() 531

13.13 ATA Pass Thru Protocol e e e 532
13.13.1 EFI_ATA_PASS_THRU_PROTOCOL i i et 532
13.13.2 EFI_ATA_PASS_THRU_PROTOCOL.PassThru() 535
13.13.3 EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort() 540
13.13.4 EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice() 541
13.13.5 EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath() 542
13.13.6 EFI_ATA_PASS_THRU_PROTOCOL.GetDevice() oo .. 543
13.13.7 EFI_ATA_PASS_THRU_PROTOCOL.ResetPort() 544
13.13.8 EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice() v v v v v v v v i v et 545

13.14 Storage Security Command Protocol L e 546
13.14.1 EFI_STORAGE_SECURITY_COMMAND_PROTOCOL 546
13.14.2 EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData() 547
13.14.3 EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData() 548

Xi

13.15 NVM Express Pass Through Protocol 550

13.15.1 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL 550
13.15.2 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru() 552
13.15.3 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace() 556
13.15.4 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath() 557
13.15.5 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace() 558

13.16 SD MMC Pass Thru Protocol e 559
13.16.1 EFI_SD_MMC_PASS_THRU_PROTOCOL 559
13.16.2 EFI_SD_MMC_PASS_THRU_PROTOCOL.PassThru() 560
13.16.3 EFI_SD_MMC_PASS_THRU_PROTOCOL.GetNextSlot() 562
13.16.4 EFI_SD_MMC_PASS_THRU_PROTOCOL.BuildDevicePath() 563
13.16.5 EFI_SD_MMC_PASS_THRU_PROTOCOL.GetSlotNumber() 564
13.16.6 EFI_SD_MMC_PASS_THRU_PROTOCOL.ResetDevice()o oo oo .. 565

13.17 RAM Disk Protocol e 565
13.17.1 EFI_RAM_DISK_PROTOCOL ettt 565
13.17.2 EFI_RAM_DISK_PROTOCOL.Register() v v i it e et e 566
13.17.3 EFI_RAM_DISK_PROTOCOL.Unregister() o v v v v v vv .. 567

13.18 Partition Information Protocol 568
13.19 NVDIMM Label Protocol e 569
13.19.1 EFI. NVDIMM_LABEL_PROTOCOL i 569
13.19.2 EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageInformation() 570
13.19.3 EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageRead() 571
13.19.4 EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageWrite() 572
13.19.5 Label Storage Area Description o L e e e 578
13.19.5.1 Updating the Name of a Namespace Description 583

13.20 EFI UFS Device Config Protocol o e 584
13.20.1 EFI_UFS_DEVICE_CONFIG_PROTOCOL 584
13.20.2 EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsDescriptor() 584
13.20.3 EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsFlag() 585
13.20.4 EFI_UFS_DEVICE_CONFIG_PROTOCOL.RwUfsAttribute() 586

14 Protocols — PCI Bus Support 588
14.1 PCIRoot Bridge I/O Support o e e e e e e 588
14.1.1 PCIRootBridge I/O Overview it et 588
14.1.2 Sample PCI Architectures e 590

142 PCIRoot Bridge /O Protocol e 592
14.2.1 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 592
14.2.2 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem() 599
14.2.3 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Polllo() 600
14.2.4 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read() 601
14.2.5 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write() 601
14.2.6 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read() 603
14.2.7 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write() 603
14.2.8 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() 604
14.2.9 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write() 604
14.2.10 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem() 605
14.2.11 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map() 607
14.2.12 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap() v v v v v v v v v v .. 608
14.2.13 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer() 609
14.2.14 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer() 610
14.2.15 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush() 611
14.2.16 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() 612
14.2.17 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes() 613
14.2.18 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() 614

Xii

14.2.19 PCIRoot Bridge Device Paths 616

143 PCIDriver Model e e 618
14.3.1 PCI Driver Initialization e 619
14.3.2 Driver Diagnostics Protocol oL 620
14.3.3 Component Name Protocol o oo 620
14.3.4 Driver Family Override Protocol o 620
1435 PCIBusDrivers o o e e e e 620
14.3.6 Driver Binding Protocol for PCI Bus Drivers 621
14377 PCIEnumerationt i it it et e e e e e e e e 624
14.3.8 PCIDevice Drivers o . i e e e e e e e e 624
14.3.9 Driver Binding Protocol for PCI Device Drivers 624

144 EFIPCIT/OProtocol e e e e e e e 624
14.4.1 EFI_PCI_LIO_PROTOCOL i e 626
14.4.2 EFI_PCI_IO_PROTOCOL.PollMem() v v v v v v i i i e e 633
14.43 EFI_PCI_IO_PROTOCOL.Polllo() ittt et 634
14.4.4 EFI_PCI_IO_PROTOCOL.Mem.Read() i, 636
14.4.5 EFI_PCI_IO_PROTOCOL.Mem.Write()« c v v v vttt i e e e 636
14.4.6 EFI_PCI_IO_PROTOCOL.Jo.Read()o vttt e e 637
14.4.7 EFI_PCI_IO_PROTOCOL.I0.Write() « v v v v v e et e e e e e e 637
14.4.8 EFI_PCI_IO_PROTOCOL.Pci.Read() 639
14.49 EFI_PCI_IO_PROTOCOL.Pci.Write()« v v v i et et e 639
14.4.10 EFI_PCI_IO_PROTOCOL.CopyMem()« ¢ v v v v it e ettt e e e e 640
14.4.11 EFI_PCI_LIO_PROTOCOL.Map()« o v v v i ittt oo 642
14.4.12 EFI-PCI-IO-PROTOCOL-UNmMap() v v v v v e o e e e e e e e e e e e e e e e e e 643
14.4.13 EFI_PCI_IO_PROTOCOL.AllocateBuffer() 644
14.4.14 EFI_PCI_IO_PROTOCOL.FreeBuffer() 645
14.4.15 EFI_PCI_IO_PROTOCOL.Flush() o s 646
14.4.16 EFI_PCI_IO_PROTOCOL.GetLocation() oo v v v v i i i 647
14.4.17 EFI_PCI_IO_PROTOCOL.Attributes() « « o v v v ittt et e e e e 648
14.4.18 EFI_PCI_IO_PROTOCOL.GetBarAttributes() v v v v i v o 650
14.4.19 EFI_PCI_IO_PROTOCOL.SetBarAttributes() oo 652
14.420 PCIDevice Paths o e 653
14.421 PCIOption ROMs e 654
14.4.22 PCI Bus Driver Responsibilities e 657
14.4.23 PCI Device Driver Responsibilities 658
14.4.24 Nonvolatile Storage e e e e e e 663
14.425 PCIHot-PlugEvents e 663

15 Protocols — SCSI Driver Models and Bus Support 664

15.1 SCSIDriver Model OVerview o i v it e e e e e e e 664

152 SCSIBusDrivers e e e e 665
15.2.1 Driver Binding Protocol for SCSI Bus Drivers 665
15.2.2 SCSIEnumeration i i it e e e e e 666

15.3 SCSIDevice Drivers L o e e e e e 666
15.3.1 Driver Binding Protocol for SCSI Device Drivers 666

154 EFISCSIT/OProtocol e e e e e e 667
15.4.1 EFI_SCSI_IO_PROTOCOL e e e e s e e e e 667
15.4.2 EFI_SCSI_IO_PROTOCOL.GetDeviceType() « v v v v v vt e e e e e e e e e 668
15.4.3 EFI_SCSI_IO_PROTOCOL.GetDeviceLocation() 669
15.4.4 EFI_SCSI_IO_PROTOCOL.ResetBus() oo v v v i i 670
15.4.5 EFI_SCSI_IO_PROTOCOL.ResetDevice() oo v v i i i 671
15.4.6 EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand() 671

15.5 SCSIDevice Paths L . e 675
15.5.1 SCSIDevice PathExample et e e 675

15.6
15.7

15.5.2 ATAPI Device PathExample o e
15.5.3 Fibre Channel Device Path Example
15.5.4 InfiniBand Device Path Example
SCSI Pass Thru Device Paths e
Extended SCSI Pass Thru Protocol e
15.7.1 EFI_EXT_SCSI_PASS_THRU_PROTOCOL
15.7.2 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()
15.7.3 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()
15.7.4 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()
15.7.5 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()
15.7.6 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()
15.7.7 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()
15.7.8 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

16 Protocols — iSCSI Boot

16.1

16.2

OVEIVIEW . . . o o o e i e
16.1.1 iSCSIUEFI Driver Layering 0 i i it e et et e e e e e
EFTiSCSI Initiator Name Protocol e e e e e e e
16.2.1 EFI_ISCSI_INITIATOR_NAME_PROTOCOL
16.2.2 EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()
16.2.3 EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

17 Protocols — USB Support

17.1

17.2

USB2 Host Controller Protocol e e e e
17.1.1 USB Host Controller Protocol Overview i,
17.1.2 EFI_USB2_HC_PROTOCOL e e e e e e
17.1.3 EFI_USB2_HC_PROTOCOL.GetCapability()
17.1.4 EFI_USB2_HC_PROTOCOL.Reset() o v i ittt i i e
17.1.5 EFI_USB2_HC_PROTOCOL.GetState() ot i ittt i e e e
17.1.6 EFI_USB2_HC_PROTOCOL.SetState() o v v it i i e e e e e e e
17.1.7 EFI_USB2_HC_PROTOCOL.ControlTransfer()
17.1.8 EFI_USB2_HC_PROTOCOL.BulkTransfer()
17.1.9 EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()
17.1.10 EFI_USB2_HC_PROTOCOL.SynclInterruptTransfer()
17.1.11 EFI_USB2_HC_PROTOCOL.IsochronousTransfer()
17.1.12 EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()
17.1.13 EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()
17.1.14 EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()
17.1.15 EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()
USB Driver Model e e e e e e e
17.2.1 SCOPe . . o o o e e e
1722 USBBusDriver. e e e e e e e e

17.2.2.1 USB Bus Driver Entry Point

17.2.2.2 Driver Binding Protocol for USB Bus Drivers

17.22.3 USBHot-PlugEvent

17.2.2.4 USB Bus Enumeration
17.2.3 USB Device Driver e e e e e e e e

17.2.3.1 USB Device Driver Entry Point,

17.2.3.2 Driver Binding Protocol for USB DeviceDrivers
17.2.4 USBI/OProtocol e e e e
17.2.5 EFI_USB_IO_PROTOCOL e e e e e e
17.2.6 EFI_USB_IO_PROTOCOL.UsbControlTransfer()
17.2.7 EFI_USB_IO_PROTOCOL.UsbBulkTransfer()
17.2.8 EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()

xiv

17.2.9 EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer() 735

17.2.10 EFI_USB_IO_PROTOCOL.UsblsochronousTransfer() 736
17.2.11 EFI_USB_IO_PROTOCOL.UsbAsynclsochronousTransfer() 737
17.2.12 EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor() 738
17.2.13 EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor() 739
17.2.14 EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor() 740
17.2.15 EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor() 741
17.2.16 EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor() 743
17.2.17 EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages() 744
17.2.18 EFI_USB_IO_PROTOCOL.UsbPortReset() 744

17.3 USB Function Protocol e 745
17.3.1 EFI_USBFEN_IO_PROTOCOL e e e e e e 745
17.3.2 EFI_USBFN_IO_PROTOCOL.DetectPort() v v i v e it e et e e 747

17.3.3 EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints() 749

17.3.4 EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize() 750

17.3.5 EFI_USBFN_IO_PROTOCOL.GetDevicelnfo() 751
17.3.6 EFI_USBFN_IO_PROTOCOL.GetVendorldProductld() 752

17.3.7 EFI_USBFN_IO_PROTOCOL.AbortTransfer() 753

17.3.8 EFI_USBFN_IO_PROTOCOL.GetEndpointStallState() 754
17.3.9 EFI_USBFN_IO_PROTOCOL.SetEndpointStallState() 754
17.3.10 EFI_USBFN_IO_PROTOCOL.EventHandler() 755
17.3.11 EFI_USBFN_IO_PROTOCOL.Transfer() 759
17.3.12 EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize() 760
17.3.13 EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer() 761
17.3.14 EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() 762
17.3.15 EFI_USBFN_IO_PROTOCOL.StartController() 762
17.3.16 EFI_USBFN_IO_PROTOCOL.StopController() 763
17.3.16.1 Description o o L e e e e e 763

17.3.17 EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() 763
17.3.18 EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy() 766
17.3.19 USB Function Sequence Diagram 767

18 Protocols — Debugger Support 769
18.1 OVerview e e e e e e e e e e e e e e e e e e 769
18.2 EFI Debug Support Protocol 770
18.2.1 EFI Debug Support Protocol Overview oot 770
18.2.2 EFI_DEBUG_SUPPORT_PROTOCOL ittt e e 770
18.2.3 EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorlndex() 772
18.2.4 EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback() 772

18.2.5 EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback() 781

18.2.6 EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache() 786

18.3 EFI Debugport Protocol e 787
18.3.1 EFIDebugport OVErview o v v v i e e e e e e e e e e e e e e e 787
18.3.2 EFI_DEBUGPORT_PROTOCOL e e e e e e e 787
18.3.3 EFI_DEBUGPORT_PROTOCOL.Reset() v v v v i it e it e e e e 788
18.3.4 EFI_DEBUGPORT_PROTOCOL.Write() i i it i e e 788

18.3.5 EFI_DEBUGPORT_PROTOCOL.Read() 789
18.3.6 EFI_DEBUGPORT_PROTOCOL.Poll() it e e i e i 790
18.3.7 Debugport Device Path e 791
18.3.8 EFI Debugport Variable 791

18.4 EFI Debug Support Table e 792
18.4.1 Overview e e e e e e e e e e e e e 792
18.4.2 EFI System Table Location 793
1843 EFIImageInfo e e e e 794

XV

19 Protocols — Compression Algorithm Specification
19.1 Algorithm OVErview o e e e e e e e e e e e e

19.2 Data Format . . .
19.2.1 Bit Order

19.2.2 Overall Structure e e e e e e e e e e
19.2.3 Block Structure e e e e e e e e e e e e e
19.2.3.1 BlockHeader e e
19.2.3.2 Block Body e e

19.3 Compressor Design

19.3.1 Overall Process o e e e e e e e e e e e e e e e
1932 StringInfoLog e
19.3.2.1 Data Structures o o b i e e e e e e e e e e e e e

19.3.2.2 Searchingthe Tree o o i i i e s e e

19323 Adding StringInfo oL

19.3.2.4 Deleting StringInfo L oo

19.3.3 Huffman Code Generation 0 i i v i ittt et e e
19.3.3.1 Huffman Tree Generation i

19.3.3.2 Code Length Adjustment e

19333 CodeGeneration e e e e

19.4 Decompressor Design L
19.5 Decompress Protocol L
19.5.1 EFI_DECOMPRESS_PROTOCOL it

19.5.2 EFI_DECOMPRESS_PROTOCOL.GetInfo()
19.5.3 EFI_DECOMPRESS_PROTOCOL.Decompress() . . « v v v v v v v v v v e e e oo e e

20 Protocols — ACPI Protocols
20.1 EFI_ACPI_TABLE_PROTOCOL e e e e e e e e e s e
20.2 EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()
20.3 EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable()

21 Protocols — String Services
21.1 Unicode Collation Protocol
21.1.1 EFL_UNICODE_COLLATION_PROTOCOL
21.1.2 EFI_UNICODE_COLLATION_PROTOCOL.StriColl()
21.1.3 EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()
21.1.4 EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()
21.1.5 EFIL_UNICODE_COLLATION_PROTOCOL.StrUpr()
21.1.6 EFIL_UNICODE_COLLATION_PROTOCOL.FatToStr()
21.1.7 EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()
21.2 Regular Expression Protocol L
21.2.1 EFI_REGULAR_EXPRESSION_PROTOCOL
21.2.2 EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()
21.2.3 EFIL_REGULAR_EXPRESSION_PROTOCOL.GetInfo()
21.2.4 EFI Regular Expression Syntax Type Definitions

22 EFI Byte Code Virtual Machine

22.1 Overview

22.1.1 Processor Architecture Independence L oL
22.1.2 OSIndependent e e e e e e
22.1.3 EFICompliant o e e e e e e e e
22.1.4 Coexistence of Legacy Option ROMs
22.1.5 Relocatable Image e
22.1.6 Size Restrictions Based on Memory Available,

22.2 Memory Ordering

796
796
797
797
798
798
799
804
804
804
806
806
806
807
807
809
809
809
810
810
811
811
811
813

815
815
815
817

818
818
818
819
820
821
822
822
823
824
824
824
826
827

828
828
828
829
829
829
829
830
830

xvi

22.3
22.4

22.5

22.6

22.7

22.8

Virtual Machine Registers e e e e e e e e e 830

Natural Indexing o e e e e e e e e e 831
2241 SignBit e e e e e 832
22.42 Bits Assigned to Natural Units L o 832
2243 ConStant L e e e e e e e e e e e e e e e e e 832
2244 Natural Units 0 000 e e e e e 832
EBC Instruction Operands o o v it e e e e e e e e e e e e e 833
22.5.1 DirectOperands o .o e e e e e e e e e e e 833
2252 Indirect Operands e e 833
2253 Indirect with Index Operands Lo 833
22.5.4 Immediate Operands i e e e e e 834
EBC Instruction Syntax v v v v v et e 834
Instruction Encoding e e e e e 835
22.7.1 Instruction Opcode Byte Encoding 835
22.7.2 Instruction Operands Byte Encoding 835
22.7.3 Index/Immediate Data Encoding 836
EBC Instruction Set L e e e e e 836
22.8.1 ADD . .. 836
2282 AND . . 837
22.83 ASHR 838
22.84 BREAK 839
22.8.5 CALL 840
228.6 CMP 842
22877 CMPI 844
22.8.8 DIV . 845
22.8.9 DIVU . . e 846
22.8.10 EXTNDB 847
22.8.11 EXTNDD o e e 848
22.8.12 EXTNDW . . . o e e 849
22813 JMP . . . 850
22.8.14 IMP8B . . . e e e e 852
22.8.15 LOADSP 852
22.8.16 MOD e 853
22.8.17 MODU e 854
22.8.18 MOV . . 855
22.8.19 MOVI . . . o e e 856
22.820 MOVIN e 858
22821 MOVI oo e 859
22.8.22 MOVREL 860
22823 MOVSD oo 861
22.824 MUL 862
22.8.25 MULU e e 863
22826 NEG o o 864
22827 NOT . . . o o 865
22828 OR . . . o 866
22.829 POP o 867
22.830 POPn e e 868
22.831 PUSH 869
22.832 PUSHN 870
22833 RET o 870
22.834 SHL e 871
22.835 SHR . .« e 872
22.8.36 STORESP 873
22.837 SUB . . . o 874

22838 XOR . . . 875

22.9 Runtime and Software Conventions e e 876
22.9.1 Calling Outside VM o 0 e e e e e e e e e 876
2292 CallingInside VM o . Lo e 876
2293 Parameter Passing L L 876
2294 ReturnValues 876
22.9.5 Binary Format. e e e e e e e e e e e 876

22.10 Architectural Requirements e e e e e e e e e e e 876
22.10.1 EBCImage Requirements i 877
22.10.2 EBC Execution Interfacing Requirements oL 877
22.10.3 Interfacing Function Parameters Requirements, 877
22.10.4 Function Return Requirements L 877
22.10.5 Function Return Values Requirements 877

22.11 EBCInterpreter Protocol e 878
22.11.1 EFI_EBC_PROTOCOL et e e e 878
22.11.2 EFI_EBC_PROTOCOL.CreateThunk() 879
22.11.3 EFI_EBC_PROTOCOL.UnloadImage() oo v v v vttt 879
22.11.4 EFI_EBC_PROTOCOL.RegisterICacheFlush() 880
22.11.5 EFI_EBC_PROTOCOL.GetVersion() o v v i it i e it et ie e 881

2212 EBCTo0ls o o o e e 882
22.12.1 EBCCCompiler e 882
22.12.2 CCoding Convention v v it it e e e e e e e e e e 882
22.12.3 EBC Interface Assembly Instructions i 882
22.12.4 Stack Maintenance and Argument Passing oL 882
22.12.5 Native to EBC Arguments Calling Convention 883
22.12.6 EBC to Native Arguments Calling Convention 883
22.12.7 EBC to EBC Arguments Calling Convention 883
22.12.8 Function Returns 883
22.12.9 Function Return Values L e 883
22.12.10Thunking o e e 884

22.12.10.1Thunking EBC to Native Code 884
22.12.10.2Thunking Native Code to EBC, 884
22.12.10.3Thunking EBCto EBC 885
22.12.11EBC Linker o o o e e e e e 885
22.12.12Image Loader e e e e e e e e e 886
22.12.13Debug Support e e e 886

22.13 VM Exception Handling 886
22.13.1 Divide By O Exception e 887
22.13.2 Debug Break Exception e e e 887
22.13.3 Invalid Opcode Exception 0 i i e e e e 887
22.13.4 Stack Fault Exception L e 887
22.13.5 Alignment Exception L e 887
22.13.6 Instruction Encoding Exception o 887
22.13.7 Bad Break Exception e 887
22.13.8 Undefined Exception e e e e e e 887

22.14 Option ROM Formats 0 o i e e e e e e e e e e e e e 888
22.14.1 EFI Drivers for PCI Add-in Cards it 888
22.14.2 Non-PCI Bus Support o o o e e e e e e e e e 888

23 Firmware Update and Reporting 889

23.1 Firmware Management Protocol L oL 889
23.1.1 EFI_FIRMWARE_MANAGEMENT_PROTOCOL 889
23.1.2 EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo() 890
23.1.3 EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage() 896

23.1.4 EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage() 897

23.1.5 EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckIlmage() 899
23.1.6 EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackagelnfo() 900
23.1.7 EFIL_ FIRMWARE_MANAGEMENT_PROTOCOL.SetPackagelnfo() 902
23.2 Dependency Expression Instruction Set o Lo 0oL oo 903
232.1 PUSH_GUID e e e 904
2322 PUSH_VERSION. s 904
23.23 DECLARE_VERSION_NAME 905
2324 AND .. 905
2325 OR . . 906
232.6 NOT o 906
2327 TRUE 907
232.8 FALSE 907
2329 EQ. . . o 908
23210 GT . . . o e 908
23211 GTE . . . o o 909
23202 LT . o oo e e 909
23203 LTE . . . o o e 910
232,14 END . . .o 910
23.2.15 DECLARE_LENGTH e 911
23.3 Delivering Capsules Containing Updates toFirmware Management Protocol 911
23.3.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE ID GUID 911

23.3.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE . 912
23.3.3 Firmware Processing of the Capsule Identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID915

23.4 EFISystem Resource Table e 917
23.4.1 EFL_SYSTEM_RESOURCE_TABLE 917
23.4.2 Adding and Removing Devices fromthe ESRT 919
23.4.3 ESRT and Firmware Management Protocol 919
23.4.4 Mapping Firmware Management Protocol Descriptors to ESRT Entries 919

23.5 Delivering Capsule Containing JSON payload 920
23.5.1 EFL_JSON_CAPSULE_ID_GUID e it it e 920
23.5.2 Defined JSON Capsule Data Structureo 921
23.5.3 Firmware Processing of the Capsule Identified by EFI_JSON_CAPSULE_ID_GUID 922

24 Network Protocols — SNP, PXE, BIS and HTTP Boot 924

24.1 Simple Network Protocol oL 924
24.1.1 EFL_SIMPLE_NETWORK_PROTOCOL 924
24.1.2 EFI_SIMPLE_NETWORK.Start()ttt 928
24.1.3 EFI_SIMPLE _NETWORK.Stop() 929
24.1.4 EFI_SIMPLE_NETWORK.Initialize() 929
24.1.5 EFL_SIMPLE_NETWORK.Reset() ittt i e st 930
24.1.6 EFL_SIMPLE_NETWORK.Shutdown() 931
24.1.7 EFI_SIMPLE_NETWORK.ReceiveFilters() 932
24.1.8 EFI_SIMPLE_NETWORK.StationAddress() 934
24.1.9 EFI_SIMPLE_NETWORK.Statistics()« o vt e e 935
24.1.10 EFI_SIMPLE_NETWORK.MCastIPtoMAC() o o v i ittt 938
24.1.11 EFL_SIMPLE_NETWORK.NvData() ittt 939
24.1.12 EFI_SIMPLE_NETWORK.GetStatus() ittt e 940
24.1.13 EFI_SIMPLE_NETWORK.Transmit() ittt e e e 941
24.1.14 EFI_SIMPLE_NETWORK.Receive() e 943

24.2 Network Interface Identifier Protocol 944
24.2.1 EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL 944

243 PXEBaseCode Protocol e 946
24.3.1 EFI_PXE_BASE_CODE_PROTOCOL 947

xix

244

24.5

24.6
24.7

2432 DHCPPacket Data Types o v i vt e ittt e e e e 952

24.3.3 TP Receive Filter Settings o 0 i i e e e e 954
2434 ARPCache Entries e 954
24.3.5 Filter Operations for UDP Read/Write Functions 955
24.3.6 EFI_PXE_BASE_CODE_PROTOCOL.Start() oo v v i it 957
2437 EFI_PXE_BASE _CODE_PROTOCOL.Stop() ittt e e 958
24.3.8 EFI_PXE_BASE_CODE_PROTOCOL.Dhcp() ittt oo 959
24.3.9 EFI_PXE_BASE_CODE_PROTOCOL.Discover() 960
24.3.10 EFI_PXE_BASE_CODE_PROTOCOLMtftp() 963
24.3.11 EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite() oo oo 966
24.3.12 EFI_PXE_BASE_CODE_PROTOCOL.UdpRead() 968
24.3.13 EFI_PXE_BASE_CODE_PROTOCOL.SetlpFilter() 970
24.3.14 EFI_PXE_BASE_CODE_PROTOCOL.Arp() it 971
24.3.15 EFI_PXE_BASE_CODE_PROTOCOL.SetParameters() 972
24.3.16 EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp() 974
24.3.17 EFI_PXE_BASE_CODE_PROTOCOL.SetPackets() 975
24.3.18 Netbooth e e e 976
24.3.18.1 DHCP6 options for PXE e 977
24.3.18.2 IPv6-based PXEboot 978
243.183 Proxy DHCPO e 979
PXE Base Code Callback Protocol e 980
24.4.1 EFI_PXE_BASE_CODE_CALLBACK PROTOCOL. 980
2442 EFI_PXE_BASE_CODE_CALLBACK.Callback() 982
Boot Integrity Services Protocol L e 984
24.5.1 EFIL_BIS_PROTOCOL e e e e 984
24.5.2 EFI_BIS_PROTOCOL.Initialize() ittt 985
2453 EFIL_BIS_PROTOCOL.Shutdown() iy 988
2454 EFL_BIS_PROTOCOL.Free() v i v ittt e ettt e e 989
24.5.5 EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate() 990
24.5.6 EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag() 991
24.5.7 EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken() 991
24.5.8 EFI_BIS_PROTOCOL.GetSignatureInfo(), 992
24.5.9 EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization() 996
24.5.10 EFI_BIS_PROTOCOL.VerifyBootObject() v .. 1002
24.5.11 EFI_BIS_PROTOCOL.VerifyObjectWithCredential() 1007
DHCP options for ISCSIonIPV6 e 1013
HTTP Boot o o e 1013
2477.1 BootfromURL e 1013
24.7.2 Concept configuration for a typical HTTP Bootscenario 1014
24.7.2.1 Usein Corporate environment v v v v v v v vt e e 1014
24.7.2.2 Use case in Home environment 1015
24.7.3 Protocol Layout for UEFI HTTP Boot Clientconcept configuration for a typical HTTP Boot
SCENATIO .+ & v v v v e 1015
24773.1 DevicePath 1017

24.7.4 Concept of Message Exchange in a typical HTTPBoot scenario (IPv4 in Corporate Environment)1018
24.7.4.1 Message exchange between EFI Client and DHCPserver using DHCP Client Extensions1018

24775 Priorityl . . oL L e 1020
2477.6 Priority2 L. e e e 1020
2477 Priority3 . . . o 1020
24.77.8 Priority4d Lo e e e e 1020
24.7.8.1 Message exchange between UEFI Client and DHCPserver not using DHCP Client
Extensions 1021
24782 Messagein DNS Query/Reply L. 1021
24.7.8.3 Message in HTTP Download 1021

XX

24.7.9 Concept of Message Exchange in HTTP Bootscenario (IPv6) 1021

24.7.9.1 Message exchange between EFI Client andDHCPv6 server with DHCP Client exten-
SIONS & . v o e e e e e e e e e e e e e e e e e 1021

24.7.9.2 Message exchange between UEFI Client andDHCPv6 server not using DHCP Client
Extensions e e e e e e e 1022
24.7.9.3 Message exchange between UEFI Client and DNS6server 1023
24.7.9.4 Message in HTTP Download 1023
24.7.10 EFI HTTP Boot Callback Protocol 1023
24.7.11 EFI_HTTP_BOOT_CALLBACK_PROTOCOL 1023
24.7.12 EFI_HTTP_BOOT_CALLBACK_PROTOCOL.Callback() 1023

25 Network Protocols - Managed Network 1026
25.1 EFI Managed Network Protocol 1026
25.1.1 EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 1026
25.1.2 EFI_MANAGED_NETWORK_PROTOCOL 1027
25.1.3 EFI_MANAGED_NETWORK_PROTOCOL.GetModeData() 1028
25.1.4 EFI_MANAGED_NETWORK_PROTOCOL.Configure()o oo 1030
25.1.5 EFI_MANAGED_NETWORK_PROTOCOL.McastlpToMac() 1031
25.1.6 EFI_MANAGED_NETWORK_PROTOCOL.Groups() o oo 1032
25.1.7 EFI_MANAGED_NETWORK_PROTOCOL.Transmit() 1033
25.1.8 EFI_MANAGED_NETWORK_PROTOCOL.Receive() 1037
25.1.9 EFI_MANAGED_NETWORK_PROTOCOL.Cancel() 1038
25.1.10 EFI_MANAGED_NETWORK_PROTOCOL.Poll() 1039
26 Network Protocols — Bluetooth 1041

26.1 EFI Bluetooth Host Controller Protocol et 1041
26.1.1 EFI_BLUETOOTH_HC_PROTOCOL it iii 1041
26.1.2 BLUETOOTH_HC_PROTOCOL.SendCommand() 1042
26.1.3 BLUETOOTH_HC_PROTOCOL.ReceiveEvent() 1043
26.1.4 BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent() 1044
26.1.5 BLUETOOTH_HC_PROTOCOL.SendACLData() vt v v ... 1045
26.1.6 BLUETOOTH_HC_PROTOCOL.ReceiveACLData() 1046
26.1.7 BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData() 1047
26.1.8 BLUETOOTH_HC_PROTOCOL.SendSCOData() 1048
26.1.9 BLUETOOTH_HC_PROTOCOL.ReceiveSCOData()o oo 1049
26.1.10 BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData() 1050
26.2 EFI Bluetooth Bus Protocol e e e 1051
26.2.1 EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL 1051
26.2.2 EFI_BLUETOOTH_IO_PROTOCOL it 1051
26.2.3 BLUETOOTH_IO_PROTOCOL.GetDevicelnfo 1053
26.2.4 BLUETOOTH_IO_PROTOCOL.GetSdpInfo 1054
26.2.5 BLUETOOTH_IO_PROTOCOL.L2CapRawSend 1055
26.2.6 BLUETOOTH_IO_PROTOCOL.L2CapRawReceive 1056
26.2.7 BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive 1057
26.2.8 BLUETOOTH_IO_PROTOCOL.L2CapSend 1058
26.2.9 BLUETOOTH_IO_PROTOCOL.L2CapReceive 1059
26.2.10 BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive 1060
26.2.11 BLUETOOTH_IO_PROTOCOL.L2CapConnect« o v v v v v v v 1061
26.2.12 BLUETOOTH_IO_PROTOCOL.L2CapDisconnecto ... 1062
26.2.13 BLUETOOTH_IO_PROTOCOL.L2CapRegisterService 1063
26.3 EFI Bluetooth Configuration Protocol 1064
26.3.1 EFI_BLUETOOTH_CONFIG_PROTOCOL i 1064
26.3.2 BLUETOOTH_CONFIG_PROTOCOL.Init 1065
26.3.3 BLUETOOTH_CONFIG_PROTOCOL.Scan 1066

xxi

26.4

26.5

26.3.4
26.3.5
26.3.6
26.3.7
26.3.8
26.3.9

BLUETOOTH_CONFIG_PROTOCOL.Connecto v v v i,
BLUETOOTH_CONFIG_PROTOCOL.Disconnect oo v v v v ...
BLUETOOTH_CONFIG_PROTOCOL.GetData
BLUETOOTH_CONFIG_PROTOCOL.SetData
BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData
BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback

26.3.10 BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback

26.3.11

BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback

26.3.12 BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback
EFI Bluetooth Attribute Protocol L

26.4.1
26.4.2
26.4.3
26.4.4
26.4.5
26.4.6

EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL
BLUETOOTH_ATTRIBUTE_PROTOCOL.SendRequest
BLUETOOTH_ATTRIBUTE_PROTOCOL.RegisterForServerNotification
BLUETOOTH_ATTRIBUTE_PROTOCOL.GetServicelnfo
BLUETOOTH_ATTRIBUTE_PROTOCOL.GetDevicelnfo
EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOL

EFI Bluetooth LE Configuration Protocol

26.5.1
26.5.2
26.5.3
26.54
26.5.5
26.5.6
26.5.7
26.5.8
26.5.9

EFI_BLUETOOTH_LE_CONFIG_PROTOCOL
BLUETOOTH_LE_CONFIG_PROTOCOL.Init
BLUETOOTH_LE_CONFIG_PROTOCOL.Scan
BLUETOOTH_LE_CONFIG_PROTOCOL.Connect
BLUETOOTH_LE_CONFIG_PROTOCOL.Disconnect.
BLUETOOTH_LE_CONFIG_PROTOCOL.GetData
BLUETOOTH_LE_CONFIG_PROTOCOL.SetData
BLUETOOTH_LE_CONFIG_PROTOCOL.GetRemoteData
BLUETOOTH_LE_CONFIG_PROTOCOL RegisterSmpAuthCallback

26.5.10 BLUETOOTH_LE_CONFIG_PROTOCOL.SendSmpAuthData

26.5.11

BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpGetDataCallback

26.5.12 BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpSetDataCallback
26.5.13 BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback

27 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant

27.1

27.2

VLAN
27.1.1
27.1.2
27.1.3
27.14

Configuration Protocol e e e e
EFI_VLAN_CONFIG_PROTOCOL i i i
EFI_VLAN_CONFIG_PROTOCOL.Set() o v v v o e e e e e e e e
EFI_VLAN_CONFIG_PROTOCOL.Find()
EFI_VLAN_CONFIG_PROTOCOL.Remove()o

EAP Protocol e e e e e

27.2.1
27.2.2
27.2.3
2724
27.2.5
27.2.6
27.2.7
27.2.8
27.2.9

EFI_EAP_PROTOCOL e e e e e e e
EFI_EAP.SetDesiredAuthMethod()
EFI_EAPRegisterAuthMethod()
EAPManagement Protocol L
EFI_EAP_MANAGEMENT _PROTOCOL
EFI_EAP_MANAGEMENT.GetSystemConfiguration()
EFI_EAP_MANAGEMENT.SetSystemConfiguration()
EFI_EAP_MANAGEMENT.InitializePort()
EFI_EAP_MANAGEMENT.UserLogon()

27.2.10 EFI_EAP_MANAGEMENT.UserLogoff()

27.2.11

EFI_EAP_MANAGEMENT.GetSupplicantStatus()

27.2.12 EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()
27.2.13 EFI_EAP_MANAGEMENT.GetSupplicantStatistics()
27.2.14 EFI EAP Management2 Protocol

27.2.14.1 EFI_EAP_MANAGEMENT2_PROTOCOL

27.2.15 EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()

27.2.16 EFI EAP Configuration Protocol 1122

27.2.16.1 EFI_EAP_CONFIGURATION_PROTOCOL 1122

27.2.17 EFI_EAP_CONFIGURATION_PROTOCOL.SetData() 1123
27.2.18 EFI_EAP_CONFIGURATION_PROTOCOL.GetData() 1124

27.3 EFI Wireless MAC Connection Protocol 1125
27.3.1 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL 1125
27.3.2 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan() 1126
27.3.3 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate() 1136
27.3.4 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate() 1140
27.3.5 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate() 1143
27.3.6 EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate() 1146

27.4 EFI Wireless MAC Connection IT Protocol 1147
27.4.1 EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL 1147
27.4.2 EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.GetNetworks() 1148
27.4.3 EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.ConnectNetwork() 1152
27.4.4 EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.DisconnectNetwork() 1155

27.5 EFI Supplicant Protocol e 1156
27.5.1 Supplicant Service Binding Protocol L 1156
27.5.2 EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL 1156
27.53 Supplicant Protocol e 1157
27.5.4 EFIL_SUPPLICANT_PROTOCOL et iit e 1157

27.5.5 EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket() 1157
27.5.6 EFI_SUPPLICANT_PROTOCOL.ProcessPacket() 1159
27.577 EFI_SUPPLICANT_PROTOCOL.SetData() o v v v v i ittt 1160

27.5.8 EFI_SUPPLICANT_PROTOCOL.GetData() v 1165

28 Network Protocols — TCP, IP, IPsec, FTP, TLS and Configurations 1167

28.1 EFITCPv4A Protocol o e e e e e e e e e e e 1167
28.1.1 TCP4 Service Binding Protocol L oo 1167
28.1.2 EFI_TCP4_SERVICE_BINDING_PROTOCOL 1167
28.1.3 TCP4 Protocol e e 1168
28.1.4 EFIL_TCP4_PROTOCOL e e e e e e e e e e e e e 1168

28.1.5 EFI_TCP4_PROTOCOL.GetModeData() 1169
28.1.6 EFI_TCP4_PROTOCOL.Configure() i ittt 1173

28.1.7 EFIL_TCP4_PROTOCOL.Routes() o v v v vttt it it e 1174

28.1.8 EFI_TCP4_PROTOCOL.Connect() o v v v i i vt et its e e 1176

28.1.9 EFIL_TCP4_PROTOCOL.ACCEPL() . . « « v v v vt e e e e et e e e e e e e e e e 1178
28.1.10 EFI_TCP4_PROTOCOL.Transmit() v v i it e e i e e e e e e 1180
28.1.10.1 EFI_TCP4_PROTOCOL.Receive() v v v v i it e e e e e e 1184

28.1.11 EFI_TCP4_PROTOCOL.CIoSe() - - » « « v v v vt e e e e e e e e e e e e e e 1185
28.1.12 EFI_TCP4_PROTOCOL.Cancel() ittt st 1186
28.1.13 EFL_TCP4_PROTOCOL.Poll() o o e e e e e e 1187

28.2 EFITCPvVO Protocol o e e e e e e e e e e e e 1188
28.2.1 TCPv6 Service Binding Protocol L 1188
28.2.2 EFI_TCP6_SERVICE_BINDING_PROTOCOL 1188

28.2.3 TCPv6 Protocol o e e e e e e e 1189
28.2.4 EFL_TCP6_PROTOCOL i e e e e 1189

28.2.5 EFI_TCP6_PROTOCOL.GetModeData() v v v v v ittt 1190
28.2.6 EFI_TCP6_PROTOCOL.Configure() v v v v i it e et i e e 1194
28.2.7 EFI_TCP6_PROTOCOL.Connect() v v v v vt i it i et e e i e e e 1195

28.2.8 EFI_TCP6_PROTOCOL.ACCEPL() . . . « « v v v e e e e e e e e e e e e e e e s 1197
28.2.9 EFI_TCP6_PROTOCOL.Transmit() v v v v v vt e e et 1199
28.2.10 EFI_TCP6_PROTOCOL.Receive() « v v v v v ittt e e e e e e e e 1202
28.2.11 EFI_TCP6_PROTOCOL.CIOSE() . . . « + v v v e e e e e e e e e e e e e e e e e 1203

28.3

28.4

28.5

28.6

28.7

28.2.12 EFI_TCP6_PROTOCOL.Cancel() vt 1205

28.2.13 EFI_TCP6_PROTOCOL.PoOlI() o o o i e i e e e e e 1206
EFIIPv4 Protocol e e e 1206
28.3.1 [IP4 Service Binding Protocol 1207
28.3.2 EFI_IP4_SERVICE_BINDING_PROTOCOL 1207
2833 IP4Protocol e e e e 1207
28.3.4 EFI_IP4_PROTOCOL e e e 1207
28.3.5 EFI_IP4_PROTOCOL.GetModeData() 1208
28.3.6 EFI_IP4_ PROTOCOL.Configure()« « v v v v v v e e e e e e e e e 1212
28.3.7 EFI_IP4_PROTOCOL.GIoups() . - « v v v v v et e e e e e e e e e e e e e e e 1214
28.3.8 EFI_IP4_PROTOCOL.ROUES() . . . v v v v v i e e e e e e e e e e e e e 1215
28.3.9 EFI_IP4_PROTOCOL.Transmit()« c v v v vttt e e e e e e e e e 1216
28.3.10 EFI_IP4_PROTOCOL.ReCeIVE() v v v v v e i e e e e e e e e e e e e 1221
28.3.11 EFI_IP4_PROTOCOL.Cancel() o i e e e e e e e e 1222
28.3.12 EFI_IP4_PROTOCOL.Poll() e e e e e e e e 1223
EFI IPv4 Configuration IT Protocol 1224
28.4.1 EFI_IP4_CONFIG2_PROTOCOL e 1224
28.4.2 EFI_IP4_CONFIG2_PROTOCOL.SetData()o iiiiit et .. 1225
28.4.3 EFI_IP4_CONFIG2_PROTOCOL.GetData() 1229
28.4.4 EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify () 1230
28.4.5 EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify () 1231
EFLIPvO Protocol o e e e e e e 1231
28.5.1 1IPv6 Service Binding Protocol e 1232
28.5.2 EFI_IP6_SERVICE_BINDING_PROTOCOL 1232
28.53 IPv6Protocol e 1232
28.5.4 EFI_IP6_PROTOCOL e e e e s 1232
28.5.5 EFI_IP6_PROTOCOL.GetModeData() ittt 1233
28.5.6 EFI_IP6_PROTOCOL.Configure()« v v v v v e e e e e e e e e e 1240
28.5.7 EFI_IP6_PROTOCOL.GIoups() . . « « v v v v v v e e e e e e e e e e e e e e 1241
28.5.8 EFI_IP6_PROTOCOL.ROUES() v v v v i i i e e e e e e e e e e 1242
28.5.9 EFI_IP6_PROTOCOL.Neighbors() ittt iii e 1243
28.5.10 EFI_IP6_PROTOCOL.Transmit()« « v v v vt e e e e e e e e e 1245
28.5.11 EFI_IP6_PROTOCOL.RECEIVE() . . « v v v v v i i i e e e e e e e e e e e e 1249
28.5.12 EFI_IP6_PROTOCOL.Cancel()« oo vttt e e 1250
28.5.13 EFI_IP6_PROTOCOL.PoOII() o oo e e e e e e e e e e e e 1251
EFI IPv6 Configuration Protocol o 1252
28.6.1 EFI_IP6_CONFIG_PROTOCOL ittt 1252
28.6.2 EFI_IP6_CONFIG_PROTOCOL.SetData() o vt i ittt ittt e e 1253
28.6.3 EFI_IP6_CONFIG_PROTOCOL.GetData() ittt ittt oo 1257
28.6.4 EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify () 1258
28.6.5 EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify() 1259
IPsec . . . o e e 1260
28.7.1 IPseCc OVEIVIEW o v v vt it e e et e e e e e e e e e e e e 1260
28.7.2 EFIIPsec Configuration Protocol 1260
28.7.3 EFI_IPSEC_CONFIG_PROTOCOL et 1260
28.7.4 EFI_IPSEC_CONFIG_PROTOCOL.SetData() 1261
28.7.5 EFI_IPSEC_CONFIG_PROTOCOL.GetData()« v v v v v v vt i 1272
28.7.6 EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector() 1273
28.7.7 EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify () 1274
28.7.8 EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify () 1275
28.7.9 EFIIPsec Protocol e 1276
28.7.10 EFI_IPSEC_PROTOCOL e e e e 1276
28.7.11 EFI_IPSEC_PROTOCOL.Process() « « v v v v v e ettt e e e e e e e 1277
28.7.12 EFIIPsec2 Protocol e e e 1278

28.7.13 EFI_IPSEC2_PROTOCOL o e 1278

28.7.14 EFI_IPSEC2_PROTOCOL.ProcessEXt() o o v i i i i i i it i e 1279

28.8 Network Protocol - EFI FTP Protocol 1281
28.8.1 EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary 1281
28.8.2 EFI_FTP4_PROTOCOL e e e e e e e 1281

28.8.3 EFI_FTP4_PROTOCOL.GetModeData(), 1282
28.8.4 EFI_FTP4_PROTOCOL.Connect() o o v v v i it it e i e e e e e 1283

28.8.5 EFI_FTP4_PROTOCOL.CIOSE() . + « v ¢ v v o e e e e e e e e e e e e e e e e e e 1285
28.8.6 EFI_FTP4_PROTOCOL.Configure() v o v v vt it et e e e e e e e 1286

28.8.7 EFI_FTP4_PROTOCOL.ReadFile() i i i i i 1288

28.8.8 EFI_FTP4_PROTOCOL.WriteFile() i e e e 1290

28.8.9 EFI_FTP4_PROTOCOL.ReadDirectory() v v v v v v i i i 1291
28.8.10 EFI_FTP4_PROTOCOL.PolII() i e e e e e e e e e e e e 1292

28.9 EFITLS Protocols e e e e e e e e e e e e 1293
28.9.1 EFITLS Service Binding Protocol 1293
28.9.1.1 EFI_TLS_SERVICE_BINDING_PROTOCOL 1293

28.9.2 EFITLS Protocol e e e e e e e e e 1294
28.9.2.1 EFL_TLS_PROTOCOL e e et e e 1294

28.9.3 EFI_TLS_PROTOCOL.SetSessionData () v i v 1294
28.9.4 EFI_TLS_PROTOCOL.GetSessionData () v v v i i et et e e o 1300

28.9.5 EFI_TLS_PROTOCOL.BuildResponsePacket () 1301
28.9.6 EFI_TLS_PROTOCOL.ProcessPacket () 1302

28.9.7 EFITLS Configuration Protocol e 1304
28.9.7.1 EFI_TLS_CONFIGURATION_PROTOCOL 1304

28.9.8 EFI_TLS_CONFIGURATION_PROTOCOL.SetData() v v v v v v v 1304

28.9.9 EFI_TLS_CONFIGURATION_PROTOCOL.GetData() 1306

29 Network Protocols — ARP, DHCP, DNS, HTTP and REST 1307

290.1 ARPProtocol e 1307
29.1.1 EFI_ARP_SERVICE_BINDING_PROTOCOL 1307
29.1.2 EFI_ARP_PROTOCOL e e e e e e e e 1308

29.1.3 EFI_ARP_PROTOCOL.Configure() v v v v v vt et e e e e e e e e e e e e e 1309
29.1.4 EFI_ARP_PROTOCOL.AAA() e e e e e e e e 1310

29.1.5 EFI_ARP_PROTOCOL.Find() i i i i e e e e e e e e e e e 1312
29.1.6 EFI_ARP_PROTOCOL.Delete() o o v i i e e e e e e e 1314
29.1.7 EFI_ARP_PROTOCOL.Flush() i i e e et 1315
29.1.8 EFI_ARP_PROTOCOL.Request()« o v v v v it ittt e e e e e e 1315
29.1.9 EFI_ARP_PROTOCOL.Cancel() o v i it it e e e e e e e e e e 1316

29.2 EFIDHCPv4 Protocol e e e e e e e e e 1317
29.2.1 EFI_DHCP4_SERVICE_BINDING_PROTOCOL 1317
29.2.2 EFI_DHCP4_PROTOCOL e e e e e e e e 1318

29.2.3 EFI_DHCP4_PROTOCOL.GetModeData(), 1319
29.2.4 EFI_DHCP4_PROTOCOL.Configure() v v v v v ittt e e oo 1322

29.2.5 EFI_DHCP4_PROTOCOL.Start() v v it e i e e e e e e e e e e e 1328
29.2.6 EFI_DHCP4_PROTOCOL.RenewRebind() 1329
29.27 EFI_DHCP4_PROTOCOL.Release(). o o v o i i it it e e e e 1330
29.2.8 EFI_DHCP4_PROTOCOL.Stop() . . . « « c v v it i e e e e e e e e e s e 1331
29.2.9 EFI_DHCP4_PROTOCOLBuild() o o o e e e e e e e 1331
29.2.10 EFI_DHCP4_PROTOCOL.TransmitReceive() v .. 1333
29.2.11 EFI_DHCP4_PROTOCOL.Parse() v v v o i i e e e e e e e e e e e e e e e 1335

29.3 EFIDHCPO Protocol e 1336
29.3.1 DHCP6 Service Binding Protocol 1336
29.3.2 EFI_DHCP6_SERVICE_BINDING_PROTOCOL 1336

29.3.3 DHCP6 Protocol e e e e e e 1337

XXV

29.4

29.5

29.6

29.7

29.34 EFI_DHCP6_PROTOCOL e 1337

29.3.5 EFI_DHCP6_PROTOCOL.GetModeData () vttt it e e e 1338
29.3.6 EFI_DHCP6_PROTOCOL.Configure ()« « v v v vttt e et e e e 1342
29.3.7 EFI_DHCP6_PROTOCOL.Start ()« c v v v v e e e e e e e e e e e e e e e 1347
29.3.8 EFI_DHCP6_PROTOCOL.InfoRequest () 1348
29.3.9 EFI_DHCP6_PROTOCOL.RenewRebind () 1350
29.3.10 EFI_DHCP6_PROTOCOL.Decline ()« « v v v vttt e e e 1351
29.3.11 EFI_DHCP6_PROTOCOL.Release ()« c v v v vttt e e 1352
29.3.12 EFI_DHCP6_PROTOCOL.StOP () « « « v v v v v v o e e e e e e e e e e e e e e 1353
29.3.13 EFI_DHCP6_PROTOCOL.Parse ()« c v v v v vttt e e e 1354
EFIDNSvV4 Protocol o o o e e e 1355
29.4.1 EFI_DNS4_SERVICE_BINDING_PROTOCOL 1355
29.42 EFI_DNS4_PROTOCOL e e e 1356
29.4.3 EFI_DNS4 PROTOCOL.GetModeData()« v vttt oo oo 1356
29.44 EFI_DNS4 PROTOCOL.Configure()« v v v v v v v ittt et e e e e 1359
29.4.5 EFI_DNS4_PROTOCOL.HostNameTolp() 1360
29.4.6 EFI_DNS4_PROTOCOL.IpToHostName() o oo v v v v i i i 1363
29.477 EFI_DNS4_PROTOCOL.GeneralLookUp() 1364
29.4.8 EFI_DNS4_PROTOCOL.UpdateDnsCache() 1365
29.49 EFI_DNS4 PROTOCOL.POI() o o oo ittt e e e e 1366
29.4.10 EFI_DNS4 PROTOCOL.Cancel()« o v v v it 1367
EFIDNSvVO Protocol o e 1368
29.5.1 DNS6 Service Binding Protocol e 1368
29.5.2 EFI_DNS6_SERVICE_BINDING_PROTOCOL 1368
29.53 DNSO6Protocol 1369
29.54 EFI.DNS6_PROTOCOL e e e 1369
29.5.5 EFI_DNS6_PROTOCOL.GetModeData() 1369
29.5.6 EFI_DNS6_PROTOCOL.Configure() oo v v v v v v vii i 1372
29.5.7 EFI_DNS6_PROTOCOL.HostNameTolp() 1373
29.5.8 EFI_DNS6_PROTOCOL.IpToHostName() 1376
29.5.9 EFI_DNS6_PROTOCOL.GeneralLookUp() 1377
29.5.10 EFI_DNS6_PROTOCOL.UpdateDnsCache() 1378
29.5.11 EFI_DNS6_PROTOCOL.POLL()« vttt et e e e e e e e e 1379
29.5.12 EFI_DNS6_PROTOCOL.Cancel()« . oo i i ittt e e e 1380
EFTHTTP Protocols e e e e e e e e 1381
29.6.1 HTTP Service Binding Protocol 1381

29.6.1.1 EFI_HTTP_SERVICE_BINDING_PROTOCOL 1381
29.6.2 EFI HTTP Protocol Specific Definitions, 1381
29.6.3 EFI_HTTP_PROTOCOL e e e 1381
29.6.4 EFI_HTTP_PROTOCOL.GetModeData() ittt e oo 1382
29.6.5 EFI_HTTP_PROTOCOL.Configure()« v v v v v ittt it e e oo 1385
29.6.6 EFI_HTTP_PROTOCOL.Request()« v v v v vt v it ittt it e oo 1386
29.6.7 EFI_HTTP_PROTOCOL.Cancel() e 1390
29.6.8 EFI_HTTP_PROTOCOL.ReSponse() v v v v v v i i it e i e i 1391
29.6.9 EFI_HTTP_PROTOCOL.POI()ttt 1392

29.6.9.1 Usage Examples e e e e 1393
29.6.10 HTTP Utilities Protocol L o e e e e e e 1399
29.6.11 EFI_HTTP_UTILITIES_PROTOCOL e 1399
29.6.12 EFI_HTTP_UTILITIES_PROTOCOL.Build() 1399
29.6.13 EFI_HTTP_UTILITIES_PROTOCOL.Parse() ot i it ittt e e 1400
EFI REST Support Overview ottt e e e et e e 1401
29.7.1 EFIREST Support Scenario 1 (PlatformManagement) 1402
29.7.2 EFI REST Support Scenario 2 (PlatformManagement) 1405
2973 EFIREST Protocol e 1406

29.7.3.1 EFIREST Protocol Definitions v.... 1406

29.7.4 EFI_REST_PROTOCOL e e e e e e e e e e e e e 1406
29.7.5 EFI_REST _PROTOCOL.SendReceive() v i v i i i it e i e i e 1407
29.7.6 EFI_REST_PROTOCOL.GetServiceTime() 1408
29.777 EFIRESTEX Protocol it 1408
29.7.7.1 REST EX Service Binding Protocol 1408

29.7.8 EFI_REST_EX_SERVICE_BINDING_PROTOCOL 1408
29.7.8.1 REST EX Protocol Specific Definitions 1409

29.7.9 EFI_REST_EX _PROTOCOL ettt e e e 1409
29.7.10 EFI_REST_EX_PROTOCOL.SendReceive() 1410
29.7.11 EFI_REST_EX_PROTOCOL.GetService() v v v v v v ittt e e oo 1411
29.7.12 EFI_REST_EX_PROTOCOL.GetModeData() o v v v v v i v v a o 1415
29.7.13 EFI_REST_EX_PROTOCOL.Configure() v o v v it et i i e 1416
29.7.14 EFI_REST_EX_PROTOCOL.AsyncSendReceive() 1417
29.7.15 EFI_REST_EX_PROTOCOL.EventService()« c v v v v v v v i i 1419
29.7.15.1 Usage Example (HTTP-aware REST EX Protocol Driverlnstance) 1421
29.7.16 EFI_REST_EX_PROTOCOL.EventService() o v v v v v i v i .. 1425
29.7.17 EFI REST JSON Resource to C Structure Converter v v v v v v .. 1428
207071 OVEIVIEW . .« v v v o o e 1428
29.7.17.2 EFI REST JSON Structure Protocol 1428
29.7.18 EFI_REST_JSON_STRUCTURE.Register ()o 1429
29.7.19 EFI_REST_JSON_STRUCTURE.ToStructure () v v v v v v v v v 1431
29.7.20 EFI_REST_JSON_STRUCTURE.ToJsON () v« v v v v e e e e e e e e e e e e e 1433
29.7.21 EFI_REST_JSON_STRUCTURE.DestroyStructure () v v v v v v v v v v 1434
29.7.21.1 EFI Redfish JSON Structure Converter v v v v v v v v v 1435

30 Network Protocols — UDP and MTFTP 1436

30.1 EFIUDP Protocol e e e e e e 1436
30.1.1 UDP4 Service Binding Protocol L o 1436
30.1.1.1 EFI_UDP4_SERVICE_BINDING_PROTOCOL 1436

30.1.2 UDP4 Protocol o e e e e e e e e e e e e 1437
30.1.2.1 EFI_UDP4_PROTOCOL ittt e e e e e 1437
30.1.2.2 EFI_UDP4_PROTOCOL.GetModeData() 1438
30.1.2.3 EFI_UDP4_PROTOCOL.Configure() o v v v v v v vt e oo 1440
30.1.2.4 EFI_UDP4_PROTOCOL.Groups() . . « « v v v v v vt i i e e e e e e e 1441
30.1.2.5 EFI_UDP4_PROTOCOL.Routes() v v v v i vttt ei e 1442
30.1.2.6 EFI_UDP4_PROTOCOL.Transmit() o v v v v v v v 1444
30.1.2.7 EFI_UDP4_PROTOCOL.Receive() . . « . v v v v v e e et e e e e e e e e e e e 1448
30.1.2.8 EFI_UDP4_PROTOCOL.Cancel() 1449
30.1.2.9 EFI_UDP4_PROTOCOL.Poll() o it 1450

30.2 EFIUDPvV6 Protocol e e 1451
30.2.1 UDP6 Service Binding Protocol L 1451
30.2.1.1 EFI_UDP6_SERVICE_BINDING_PROTOCOL 1451

30.2.2 EFIUDPO Protocol o e e e e e e e 1451
30.2.2.1 EFI_UDP6_PROTOCOL ittt 1451
30.2.2.2 EFI_UDP6_PROTOCOL.GetModeData() 1453
30.2.2.3 EFI_UDP6_PROTOCOL.Configure() o v v v v v v v i .. 1455
30.2.2.4 EFI_UDP6_PROTOCOL.Groups() . . « v v v v v v e e et e e e e e e e e e e e 1456
30.2.2.5 EFI_UDP6_PROTOCOL.Transmit() v v v v vt e e e e e 1457
30.2.2.6 EFI_UDP6_PROTOCOL.Receive() v v v v i i i i i i e 1461
30.2.2.7 EFI_UDP6_PROTOCOL.Cancel() 1462
30.2.2.8 EFI_UDP6_PROTOCOL.Poll() it e i e e e e e 1463

30.3 EFIMTFTPV4 Protocol e e e e e e e e e e e e e e e e e e e 1464
30.3.1 EFI_MTFTP4_SERVICE_BINDING_PROTOCOL 1464

30.3.2 EFI_MTFTP4_PROTOCOL e 1464

30.3.3 EFI_MTFTP4_PROTOCOL.GetModeData() 1465
30.3.4 EFI_MTFTP4_PROTOCOL.Configure() v v v v v v i e i e et e e e e e e 1467
30.3.5 EFI_MTFTP4_PROTOCOL.GetInfo() it 1468
30.3.6 EFI_MTFTP4_PROTOCOL.ParseOptions()« o v v v v vt i 1476
30.3.7 EFI_MTFTP4_PROTOCOL.ReadFile() 1477
30.3.8 EFI_MTFTP4_PROTOCOL.WriteFile() i 1482
30.3.9 EFI_MTFTP4_PROTOCOL.ReadDirectory() oo v v i v i 1483
30.3.10 EFI_MTFTP4_PROTOCOL.POLL() v i it e e e e e e e e e e e 1485

30.4 EFIMTFTPvO Protocol e e e e 1485
30.4.1 MTFTP6 Service Binding Protocol 1485
30.4.1.1 EFI_MTFTP6_SERVICE_BINDING_PROTOCOL 1485

30.4.2 MTFTPO6 Protocol o e e e e e e e e e e e e e e e 1486
30.4.2.1 EFI_MTFTP6_PROTOCOL e 1486

30.4.2.2 EFI_MTFTP6_PROTOCOL.GetModeData() 1487

30.4.2.3 EFI_MTFTP6_PROTOCOL.Configure()« o oo v v v v v .. 1489

30.4.2.4 EFI_MTFTP6_PROTOCOL.GetInfo() 1490

30.4.2.5 EFI_MTFTP6_PROTOCOL.ParseOptions()o v v v v .. 1497

30.4.2.6 EFI_MTFTP6_PROTOCOL.ReadFile() 1498

30.4.2.7 EFI_MTFTP6_PROTOCOL.WriteFile() 1502

30.4.2.8 EFI_MTFTP6_PROTOCOL.ReadDirectory() 1503

30.4.2.9 EFI_MTFTP6_PROTOCOL.Poll() 1505

31 EFI Redfish Service Support 1506

31.1 EFI Redfish Discover Protocol e 1506
3111 OVerview o o o e e e e e e e e e e e e e e e e e e 1506
31.1.2 EFI Redfish Discover Driver i i e 1507
31.1.3 EFIRedfish Discover Client it it e e 1507
31.1.4 EFIRedfish Discover Protocol e 1509
31.1.4.1 EFI_REDFISH_DISCOVER_PROTOCOL.GetNetworkInterfaceList() 1510

31.1.4.2 EFI_REDFISH_DISCOVER_PROTOCOL.AcquireRedfishService() 1511

31.1.4.3 EFI_REDFISH_DISCOVER_PROTOCOL.AbortAcquireRedfishService() 1516

31.1.4.4 EFI_REDFISH_DISCOVER_PROTOCOL.ReleaseRedfishService() 1517

31.1.5 Implementation Examples L e 1517
31.1.5.1 Processes to Discover Redfish Services 1517

31.1.5.2 Network Interface Configuration 1518

31.2 EFI Redfish JSON Structure CONVerter v v v it it et et et e e e e e e 1519
31.2.1 The Guidance of Writing EFI Redfish JSONStructure Converter 1519
31.2.2 The Guidance of Using EFI Redfish JSON Structure Converter 1521

32 Secure Boot and Driver Signing 1522

32.1 Secure Boot e e e 1522
32.1.1 EFI_AUTHENTICATION_INFO_PROTOCOL i i e 1522
32.1.2 EFI_AUTHENTICATION_INFO_PROTOCOL.Get() 1523
32.1.3 EFI_AUTHENTICATION_INFO_PROTOCOL.Set() 1523
32.1.4 Authentication Nodes e e e e 1524
32.1.5 Generic Authentication Node Structures o i i i it 1524
32.1.6 CHAP (using RADIUS) AuthenticationNode 1525

32.2 UEFI Driver Signing Overview e e 1527
32.2.1 Digital Signatures L. e e e 1527
32.2.2 Embedded Signatureso e e e e e e 1528
32.2.3 Creating Image Digests from Images 1529
3224 Code Definitions i e e e e e e e e e e e e e 1529
32.24.1 WIN_CERTIFICATE e e e e e e 1529

xxviii

32.2.42 WIN_CERTIFICATE_EFI_ PKCSI_15 o oo 1531

32.24.3 WIN_CERTIFICATE_UEFI_GUID 1532

32.3 Firmware/OS Key Exchange: Creating Trust Relationships 1533
32.3.1 Enrolling The PlatformKey 1534
32.3.2 Clearing The Platform Key 1535
32.3.3 Transitioning to Audit Mode L 1535
32.3.4 Transitioning to Deployed Mode e 1535
32.3.5 Enrolling Key Exchange Keys 1535
32.3.6 Platform Firmware Key Storage Requirements 1536

32.4 Firmware/OS Key Exchange: Passing PublicKeys 1536
32.4.1 Signature Database 1536
32.4.1.1 EFI_SIGNATURE_DATA ittt 1536

32.4.2 Image Execution Information Table 1541

32.5 Firmware/OS Crypto Algorithm Exchange 1543
32.6 UEFIImage Validation e 1545
32.6.1 OVEIVIEW o o e e e e e e e 1545
32.6.2 Authorized User. 1546
32.6.3 Signature Database Update e e e e 1546
32.6.3.1 Using The Image Execution Information Table 1548

32.63.2 FirmwarePolicy L 1548

32.6.3.3 Authorization Process e 1548

327 Device Authentication e e e e 1550
327.1 OVEIVIEW . . . o oo e e e e 1550
3272 Authorized User. 1551
32.7.3 Device Signature Database Update 1551

32.8 Code Definitions o L L e e e e e e e e e e 1552
32.8.1 UEFIImage Variable GUID & Variable Name 1552
32.8.2 UEFI Device Signature Variable GUID and Variable Name 1552

33 Human Interface Infrastructure Overview 1554

33,1 Goals e 1554
33.2 Design DiScusSion L e e e e e e e e e e e e e e e e e 1555
33.2.1 Drivers And Applications L. L e e e e 1556
33.2.1.1 Platform and Driver Configuration 1556

33.2.1.2 Pre-O/S applications 1556

33.2.1.3 Description of User Interface Components 1556

332,14 Forms e 1556

33.2.1.5 Stringso e e e e e e e e 1560

33.2.1.6 Images/Fonts. e 1560

33.2.1.7 Consumers of the user interfacedata 1560

33.2.1.8 Connected forms browser/processor v ot i i e e 1560

33.2.1.9 Disconnected Forms Browser/Processor 1560

33.2.1.10 O/S-Present Forms Browser/Processor 1561

33.2.1.11 Where are the Results Stored 1561

3322 Localization e 1561
3323 UserInputo oL e 1562
33.2.4 Keyboard Layout e 1564
33.2.4.1 Keyboard Mapping i e e e e e 1564

33.24.2 Modifier Keys o o e e e e e 1565

33.2.43 Non-SpacingKeys L 1565

3325 FOIMS o o e e e e e e e e e 1566
33.25.1 Form Sets e e 1567

33252 Formso e e 1568

33253 Statements e e e e e e e e e 1570

333

33254 QUeStions e e e e e e e e e e e e 1572

33.2.5.5 Options . . . o o e e e e e e e e e e e 1580
33.2.5.6 StOrage e e e e e e e e e 1581
33257 EXPressionso e 1583
33258 Defaults e 1585
33259 Validation L e 1586
33.2.5.10 Forms Processing e e e e e 1587
33.2.5.11 Forms Editing e e 1588
33.2.5.12 Forms Processing & Security Privileges 1589
332.6 Stringso e e e 1589
33.2.6.1 Configuration Language Paradigm, ... 1589
33.2.6.2 Unicode Usage« v v v i i e e e e e e e e e e e e e 1591
3327 Fonts 1593
33.27.1 Font Attributes 1594
33.2.77.2 Limiting Glyphs 1594
33.2.7.3 Fixed Font Description 0o 1595
33.2.7.4 Proportional Fonts Description 1598
33.2.8 TMAZES . . ¢ v v e e e e e e e e e e e e e e e e 1599
33.2.8.1 Convertingtoa32-bitDisplay 1599
33.2.8.2 Non-TrueColor Displays, 1600
3329 HIIDatabase o o i e e e e e e e e e 1600
33.2.10 Forms Browser e e e e e 1600
33.2.10.1 User Interaction e 1601
33.2.11 Configuration Settings o L e e e e e e e e e e e 1604
33.2.11.1 OS Runtime Utilization, 1605
33.2.11.2 Working with a UEFI Configuration Language 1606
33.2.12 Form Callback Logic e 1606
33.2.13 Driver Model Interaction L e 1607
33.2.14 Human Interface Component Interactions v 1607
33.2.15 Standards Map Forms L e 1607
33.2.15.1 Create A Question’s Value By Combing MultipleConfiguration Settings 1613
33.2.15.2 Changing Multiple Configuration Settings FromOne Question’s Value 1614
33.2.15.3 Value Shifting 1614
332054 Prompts e e e e e e e e e e e e e e e e 1615
Code Definitions e 1615
33.3.1 Package Lists and Package Headers 1615
33.3.1.1 EFI_HII_ PACKAGE_HEADER 1615
33.3.1.2 EFI_HII_PACKAGE_LIST HEADER 1616
33.3.2 Simplified Font Package e 1617
33.3.2.1 EFI_HII_SIMPLE_FONT_PACKAGE HDR 1617
33.3.22 EFI_NARROW_GLYPH 1618
33323 EFLWIDE GLYPH e 1619
3333 FontPackage e 1619
33.33.1 FixedHeader. 1619
33.3.3.2 GlyphInformation e e e e 1620
33.3.4 Device PathPackage e 1630
3335 GUIDPackage e 1631
33.3.6 String Package 1631
333.6.1 FixedHeader. e 1631
33.3.6.2 String Information 1632
33.3.6.3 String Encoding e e 1644
33.3.7 ImagePackage 1644
333.7.1 FixedHeader. e 1645
33.3.7.2 TImage Information 1645

XXX

33.3.7.3 Palette Information e e e 1657

33.3.8 FormsPackage e e e 1660
33.3.8.1 Binary Encoding 1660

33.3.8.2 Standard Headers 1661

33.3.8.3 Opcode Reference 1663

33.3.9 Keyboard Package 1730
33.3.10 Animations Package e e 1731
33.3.10.1 Animated Images Package 1731

33.3.10.2 Animation Information L L 1731

34 HII Protocols 1742

34.1 FontProtocol e e 1742
34.1.1 EFI_HII_FONT_PROTOCOL ittt ie e 1742
34.1.2 EFI_HII_FONT_PROTOCOL.StringTolmage() 1743

34.1.3 EFI_HI_FONT_PROTOCOL.StringldTolmage() 1745
34.1.4 EFI_HI_FONT_PROTOCOL.GetGlyph() v it e e 1747
34.1.5 EFI_HII_FONT_PROTOCOL.GetFontInfo() 1748

342 EFIHII Font Ex Protocol e e e e 1749
342.1 EFL_HII_FONT_EX PROTOCOL ittt iit e 1749
34.2.2 EFI_HII_FONT_EX_PROTOCOL.StringTolmageEx() 1750
34.2.3 EFI_HI_FONT_EX_PROTOCOL.StringldTolmageEx() 1750
3424 EFI_HII_FONT_EX_PROTOCOL.GetGlyphEx() 1751

34.2.,5 EFI_HII_FONT_EX_ PROTOCOL.GetFontInfoEx() 1752
34.2.6 EFI_HII_FONT_EX_ PROTOCOL.GetGlyphInfo() 1752
34277 Code Definitions i e e e e e e e e e e e e 1753
34.2.7.1 EFI_FONT_DISPLAY_INFO i 1753

34.2.7.2 EFI_IMAGE_OUTPUT ettt 1755

343 String Protocol e e e e e e 1755
343.1 EFIL_HIL_STRING_PROTOCOL e e e e e 1755
34.3.2 EFI_HII_STRING_PROTOCOL.NewString()« v v v v v v ittt 1756
34.3.3 EFI_HIL_STRING_PROTOCOL.GetString() 1757
34.3.4 EFI_HI_STRING_PROTOCOL.SetString() . . . « « « « v v v v ittt e e et e e e 1759
34.3.5 EFI_HII_STRING_PROTOCOL.GetLanguages() « v v v v v v v v v v v e v u o 1760
34.3.6 EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages() 1760

344 Image Protocol L e 1762
344.1 EFI_HI_IMAGE_PROTOCOL et 1762
34.4.2 EFI_HI_IMAGE_PROTOCOL.Newlmage() 1762
3443 EFI_HII_IMAGE_PROTOCOL.GetImage() « « v v v v v e e e e e e e e e e e 1763
3444 EFI_HI_IMAGE_PROTOCOL.SetImage() v v vttt e e oo 1764
3445 EFI_HII_IMAGE_PROTOCOL.Drawlmage()« v v v v v i v i i 1765
34.4.6 EFI_HI_IMAGE_PROTOCOL.Drawlmageld() 1766

34,5 EFIHIIImage Ex Protocol e 1768
345.1 EFI_HIL_IMAGE_EX_PROTOCOL e e et ee e e 1768
34.5.2 EFI_HII_IMAGE_EX_PROTOCOL.NewlmageEx() 1769
3453 EFI_HII_IMAGE_EX_PROTOCOL.GetlmageExX() 1769
34.5.4 EFI_HII_IMAGE_EX_PROTOCOL.SetlmageEx() 1770
34.5.5 EFI_HI_IMAGE_EX_PROTOCOL.DrawlmageEx() 1770
34.5.6 EFI_HII_IMAGE_EX_PROTOCOL.DrawlmageldEx() 1771

34.5.7 EFI_HI_IMAGE_EX_PROTOCOL.GetlmageInfo() 1771

34.6 EFI HII Image Decoder Protocol i 1772
34.6.1 EFI_HII_IMAGE_DECODER_PROTOCOL.Decodelmage() 1774
34.6.2 EFI_HII_IMAGE_DECODER_PROTOCOL.GetlmageDecoderName() 1774
34.6.3 EFI_HII_IMAGE_DECODER_PROTOCOL.GetlmageInfo() 1775
34.6.4 EFI_HII_IMAGE_DECODER_PROTOCOL.Decode() v v v v v v 1778

347 Font Glyph Generator Protocol e 1779
34.7.1 EFI_HI_FONT_GLYPH_GENERATOR_PROTOCOL 1779
34.7.2 EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyph() 1779
34.7.3 EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyphlmage() 1780

34.8 Database Protocol e 1782
34.8.1 EFI_HII_DATABASE_PROTOCOL i 1782
34.8.2 EFI_HII_DATABASE_PROTOCOL.NewPackageList() 1783
34.8.3 EFI_HII_DATABASE_PROTOCOL.RemovePackageList() 1784
34.8.4 EFI_HII_DATABASE_PROTOCOL.UpdatePackageList() 1784
34.8.5 EFI_HII_DATABASE_PROTOCOL. ListPackageLists() 1785
34.8.6 EFI_HII_DATABASE_PROTOCOL.ExportPackageLists() 1786
34.8.7 EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify() 1787
34.8.8 EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() 1788
34.8.9 EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts() 1789
34.8.10 EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout() 1790
34.8.11 EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout() 1794
34.8.12 EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle() 1795
34.8.13 Database StrucCtures v v v i i e e e e e e e e e e e e e e e e e e 1796

34.8.13.1 EFI_HII_DATABASE_NOTIFY 1796
34.8.14 EFI_HII_DATABASE NOTIFY_TYPE e 1797
35 HII Configuration Processing and Browser Protocol 1798

35.1 Introduction e e e e 1798
35.1.1 Common Configuration Data Format 1798
35.1.2 DataFlow o e e e e e 1798

35.2 Configuration Strin@s L. e e e e e 1798
35.2.1 String Syntax L e e e e e e e e e e e e 1799

35.2.1.1 Basicforms 1799
35.2.1.2 TYPES . v o i e e e e e e e e e 1799
35.2.1.3 Routingelements L Lo 1799
352.1.4 Bodyelements L. e e 1800
35.2.1.5 Configuration Strings i e e e e e e e e e e e e 1800
35.2.1.6 Keyword strings o e e e e e e e 1801
3522 String TYPES . .« o o o e e e e e e e e e e e e 1804

35.3 EFI Configuration Keyword Handler Protocol 1804
35.3.1 EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL 1805
35.3.2 EFI_KEYWORD_HANDLER _PROTOCOL.SetData() 1805
35.3.3 EFI_KEYWORD_HANDLER _PROTOCOL.GetData() 1807

35.4 EFI HII Configuration Routing Protocol 1808
35.4.1 EFI_HII_CONFIG_ROUTING_PROTOCOL 1808
35.4.2 EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig() 1809
35.4.3 EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig() 1811
35.4.4 EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig() 1811
35.4.5 EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig() 1812
35.4.6 EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock() 1813
35.4.7 EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg() 1815

35.5 EFI HII Configuration Access Protocol, 1816
35.5.1 EFI_HI_CONFIG_ACCESS_PROTOCOL ittt 1816
35.5.2 EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() 1817
35.5.3 EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig() 1819
35.5.4 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() 1820

35.6 Form Browser Protocol 1824
35.6.1 EFI_FORM_BROWSER2 PROTOCOL i 1824
35.6.2 EFI_FORM_BROWSER2_PROTOCOL.SendForm() 1825

35.6.3 EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback() 1827

357 HIIPopup Protocol e e e e e e e e e e 1828
35.7.1 EFI_HII_POPUP_PROTOCOL et e e ie e 1828
35.7.2 EFI_HII_POPUP_PROTOCOL.CreatePopup() 1829

36 User Identification 1831

36.1 User Identification Overview o i i i i e e e e e e e e e 1831
36.1.1 UserIdentify e 1832
36.1.2 UserProfiles e 1833

36.1.2.1 UserProfile Database i 1833
36.1.2.2 User Identification Policy 1834
36.1.3 Credential Providers e e e e 1834
36.1.4 Security Considerations L. e 1835
36.1.5 Deferred Execution e 1836

36.2 UserIdentification Process e 1836
36.2.1 User Identification Process e e 1836
36.2.2 Changing The Current User Profile, 1837
36.2.3 Ready ToBoot e e e 1837

36.3 Code Definitions e 1838
36.3.1 User Manager Protocol e 1838

36.3.1.1 EFI_USER_MANAGER_PROTOCOL 1838
36.3.1.2 EFI_USER_MANAGER_PROTOCOL.Create() v v v v .. 1839
36.3.1.3 EFI_USER_MANAGER_PROTOCOL.Delete() 1840
36.3.1.4 EFI_USER_MANAGER_PROTOCOL.GetNext() 1840
36.3.1.5 EFI_USER_MANAGER_PROTOCOL.Current() 1841
36.3.1.6 EFI_USER_MANAGER_PROTOCOL.Identify() 1842
36.3.1.7 EFI_USER_MANAGER_PROTOCOL.Find() 1842
36.3.1.8 EFI_USER_MANAGER_PROTOCOL.Notify() 1844
36.3.1.9 EFI_USER_MANAGER_PROTOCOL.GetIlnfo() 1844
36.3.1.10 EFI_USER_MANAGER_PROTOCOL.SetInfo() 1846
36.3.1.11 EFI_USER_MANAGER_PROTOCOL.De¢leteInfo() 1847
36.3.1.12 EFI_USER_MANAGER_PROTOCOL.GetNextInfo() 1848
36.3.2 Credential Provider Protocols e 1849
36.3.2.1 EFI_USER_CREDENTIAL2_PROTOCOL 1849
36.3.2.2 EFI_USER_CREDENTIAL2_PROTOCOL.Enroll() 1851
36.3.2.3 EFI_USER_CREDENTIAL2_PROTOCOL.Form() 1852
36.3.2.4 EFI_USER_CREDENTIAL2_PROTOCOL.Tile() 1853
36.3.2.5 EFI_USER_CREDENTIAL2_PROTOCOL.Title() 1854
36.3.2.6 EFI_USER_CREDENTIAL2_PROTOCOL.User() v .o v .. 1854
36.3.2.7 EFI_USER_CREDENTIAL2_PROTOCOL.Select() 1855
36.3.2.8 EFI_USER_CREDENTIAL2_PROTOCOL.Deselect() 1856
36.3.2.9 EFI_USER_CREDENTIAL2_PROTOCOL.Default() 1857
36.3.2.10 EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo() 1857
36.3.2.11 EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo() 1858
36.3.2.12 EFI_USER_CREDENTIAL2_PROTOCOL.Delete() 1859
36.3.3 Deferred Image Load Protocol 1859
36.3.3.1 EFI_DEFERRED_IMAGE_LOAD_PROTOCOL 1859
36.3.3.2 EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetlmageInfo() 1860

36.4 UserInformation e e 1861

36.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD 1862
36.4.1.1 EFI_USER_INFO_ACCESS_FORBID_LOAD 1862
36.4.1.2 EFI_USER_INFO_ACCESS_PERMIT_LOAD 1863
36.4.1.3 EFI_USER_INFO_ACCESS_ENROLL_SELF. 1863
36.4.1.4 EFI_USER_INFO_ACCESS_ENROLL_OTHERS 1863

xxxiii

36.4.1.5 EFI_USER_INFO_ACCESS_MANAGE 1864

36.4.1.6 EFI_USER_INFO_ACCESS_SETUP 1864
36.4.1.7 EFI_USER_INFO_ACCESS_FORBID_CONNECT 1865
36.4.1.8 EFI_USER_INFO_ACCESS_PERMIT_CONNECT 1865
36.4.1.9 EFI_USER_INFO_ACCESS_BOOT_ORDER 1865
36.4.2 EFI_USER_INFO_CBEFF_RECORD 1866
36.4.3 EFI_USER_INFO_CREATE_DATE_RECORD 1866
36.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD 1866
36.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME RECORD 1867
36.4.6 EFI_USER_INFO_CREDENTIAL_TYPE RECORD 1867
36.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD 1867
36.4.8 EFI_USER_INFO_GUID_RECORD, 1868
36.4.9 EFI_USER_INFO_FAR_RECORD 1868
36.4.10 EFI_USER_INFO_IDENTIFIER_RECORD 1868
36.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD 1869
36.4.12 EFI_USER_INFO_NAME_RECORD 1870
36.4.13 EFI_USER_INFO_PKCS11_RECORD 1870
36.4.14 EFI_USER_INFO_RETRY_RECORD 1871
36.4.15 EFI_USER_INFO_USAGE_DATE_RECORD 1871
36.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD 1871
36.5 UserInformation Table e 1872
37 Secure Technologies 1873
37.1 Hash Overview e e e e e e e e e 1873
37.1.1 HashReferences e 1873
37.1.1.1 EFI_HASH_SERVICE_BINDING_PROTOCOL 1873
37.1.1.2 EFI_HASH_PROTOCOL e e e e e 1874
37.1.1.3 EFI_HASH_PROTOCOL.GetHashSize() 1875
37.1.1.4 EFI_HASH_PROTOCOL.Hash() 1875
37.1.2 Other Code Definitions e 1877
37.1.2.1 EFI_SHA1_HASH, EFI_SHA224 HASH, EFI_SHA256_HASH,EFI_SHA384_HASH,
EFI_SHAS512HASH, EFI_MD5_HASH 1877
37.1.2.2 EFIHash Algorithms it 1877
37.2 Hash2 Protocols e e e 1878
37.2.1 EFI Hash2 Service Binding Protocol 1878
37.2.1.1 EFI_HASH2_SERVICE_BINDING_PROTOCOL 1878
37.2.2 EFIHash2 Protocol e e e 1879
37.2.2.1 EFI_HASH2_PROTOCOL et e e 1879
37.2.2.2 EFI_HASH2_PROTOCOL.GetHashSize() 1880
37.2.2.3 EFI_HASH2_PROTOCOL.Hash() 1881
37.2.2.4 EFI_HASH2_PROTOCOL.Hashlnit() 1882
37.2.2.5 EFI_HASH2_PROTOCOL.HashUpdate() 1883
37.2.2.6 EFI_HASH2_PROTOCOL.HashFinal() 1884
37.2.3 Other Code Definitions e e e e e 1885
37.2.3.1 EFI_HASH2_OUTPUT e e e e e e e e e 1885
37.3 Key Management Servicel e 1886
37.3.1 EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL 1886
37.3.2 EFI_KMS_PROTOCOL.GetServiceStatus() v v v i vt it e e 1896
37.3.2.1 EFI_KMS_PROTOCOL.RegisterClient() 1897
37.3.2.2 EFI_KMS_PROTOCOL.CreateKey() oo vt v vt i et 1898
37.3.2.3 EFI_KMS_PROTOCOL.GetKey() 1900
37.3.2.4 EFI_KMS_PROTOCOL.AddKey() it i it 1902
37.3.2.5 EFI_KMS_PROTOCOL.DeleteKey() 1904
37.3.2.6 EFI_KMS_PROTOCOL.GetKeyAttributes() 1905

37.3.2.7 EFI_KMS_PROTOCOL.AddKeyAttributes() 1907

37.3.2.8 EFI_KMS_PROTOCOL.DeleteKeyAttributes() 1909

37.3.2.9 EFI_KMS_PROTOCOL.GetKeyByAttributes() 1911

37.4 PKCS7 Verify Protocol e 1914
37.4.1 EFI_PKCS7_VERIFY_PROTOCOL i e e e 1914
37.4.2 EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer() 1915
37.4.2.1 EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature() 1918

37.5 Random Number Generator Protocol 1920
37.5.1 EFI_RNG_PROTOCOL e e e e e e e e e 1920
3752 EFI_RNG_PROTOCOL.GetInfo 1921
37.5.3 EFI_RNG_PROTOCOL.GetRNG e e e e e 1922
37.5.4 EFIRNG Algorithm Definitions 1923
37.5.5 RNGReferences i i i e e e e e 1923

37.6 Smart Card Reader and Smart Card Edge Protocol 1924
37.6.1 Smart Card Reader Protocol e 1924
37.6.1.1 EFI_SMART_CARD_READER_PROTOCOL Summary 1924

37.6.2 EFI_SMART_CARD_READER_PROTOCOL.SCardConnect() 1925
37.6.3 EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect() 1927
37.6.4 EFI_SMART_CARD_READER_PROTOCOL.SCardStatus() 1927
37.6.5 EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit() 1929

37.6.6 EFI_SMART_CARD_READER_PROTOCOL.SCardControl() 1930

37.6.7 EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib() 1931
37.6.8 Smart Card Edge Protocol e e 1932
37.6.8.1 EFI_SMART_CARD_EDGE_PROTOCOL 1932

37.6.8.2 EFI_SMART_CARD_EDGE_PROTOCOL.GetContext() 1934

37.6.8.3 EFI_SMART_CARD_EDGE_PROTOCOL. Connect() 1936

37.6.8.4 EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect() 1937

37.6.8.5 EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn 1937

37.6.8.6 EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName 1938

37.6.8.7 EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin() 1939

37.6.8.8 EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining() 1940

37.6.8.9 EFI_SMART_CARD_EDGE_PROTOCOL.GetData() 1941

37.6.8.10 EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials() 1942

37.6.8.11 EFI_SMART_CARD_EDGE_PROTOCOL.SignData() 1944

37.6.8.12 EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData() 1946

37.6.8.13 EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement() 1948

3777 Memory Protection L. e 1949
37.7.1 EFI_MEMORY_ATTRIBUTEPROTOCOL. 1949
37.7.1.1 EFI_MEMORY_ATTRIBUTE_PROTOCOL.GetMemoryAttributes 1950

37.7.1.2 EFI_MEMORY_ATTRIBUTE_PROTOCOL.SetMemoryAttributes 1950

37.7.1.3 EFI_MEMORY_ATTRIBUTE_PROTOCOL.ClearMemoryAttributes 1951

38 Confidential Computing 1953

38.1 Virtual Platform CC EventLog e e e 1953
38.2 EFI_CC_MEASUREMENT_PROTOCOL e 1953
38.2.1 EFI_CC_MEASUREMENT_PROTOCOL 1953
38.2.2 EFI_CC_MEASUREMENT_PROTOCOL.GetCapability 1954

38.2.3 EFI_CC_PROTOCOL.GetEventLog o i ittt e e 1956
38.2.4 EFI_CC_MEASUREMENT_PROTOCOL.HashLogExtendEvent 1957

38.2.5 EFI_CC_MEASUREMENT_PROTOCOL.MapPcrToMrIndex 1959

38.3 EFICCFinal Events Table e e e e e 1960
38.4 Vendor Specific Information oo 1960
38.4.1 [Intel Trust Domain Extension. e 1960

XXXV

39 Miscellaneous Protocols 1962

39.1 EFITimestamp Protocol o e e e e e e 1962
39.1.1 EFI_TIMESTAMP_PROTOCOL e e it 1962
39.1.2 EFI_TIMESTAMP_PROTOCOL.GetTimestamp() 1962
39.1.3 EFI_TIMESTAMP_PROTOCOL.GetProperties() oo v 1963
39.2 Reset Notification Protocol e 1964
39.2.1 EFI_RESET_NOTIFICATION_PROTOCOL 1964
39.2.2 EFI_RESET_NOTIFICATION_PROTOCOL.RegisterResetNotify() 1964
39.2.3 EFI_RESET_NOTIFICATION_PROTOCOL.UnregisterResetNotify() 1965
A GUID and Time Formats 1966
B Console 1968
B.1 EFI_SIMPLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT _INPUT_EX_PROTOCOL . 1968
B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL for PC ANSI or ANSI X3.64 terminals 1970
C Device Path Examples 1974
C.1 Example Computer SYStEM v v v v e et e e e e e e e e e e e e e e e e e e e 1974
C.2 Legacy FIOppY . . . o v o o e e e e e e e e e e 1975
C3 IDEDisk e e e e e 1976
C.4 Secondary Root PCI Bus with PCI to PCIBridge 1977
C.5 ACPITerms i e e e e e e e e e e e e 1978
C.6 EFIDevice PathasaName Space i i i i i i e e e e e e e e 1979
D Status Codes 1980
E Universal Network Driver Interfaces 1983
E.1 Introduction @ . e e e e e e e e e e 1983
E.1.1 Definitions e e e e 1983
E.1.2 Referenced Specifications 1985
E.1.3 OS Network Stacks e e e e e e e 1988
E2 Overview e e e e e 1989
E.2.1 32/64-bit UNDI Interface e e e e e e e e e 1989
E2.1.1 Issuing UNDI Commands, 1994
E.2.2 UNDICommand Format it it 1994
E.3 UNDICDefinitions e e e e e e e e e e e e e e 1996
E.3.1 Portability Macros e e e e e e e e 1996
E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER 1996
E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT 1998
E3.1.3 PXE_BUSTYPE. e e e 1998
E3.1.4 PXE_SWAP_UINTIO6 e e e e 1999
E3.1.5 PXE_SWAP_UINT32 e e e e e e e e 1999
E3.1.6 PXE_SWAP_UINTO4 e e e e e e e e 2000
E.3.2 Miscellaneous Macros i e e e e e e e e e e e e e 2000
E.3.2.1 Miscellaneous e e e e e e e 2000
E.3.3 Portability Types o o e e 2001
E.3.3.1 PXE_CONST e e e e 2001
E.3.3.2 PXE_VOLATILE e e e e e e e 2001
E3.33 PXE_VOID e e e e e 2001
E3.3.4 PXE UINT8 e e e e e e e e 2002
E3.35 PXE_UINTIO e e e e 2002
E3.3.6 PXE_UINT32 e e e e s e e 2002
E.3.3.7 PXE_UINTO4 e e e e e e e 2002
E.3.3.8 PXE_UINTN e e e e e e e 2002
E3.4 Simple Types e 2002

E.4

E3.4.1 PXE_BOOL e 2003

E342 PXE_ OPCODE e 2003
E3.43 PXE_OPFLAGS e e e 2004
E3.44 PXE_STATFLAGS e e e e e e e e 2008
E3.4.5 PXE_STATCODE e e e e e e e e 2012
E3.4.6 PXE_IFNUM e e 2012
E3.47 PXE_CONTROL e 2013
E3.48 PXE FRAME_TYPE e 2013
E3.49 PXE IPV4 . . . o e 2013
E3.4.10 PXE IPVO o e e 2014
E3.4.11 PXE_MAC_ADDR e 2014
E3.4.12 PXE_IFTYPE e 2014
E3.4.13 PXE_MEDIA_ PROTOCOL. i 2015
E3.5 Compound Types o i i e e e e 2015
E3.5.1 PXE_HW_UNDI e et e e e 2015
E3.52 PXE_SW_UNDI. e 2017
E3.53 PXE_UNDI 2017
E354 PXE CDB 2018
E355 PXE_ IP_ADDR e 2019
E3.5.6 PXE DEVICE. e e 2019
UNDICommands o it i e e e e e e e e e e e e e 2019
E.4.1 Command Linking and Queuing 2021
E42 GetState e e 2022
E.4.2.1 Issuingthe Command it 2024
E.4.2.2 Waiting for the Command to Execute 2024
E.4.2.3 Checking Command ExecutionResults 2024
E43 Start e 2025
E.4.3.1 Issuingthe Command it 2025
E.4.3.2 Preparingthe CPB e 2025
E.43.3 Waiting for the Command to Execute 2030
E.43.4 Checking Command ExecutionResults 2030
E44 Stop . . o o 2031
E.4.4.1 TIssuingthe Command e 2031
E.4.4.2 Waiting for the Command to Execute 2031
E.4.43 Checking Command ExecutionResults, ... 2031
E45 GethnitInfo e 2032
E.4.5.1 TIssuingthe Command 2032
E.4.5.2 Waiting for the Command to Execute 2032
E.4.5.3 Checking Command ExecutionResults 2032
E.4.5.4 StatFlags e e e e e e 2033
E455 DB ..o 2033
E4.6 GetConfigInfo L 2035
E.4.6.1 Issuingthe Command 2035
E.4.6.2 Waiting for the Command to Execute 2035
E.4.6.3 Checking Command ExecutionResults 2035
E4.64 DB 2036
E.47 Initialize oL e e e e e e 2037
E.4.7.1 Issuingthe Command 2037
E4.7.2 OpFlags e e 2037
E.4.7.3 Preparingthe CPB e 2038
E.4.7.4 Waiting for the Command to Execute 2039
E.4.7.5 Checking Command ExecutionResults 2039
E4.7.6 StatFlags e e 2040
E.4.7.7 Before Usingthe DB 2040

XXXVii

E.4.8.1 Issuingthe Command nenin... 2040
E4.8.2 OpFlags 0 e e e 2041
E.4.8.3 Waiting for the Command to Execute 2041
E.4.8.4 Checking Command Execution Results 2041
E4.85 StatFlags L 2042
E4.9 Shutdown e 2042
E.4.9.1 Issuingthe Command, 2042
E.49.2 Waiting for the Command to Execute 2042
E.493 Checking Command ExecutionResults 2043
E.4.10 Interrupt Enables e 2043
E.4.10.1 Issuingthe Command ittt 2043
E.4.10.2 OpFlags o i i e e e e e e e e 2043
E.4.10.3 Waiting for the Command to Execute 2044
E.4.10.4 Checking Command ExecutionResults 2044
E.4.10.5 StatFlags o e 2044
E4.11 Receive Filters e 2045
E.4.11.1 Issuingthe Command ittt 2045
E4.11.2 OpFlags o o o i e e e e e e e 2045
E.4.11.3 Preparingthe CPB 2046
E.4.11.4 Waiting for the Command to Execute 2046
E.4.11.5 Checking Command ExecutionResults, 2046
E.4.11.6 StatFlags o o e e e e e e e e e 2047
E411L7 DB . . . oo 2047
E.4.12 Station Address e e e 2047
E.4.12.1 Issuingthe Command 2047
E.4.12.2 OpFlags o e e 2048
E.4.12.3 Preparingthe CPB e 2048
E.4.12.4 Waiting for the Command to Execute 2048
E.4.12.5 Checking Command ExecutionResults 2048
E.4.12.6 Before Usingthe DB 2049
E4.13 Statistics oL e 2049
E.4.13.1 Issuingthe Command 2049
E.4.13.2 OpFlags o i e e e e e e e e e 2050
E.4.13.3 Waiting for the Command to Execute 2050
E.4.13.4 Checking Command ExecutionResults 2050
E4.13.5 DB . . oo 2050
E4.14 MCastIPToMAC e 2052
E.4.14.1 TIssuingthe Command ittt 2052
E4.142 OpFlags o o i e e e e e e e 2053
E.4.14.3 Preparingthe CPB o 2053
E.4.14.4 Waiting for the Command to Execute 2053
E.4.14.5 Checking Command ExecutionResults, 2053
E.4.14.6 Before Usingthe DB e 2054
E4.15 NvData e e 2054
E.4.15.1 Issuingthe Command 2054
E.4.15.2 Preparingthe CPB 2054
E.4.15.3 Waiting for the Command to Execute 2055
E.4.15.4 Checking Command ExecutionResults 2056
E4.16 GetStatus oo e e e e e e e 2056
E.4.16.1 Issuingthe Command 2057
E.4.16.2 Waiting for the Command to Execute 2057
E.4.16.3 Checking Command ExecutionResults 2057
E4.16.4 StatFlags 2058

xxxviii

5)R = = @-m @ =

=

E.4.16.5 Usingthe DB e e 2058

E4.17 FillHeader e 2059

E.4.17.1 Issuingthe Command 2059

E.4.17.2 OpFlags e 2059

E.4.17.3 Preparingthe CPB 2059

E.4.17.4 Nonfragmented Frame 2059

E.4.17.5 Fragmented Frame e 2060

E.4.17.6 Waiting for the Command to Execute 2061

E.4.17.7 Checking Command ExecutionResults 2061

E4. 18 Transmit o o o it e e e e e e e e e e e e 2062

E.4.18.1 Issuingthe Command 2062

E.4.182 OpFlags o i e e e e e e e e 2062

E.4.183 Preparingthe CPB e 2063

E.4.18.4 Nonfragmented Frame 2063

E.4.18.5 Fragmented Frame o 2063

E.4.18.6 Waiting for the Command to Execute 2064

E.4.18.7 Checking Command ExecutionResults 2064

E4.19 Receive e 2064

E.4.19.1 Issuingthe Command 2065

E.4.19.2 Preparingthe CPB 2065

E.4.19.3 Waiting for the Command to Execute 2066

E.4.19.4 Checking Command ExecutionResults, 2066

E.4.19.5 Usingthe DB e e 2066

E.4.20 PXE 2.1 specification wire protocol clarifications 2067

E.4.20.1 TIssue#l-time-outs i e 2067

E.4.20.2 Issue #2 - siaddr/option 54 precedence 2067

E.4.20.3 TIssue #3 - PXE Vendor Options Existence 2067
Using the Simple Pointer Protocol 2070
Using the EFI Extended SCSI Pass Thru Protocol 2071
Compression Source Code 2074
Decompression Source Code 2105
EFI Byte Code Virtual Machine Opcode List 2123
Alphabetic Function Lists 2125
EFI 1.10 Protocol Changes 2126

L.1 Protocol and GUID Name Changes from EFT 1.10 2126
Formats — Language Codes and Language Code Arrays 2128

M.1 Specifying individual language codeso Lo 2128

M.1.1 Specifying language code arrays:o 2128
Common Platform Error Record (CPER) 2129

N.1 Introduction e e e e e e e e 2129

N2 Format e e e e e e e e 2129

N.2.1 RecordHeader e 2130

N.2.1.1 Notification Type o i e e e e 2133

N.2.1.2 ErrorStatus e e e e 2135

N.2.2 Section Descriptor L e 2136

N.2.3 Non-standard SectionBody L o oo 2139

XXXiX

N.2.4 Processor Error Sections e e e e e
N.2.4.1 Generic Processor Error Section
N.2.4.2 1A32/X64 Processor Error Section
N.2.4.3 IA64 Processor Error Section
N.2.44 ARM Processor Error Section

N.2.5 Memory Error Section L

N.2.6 Memory Error Section2 e e e e

N.2.7 PCIExpress Error Section ittt i e

N.2.8 PCI/PCI-X Bus Error Section. it it i i e

N.2.9 PCI/PCI-X Component Error Section

N.2.10 Firmware Error Record Reference

N.2.11 DMArError Sections i e e e e e e e e e e
N.2.11.1 DMAr Generic Error Section
N.2.11.2 Intel® VT for Directed I/O specific DMAr Error Section
N.2.11.3 IOMMU Specific DMAr Error Section

N.2.12 CCIX PER Log Error Section ittt

N.2.13 Compute Express Link (CXL) Protocol Error Section

N.2.14 CXL Component Events Section ittt

UEFI ACPI Data Table
0.1 Invocationmethod e e e e

Hardware Error Record Persistence Usage

P.1 Determining SPace it e e e e e e e e e e e e e e
P2 Saving Hardware errorrecords L. e e e e e e e e e e e
P.3 Clearing error record variables L e e e e e

References

Q.1 Related Information e e e

Q.2 Prerequisite Specifications L e e e e e e
Q.2.1 ACPISpecification e
Q.2.2 Additional Considerations for Itanium-BasedPlatforms

Glossary

x|

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Acknowledgments

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an “AS IS” basis and, to the maximum extent permitted by applicable law, this information
is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness
of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this
material and any contribution thereto. Designers must not rely on the absence or characteristics of any features or
instructions marked “reserved” or “undefined.” The Unified EFI Forum, Inc. reserves any features or instructions so
marked for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION
THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS
OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,
DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTH-
ERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCU-
MENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAM-
AGES.

Copyright © 2024, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The UEFI Forum
is the owner of all rights and title in and to this work, including all copyright rights that may exist, and all rights to
use and reproduce this work. Further to such rights, permission is hereby granted to any person implementing this
specification to maintain an electronic version of this work accessible by its internal personnel, and to print a copy of
this specification in hard copy form, in whole or in part, in each case solely for use by that person in connection with
the implementation of this Specification, provided no modification is made to the Specification.

CONTENTS xli

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

List of Tables
Chapter 1
e Table 1.2 ST Prefixes
e Table 1.3 Binary Prefixes
Chapter 2
» Table 2.1 UEFI Image Memory Types
e Table 2.2 UEFI Runtime Services
e Table 2.3 Common UEFI Data Types
 Table 2.4 Modifiers for Common UEFI Data Types
e Table 2.5 Map EFI Cacheability Attributes to AArch64 Memory Types
» Table 2.6 Map UEFI Permission Attributes to ARM Paging Attributes
* Table 2.7 UEFI Protocols
* Table 2.8 Required UEFI Implementation Elements
Chapter 3
* Table 3.3 Global Variables
 Table 3.4 UEFI Image Types
Chapter 4
e Table 4.1 Usage of Memory Attribute Definitions
Chapter 5
e Table 5.1 Legacy MBR
e Table 5.2 Legacy MBR Partition Record
* Table 5.3 Protective MBR
 Table 5.4 Protective MBR Partition Record protecting the entire disk*
 Table 5.6 GPT Partition Entry
» Table 5.7 Defined GPT Partition Entry — Partition Type GUIDs
 Table 5.8 Defined GPT Partition Entry - Attributes
Chapter 6
Chapter 7
e Table 7.1 Event, Timer, and Task Priority Functions
e Table 7.2 TPL Usage
e Table 7.3 TPL Restrictions
» Table 7.8 Memory Allocation Functions
e Table 7.9 Memory Type Usage before ExitBootServices()
e Table 7.10 Memory Type Usage after ExitBootServices()
e Table 7.14 Protocol Interface Functions

» Table 7.30 Image Type Differences Summary

CONTENTS xlii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table 7.31 Image Functions

* Table 7.37 Miscellaneous Boot Services Functions
Chapter 8

e Table 8.1 Rules for Reentry Into Runtime Services

e Table 8.1 Rules for Reentry Into Runtime Services

e Table 8.2 Functions that may be called after Machine Check, INIT and NMI

» Table 8.3 Variable Services Functions

* Table 8.8 Hardware Error Record Persistence Variables

e Table 8.9 Time Services Functions

* Table 8.14 Virtual Memory Services

* Table 8.17 Miscellaneous Runtime Services

e Table 8.19 Flag Firmware Behavior

 Table 8.22 Variables Using EFI_CAPSULE_REPORT_GUID
Chapter 9
Chapter 10

e Table 10.1 Generic Device Path Node Structure

e Table 10.2 Device Path End Structure

e Table 10.3 PCI Device Path

* Table 10.4 PCCARD Device Path

e Table 10.5 Memory Mapped Device Path

* Table 10.6 Vendor-Defined Device Path

e Table 10.7 Controller Device Path

e Table 10.8 BMC Device Path

e Table 10.9 ACPI Device Path

 Table 10.10 Expanded ACPI Device Path

 Table 10.11 ACPI _ADR Device Path

e Table 10.12 NVDIMM Device Path

e Table 10.13 ATAPI Device Path

e Table 10.14 SCSI Device Path

e Table 10.15 Fibre Channel Device Path

e Table 10.16 Fibre Channel Ex Device Path

e Table 10.17 Fibre Channel Ex Device Path Example

* Table 10.18 1394 Device Path

* Table 10.19 USB Device Paths

 Table 10.20 USB Device Path Examples

e Table 10.21 Another USB Device Path Example

CONTENTS xliii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table 10.22 SATA Device Path

* Table 10.23 USB WWID Device Path

 Table 10.24 Device Logical Unit

* Table 10.25 USB Class Device Path

* Table 10.26 I 2 O Device Path

e Table 10.27 MAC Address Device Path

» Table 10.28 IPv4 Device Path

e Table 10.29 IPv6 Device Path

e Table 10.31 InfiniBand Device Path

e Table 10.32 UART Device Path

e Table 10.33 Vendor-Defined Messaging Device Path
e Table 10.34 UART Flow Control Messaging Device Path
e Table 10.35 SAS Messaging Device Path Structure

* Table 10.36 SAS Extended Messaging Device Path Structure
e Table 10.37 iSCSI Device Path Node (Base Information)
 Table 10.38 IPv4 configuration

* Table 10.39 IPv6 configuration

» Table 10.40 NVM Express Namespace Device Path
 Table 10.41 URI Device Path

 Table 10.42 UFS Device Path

e Table 10.43 SD Device Path

* Table 10.44 EFI Bluetooth Device Path

e Table 10.45 Wi-Fi Device Path

e Table 10.46 eMMC Device Path

e Table 10.47 EFI BluetoothLE Device Path

e Table 10.48 DNS Device Path

 Table 10.49 NVDIMM Namespace Device Path
 Table 10.54 Hard Drive Media Device Path

* Table 10.55 CD-ROM Media Device Path

* Table 10.56 Vendor-Defined Media Device Path

e Table 10.57 File Path Media Device Path

» Table 10.58 Media Protocol Media Device Path

* Table 10.59 PIWG Firmware File Device Path

* Table 10.60 PIWG Firmware Volume Device Path

* Table 10.61 Relative Offset Range

* Table 10.62 RAM Disk Device Path

CONTENTS xliv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.63 BIOS Boot Specification Device Path
Table 10.64 ACPI_CRS to EFI Device Path Mapping
Table 10.66 EFI Device Path Option Parameter Values
Table 10.67 Device Node Table

Chapter 11

Chapter 12

e Table 12.1 Supported Unicode Control Characters
 Table B.1 EFI Scan Codes for EFI_SIMPLE_TEXT _INPUT_PROTOCOL
¢ Table B.2 EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
e Table 12.10 EFI Cursor Location/Advance Rules
 Table 12.20 PS/2 Mouse Device Path
* Table 12.21 Serial Mouse Device Path
 Table 12.22 USB Mouse Device Path
 Table 12.32 Bit Operation Table
e Table 12.34 Attributes Definition Table
Chapter 13
 Table 13.24 Tape Header Formats
e Table 13.45 PATA device mapping to ports and portmultiplier ports
e Table 13.46 Special Programming Considerations
Chapter 14
 Table 14.5 PCI Configuration Address
e Table 14.15 QWORD Address Space Descriptor
e Table 14.16 End Tag
 Table 14.18 PCI Root Bridge Device Path for a Desktop System
e Table 14.19 PCI Root Bridge Device Path for Bridge #0 in a Server System
e Table 14.20 PCI Root Bridge Device Path for Bridge #1 in aServer System
e Table 14.21 PCI Root Bridge Device Path for Bridge #2 in aServer System
 Table 14.22 PCI Root Bridge Device Path for Bridge #3 in a Server System
e Table 14.37 QWORD Address Space Descriptor
e Table 14.38 End Tag
e Table 14.41 PCI Device 7, Function 0 on PCI Root Bridge 0
e Table 14.42 PCI Device 7, Function O behind PCI to PCI bridge
e Table 14.43 Standard PCI Expansion ROM Header (Example from PCI Firmware Specification 3.0)
e Table 14.44 PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)
 Table 14.45 EFI PCI Expansion ROM Header
e Table 14.46 Device Path for an EFI Driver loaded from PCIO ption ROM

CONTENTS xlv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table 14.47 Recommended PCI Device Driver Layout
Chapter 15
e Table 15.4 SCSI Device Path Examples

Table 15.5 ATAPI Device Path Examples
Table 15.6 Fibre Channel Device Path Examples

Table 15.7 InfiniBand Device Path Examples
e Table 15.9 Single Channel PCI SCSI Controller Behind a PCI Bridge
e Table 15.10 Channel #3 of a PCI SCSI Controller behind a PCIBridge
Chapter 16
Chapter 17
» Table 17.10 USB Hub Port Status Bitmap
e Table 17.11 Hub Port Change Status Bitmap
e Table 17.12 USB Port Features
e Table 17.33 Payload Associated Messages and Descriptions
Chapter 18
e Table 18.1 Debugport Messaging Device Path
Chapter 19
e Table 19.1 Block Header Fields
Chapter 20
Chapter 21
Chapter 22
e Table 22.1 General Purpose VM Registers
e Table 22.2 Dedicated VM Registers
» Table 22.3 VM Flags Register
» Table 22.4 Index Encoding
e Table 22.5 Index Size in Index Encoding
e Table 22.6 Opcode Byte Encoding
 Table 22.7 Operand Byte Encoding
e Table 22.8 ADD Instruction Encoding
e Table 22.9 AND Instruction Encoding
 Table 22.10 ASHR Instruction Encoding
e Table 22.11 VM Version Format
e Table 22.12 BREAK Instruction Encoding
e Table 22.13 CALL Instruction Encoding
e Table 22.14 CMP Instruction Encoding
e Table 22.15 CMPI Instruction Encoding

CONTENTS xlvi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table 22.16 DIV Instruction Encoding

e Table 22.17 DIVU Instruction Encoding

 Table 22.18 EXTNDB Instruction Encoding

e Table 22.19 EXTNDD Instruction Encoding

e Table 22.19 EXTNDD Instruction Encoding

 Table 22.20 EXTNDW Instruction Encoding

e Table 22.21 JMP Instruction Encoding

e Table 22.22 JMPS Instruction Encoding

e Table 22.23 LOADSP Instruction Encoding

 Table 22.24 MOD Instruction Encoding

e Table 22.25 MODU Instruction Encoding

e Table 22.26 MOV Instruction Encoding

e Table 22.27 MOVI Instruction Encoding

e Table 22.28 MOVIn Instruction Encoding

e Table 22.29 MOVn Instruction Encoding

e Table 22.30 MOVREL Instruction Encoding

 Table 22.31 MOVsn Instruction Encoding

 Table 22.32 MUL Instruction Encoding

e Table 22.33 MULU Instruction Encoding

e Table 22.34 NEG Instruction Encoding

e Table 22.35 NOT Instruction Encoding

e Table 22.36 OR Instruction Encoding

e Table 22.37 POP Instruction Encoding

 Table 22.38 POPn Instruction Encoding

e Table 22.39 PUSH Instruction Encoding

e Table 22.40 PUSHn Instruction Encoding

e Table 22.41 RET Instruction Encoding

 Table 22.42 SHL Instruction Encoding

e Table 22.43 SHR Instruction Encoding

* Table 22.44 STORESP Instruction Encoding

 Table 22.45 SUB Instruction Encoding

 Table 22.46 XOR Instruction Encoding
Chapter 23

e Table 23.5 PUSH_GUID Instruction Encoding

e Table 23.6 PUSH_VERSION Instruction Encoding

e Table 23.7 DECLARE_VERSION_NAME Instruction Encoding

CONTENTS xlvii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table 23.8 AND Instruction Encoding

e Table 23.9 OR Instruction Encoding

e Table 23.10 NOT Instruction Encoding

e Table 23.11 TRUE Instruction Encoding

e Table 23.12 FALSE Instruction Encoding

 Table 23.13 EQ Instruction Encoding

e Table 23.14 GT Instruction Encoding

e Table 23.15 GTE Instruction Encoding

e Table 23.16 LT Instruction Encoding

e Table 23.17 LTE Instruction Encoding

» Table 23.18 END Instruction Encoding

e Table 23.19 DECLARE_LENGTH Instruction Encoding

e Table 23.20 ESRT and FMP Fields
Chapter 24

e Table 24.13 PXE Tag Definitions for EFI
Table 24.20 Destination IP Filter Operation

Table 24.21 Destination UDP Port Filter Operation

Table 24.22 Source IP Filter Operation
Table 24.23 Source UDP Port Filter Operation
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
» Table 29.8 DHCP4 Enumerations
e Table 29.19 Field Descriptions

 Table 29.21 Callback Return Values

Chapter 30
 Table 30.18 Descriptions of Parameters in MTFTPv4 PacketStructures
 Table 30.30 Descriptions of Parameters in MTFTPv6 PacketStructures
 Table 30.31 MTFTP Packet OpCode Descriptions
e Table 30.32 MTFTP ERROR Packet ErrorCode Descriptions

Chapter 31

Chapter 32
* Table 32.2 Generic Authentication Node Structure

e Table 32.3 CHAP Authentication Node Structure using RADIUS

CONTENTS xlviii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

 Table 32.4 CHAP Authentication Node Structure using Local Database
e Table 32.5 PE/COFF Certificates Types and UEFI Signature Database Certificate Types
 Table 32.6 Authentication Attempt Status Codes
Chapter 33
e Table 33.1 Localization Issues
* Table 33.2 Information for Types of Storage
e Table 33.3 Common Control Codes for Font Display Information
e Table 33.11 Guidelines for UEFI System Fonts
 Table 33.12 Truth Table: Mapping A Single Question To Three Configuration Settings
 Table 33.13 Multiple Configuration Settings Example #2
* Table 33.14 Values
e Table 33.15 Package Types
 Table 33.18 Block Types
» Table 33.20 IFR Opcodes
e Table 33.21 VarStoreType Descriptions
* Table 33.22 Animation Block Types
Chapter 34
Chapter 35
e Table 35.11 Callback Behavior
Callback 36
e Table 36.15 Record Values and Descriptions
¢ Table 36.16 Standard Values for Access to Configure the Platform
Chapter 37
» Table 37.1 EFI Hash Algorithms
Table 37.2 Identical Hash Results

Table 37.8 Algorithms that may be used with EFI_HASH2_PROTOCOL
 Table 37.9 Encryption Algorithm Properties
 Table 37.22 Details of Supported Signature Format
Appendix A
e Table A.1 EFI GUID Format
e Table A.2 Text representation relationships
Appendix B
e Table B.1 EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL
 Table B.2 EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
 Table B.3 Control Sequences to Implement EFI_SIMPLE_TEXT INPUT_PROTOCOL

Appendix C

CONTENTS xlix

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

e Table C.1 Legacy Floppy Device Path

* Table C.2 IDE Disk Device Path

e Table C.3 Secondary Root PCI Bus with PCI to PCI Bridge Device Path
Appendix D

e Table D.1 EFI_STATUS Code Ranges

e Table D.2 EFI_STATUS Success Codes (High Bit Clear)

e Table D.3 EFI_STATUS Error Codes (High Bit Set)

e Table D.4 EFI_STATUS Warning Codes (High Bit Clear)
Appendix E

 Table E.1 Definitions

Table E.2 Referenced Specifications

Table E.3 Driver Types: Pros and Cons

Table E.4 /PXE Structure Field Definitions
Table E.5 UNDI CDB Field Definitions

Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
 Table J.1 EBC Virtual Machine Opcode Summary
Appendix K
Appendix L
e Table L.1 Protocol Name changes
 Table L.2 Revision Identifier Name Changes
Appendix M
e Table M.1 Alias Codes Supported in Addition to RFC 4646
Appendix N
e Table N.1 Error record header
e Table N.2 Error Record Header Flags
 Table N.3 Error Status Fields
e Table N.4 Error Types
» Table N.5 Section Descriptor
* Table N.6 Processor Generic Error Section
* Table N.7 Processor Error Record
» Table N.8 IA32/X64 Processor Error Information Structure
 Table N.9 IA32/X64 Cache Check Structure

CONTENTS |

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* Table N.10 IA32/X64 TLB Check Structure
 Table N.11 IA32/X64 Bus Check Structure
e Table N.12 IA32/X64 MS Check Field Description
e Table N.13 IA32/X64 Processor Context Information
e Table N.14 IA32 Register State
e Table N.15 X64 Register State
e Table N.16 ARM Processor Error Section
e Table N.17 ARM Processor Error Information Structure
e Table N.19 ARM TLB Error Structure
e Table N.20 ARM Bus Error Structure
e Table N.21 ARM Processor Error Context Information HeaderStructure
e Table N.22 ARMvS8 AArch32 GPRs (Type 0)
» Table N.23 ARM AArch32 ELI Context System Registers (Type 1)
e Table N.24 ARM AArch32 EL2 Context System Registers (Type 2)
e Table N.25 ARM AArch32 secure Context System Registers (Type3)
* Table N.26 ARMvS8 AArch64 GPRs (Type 4)
» Table N.27 ARM AArch64 ELI Context System Registers (Type 5)
 Table N.28 ARM AArch64 EL2 Context System Registers (Type 6)
e Table N.29 ARM AArch64 EL3 Context System Registers (Type 7)
e Table N.30 ARM Misc. Context System Register (Type 8) - SingleRegister Entry
e Table N.31 Memory Error Record
e Table N.32 Memory Error Record 2
e Table N.33 PCI Express Error Record
e Table N.34 PCI/PCI-X Bus Error Section
e Table N.35 PCI/PCI-X Component Error Section
e Table N.36 Firmware Error Record Reference
* Table N.37 DMAr Generic Errors
 Table N.38 Intel® VT for Directed I/0 specific DMAr Errors
e Table N.39 IOMMU-specific DMAr Errors
e Table N.40 CCIX PER Log Error Record
e Table N.41 CXL Protocol Error Section
* Table N.42 CXL Component Event Log Record
Appendix O
 Table O.1 UEFI Table Structure

CONTENTS li

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Appendix P
Appendix Q
Appendix R

CONTENTS lii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

List of Figures

Chapter 1

Fig. 1.1 UEFI Conceptual Overview

Chapter 2

Fig. 2.1 Booting Sequence

Fig. 2.2 Stack After AddressOfEntryPoint Called, IA-32
Fig. 2.3 Stack after AddressOfEntryPoint Called, Itanium-based Systems
Fig. 2.4 Construction of a Protocol

Fig. 2.5 Desktop System

Fig. 2.6 Server System

Fig. 2.7 Image Handle

Fig. 2.8 Driver Image Handle

Fig. 2.9 Host Bus Controllers

Fig. 2.10 PCI Root Bridge Device Handle

Fig. 2.11 Connecting Device Drivers

Fig. 2.12 Connecting Bus Drivers

Fig. 2.13 Child Device Handle with a Bus Specific Override
Fig. 2.14 Software Service Relationships

Chapter 5

Fig. 5.1 MBRDisk Layout with legacy MBR example

Fig. 5.2 GPT disk layout with protective MBR

Fig. 5.3 GPT disk layout with protective MBR on a diskwith capacity > LBA OxFFFFFFFF
Fig. 5.4 GUID Partition Table (GPT) example

Chapter 6

Fig. 6.1 The BTT Layout in a BTT Arena

Fig. 6.2 A BTT With Multiple Arenas in a Large Namespace
Fig. 6.3 Cyclic Sequence Numbers for Flog Entries

Fig. 6.4 BTT Read Path Overview

Fig. 6.5 BTT Write Path Overview

Chapter 7

Fig. 7.1 Device Handle to Protocol Handler Mapping

Fig. 7.2 Handle Database

Chapter 8

Fig. 8.1 Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures
Chapter 9

Chapter 10

CONTENTS liii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Chapter 11

Fig. 11.1 Driver Health Status States

Chapter 12

Fig. 12.1 Serial Device Identification Driver Relationships
Fig. 12.2 Software BLT Buffer

Chapter 13

Fig. 13.1 Nesting of Legacy MBR Partition Records

Fig. 13.2 Cyclic Sequence Numbers in Label Index Block
Fig. 13.3 Organization of the Label Storage Area

Chapter 14

Fig. 14.1 Host Bus Controllers

Fig. 14.2 Device Handle for a PCI Root Bridge Controller
Fig. 14.3 Desktop System with One PCI Root Bridge

Fig. 14.4 Server System with Four PCI Root Bridges

Fig. 14.5 Server System with Two PCI Segments

Fig. 14.6 Server System with Two PCI Host Buses

Fig. 14.7 Image Handle

Fig. 14.8 PCI Driver Image Handle

Fig. 14.9 PCI Host Bus Controller

Fig. 14.10 Device Handle for a PCI Host Bus Controller
Fig. 14.11 Physical PCI Bus Structure

Fig. 14.12 Connecting a PCI Bus Driver

Fig. 14.13 Child Handle Created by a PCI Bus Driver

Fig. 14.14 Connecting a PCI Device Driver

Fig. 14.15 Unsigned PCI Driver Image Layout

Fig. 14.16 Signed and Compressed PCI Driver Image Flow
Fig. 14.17 Signed and Compressed PCI Driver Image Layout
Fig. 14.18 Signed but not Compressed PCI Driver Image Flow
Fig. 14.19 Signed and Uncompressed PCI Driver Image Layout
Chapter 15

Fig. 15.1 Device Handle for a SCSI Bus Controller

Fig. 15.2 Child Handle Created by a SCSI Bus Driver
Chapter 16

Chapter 17

Fig. 17.1 Software Triggered State Transitions of a USB Host Controller
Fig. 17.2 USB Bus Controller Handle

CONTENTS

liv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Fig.

17.3 Sequence of Operations with Endpoint Policy Changes

Chapter 18

Fig.

18.1 Debug Support Table Indirection and Pointer Usage

Chapter 19

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

19.1 Bit Sequence of Compressed Data
19.2 Compressed Data Structure

19.3 Block Structure

19.4 Block Body

19.5 String Info Log Search Tree

19.6 Node Split

Chapter 20
Chapter 21
Chapter 22
Chapter 23

Fig.
Fig.
Fig.
Fig. 23.4 Optional Scatter-Gather Construction of Capsule Submitted to Update Capsule()
Fig.
Fig.

23.1 Firmware Image with no Authentication Support
23.2 Firmware Image with Authentication Support

23.3 Firmware Image with Dependency/AuthenticationSupport

23.5 Capsule Header and Firmware Management Capsule Header

23.6 Firmware Management and Firmware Image Management headers

Chapter 24

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

24.1 IPv6-based PXE Boot

24.2 Netboot6 (DHCP6 and ProxyDHCP6 reside on the same server)

24.3 IPv6-based PXE boot (DHCP6 and ProxyDHCP6reside on the different server)
24.4 HTTP Boot Network Topology Concept -Corporate Environment

24.5 HTTP Boot Network Topology Concept2 — Homeenvironments

24.6 UEFI HTTP Boot Protocol Layout

24.7 HTTP Boot Overall Flow

Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29

Fig.
Fig.
Fig.

29.1 EFI REST Support, Single Protocol
29.2 EFI REST Support, Multiple Protocols
29.3 EFI REST Support, BMC on Board

CONTENTS

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Fig. 29.4 EFI REST Support, Redfish Service

Fig. 29.5 EFI REST Support, Protocol Usages
Chapter 30

Chapter 31

Chapter 32

Fig. 32.1 Creating A Digital Signature

Fig. 32.2 Veriying a Digital Signature

Fig. 32.3 Embedded Digital Certificates

Fig. 32.4 Secure Boot Modes

Fig. 32.5 Signature Lists

Fig. 32.6 Process for Adding a New Signature by the OS
Fig. 32.7 Authorization Process Flow

Chapter 33

Fig. 33.1 Platform Configuration Overview

Fig. 33.2 HII Resources In Drivers & Applications
Fig. 33.3 Creating UI Resources With Resource Files
Fig. 33.4 Creating UI Resources With Intermediate Source Representation
Fig. 33.5 The Platform and Standard User Interactions
Fig. 33.6 User and Platform Component Interaction
Fig. 33.7 User Interface Components

Fig. 33.8 Connected Forms Browser/Processor

Fig. 33.9 Disconnected Forms Browser/Processor

Fig. 33.10 O/S-Present Forms Browser/Processor

Fig. 33.11 Platform Data Storage

Fig. 33.12 Keyboard Layout

Fig. 33.13 Forms-based Interface Example

Fig. 33.14 Platform Configuration Overview

Fig. 33.15 Question Value Retrieval Process

Fig. 33.16 Question Value Change Process

Fig. 33.17 String Identifiers

Fig. 33.18 Fonts

Fig. 33.19 Font Description Terms

Fig. 33.20 16 x 19 Font Parameters

Fig. 33.21 Font Structure Layout

Fig. 33.22 Proportional Font Parameters and Byte Padding
Fig. 33.23 Aligning Glyphs

CONTENTS Ivi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Fig. 33.24 HII Database

Fig. 33.25 Setup Browser

Fig. 33.26 Storing Configuration Settings

Fig. 33.27 OS Runtime Utilization

Fig. 33.28 Standard Application Obtaining Setting Example

Fig. 33.29 Typical Forms Processor Decisions Necessitating a Callback (1)
Fig. 33.30 Typical Forms Processor Decisions Necessitatinga Callback (2)
Fig. 33.31 Typical Forms Processor Decisions Necessitatinga Callback (3)
Fig. 33.32 Driver Model Interactions

Fig. 33.33 Managing Human Interface Components

Fig. 33.34 EFI IFR Form Set configuration

Fig. 33.35 EFI IFR Form Set Question Changes

Fig. 33.36 Glyph Information Encoded in Blocks

Fig. 33.37 Glyph Block Processing

Fig. 33.38 EFI_HII_GIBT_GLYPH_VARIABLITY Glyph Drawing Processing
Fig. 33.39 String Information Encoded in Blocks

Fig. 33.40 String Block Processing: Base Processing

Fig. 33.41 String Block Processing: SCSU Processing

Fig. 33.42 String Block Processing: UTF Processing

Fig. 33.43 Image Information Encoded in Blocks

Fig. 33.44 Palette Structure of a Black & White, One-Bitlmage

Fig. 33.45 Palette Structure of a Four-Bit Image

Fig. 33.46 Palette Structure of a Four-Bit, Six-ColorImage

Fig. 33.47 Simple Binary Object

Fig. 33.48 Password Flowchart (part one)

Fig. 33.49 Password Flowchart (part two)

Fig. 33.50 Animation Information Encoded in Blocks

Chapter 34

Fig. 34.1 Glyph Example

Fig. 34.2 How EFI_HII_IMAGE_EX_PROTOCOL uses EFI_HII_IMAGE_DECODER_PROTOCOL
Fig. 34.3 Keyboard Layout

Chapter 35

Chapter 36

Fig. 36.1 User Identity

Fig. 36.2 User Identity Manager

Chapter 37

CONTENTS Ivii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Fig. 37.1 Hash workflow

Chapter 38

Chapter 39

Appendix A

Appendix B

Appendix C

Fig. C.1 Example Computer System

Fig. C.2 Partial ACPI Name Space for Example System
Fig. C.3 EFI Device Path Displayed As a Name Space
Appendix D

Appendix E

Fig. E.1 Network Stacks with Three Classes of Drivers
Fig. E.2 /PXE Structures for H/W and S/W UNDI
Fig. E.3 Issuing UNDI Commands

Fig. E.4 UNDI Command Descriptor Block (CDB)
Fig. E.5 Storage Types

Fig. E.6 UNDI States, Transitions & Valid Commands
Fig. E.7 Linked CDBs

Fig. E.8 Queued CDBs

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

Appendix N

Fig. N.1 Error Record Format

Appendix O

Appendix P

Appendix Q

Appendix R

CONTENTS Iviii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Revision History

Many people have contributed to the contents of this specification, including the following:

* UEFI Specification Working Group (USWG)

* Tianocore Community Members

* Others noted in the Revision History below

Changes in this release

Revi-
sion
2.10A
2.10A
2.10A
2.10A

2.10A
2.10A

2.10A

2.10A

2.10A

2.10A

2.10A

2.10A

2.10A

2.10A
2.10A

2.10A
2.10A
2.10A
2.10A
2.10A
2.10A

2.10A

Issue # - Description

2016 - Compression/decompression clean up

2359 - Update the PASS_ THRU_PROTOCOL to Enhance the logic
for AtaPassThruGetNextPort()/AtaPassThruGetNext

2360 - Clarify that EFI._ MEMORY_WB and _WT share ability at-
tributes on AArch64

2367 - EFI_FILE_PROTOCOL.Open() suggests that a file may be
opened relative to a regular file

2368 - mixed up error codes for EFI_FILE_ PROTOCOL.OpenEx()
2369 - EFI_TABLE_HEADER Revision field cannot represent ver-
sion 2.10

2373 - Typo in spec EFIBOOTBOOT and EFIBOOT-
BOOT{machine type short-name}.EFI type

2376 - Update the RISC-V Platforms section for more concise lan-

guage

2408 - Recommended PCI Device Driver Layout missing RV and
LoongArch

2411 - Fix incorrect references in the Platform-Specific Elements
section.

2412 - Update references and remove extraneous text.

2415 - Update reference links in chapters 8 and 32.

2417 - Remove old text from the VendorTable definition for the
EFI_CONFIGURATION_TABLE

2421 - Update DEFAULT_TTL to IANA’s default value of 64.
2428 - Update Status Codes Returned for
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()
2438 - Wrong Text Device Node for NVDIMM Namespace path
24309 - Include ACPI Device Path Subtype 4 for NVDIMM Device
2445 - Fix typos and other cleanup

2447 - Undefined behavior of SetVari-
able(EFI_VARIABLE_APPEND_WRITE) for non-existent
variable

2455 - Precedence of return codes for Query VariableInfo
2456 - Remove deprecated content

2462 - Arm CPER Processor Error Type values defined incorrectly

Modified/Added Content

Section |
Section 13.13.4

Table 2.5

Section 13.5.1, Section 13.5.2,
Section 13.5.3

Section 13.5.9

Section 1.9.9, Section 4.2

Section 3.5.1.1

Section 2.3.7, Section 2.3.7.1,
Section 2.3.7.2, Section 2.3.7.3,
Section 2.3.8

Table 14.47, Section 14.4.25

Section 2.6.2

Section 14.4.21

Section 8, Section 32.3.2, Sec-
tion 32.6.3, Section 32.7.3, Sec-
tion 32.8.1

Section 4.6.1

Section 24.3.5
Section 23.1.2

Table 10.67

Table 10.67

Section 3.5.1.1, Section 8.5.5,
Section 18.2.2, Section 29.3.13
Section 8.2.3

Section 8.2.4

various content and references in
spec

Table N.17

Changes in previous releases

CONTENTS

lix

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Revi- Issue # / Description Modified/Added Content
sion
2.10 2205 - Enabling SHA-384/SHA-512 signing scheme for Authenti- Section 8.2.6
cated Variables
2.10 2207 - EFIL_SECURITY_VIOLATION can’t be returned by Section 23.1.3
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()
2.10 2217 - Device Authentication Signature Database Section 3.3, Section 32.4.1, Sec-
tion 32.7, Section 32.8.2
2.10 2229 - Support ISA-specific memory attributes in descriptors Section 2.3.6.1, Section 7.2.3
2.10 2247 - Support crypto agile Section 2.6.5, Section 8.2.5,
Section 8.2.6, Section 27.2, Sec-
tion 28.9, Section 32.3, Section
32.6.3.3, Section 37.4
2.10 2262 - Add Memory Protection proposal - Section 37.7.1
UEFI_MEMORY_ATTRIBUTE protocol
2.10 2266 - Code First - Image Execution Table - revocations of hashes Section 32.4.2
(Samer El-Haj-Mahmoud)
2.10 2271 - Introduce UEFI Conformance Profiles Section 2.6, Section 4.6.4
2.10 2277 - Code first - Uart() UEFI DevicePath binary/text confusion Section 10.6.1.6
issue (Samer El-Haj-Mahmoud)
2.10 2278 - AARCHG64 binding requirement for an OS calling RT services Section 2.3.6, Section 2.3.6.4
on platforms with SME
2.10 2291 - Support crypto agile - Address crypto agile compatibility Section 3.3, Section 32.5
2.10 2292 - Forward Control Flow Guard Instruction runtime indicator Section 4.6.3
2.10 2313 - Add LoongArch architecture support to UEFI specification Section 2.3.8
2.10 2315 - Add NVM Express over Fabrics messaging device path AND Section 6.1, Table 10.52,
NVMe Trademark updates Section 10.3.4.32, Section
10.3.4.33, Table 10.67, Section
13.15.2
2.10 2317 - Add confidential computing extension for UEFI Section 38
2.10 2318 - Update boot requirement for RISC-V platform Section 2.3.7.1
2.10 2320 - Remove EBBR Conformance profile Section 4.6.4
2.10 2329 - Update the UEFI to Version 2.10 Section 4.3
2.10 2336 - Feedback on UEFI 2.10 draft sections throughout
2.10 2337 - Code First -Add LoongArch to section UEFI Images Boot sections throughout
Manager PCI Option ROMs and Debugger Support sections (Li
Chao)
2.10 2339 - Re-add RSA 4k support for UEFI 2.10 crypto agility Section 32.5
2.10 2342 - GetHealthStatus: Make the statement and table consistent for ~ Section 11.10.2
EFI_UNSUPPORTED for Controller Handle Null case
2.9A 2225 - Clarify the specification requirements around processing Section 3.1.7, Table 3.3, Section
Booti#### variable 7.1.2
2.9A 2227 - Clarify NVMe device path EUI-64 byte order Section 10.3.4.21
2.9A 2235 - Clarify EFI_LOAD_OPTION.FilePathList[] device path def- Section 3.1.3
inition
2.9A 2243 - Removing old references to Wired for Management (WfM) Section 3.5.2.1, Section 7.3.1,
Table 24.13, Referenced Specifi-
cations, Glossary
2.9A 2249 - Cleanup of the SI & Binary Prefixes section Section 1.9.8
2.9A 2251 - Clarification of DevicePath examples using OXFF for End of Section 10.3.4.4, Table 12.20,
HW DP Table 14.18, Table 15.4, Legacy
Floppy
continues on next page
CONTENTS Ix

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2 - continued from previous page

2.9A 2252 - Clarify OS dependency on UEFI vs PI interfaces Section 1.4

2.9A 2263 - CXL CPER updates Table N.41

2.9A 2270 - Add “CPER” acronym to Appendix N Common Platform Error Record

(CPER)

2.9A 2286 - Section header for CHAP (using RADIUS) Authentication — Section 32.1.6
Node

2.9A 2306 - Define Arm CPER Processor Error Types ARM Processor Error Informa-

tion Structure

2.9A 2311 - Define the DevicePath argument from LoadImage as optional ~ Section 7.4.1

2.9A 2327 - Correcting subtype value for REST Service Device Path Section 10.3.4.31

2.9A 2330 - Principle of Inclusive Terminology statement Section 1.1

Revi- Issue # - Description Release Date

sion

29 1866 Getlnfo() of Adapter Information Protocol should have apro- March 2021
vision for IHV to return no data

2.9 1982 Clarify the PKCS#7 SignedData structure of March 2021
EFI_VARIABLE_AUTHENTICATION

2.9 1986 Need a mechanism using which browser to exit out of IHV ~ March 2021
formset silently without any popup

2.9 1989 NVDIMM SPA Location Cookie March 2021

2.9 2024 CXL CPER Records March 2021

2.9 2042 New Event Group EFI_EVENT GROUP_ AF- March 2021
TER_READY_TO_BOOT

2.9 2043 New Event Group EFI_EV March 2021
ENT_GROUP_BEFORE_EXIT_BOOT_SERVICES

2.9 2046 Add support for Key 14 & 56 for Japanese keyboard layout =~ March 2021

2.9 2053 Figure/Table Numbers are Duplicated in Appendices March 2021

2.9 2062 Table numbering to restart for each chapter March 2021

2.9 2065 CXL proposal for CDAT table extraction from devices March 2021

2.9 2093 UpdateCapsule ScatterGatherList cache maintenance March 2021

2.9 2129 Add DTB Configuration Table standard GUID March 2021

2.9 2131 Clarify Console requirements March 2021

2.9 2134 Introduce unaccepted memory type March 2021

2.9 2155 Typo in Arm Processor CPER Error Section March 2021

2.9 2167 CPER for CXL Component Events March 2021

2.9 2185 Declaration for UEFI 2.9 specification in the System Table =~ March 2021

2.9 2190 Misc. spec review feedback March 2021

2.9 2199 EFI_IMAGE_EXECUTION_INFO_TABLE references March 2021

2.9 2200 Config tables references from section 4.6 March 2021

2.9 2204 Typo in GUID definition for EFI_MANAG March 2021
ED_NETWORK_SERVICE_BINDING_PROTOCOL

2.9 2212 Incorrect cross reference to User Information Table March 2021

2.8C 2117 - E FI_ BROWSER_ACTION_REQUEST_RECONNECT - Jan. 2021
perform the action when user exits out of formset

2.8C 2139 Update RISC-V UEFI corresponding spec to align with latest ~ Jan. 2021
RISC-V spec

2.8C 2155 Typo in Arm Processor CPER Error Section Jan. 2021

2.8C 2158 EFI_DRIVE R_HEALTH_PROTOCOL.GetHealthStatus() Jan. 2021
- Driver not managing any controller

continues on next page

CONTENTS Ixi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.8C 2172 Revise EFI_REDFISH_DICOVER_PROTOCOL defini- Jan. 2021
tions to match the implementation.
2.8C 2173 Question on EFI_CAPSULE_HEADER Flags definition Jan. 2021
2.8C 2184 FI_BOOT_MANAGER_POLICY_PROTOCOL typos Jan. 2021
28C 2190 EFI_SUCCESS misspelled in five places Jan. 2021
2.8 B 1926 update: corrected EFI_SYSTEM_TABLE entries from 2_8 May 2020
to 2_80
2.8B 1935 update: removed a space from several references to the May 2020
EFI_JSON_CAPSULE_ID_GUID
2.8B 2073 Modify definition of “DPA” for use with CXL based devices ~May 2020
2.8B 2074 Memory Range typo May 2020
2.8 B 2080 Typo in N.2.2 Section Descriptor Table 56 May 2020
2.8B 2083 Typo in guid definition of CCIX PER Log Error Section May 2020
28B 2088 Clarifications on caller-freed buffers May 2020
28B 2091 Inconsistency in description of EFI FIRMW May 2020
ARE_MANAGEMENT_CAPSULE_IMAGE_HEADER struc-
ture
2.8B 2092 Typo in definition of PEI Notification type in Table 269. Er- May 2020
ror record header
28B 2095 PCI I/O attribute typos in section 14.4 “EFI PCI I/O Proto- May 2020
col”
2.8 B UEFI Runtime Service Table correction May 2020
2.8B 2096 Typo in definition of EFI_JSON_CONFIG_DATA_ITEM May 2020
2.8 A 1970 Security Command Protocol change for OPAL RAID de- February 2020
vices
28 A 1998 Update RISC-V related spec February 2020
2.8 A 2000 JSON Capsule clarification February 2020
2.8 A 2002 Memory allocations between ExitBootServices calls February 2020
28 A 2009 DMTF references in UEFI spec February 2020
2.8 A 2013 Correct EFI _BOOT_SERVICES.DisconnectController February 2020
contradicting info in Description
2.8A 2018 EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID should February 2020
take an EFI_HANDLE as ChildHandle
2.8 A 2020 EF I_LOADED_IMAGE_PROTOCOL.LoadOptions does February 2020
not mention it is related to Load Options.
28 A 2025 Capsule Depex Length Declaration February 2020
2.8 A 2026 FMP Capsule Image Header extension February 2020
2.8 A 2029 Add missing GUIDs in Appendix N February 2020
2.8 A 2030 Fix spec index to show the Appendix chapters February 2020
28 A 2034 Depex added description February 2020
28 A 2035 Fix OUT parameters marked as IN OUT February 2020
2.8 A 2036 SetVariable errata: clarify that in-place variable update is February 2020
supported
2.8 A 2038 Configuration Tables Errata February 2020
2.8A 2041 EFI_EVENT_GROUP_EXIT_BOOT_SERVICES Errata February 2020
2.8A 2050 Incomplete list of EFI_SERVICE_BINDING_PROTOCOL February 2020
protocols
2.8 A 2049 RuntimeServicesSupported EFI variable should be a config February 2020
table
28 A 2051 Typo in Table - CPER TA32/X64 Bus Check Structure February 2020
2.8 A 2053 Figure/Table Numbers are Duplicated in Appendices February 2020
continues on next page
CONTENTS Ixii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.8
2.8
2.8
2.8
2.8
2.8

2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8

2.8

2.8
2.8

2.8
2.8

2.8
2.8
2.8

2.7B
2.7B

2.7B
2.7B
2.7B
2.7B
2.7B
2.7B
2.7B

2.7B
2.7B

2.7B

1832 Extend SERIAL_IO with DeviceTypeGuid

1834 UEFI REST EX Protocol

1853 Adding support for a REST style formset

1858 New Device Path for bootable NVDIMM namespaces

1861 New EFI. MEMORY_RANGE_CAPSULE Descriptor
1866 GetInfo() of Adapter Information Protocol should have a pro-
vision for IHV to return no data

1872 Peripheral-attached Memory

1876 Remove the EBC support requirement

1879 Clarification of REST (EX) protocol

1908 Update of uncommitted data in the FOROM_OPEN callback
1919 Memory Cryptography Attribute

1920 Redfish Discover Protocol

1921 HTTPS hostname validation

1924 Update to EFI_REST_EX_PROTOCOL.AsyncSendReceive
1925 Clarify requirement of REST related protocols

1926 New UEFI Spec Revision —> 2.8

1935 UEFI JSON Capsule Support

1936 ResetSystem - support ResetData for all status scenarios.
1937 Behavior of default values

1941 New EFI REST JSON Structure Protocol

1942 Adding dependency expression capability into FMP type
capsules

1947 Keyword strings of Configuration Keyword Handler Proto-
col Enhancements

1953 Add document version# conventions

1954 set (*Attributes) when GetVariable() returns
EFI_ BUFFER_TOO_SMALL and Attributes is non-NULL

1956 Platform to honor ActionRequest for Action changing

1961 Add EFI_UNSUPPORTED to EFI_RUNTIME_SERVICES
calls

1966 Add new capsule processing error codes

1974 Add new CCIX PER Log Error Section to appendix

1996 Firmware Processing of the Capsule Identified by
EFI_JSON_CAPSULE_ID_GUID

1773 Clarify The EFI System Table entry for capsule image

1801 ExtractConfig() format may change when called multiple
times

1835 Misleading / unclear statement about EFI-bootability of
UDF media

1838 RGB/BGR Contradiction in 2.7 GOP

1841 BluetoothLE ECR - support autoreconnect

1842 BluetoothLE ECR - Add missing ConnectionCompleteCall-
back

1843 HTTP Example Code Update

1844 Replace obsoleted RFC number with new number for TCP
1845 Clarification on AIP types “Network boot” and “SAN MAC
Address”

1846 EFI_LOAD_FILE2 requirement

1865 Adding clarification in EFI_NOT_READY for Read-
KeyStrokeEx()

1869 Clarify FMP buffer too small behavior

March 2019
March 2019
March 2019
March 2019
March 2019
March 2019

March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019

March 2019

March 2019
March 2019

March 2019
March 2019

March 2019
March 2019
March 2019

March 2019
March 2019

March 2019
March 2019
March 2019
March 2019
March 2019
March 2019
March 2019

March 2019
March 2019

March 2019

continues on next page

CONTENTS

Ixiii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.7B 1874 Add RFC3021 to reference in uefi.org March 2019
2.7B 1875 Clarify platform specific elements in chapter 2.6.2 March 2019
2.7B 1878 Errata - Make DHCP server optional for HTTP boot March 2019
2.7B 1880 Arm binding EL2 register state clarification March 2019
2.7B 1890 EfiMemoryMappedlIO Usage Clarification March 2019
2.7B 1897 Clarification on mapping of UEFI memory attributes to March 2019
ARM memory types and paging attributes
2.7B 1899 Errata: Clarify EFI_INVALID_PARAMETER for FMP- March 2019
>GetImagelnfo()
2.7B 1901 GPT Protective MBR description March 2019
2.7B 1902 CapsulelmageSize Clarification March 2019
2.7B 1903 Root Directory File Name March 2019
2.7B 1906 ACPI Table Pointer Installation March 2019
2.7B 1908 Update of uncommitted data in the FOROM_OPEN callback March 2019
2.7B 1923 Syntax error in EFI iSCSI Initiator Name Protocol March 2019
2.7B 1957 Request to add status code EFI_DEVICE_ERROR for Ex- March 2019
tractConfig
2.7B 1964 Print disclaimer for all future UEFI specs March 2019
2.7B 1987 incorrect VLAN_CONFIG_SET function definition March 2019
2.7A 1830 Label Protocol - EFI_NVDIMM_LABEL_FLAGS_LOCAL August 2017
definition needs to be updated
2.7A 1829 Label Protocol Section - Missing define for August2017
EFI_NVDIMM_LABEL_FLAGS_UPDATING
2.7A 1823 Modifications to the examples of the PCI Option ROM image August 2017
combinations
2.7A 1822 UEFI 2.7 Organization chapter duplicated August 2017
2.7A 1821 Modity the requirement to enable PCI Bus Mastering August 2017
2.7A 1817 NVDIMM Label Protocol - SetCookie SerialNumber needs ~ August 2017
to be UINT32 NOT UINT64
2.7A 1816 Clarification of Using HttpConfigData in HTTP protocol August 2017
2.7A 1815 OpenProtocol() / EFI_ALREADY_STARTED should out- August 2017
put existent Interface
2.7A 1808 Clarification of using option 43 in PXE v2.1 August 2017
2.7 1779 Adjusting UEFI version to UEFI 2.7 April 2017
2.7 1771BluetoothLE minor fix April 2017
2.7 1762 UEFI UFS DEVICECONFIG Protocol April 2017
2.7 1751 Update DNS Device Path April 2017
2.7 1750 Add new data type to EFI Supplicant Protocol April 2017
2.7 1745 NVDIMM Label Protocol April 2017
2.7 1744 NVDIMMBIlock Translation Table (BTT) Protocol April 2017
{NewChapter}
2.7 1730 HII Popup Protocol April 2017
2.7 1726 Host and I/O defense April 2017
2.7 1720 Have Partition driver publish addition information for April 2017
MBR/GPT partition types.
2.7 1719 Add EFI HTTP Boot Callback Protocol April 2017
2.7 1718 Allow SetData to clear configuration in April 2017
Ip4Config2/Ip6Config Protocol
2.7 1716 Add BluetoothLE ECR April 2017
2.7 1711 Firmware Error Record Update April 2017
2.7 1707 Clarification of Private Authenticated Variables April 2017
2.7 1701 Add wildcard support to RegisterKeyNotify April 2017
continues on next page
CONTENTS Ixiv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7

2.7

2.7

2.7
2.7

2.7

2.6B
2.6B

2.6B
2.6B

2.6B
2.6B
2.6B
2.6B

2.6B
2.6B
2.6B
2.6B
2.6B
2.6B

2.6B
2.6B
2.6B

2.6B
2.6B

2.6B
2.6B
2.6B
2.6B

2.6B
2.6B

2.6B

1690 Reset Notification Protocol Update

1689 Secure Boot with Externally Managed Configuration

1685 Key Management Services (KMS) Protocol Enhancement
1672 UEFI Variable Enhancements

1654 New AIP Information block for wireless NIC

1652 Add DNS device path node

1647 UEFI binding for RISC-V

1641 Simplify SecureBoot Revocation and Usage of VerifySigna-
ture

1641 Simplify Secure Boot Revocation and Usage of VerifySig-
nature

1627 Support ASCII RegEx Patterns in
EFI_REGULAR_EXPRESSION_PROTOCOL

1627 EFI regular expression syntax type definitions

1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent
Redirect

1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent
Redirect

1772 Clarify EFI_NOT_READY in Media State of AIP

1767 Incorrect structure definition for
EFI_IFR_RESET BUTTON_OP

1742 Clairfy PK enrolling in user mode

1741 The memory map returnedByBS->GetMemoryMap() may-
Contain impossible values.

1739 typos -Broken references link.

1729Cleanup of ACPI 2.0 references in UEFI spec

1708 Typos in Imge Decode and Image Ex Protocols

1700 Align ACPI descriptor definitions in PCI I/O and PCI Root-
Bridge I/O

1698 Update to Mantis 1613 - GetNextVariable

1691 Remove/Deprecate SMM Communication ACPI Table
1682 HII Protocol StatusCodes

1678 Simplify the ACPI Table GUID declarations

1675 section 30.5.1 typo

1668 Duplicate GUID issue - mustChange the Image Decoder Pro-
tocol GUID

1655 HTTP errata inConfigure()

1653 Incorrect errorCode value in MTFTP6

1634 Update to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
TPL restriction

1629 Errata in GetVariable description

1625 Clarification of HTTPBoot wire protocol “HTTPClient”
VendorClass Option

1624 Fix spelling typo in EFI_ HTTP_STATUS_CODE

1613 GetNextVariableName Errata

1612 ResetSystem Errata

1609 UEFI Errata - Address Security problems in the Pkcs7Verify
Protocol

1608 Enhance EFI_IFR_NUMERIC (Step)

1586 Errors in appendix N for ARM ProcessorContext Informa-
tion

1584 WIFI errata

April 2017
April 2017
April 2017
April 2017
April 2017
April 2017
April 2017
April 2017

April 2017
April 2017

April 2017
April 2017

April 2017

April 2017
April 2017

April 2017
April 2017

April 2017
April 2017
April 2017
April 2017

April 2017
April 2017
April 2017
April 2017
April 2017
April 2017

April 2017
April 2017
April 2017

April 2017
April 2017

April 2017
April 2017
April 2017
April 2017

April 2017
April 2017

April 2017

continues on next page

CONTENTS

Ixv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.6B
2.6B

2.6B
2.6B
2.6B
2.6B
2.6B
2.6B
2.6B

2.6A

2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6

2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6

2.6

2.6
2.6

2.6
2.6
2.6
2.6
2.6
2.6
2.6

2.6
2.6

2.6

1580 Correct some typos

1559 Clarify return value for NULL pointer in LocateProtocol()
API

1557 secureBoot and auth variable errata

1556 HTTPv6Boot DHCP Options Errata

1555 USB Function port protocol errata

1554 fix to ecr 1539

1553 os recoveryBoot option errata

1551 EFIBluetoothConfiguration Protocol Errata

1550 Replace FTP4 dataCallback pointer-to-function-pointer with
regular function pointer

SameContent as version 2.6,But with the Adobe “accessibility”
feature activated so text-to-speech will work.

1548ClarifyBoot procedure when file name is absent2.
1547Clarify requirements for setting the PK variable.

1544 DNS lookup API spelling

1543 ip4/6Config policy errata/2.6 update

1542 UEFI 2.6 supplicant errata

1539 New EFI_HTTP_ERROR StatusCode

1538 UEFI TLS errata

1536 UEFI 2.6 Errata : IMAGE EX Protocol and EFI HII Image
Decoder protocol Errata

1534 EditorialComments against 2.6 Final Draft

1533Bugs in the HTTP usage example

1523Comments against 2.6 Draft

1522 AArch64Bindings AlignmentBit errata

1521Comment against UEFL.next draft - M 1479

1519 Version for the next UEFI spec is.. .

1518Comments against 2.6 Draft

1516 EditorialComments against 2.6 Draft

1509 EFI_PLATFO RM_TO_DRIVER_CONFIGURATION _
PROTOCOL Response to unsupported ParameterTypeGuid

1508 Lack of flexibility and realism in exception levelChoice
whenCalling runtime services

1507 Insufficient qualification of page attributes for AArch64
1502 PCI IO Define how to use the Address Translation Offset for
systems that are not mapped 1:1

1501 Define the usage of the “Address Space Granularity” field is
defined in the PCI Root 10

1496Bad table reference in 13.2 EFI_PCI_ROOT
_BRIDGE_IO_PROTOCOL.Configuration()

1494 Errata against UEFI 2.5 Properties Table

1493 Updates to the SD_MMC_PASS_THRU interface

1492 wireless macConnection protocol II errata

1491 supplicant errata

1480 Refine Progress description in
EFI_KEYWORD_HANDLER_PROTOCOL

1479 UEFI Properties TableClarification

1471 SD/eMMC PassThru Protocol update (follow up to mantis
1376)

1467 New API - EFI_ WIRE-
LESS_MAC_CONNECTION_II_PROTOCOL

April 2017
April 2017

April 2017
April 2017
April 2017
April 2017
April 2017
April 2017
April 2017

December 2016

January, 2016
January, 2016
January, 2016
January, 2016
January, 2016
December, 2015
December, 2015
December, 2015

December, 2015
December, 2015
December, 2015
December, 2015
December, 2015
December, 2015
December, 2015
December, 2015
December, 2015

December, 2015

December, 2015
November, 2015

November, 2015
November, 2015
November, 2015
November, 2015
November, 2015
November, 2015
November, 2015

November, 2015
November, 2015

November, 2015

continues on next page

CONTENTS

Ixvi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.6
2.6
2.6
2.6

2.6

2.6
2.6
2.6
2.6
2.5A

2.5A

2.5A

2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A
2.5A

2.5A

2.5A
2.5A
2.5A

2.5A
2.5A
2.5A
2.5
2.5
25
2.5

2.5
2.5
2.5

1466 UEFI Ram disk protocol

1452 Minor edits to 0001409

1414 Generalisation of Communication method in Appendix O
1409 EFI HII ImageEX protocol and EFI HII Image Decoder pro-
tocols

1408 EFI HII Font EX protocol and EFI HII Font Glyph Generator
protocols

1402 Add EFI_BROWSER_ACTION_SUBMITTED

1383 Adding an EraseBlocks() function to a new protocol

1376 SD/eMMC PassThru Protocol

1357 ARMCPER extensions

1481 new networkConfig2 protocol data structure has a magic
number

1477 AllowCloseEvent toBeCalled within the Notification Func-
tion

1476 Update to Indicate thatCloseEvent UnregistersCorrespond-
ing Protocol Notification Registrations

1472 ATA Pass Thru Errata

1469 UNDI Errata - add more statistics

1468 Errata on UEFI Supplicant protocol

1451 Memory MapConsistency

1441 UEFI2.5A — UNDI ProtocolClarification

1426 UEFI 2.5 typo

1424 Incorrect link in Section 22.1 FMP Getlmagelnfo()

1421 Misc HTTP API typos

1420 Get NextHighMonotonicCountClarification

1419 Supplicant protocol using same GUID as TLS protocol
1418 Inconsistent issues in DNS

1417 Add HttpMethodMax to EFI_HTTP_METHOD enum
1410Clarifications in appendix O

1407 Networking errata - EFI_HTTP_STATUS typos

1405 Errata in table 271 in Appendix O

1399 Clarification for EFI_ BROWSER_ACTION_ RE-
QUEST_RECONNECT

1398 Errata update to the runtime GetVariable operation docu-
mentation

1388 Missed memory type fixes

1381 Remove informativeContent in 12.6.1

1365 7.4 Virtual Memory Services lists Section 2.3.2 through Sec-
tion 2.3.4. incorrectly

1363 Short form URI device path

1209 UEFI networking APIChapter 2.6 requirements errors

1364 Extend supplicant data type for EAP

1362 HTTPBoot typos/bugs

1360 Vendor Range for UEFI memory Types

1358 v2.5 amendment and v2.4 errata (missed implementation of
Mantis 1089)

1353 SATA Device Path Node Errata

1352 Errata for 1263 and 1227

1350 Keyword Strings Errata

November, 2015
November, 2015
November, 2015
November, 2015

November, 2015

November, 2015
November, 2015
November, 2015
November, 2015
October 2015

October 2015
October 2015

October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015
October 2015

October 2015

October 2015
October 2015
October 2015

October 2015
October 2015
October 2015
April, 2015
April, 2015
April, 2015
April, 2015

April, 2015

April, 2015

continues on next page

CONTENTS

Ixvii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.5

2.5
2.5
2.5
2.5
2.5
25
25

2.5
2.5

25
2.5

2.5

2.5

2.5
2.5
2.5
2.5

2.5
2.5
2.5

2.5
25
2.5
2.5
2.5
25
25
25
2.5
2.5
2.5
25
25
2.5
2.5
2.5
25

2.5
2.5
2.5

25

1348 ERRATA - Section 10.12 EFI
_ADAPTER_INFORMATION_PROTOCOLCustom Types
1347Boot Manager Policy Errata

1346 Mantis 1288 Errata

1345 EFI_USB2_HC_PROTOCOL Errata

1342 DNS6 - friendly amendment for reviewBy USWG

1341 DNS4 - friendly amendment toBe reviewedBy USWG
1339 Errata in section 7.2.3.2 Hardware Error Record Variables
1309 Disallow EFI_VARIABLE_AUTHENTICATION from Se-
cureBoot Policy Variables

1308 Fix typo’s found in the final/published UEFI 2.4 ErrataB spec
1304 Add IMA GE_UPDATABLE_VALID_WITH_VENDOR _
CODE to FMPCheck image

1303 Update the UEFI version to reflect new revision

1288 The Macro definitionConflict in EFI_SIMPLE
TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4B
1287 Errata: EFI Driver Supported EFI Version not matching the
spec revision

1269Configuration Routing Protocol andConfiguration String Up-
dates

1268 RAM Disk UEFI Device Path Node

1266 UEFI.Next Feature - IP_ CONFIG2 Protocol
1263Customized Deployment of SecureBoot

1257Correct the typedef definitions for EFI_BOOT_SERVI
CES/EFI_RUNTIME_SERVICES—Reiterate

1255 UFS Device Path Node Length

1254 SD Device Path

1251 EFI_REGULAR_EXPRESSION_PROTOCOL and
EFI_IFR_MATCH?2 HII op-code

1244 sections of the spec mis-arranged

1234 UEFI.Next feature - SmartCard edge protocol

1227 UEFI.Next feature - Platform recovery

1224 UEFI.Next - Adding support for No executable data areas
1223 UEFI.Next networking features -Chapter 2.6 requirements
1222 UEFI.Next feature -BMC/Service Processor Device Path
1221 UEFI.Next feature - REST Protocol

1220 UEFI.Next feature -Bluetooth

1219 UEFI.Next Feature - UEFI TLS API

1218 UEFI.Next feature - EAP2 Protocol

1217 UEFI.Next feature - WIFI support

1216 UEFLnext feature - DNS version 6

1215 UEFI.Next feature - DNS version 4

1214 UEFI.Next feature - HTTPBoot

1213 UEFI.Next feature - HTTP helper API

1212 UEFI.Next feature - HTTP API

1204 new UEFI USB Function I/O Protocol addition to the UEFI
spec

1201 Exposing Memory Redundancy to OSPM

1199 Add NVM Express Pass Thru Protocol

1191 Add new SMBIOS3_TABLE_GUID in
EFI_CONFIGURATION_TABLE

1186 AArch64BindingClarifications and errata

April, 2015

April, 2015
April, 2015
April, 2015
April, 2015
April, 2015
April, 2015
April, 2015

February, 2015
February, 2015

February, 2015
February, 2015

February, 2015
February, 2015

February, 2015
February, 2015
February, 2015
February, 2015

February, 2015
February, 2015
February, 2015

February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015

February, 2015
February, 2015
February, 2015

February, 2015

continues on next page

CONTENTS

Ixviii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.5

2.5
2.5
2.5
2.5
2.5
25
25
2.5
2.5
2.5
2.5
25

2.5
24C
24C

24C

24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C
24C

24C
24C

24C
24C
24C
24C
24C
24C
2.4B

1183 New Protocol with 2 Function for PKCS7 Signature Verifi-
cation Services

1174 errata - Error in EFI_IFR_PASSWORD logic flowchart
1167 Persistent Memory Type support

1166 hash 2 protocol errata

1163 InlineCryptographic Interface Protocol proposal

1159 Proposal for System Prep Applications

1158 errata -Boot managerClarification

1147-REDACT

1121 IPV6 support from UNDI

1109 SmartCard Reader

1103 Longer term NewCPER Memory Section

1091Clarification of handle to host FMP

1090 ESRT: EFI System Resource Table andComponent firmware
updates

1071 New EFI._HASH2 PROTOCOL

1308 Fix typo’s found in the final/published UEFI 2.4 ErrataB spec
1287 Errata: EFI Driver Supported EFI Version not matching the
spec revision

1257Correct the typedef definitions for EFI_
_BOOT_SERVICES/EFI_RUNTIME_SERVICES

1244 sections of the spec misarranged

1211 EFI_LOAD_OPTION Definition

1209 Errata - UEFI networking APIChapter 2.6 requirements
1205 Errata for Hii Set item

1200 Universal Flash Storage (UFS) Device Path

1198 EFI_ ATA_PASS_THRU_PROTOCOLClarification

1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED
1192Cleanup GUID formatting issues

1186 AArch64BindingClarifications and errata

1185 errata - tcp api

1184 errata - snp modeClarification

1182 Errata - UEFI URI Device path issue

1174 errata - Error in EFI_IFR_PASSWORD logic flowchart
1173 EFI_IFR_NUMERIC Errata

1172 EiACPIMemoryNVS definition missing S4

1170 Errata pxeBc apiClarifiation

1169 Errata - volatile networking variableCleanup

1168 MTFTP Errata

1165 Option rom layout errata

1162 Typo in ReinstallProtocollnterface() EFI 1.10 Extension sec-
tion

1150 Missing LineBreakCharacter (HII Errata)

1147 EFI_USB2_H C_PROTOCOL.AsynclnterruptTransfer()
Errata

1141 UEFI errata - ia32/x64 vector register management
1140UEFI Errata - image execution info table

1139 UEFI Errata on the storage securityCommand protocol
1066 Errata—reference to missing table (90) removed

1043 Ability to refresh the entire form [newContent]

1042 AddBrowser Action Request “reconnect”

1146 Typos andBroken links

February, 2015

February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015
February, 2015

February, 2015
January 2015
January 2015

January 2015

January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
January 2015
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014

July 11, 2014
July 11, 2014

July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
July 11, 2014
April 17, 2014

continues on next page

CONTENTS

Ixix

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.4B
2.4B
2.4B

24B
2.4B

2.4B

2.4B

2.4B

2.4B
24B
2.4B

2.4B
2.4B
24 A
24 A
24 A
24 A
24 A
24 A
24 A

24 A
24 A
24 A

24 A
24 A
24 A
24 A
24 A
24 A

24 A

24 A
24 A
24 A
24 A

24 A
24 A
24 A

24 A
24

1137 Typographic errors in the 2.4 ErrataB draft

1128 URI device path node redux—supersedes (defunct) 1119
1127 USB Errata - unnecessary restriction on UEFI interrupt
transfer types

1124 Adding text description for NVMe device node
1122Correct misleading language in the UEFI 2.4a specification
about the EFI_ADAPTER_INFORMATION_PROTOCOL.E
FI_ADAPTER_INFO_GET_SUPPORTED_TYPES function
1120 Make time stamp handlingConsistent around all of the net-
working API’s

1118 Network Performance EnhancementsConcerning Volatile
Variables

1115Clarification on the usage of XMM/FPU instructions from
within a UEFI Runtime Service on an x64 processor

1111 Errors in DisconnectController() returnCode descriptions
1101 Errata — ReinstallProtocollnterface

1092Clarification to PCI Option ROM Driver Loading Descrip-
tion

1085 Error—added in missing text approved for 2.4A

1014 HIIConfig Access Protocol Errata

1089 Short-termCPER Memory Section errata

1088 Add revision #define to EFI_FILE_PROTOCOL

1085 Issues with Interactive password

1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State

1081 Update Install Table protocol to deal with duplicate tables
1079 UEFI 2.4: Remove repetitive “the” (typo)

1078 Adjust some text for handling
EFI_BROWSER_ACTION_CHANGING

1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES
1076 typo in UEFI v2.3.1d and v2.4

1075Clarifications to Table 88. Device Node Table (Device Node
to TextConversion)

1074 AddClarifications on DMA requirements for PCI_IO

1073 Add requirement for EFI_USB_IO_PROTOCOL

1066 Errata - ISCSI IPV6 Root PathClarification

1064 AIP Errata

1063Correction to GPT expression for SizeofPartitionEntry

1062 EFI_CERT_X509_GUID does not specify theCertificate en-
coding

1061 UEFI 2.4 section 2.6.2 and 2.6.3 don’t use protocol hyper-
linksConsistently

1060 SlightClarification to FMP Authentication Requirments
1059Clarification of a return statusCode of HASH protocol
1058Correct mistake in the system table revision

1056 text modification to definition of EF
I FIRMWARE_IMAGE_DESCRIPTOR_VERSION 2

1055 Disk IO 2 errata

1054 Deprecate 6 Hash Algorithms with inconsistent usage

1053 Reduce Name space ofCapsule Result variable to increase
performance

1035 PCI Option ROM Errata (five figures)

997 Driver Health Protocol errorCodes

April 16, 2014
April 4, 2014
March 27, 2014

March 27, 2014
March 27, 2014

March 27, 2014
March 27, 2014
March 27, 2014

March 27, 2014
March 27, 2014
March 27, 2014

April 17, 2014
April 3,2014
Nov. 14, 2013
Nov. 6, 2013
Nov.14, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013

Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013

Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013

Nov. 6, 2013

Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013

Nov. 6, 2013
Nov. 6, 2013
Nov. 6, 2013

Nov. 6, 2013
April 25, 2013

continues on next page

CONTENTS

Ixx

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

24
24
2.4
24
24
24
24
24
24

24
24

24
24
24
24
24
24
24
24
24
24
24
24
24

24

24
24

24

2.4
24
24
24

24
24

24

2.3.1D
2.3.1D
2.3.1D
2.3.1D

2.3.1D
2.3.1D

993 (original ticket—supersededBy 1026)

992 Adapter Information Protocol (AIP)

991 Greater than 256 NICs support on UNDI

968 HII Forms op-code for displaying a warning message

966 Spec typos

964 Disk IO 2 Protocol to support Async 10

963 Add new device path node NVM Express devices

956 Require network drivers to return EFI_NO_MEDIA

946 ForbidCreation of non-spec variables in
EFI_GLOBAL_VARIABLE namespace

920 Add a variable for indicating out ofBand key modification
905 Need more granularity in EFI_RESET_TYPE to support plat-
form specific resets

1052 UEFI 2.4 Draft April 25th -Corrections to ARM sections
1050 2.4 Draft April 25 has missing text for ECR 1009

1049 2.4 Draft April 25 has missing text for ECR 1008
1048Comment against UEFI 2.4 - NVMe related

1047Comment on Feb 25th draft - fix alignment issue

1045 PCI OpROM Device ListChanges to section 14.2
1044Corrections to Mantis 1015, Interruptible driver diagnostics
1037 Add 2.4 to the system table version

1036Comments on April 25 Draft

1033 HiiConfigAccess->ExtractConfig StatusCodes Errata

1032 HiiConfigRouting->ExtractConfig StatusCodes Errata

1031 NVMe subtypeConflict errata

1029 Method for delivery ofCapsule on disk; Method for report-
ingCapsule processing status

1026 (supersedes 993) Update to the AArch64 proposedBind-
ingChange

1024Clarification to the NVMe Device Path text descriptions
1023 Definition ofCapsule format to deliver update image to
firmware management protocol

1022 adapter information protocol for NIC iSCSI and FCoEBoot-
Capabilities andCurrentBooot Mode.

1017 AIP Instance - FCOE SAN MAC Address

1016 AIP Instance - Image Update

1015 Interruptible driver diagnostics

1009 Enable hashes ofCertificates toBe used for revocation, and
timestamp support

1008 New Random Number Generator / Entropy Protocol
1007Create a new Security Technologies section to avoidBlurring
with SecureBoot

1002 Timestamp Protocol

996 UEFI 2.0 version number still in the 2.3.1C spec

995CSA linkChange

994 Spec typos

990 EFI_ATA_PASS_THRU need oneClarification if it supports
ATAPI device

989Clarify hot-remove responsibility of aBus Driver

988 EFI_BLOCK_IO2_PROTOCOLBIlocksChild from stopping
while doing non-blocking I/O

April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013

April 25, 2013
April 25,2013

May 16, 2013
May 16, 2013
May 16, 2013
May 16, 2013
May 16, 2013
June 28, 2013
May 16, 2013
May 16, 2013
May 16, 2013
May 16, 2013
May 16, 2013
April 25, 2013
April 25, 2013

April 25, 2013

April 25, 2013
April 25, 2013

April 25, 2013

April 25, 2013
April 25, 2013
April 25, 2013
April 25, 2013

April 25, 2013
April 25, 2013

April 25, 2013
April 3, 2013
April 3,2013
April 3, 2013
April 3, 2013

April 3,2013
April 3,2013

continues on next page

CONTENTS

Ixxi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3.1D 987 EFI_BLOCK_IO2_PROTOCOL has aCopy pasteBug de- April 3, 2013
scribing the Token Parameter
2.3.1D 980 Errata on SNP Media detect April 3,2013
2.3.1D 978 Error Retun IndicatesCapsule requiresBoot Services April 3, 2013
2.3.1D 977 missing statement April 3, 2013
2.3.1D 976BrowserCallback text update to description April 3, 2013
2.3.1D 975 UNDI errata to add missing memory type definitions April 3,2013
2.3.1D 974 UNDI IncorrectCPB function names ECR April 3, 2013
2.3.1D 973 UNDI Mem_Map()Clarification April 3, 2013
2.3.1D 972 ISCSI DHCP6Boot April 3,2013
2.3.1D 971 typo April 3, 2013
2.3.1D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3, 2013
2.3.1D 965 File 10 Async extenstion April 3,2013
2.3.1D 962 Remove 2.3 table revision number April 3, 2013
2.3.1D 960 Typo in netboot6 description April 3,2013
2.3.1D 959 InstallAcpiTable() does not say what to do when an attemptis ~ April 3, 2013
made to install a duplicate table
2.3.1D 955Clearing The Platform Key Errata April 3,2013
2.3.1D 954 LoadImage Errata April 3, 2013
2.3.1D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3, 2013
2.3.1D 952Clarification of requirements to update timestamp associated ~ April 3, 2013
with authenticated variable
2.3.1D 950 IndeterminateBehavior for attribute modifications mayCause April 3, 2013
security issues
2.3.1D 949 PCI 10.GetBarAttributes needs adjustment - - Address Space ~ April 3, 2013
Granularity field
2.3.1D 944 Errata - Replace RFC reference April 3,2013
2.3.1D 943 Errata - Proposed updates to required interfaces inChapter 2.6 ~ April 3, 2013
2.3.1D 942 ExportConfig() description does not make sense April 3, 2013
2.3.1D 941 Add OEM StatusCode ranges to EFI StatusCode Ranges Table ~ April 3, 2013
2.3.1D 938 InstallMultipleProtocollnterface() is missing StatusCode Re- April 3, 2013
turned values
2.3.1D 935ClarifyChaining requirements with regards to the Platform April 3, 2013
Key
2.3.1D 934 Missing Figures and typos April 3, 2013
2.3.1D 930Clarify usage of EFI Variable Varstores in HII April 3, 2013
2.3.1D 928Best Matching Language algorithm April 3,2013
2.3.1D 926 UEFI Image VerificationClarification April 3, 2013
2.3.1D 924 New ErrorCode to handle reporting of [IPV4 duplicate address ~ April 3, 2013
detection
2.3.1D 1021 ATA_PASS_THRU on ATAPI device handle. April 3, 2013
2.3.1D 1020Clarify HII variable store definitions. April 3,2013
2.3.1D 1019 Alignment RequirementsClarification April 3, 2013
2.3.1D 1018 HII Font Errata April 3,2013
2.3.1D 1013 HII Errata April 3, 2013
2.3.1D 1012 Touchup to text of GPT April 3, 2013
2.3.1D 1011 Typo regarding Debug Port in UEFI Spec April 3, 2013
2.3.1D 1003 Missing “(” in section 11.7 April 3, 2013
2.3.1D 1000Clarification to the IFR_REF4 opcode April 3, 2013
2.3.1C 921 Length of [Pv6 Device Path is incorrect June 13, 2012
2.3.1C 917 UNDI drive does not need toBe initialized as runtime driver ~ June 13, 2012
continues on next page
CONTENTS Ixxii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3.1C

23.1C
23.1C

2.3.1C
23.1C
23.1C
23.1C

2.3.1C

23.1C
23.1C
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B

2.3.1B
2.3.1B
2.3.1B
2.3.1B

2.3.1B

2.3.1B

2.3.1B

2.3.1B

2.3.1B
2.3.1B

2.3.1B

2.3.1B

2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
23.1B
2.3.1B

915 For x64,Change Floating Point DefaultConfiguration to
Double-Extended Precision

914 Error Descriptor Reset FlagClarification

913 Enum definition does not match what ourCurrentCompilers
implement.

912 UEFI 2.3.1 Type

909 Update to returnCodes for AllocatePool / AllocatePages

907 iSCSI Device Path error

882 Indications Variable - OS/FW feature &CapabilityCommuni-
cation

882 Indications Variable - OS/FW feature &CapabilityCommuni-
cation

874 Provide a mechanism for providing keys in setup mode

831 PXEBootCSA Type definitionCleanup

896 StartImage andConnectController returnCodes

893 SMMCommunication ACPI Table Update

891Component Name Protocol References

890 DriveConfiguration Protocol Phantom.

888 typo in EFI_USB_HC Protocol

887 union is declared twice in same section

885 Errata in the GPT Table structureComment

884 EFI_BOOT_KEY_DATA relies on implementation-
definedBehavior

881 netboot6 - multicast versus unicast

880 netboot6Clarification/errata

879 Reference to unsupported specification in SCSIChapter (14.1)
878 Updated HII “Selected Form”Behaviors to Reflect NewCall-
back Results

877 TableChecksum updateBy
CPI_TABLE_PROTOCOL.InstallAcpiTable
876 ToClarify EDID_OVERRIDE attribute definitions and ex-
pected operations

873 Section 9.3.7 incorrectly assumes that all uses ofBBS device
paths are non-UEFI

872Change to SIMPLE_TEXT_INPUT_EX_PROTOCOL.Re
gisterKeyNotify/UnregisterKeyNotify

871 Typo in InstallMultipleProtocollnterfaces

870Clarify FrameBufferSize definition under
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct

869 Reference to FIPS 180 inChapter 27.3 is obsolete and incor-
rect

867Clarify requirment for use of
EFI_HASH_SERVICE_BINDING_PROTOCOL

866 PK, KEK, db, dbx relationsClarification

865 Modify Protective MBRBootIndicator definition

864 Typo in Question-Level Validation section

863 Attributes of the Globally Defined Variables

862 User identity typo

861 Globally Defined Variables Errata

858 Superfluous and incorrect image hash description

857 Absolute pointer typo

855Clarification of UEFI driver signing/Code definitions

the A

June 13, 2012

June 13, 2012
June 13,2012

June 13, 2012
June 13, 2012
June 13, 2012
June 13, 2012

June 13, 2012

June 13, 2012
June 13, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012

continues on next page

CONTENTS

Ixxiii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3.1B

2.3.1B
2.3.1B

2.3.1B

2.3.1B

2.3.1B
2.3.1B

2.3.1B
2.3.1B
2.3.1B

2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1B
2.3.1A

23.1A
23.1A
2.3.1A

2.3.1A
23.1A

23.1A
2.3.1A
2.3.1A
23.1A
23.1A
23.1A
2.3.1A
2.3.1A
23.1A
23.1A
23.1A

2.3.1A
2.3.1A

23.1A

853 The EFI_HASH_PROTOCOL.Hash() description needsClar-
ification on padding responsibilities

852 Various EFI_IFR_REFRESH_ID errata.

851 For EFI_IFR_REFRESH opcode,Clarify Refreshlnterval = 0
means no auto-refresh.

850Clarification of responsibility for array allocation in
EFI_HASH_PROTOCOL

849 IFR EFI_IFR_MODAL_TAG_OP is also valid under
EFI_IFR_FORM_MAP_OP

848Clarification of semantics of SecureBoot variable

847 When enrolling a PK, the platform shall not require a reboot
to leave SetupMode

845 EFI_SCSI_PASS_THRU_PROTOCOL replacement

842 Text to explain how the UEFI revision is referred

836 StructureComment for EFI_IFR_TYPE_VALUE references
unknown value type.

828 Network Driver Options

826Comments against Mantis 790

825 DMTF SMCLP errata

819 Mantis 715 was not fully implemented

812 Errata — DUID-UUID usage

809 Errata — Messaging Device PathClarification

808 Errata —Boot File URL

807 Give specific TPL rules to Stall()Boot services

771 SHA1 and MDS5 references

MinorCorrections in toes to tickets 772, 785, 794, 804, also for-
mattingCorrection for _ WIN_CERTIFICATE_UEFI_GUID type-
def’s parameters

820 Driver Health Needs to have Mantis 0000169 implemented
819 ECR715 was not fully implemented

806 Text update to Driver Health Description -Clarify role of user
interaction

805Correct Wrong Palette Information in 28.3.7.2.3 example
804ClarifyContraints and alternatives when enrolling PK, KeK,
db or dbx keys

803 Fix AcpiExp device node text description.

801ClarifyIFR Opcode Summary and Description #4

800Clarify IFR Opcode Summary and Description #3
797Clarify IFR Opcode Summary and Description #2
796Clarify IFR Opcode Summary and Description #1

795 Typo in ReadKeyStrokeEx()

794 Incomplete text describingClearing of Platform Key

793 Inconsistent wording about RemainingDevicePath

790 Add warning to ReadKeyStrokeEx for partial key press
789Clarify HII opcode definition

788 SasEx entry in Table 86-Device Node TableContains optional
Reserved entry that does not exist in device path

786 PCI I/O Dual AddressCycle attributeClarification

785 Allowing more general use of UEFI 2.3.1 Variable time-based
authentication

780 Errata in returnCode descriptions

April 10, 2012

April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012
April 10, 2012

April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012
April 10, 2012

September 7, 2011

August 17, 2011
August 17, 2011
August 17,2011

August 17, 2011
August 17,2011

August 17, 2011
August 17, 2011
August 17, 2011
August 17,2011
August 17, 2011
August 17, 2011
August 17, 2011
August 17, 2011
August 17, 2011
August 17, 2011
August 17, 2011

August 17, 2011
August 17, 2011

August 17, 2011

continues on next page

CONTENTS

Ixxiv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3.1A

23.1A
23.1A

2.3.1A
23.1A
23.1A

2.3.1A
2.3.1A

23.1A
23.1

23.1
2.3.1
2.3.1
23.1
23.1
2.3.1
23.1
2.3.1

23.1
23.1
2.3.1
2.3.1
2.3.1
23.1

2.3.1
23.1
2.3.1
23.1
23.1
23.1
23.1
2.3.1

23.1
2.3.1

2.3.1

23.1
23.1

2.3.1

23.1

778 EFI_HI I CONFIG_ACCESS_PROTOCOL.CallBack() Er-
rata

777 Specified signature sizes incorrect in Section 27.6.1

776 Clarifycomputation of EFI_VARIABLE AUTHENTICA-
TION _2 hash value

774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3
773Clarify the value for opcode EFI_IFR_REFRESH_ID_OP
772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID
incorrect

770 Remove references to UEFI 2.1 spec

767 The ReadBlocks function forBlockIO andBlockIO2 need syn-
chronization

212 (revisit) final sentence section 28.2.15 missing final words.
765 ECR to limit the hash and encryption algorithms used with
PKCSCertificates

762 DevicePath in the Image Execution Information Table.

761 Table 195. Information for Types of Storage

760 SuggestedChanges to 2.3.1 final draft spec

759 UEFI Errata - wincerts for rest of hash algorithms

755 Errata in Legacy MBR table and Legacy MBR GUID

754 USB timeout parameter mismatch.

751 Fix USB HC2 erroneous references to IsSlowDevice

750 Fix section 27.2.5 “related definitions” re: RSA public key
exponent

749 Fix Table 10 (Global Variables) WithCorrect Attributes
748Clarify Standard GUID Text Representation

744 ProcessorContext information structure definition notClear
741 Errata:Corrected text for section 7.2.1.4 step 7

740 Errata: signatureheadersize inconsistencyCorrections

736 Insert SMMCommunication ACPI Table and related data
structures to the UEFI Specification

735Clarification on Tape Header Format

734 SecureBoot variable

733 Errata: 27.6.1 signatureheadersize definition

732 Amendment to Mantis 711: section 7.2.1.6

729 Errata:Clarification of Microsoft references in appendix Q
728 Netboot 6 errata - DUID-UUID

727 Errata on returnCode for User Info Identity policy record
726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_
TOKEN definition

724 SetVariable Update 2

723 User Identification (UID) Errata — EFI User Manager Notify
& EnrollClarification

722 User Identification (UID) Errata —Credential Provider En-
rollClarification

721 User Identification (UID) Errata — SetInfoClarification

720 User Identification (UID) Errata —Credential Provider En-
rollClarification

716 EFI_EXT_SCSI_PASS_THRU_ PROTO-
COL.GetNextTarget() IN OUT parameter Target input value
shallBe OxFFs

715CPER Record and section fieldClarification

August 17, 2011

August 17, 2011
August 17, 2011

August 17, 2011
August 17, 2011
August 17, 2011

August 17, 2011
August 17, 2011

April 21, 2011
April 5, 2011

April 5, 2011
April 5, 2011
April 5, 2011
April 5, 2011
April 5, 2011
April 5, 2011
March 11, 2011
March 11, 2011

March 11, 2011
March 11, 2011
March 11, 2011
March 11, 2011
April 6, 2011
April 5, 2011

March 11, 2011
April 5, 2011

March 11, 2011
March 11, 2011
March 11, 2011
March 11, 2011
March 11, 2011
March 11, 2011

March 11, 2011
April 5, 2011

April 5, 2011

March 11, 2011
March 11, 2011

March 11, 2011

March 11, 2011

continues on next page

CONTENTS

Ixxv

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3.1 713 Remove the errata revision from the EFI_IFR_VERSION for- March 11, 2011
mat.
2.3.1 711 SetVariable Update March 11, 2011
2.3.1 709 NewCallback() Action Requests Related To Individual Forms. Feb. 3, 2011
2.3.1 708 Errata (non-blockingBLOCK IO) April 5, 2011
2.3.1 707 Errata revision in the EFI_IFR_VERSION format Feb. 3, 2011
2.3.1 705 REPC signature definition stillConfusing Feb. 3, 2011
2.3.1 704 Unload() definition is wrong Feb. 3, 2011
2.3.1 702Clarifications on Variable Storage for Questions Feb. 3, 2011
2.3.1 696 Update System Table with this new #define for Feb. 3, 2011
EFI_SYSTEM_TABLE_REVISION
2.3.1 695 Add Port Ownership probing Feb. 3, 2011
2.3.1 687 Update System Table with this new #define for 2.3.1 Jan. 17, 2011
2.3.1 686 HII -Clarify FormsBrowser ‘standard’ user interfactions. Feb. 3, 2011
2.3.1 685 HII - New op-code to enable event initiated refresh ofBrowser- Feb. 3, 2011
Context data
2.3.1 682 [UCST] Modal Form Feb. 3, 2011
2.3.1 681 Typo: Pg. 56 Jan. 17, 2011
2.3.1 680 Netboot6 handleClarification Jan. 17,2011
2.3.1 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17, 2011
2.3.1 678 Section 27.6.2: Imagehash reference needs toBe removed Jan. 17, 2011
23.1 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17, 2011
2.3.1 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17, 2011
2.3.1 671 Errata: USB device path example is incorrect Jan. 17,2011
2.3.1 668 LUN implementations are notConsistent Feb. 3, 2011
2.3.1 661 USB 3.0 Updates Oct. 29, 2010
2.3.1 645 Non-blocking interface forBLOCK oriented devices Oct. 29, 2010
(BLOCK_IO_EX transition toBLOCK_IO_2)
2.3.1 634 FormsBrowser DefaultBehavior Jan. 17,2011
2.3.1 634 FormsBrowser DefaultBehavior Oct. 29, 2010
2.3.1 616 Security ProtocolCommand to support encrypted HDD Jan. 17, 2011
2.3.1 616 Security ProtocolCommand to support encrypted HDD Oct. 29, 2010
2.3.1 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010
2.3.1 484 Key Management Service Protocol Oct. 28, 2010
2.3.1 484 Key Management Service (KMS) Protocol Oct. 29, 2010
2.3.1 478 (REVISIT) Update to ALTCFG references March 11, 2011
23D 667Clarification to the UEFIConfiguration Table definition Oct. 28, 2010
23D 664 Appendix update for IPV6 networkBoot Oct. 28, 2010

23D 663 Update ARM PlatformBinding to allow OS loader to assume Nov. 10, 2010
unaligned access support is enabled

23D 662 ARM ABI errata Oct. 28, 2010
23D 659Clarify section length definition in the error record Oct. 28, 2010
23D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010
23D 652Clarification to the TimeZone value usage Oct. 28, 2010
23D 651 update to IPSec for tunnel mode support Oct. 28, 2010
23D 650 networking support errata Oct. 28, 2010
23D 638 Add facility for dynamic IFR dynamicCross-references Oct. 28, 2010
23D 538 IPV6 PXE Oct. 28, 2010
2.3C 640 String ReferenceCleanup July 14, 2010
2.3C 639Callback() does not describe July 14, 2010

FORM_OPEN/FORM_CLOSEBehavior

continues on next page

CONTENTS Ixxvi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3C 637Clarification for Date/Time Question usage in IFR expres- July 14,2010
sions.
2.3C 636 Mistaken Reference to “Date” inside ofBoolean question de- July 14, 2010
scription
2.3C 635 Missing GUID label forConfig Access protocol July 14, 2010
2.3C 633 Explicitly Specify ACPI Table Signature Format July 14, 2010
2.3C 632ClarifyBlock IO ReadBlocks and WriteBlocks functions han- July 14, 2010
dling of media stateChange events
2.3C 625 Minor typo in surrogateCharacter description section July 14, 2010
2.3C 622 Identify() function errata July 14, 2010
2.3C 621 Typos in an EFI_HII_ CONFIG_ACCESS_ PROTO- July 14,2010
COL.Callback() member
2.3C 620Carification of need for Path MTU support for [PV4 and IPV6 July 14, 2010
2.3C 613 PAUSE Key July 14, 2010
2.3C 611 LanguageCorrection requested for InstallProtocollnterface() July 14, 2010
and InstallConfigurationTable(), Ref# 583
2.3C 610 RSA data structureClarification July 14, 2010
2.3C 609 StartImage returnCode update July 14, 2010
2.3C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14, 2010
2.3C 508 Update networking references, incl ipv6 July 14, 2010
2.3B 608 more media detectClean-up Feb. 24, 2010
2.3B 605Clarify user identity Find API Feb. 24,2010
2.3B 601 UNDI update as part of media detectChanges Feb. 24,2010
2.3B 600 Update toConfigAccess/ConfigRouting Feb. 24,2010
2.3B 598 ARP is only an IPV4Concept. Feb. 24,2010
2.3B 590 Media detectClean-up Feb. 24,2010
2.3B 589 Device path representation of IPv4/v6 text Feb. 24, 2010
2.3B 588 UEFI User Identity - ReturnCodes Feb. 24, 2010
2.3B 587 UEFI User Identity - NamingConsistency Feb. 24,2010
2.3B 586Clarification of PXE2.1 specification for IPV4 interoperability =~ Feb. 24, 2010
issues
2.3B 585 Errata to EFI_IFR_SET op-code Feb. 24, 2010
2.3B 584 EFI_PXE BASE_CODE_DHCPV6_PACKET missing for Feb. 24,2010
pxeBc protocol
2.3B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24,2010
2.3B 580 ACPI_SUPPORT_PROTOCOLClarifications related to Dec. 15,2009
FADT and the DSDT/FACS
2.3B 578 ATA Passthrough updates / questions Dec. 15, 2009
2.3B 577Clarifications on the user identity protocol Dec. 15, 2009
2.3B 576Clarifications in the Routing Protocol Dec. 15, 2009
2.3B 575 Machine hand-off/MP state modification Feb. 24, 2010
2.3B 574 Add an “OPTIONAL” tag to a parameter in NewPackageList Dec. 15, 2009
2.3B 573 EFI_DESCRIPTION_STRING and Feb. 24,2010
EFI_DESCRIPTION_BUNDLE adjustments
2.3B 572 EFI_IFR_SECURITY shouldBe EFI_IFR_SECURITY_OP Dec. 15, 2009
in Table 194
2.3B 568 ATA_STATUS_BLOCK name errata Dec. 15, 2009
2.3B 567 Various miscellaneous typos/updates Feb. 24, 2010
2.3B 566 Minor update to HII->NewString function description Dec. 15, 2009
2.3B 560Correct erroneous example in ExtractConfig() Dec. 15, 2009
2.3B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009
2.3B 558Clarify VLANConfig publication requirements Dec. 15, 2009
continues on next page
CONTENTS Ixxvii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3B 557Corrected Image Execution Information omission & ambigu-
ity

2.3B 556 additional IPSec errata/issues

2.3B 549Binary prefixChange

2.3B 547Clean-Up In HII Sections

2.3B 546 typo in GOP definiton

2.3B 545 Action parameter of the
I_CONFIG_ACCESS_PROTOCOL.CallBack()

2.3B 542 Device Path DescriptionChanges

2.3B 540 Register name usage

2.3B 539CHAP node fix for iSCSI

2.3B 537 Add missing ACPI ADR Device Path Representation

2.3B 536 IPSec errata

2.3B 534 Size of Partition Entry restriction

2.3B 533 GPT editorialCleanup

2.3B 532 “LegacyBIOSBootable” GPT attribute

2.3B 531Clarify HII Variable Storage

2.3B 519 AddConsole table (chapt 11)
EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL

2.3B 518 Typos in the UEFI2.3 specification

2.3B 515 Authenticated VariablesClarification

2.3B 514 HIIConfiguration String SyntaxClarification

2.3B 507Clarify ACPI Protocol’s position onChecksums

2.3B 479 TPM guideline added to section 2.6.2

2.3B 476 Text adjustment toConfigAccess &ConfigRouting

2.3B 460 Section 2.6 languageChange

2.3B 454 Dynamic support of media dectection - network stack

2.3B 431 UEFI 2.3 Feb Draft: Section 30.4

2.3B 301 Errata to the Authentication Protocol

2.3B 215 previously added to Device Driver (wrong), nowBusDriver
(correct)

2.3A 522Bugs in EFI_CERT_BLOCK_RSA_ 2048 _SHA256, ISCSI

device path, CHAP device path
2.3A 518 typos

2.3A 517 TP stack related protocol update

2.3A 516 User Identity ProtocolBugs

23A 513 add support for gateways in ipv4 & ipv6 device path nodes

2.3A 506 TCP6/MTFTP6 StatusCode Definition

23A 505 TCP4/MTFTP4 statusCodes

2.3A 490Correction 28.2.5.6, Table 185. Information for Types of Stor-
age

23A 478 Update to ALTCFG references

2.3A 477 Text adjustment toConfigAccess/ConfigRouting

23 463 Update EFI_IP6_PROTOCOL.Neighbors() API

2.3 462 ExitBootServices timers deavtivation

2.3 4611P4 Mode Data definition update

23 460Chapter 2.6 language update

2.3 457Change KeyData.PackedValue to 0x40000200, page 63.

2.3 456 How to handle PXEBoot w/o NII Section 21.3

2.3 454 Dynamic support of media detection - network stack

2.3 453 Errata to support dynamic media detection - UNDI

2.3 452 Support to dynamically detect media errata - SNP

Dec. 15, 2009

Dec. 15, 2009
Dec. 15, 2009
Dec. 15,2009
Dec. 15,2009
Dec. 15, 2009

Dec. 15, 2009
Dec. 15, 2009
Dec. 15,2009
Dec. 15, 2009
Dec. 15, 2009
Dec. 15, 2009
Dec. 15, 2009
Dec. 15,2009
Dec. 15,2009
Dec. 15, 2009

Feb. 24,2010
Feb. 24,2010
Feb. 24,2010
Dec. 15, 2009
Dec. 15, 2009
Dec. 15, 2009
Dec. 15, 2009
Dec. 15,2009
Feb. 24,2010
Dec. 15, 2009
Dec. 15, 2009

Sept 15, 2009

Sept 15, 2009
Sept 15, 2009
Sept 15, 2009
Sept 15, 2009
Sept 15, 2009
Sept 15, 2009
Sept 15, 2009

Sept 15, 2009
Sept 15, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009
May 7, 2009

continues on next page

CONTENTS

Ixxviii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.3 450 Missing opcode headers and formatting, section 28.3.8.3.x.

2.3 449 Add missing EFI_IFR_GET, EFI_IFR_SET
EFI_IFR_MAP to the syntax.Section 28.2.5.7.

2.3 448 Section 28.2.5.4 Questions, Syntax, Update question-option-
tag; Add EFI_IFR_READ and EFI_IFR_WRITE in the question
syntax.

2.3 447Section 28.2.5.11.2 Moving Forms, Update line that

starts with EFI_IFR_FORM to: EFI_IFR_FORM

EFI_IFR_FORM_MAP (and all references in EFI_IFR_REF)
23 446 Section 28.2.5.2 Forms, Syntax,Change 3rd line to: form

:= EFI_IFR_FORM form-tag-list | EFI_IFR_FORM_MAP form-

tag-list

2.3 445 Table 194: EFI_IFR_FORM_MAP_OP, 2ndColumn

shouldBe 0x5d (not 05xd)

23 444 Form Set Syntax: Section 28.2.5.1.1, section shouldBe sub-
heading, not heading level 5; Section 28.2.5.1, Syntax, line 3, text

after := is not aligned with other text on line 2, 4

2.3 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, out-
dent 2 spaces.

2.3 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, in-
dentBy 2 spaces

2.3 440Change the defined type of EFI_STATUs from INTN to
UINTN

2.3 439 Incorrect definitions of UEFI_CONFIG_LANG and
UEFI_CONFIG_LANG_2 in UEFI 2.3 Feb18 draft

23 438 UEFI 2.3 Feb 13 Draft:Chapter 28 Formatting Issues

2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3_Draft_Jan29

2.3 436 UEFI 2.3 split Figure 88 into 3 figures

2.3 435 Partition SignatureClarification

2.3 434 UEFI 2.3 Feb Draft: 28.3.8.3.58

23 432 UEFI 2.3 Feb Draft: Appendix M.

2.3 431 UEFI 2.3 Feb Draft: Section 30.4

2.3 418Change Appendix O from “UEFI ACPI Table” to “UEFI ACPI
Data

2.3 413Correct the definition of UEFI_CONFIG_LANG

2.3 410 UNDIBuffer usage

23 408 ARMBindingCorrections

2.3 406 Missing EFI System Table Revision In UEFI 2.3 Draft

23 395 New “Non-removable MediaBootBehavior” section

2.3 394 Omission in EFI_USB2_HC_PROTOCOL

2.3 388 Add HIICallback types (FORM_OPEN, FORM_CLOSE)
when a form is opened orClosed.

2.3 376 Add ARM processorBinding to UEFI

2.3 326 Add Firmware Management Protocol

2.2A 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID de-
fine misses _GUID

2.2A 404 RemoveConstraint form EFI_TIME. YearComment

2.2A 400 FreePool() description error

2.2A 393 UEFI 2.1/2.2Boot ManagerBehaviorClarification

2.2A 392 MBR errata in UEFI 2.2

2.2A 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR

opcodes wrong

May 7, 2009
May 7, 2009

May 7, 2009

May 7, 2009

May 7, 2009

May 7, 2009

May 7, 2009

May 7, 2009
May 7, 2009
May 7, 2009
Feb 25, 2009

Feb 18, 2009
Feb 18, 2009
Feb. 12,2009
Feb. 12, 2009
Feb. 12,2009
Feb. 12, 2009
Feb. 12,2009
Feb 18, 2009

Feb 18, 2009
Feb 18, 2009
Feb. 12,2009
Feb. 12, 2009
Feb. 12, 2009
Feb. 12,2009
Feb. 12,2009

Jan. 12, 2009
Feb. 12, 2009
Feb. 12, 2009

Feb. 12,2009
Feb. 12,2009
Feb. 12, 2009
Feb. 12, 2009
Feb. 12,2009

continues on next page

CONTENTS

Ixxix

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A
2.2A

2.2A
2.2A
2.2A
2.2A
2.2A
2.2
2.2
2.2
22

2.2
2.2
2.2

22

2.2
2.2

22

2.2
2.2
2.2

22
22
2.2
2.2

22

22
2.2

390 UEFI 2.2 Miscellaneous HlI-related errata

389 UEFI 2.2 HII-Related Formatting Issues

387 UEFI 2.1/UEFI 2.2A (ch. 12)

384 Fix HII package description omission.

379 UEFI 2.1/UEFI 2.2 HII-Related Errata

378 UEFI 2.1 & UEFI 2.2 HIICallbackClarifications

377 MissingBLTBuffer figure.

375 Extra periods errata in UEFI 2.2

374 UEFI 2.1 & UEFI 2.2A (10.7-10.10)

373 UEFI 2.2,Chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata

372 UEFI 2.2 remove “Draft for Review”

371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10)

370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2)

368 EFI_FONT_DISPLAY_INFO.FontInfo description incorrect
366 UEFI 2.X: Erroneous refer-
ences to EFI_BOOT_SERVICES_TABLE,
EFI_RUNTIME_SERVICES_TABLE

364 UEFI 2.2 Typos & Formatting Issues (ch. 9)

362 UEFI 2.2 Typos (Next)

361 UEFI 2.2 Typos & Formatting Issues

359 TPL Table

358 Missing signature for UEFI 2.2.

398 Update to M348 to fix small typo

397 PCICopyMem() misspelling

394 Omission in EFI_USB2_HC_PROTOCOL

357Clarify EFI_IFR_DISABLE_IFBehavior with regard to dy-
namic values

351 Fix an unaligned field in a device path

350 EFI_HII_STRING_PROTOCOL Typos

348 EFI_IFR_RESET_BUTTON is incorrectly listed as a ques-
tion

347 Replace first paragraph of the “Description” section for the
ExitBootServices()

346 Nest, Sections 10.11 & 10.12 Under 10.10

344Correct missing statusCodes returned section for Form() in
EFI_USER_CREDENTIAL_PROTOCOL

343Correct missing parameter for User() function in
EFI_USER_CREDENTIAL_PROTOCOL

340 UEFI 2.2 Editorial / Formatting Issues

339 Update missing TPL restrictions

337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec
API)with a self-contained, independent definition.

335 User Authentication errata

334 Standardized “Unicode” References

333Correct the incorrect “;” at the end of EFI_GUID #defines
332Correct SendForm description Type, PackageGuid and Form-
setGuid parameters

331 Definition for EFI_ BROWSER_ACTION and the related #de-
fines were not present—Insert.

330 EFI_IFR_REF:ChangeCross reference to a question
327Clarify the support in DHCP4 protocol for “Inform”
(DHCPINFORM) messages.

Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.
Feb.

Feb.
Feb.
Feb.
Feb.
Feb.
Jan.
Jan.
Jan.
Jan.

Jan.
Jan.

Jan.

Sept

Sept.
Sept.

Sept.
Sept.
Sept.
Sept.

Sept.

Jan.
Sept
Sept

Sept

Sept
Sept

12, 2009
12,2009
12,2009
12,2009
12, 2009
12, 2009
12, 2009
12,2009
12,2009
12, 2009
12, 2009
12,2009
12,2009
12,2009
12,2009

12, 2009
12,2009
12,2009
12, 2009
12, 2009
11, 2009
11,2009
11,2009
11, 2009

11, 2009
11,2009
11,2009

. 25,2008

25, 2008
25, 2008

25, 2008

25, 2008
25, 2008
25, 2008

25, 2008
11,2009

. 25,2008
. 25,2008

. 25,2008

. 25,2008
. 25,2008

continues on next page

CONTENTS

Ixxx

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

22
2.2
2.2
2.2
22
22

2.2
2.2
22
22
2.2
2.2
2.2
2.2
22
2o
22

2.2
22
22
2.2
2.2
2.2
22

22
2.2
2.2
2.2
22
2e2)
22
2.2
2.2
22
22
2.2
2.2
2.2
2.1C

2.1C
2.1C
2.1C
2.1C

2.1C
2.1C
2.1C

325 MinorCorrection 28.3.8.3.20

324 ATA Pass-Thru ECR Update

323 VLAN modificationBecause of IPV6

322Chapter 2 updates for IP6 net stack

321Enable PCle 2.0 andBeyond support in the UEFI error records
320Clarifcation for WIN_CERTIFICATE types & relationship
with signature database types

319 UEFI IPSec protocol

315 EFI TCP6 Protocol

314 EFI MTFTP6 Protocol

313 EFI IPv6Configuration Protocol

312 EFI IPv6 Protocol

311EFI DHCPv6 Protocol

310 EFI UDPv6 Protocol

309 IPv6 Address display formatClarification

306 Some errata to the animation support

304 Errata to UpdateCapsule()

303 Add ability to have aCapsule that initiates a reset & doesn’t
return to theCaller

301 Errata to the Authentication Protocol

300 MTFTP errata

299 PIWG Firmware File/Firmware Volume Typo Errata

294 LocateDevicePath with multi-instance device path

291 HII Errata / Update

288 Additional wording fixes for GPT Entry AttributeBit 1

282 Updated Requirements Section For ATA Pass Through
(M242)

279 Firmware/OS Trusted Key Exchange and Image Validation
242 UEFI ATA Pass-Through Protocol

237 UEFI User Identification Proposal (from USST)

215 new Start() RemainingDevicePath Syntax

212 UEFI HII Standards Mapping

211UEFI Setup Question / Form Access Update

210 UEFI HII Animation addition

202 EAP Management

201EAP

200 VLAN

199 FTP API

198 GUID Partition Entry AttributesClarification and Definition
169 EFI Driver Health Protocol

157 Floating-Point ABIChanges For X86, X64 & Itanium
Re-format Revision History fromBulleted lists to one row per
Mantis ticket/ EngineeringChange Request

60 iSCSI Device Path Update

59 Add returnCode to Diagnostics Protocol

58 Language update for EfiReservedMemory type usage
57Clarity text for Extended SCSI Pass Thru Proto-
col.GetNextTargetLun()

56Clarification on ResetSystem

55Clarification on UpdateCapsule

54 ACPI Table Protocol GUID Update

July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008

July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008

July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008

July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
July 25, 2008
June 5, 2008

June 5, 2008
June 5, 2008
June 5, 2008
June 5, 2008

June 5, 2008
June 5, 2008
June 5, 2008

continues on next page

CONTENTS

Ixxxi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.1C 52 New GUID for Driver Diagnostics and DriverConfiguration June 5, 2008
Protocols with new GUID

2.1C 283 Minor update toClarify a typedef/returnCode in HII June 5, 2008

2.1C 281 Runtime memory allocation June 5, 2008

2.1C 280 Some minor errata to keyboard related topics June 5, 2008

2.1C 278Change references to EFI_SIMPLE_INPUT_PROTOCOL June 5, 2008
into EFI_SIMPLE_TEXT_INPUT_PROTOCOL

2.1C 266 PKCS11.5 structure does notCorrectly specify the portion of June 5, 2008
theCited RFC that pertains to theCertificate struct/algorithm

2.1C 249 Latest update to UCST Errata list June 5, 2008

2.1C 248Correction to text inChapter 8.2 of UEFI 2.1B June 5, 2008

2.1C 246 New returnCode June 5, 2008

2.1C 245 Remove extraneous text inChapter 29 June 5, 2008

2.1C 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_ June 5, 2008
PPI with EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

2.1C 221ImageBlock Structure name typos in 27.3.7.2 June 5, 2008

2.1C 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008

2.1C 219 TA-32 and x64 stack need toBe 16-byte aligned June 5, 2008

2.1C 218 SATA update to section 9.3.5.6 June 5, 2008

2.1C 217 EFI_PLATFORM_TO_DR June 5, 2008
IVER_CONFIGURATION_PROTOCOL.Query() Update

2.1C 216 UEFI 2.1 textCorrections June 5, 2008

2.1C 214 Device_IO + typos June 5, 2008

2.1C 213 UEFI HII Errata June 5, 2008

2.1C 209 ESP number/locationClarifications June 5, 2008

2.1C 208 Driver Protocol Names and GUIDs June 5, 2008

2.1C 207 Updated Wording for the File Path June 5, 2008

2.1C 206Clarify return values for extended scsi passthru protocol June 5, 2008

2.1C 203 Platform Error Record - x64 register state errata June 5, 2008

2.1C 193 Loaded Image device paths for EFI Drivers loaded from PCI June 5, 2008
Option ROMs

2.1C 189 Graphics Output ProtocolClarification June 5, 2008

2.1B 51 Long physicalBlocks updates December 11, 2007

2.1B 205Change LoadImage() parameter name from December 11, 2007
FilePath to DevicePath; endsConfusion with
EFI_LOADED_IMAGE_PROTOCOL

2.1B 197 EFI Loaded Image Device Path Protocol December 11, 2007

2.1B 190 Extensive errata form UCST including OPCodesChanges ro December 11, 2007
resolveConflicts.

2.1B 187Clarify input protocols. December 11, 2007

2.1B 186Change PCIR struct to match PCI FW Spec 3.0 December 11, 2007

2.1B 185Change EFI term to UEFI forConsistency December 11, 2007

2.1B 184 SNIA/DDF Wording Update December 11, 2007

2.1B 182Clarify EFI_MTFTP4_TOKEN December 11, 2007

2.1B 181Correct MNP GUIDCollision December 11, 2007

2.1B 177 remove ending paragraph (editing text) in section 9.6 December 11, 2007

2.1B 175 Update to SendForm API December 11, 2007

2.1B 174 Error record addition for dma remapping units December 11, 2007

2.1B 173 MinorChanges to the description of two of the fields in December 11, 2007
theCommon Platform Error Record, in Appendix N

2.1B 172 Typo for ResetSystem() December 11, 2007

2.1B 170 (Addition of) Driver Family Override Protocol December 11, 2007

continues on next page
CONTENTS Ixxxii

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3 - continued from previous page

2.1B 168 Remove LOAD_OPTION_GRAPHICS

2.1B 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL

2.1B 164 Update to USB2_HC_PROTOCOL Table

2.1B 162 UEFI PIWG Device Path Errata

2.1B 160Clean up references to PCIR

2.1B 158 Errata to the UEFI 2.1Configuration sections

2.1B 156 SendForm API Errata

2.1B 159 Adjust some of the #define names in the Simple Text Input Ex
protocol

2.1A UEFI 2.1 incorporating Errata through 4-27-07

2.1 Second release

2.0 First release of specification.

December 11, 2007
December 11, 2007
December 11, 2007
December 11, 2007
December 11, 2007
December 11, 2007
December 11, 2007
December 11, 2007

April 27, 2007
January 23, 2007
January 31, 2006

CONTENTS

Ixxxiii

CHAPTER
ONE

INTRODUCTION

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface between the operating system
(OS) and the platform firmware. UEFI was preceded by the Extensible Firmware Interface Specification 1.10 (EFI). As
a result, some code and certain protocol names retain the EFI designation. Unless otherwise noted, EFI designations
in this specification may be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and boot and runtime service calls
that are available to the OS loader and the OS. Together, these provide a standard environment for booting an OS.
This specification is designed as a pure interface specification. As such, the specification defines the set of interfaces
and structures that platform firmware must implement. Similarly, the specification defines the set of interfaces and
structures that the OS may use in booting. How either the firmware developer chooses to implement the required
elements or the OS developer chooses to make use of those interfaces and structures is an implementation decision left
for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate only information
necessary to support the OS boot process. This is accomplished through a formal and complete abstract specification
of the software-visible interface presented to the OS by the platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible with supported processor
specifications will be able to boot on a variety of system designs without further platform or OS customization. The
definition will also allow for platform innovation to introduce new features and functionality that enhance platform
capability without requiring new code to be written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code over time. New
device types and associated code can provide equivalent functionality through the same defined abstract interface,
again without impact on the OS boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems to servers. The specification
provides a core set of services along with a selection of protocol interfaces. The selection of protocol interfaces can
evolve over time to be optimized for various platform market segments. At the same time, the specification allows
maximum extensibility and customization abilities for OEMs to allow differentiation. In this, the purpose of UEFI is
to define an evolutionary path from the traditional “PC-AT”-style boot world into a legacy-API free environment.

1.1 Principle of Inclusive Terminology

The UEFI Forum follows a Principle of Inclusive Terminology in building and maintaining content for specifications.
This means that efforts are made to ensure that all wording is perceived or likely to be perceived as welcoming by
everyone regardless of personal characteristics. In some cases, the Forum acknowledges that wording derived from
earlier work, for example references to legacy specifications not controlled by the Forum, may not follow this principle.
In order to preserve compatibility for code that reads on legacy specifications, particularly where that specification is
no longer under maintenance or development, language in this specification may appear out of sync with the Principle.
The Forum is resolved to work with other standards development bodies to eliminate such examples over time. In the
meanwhile, by acknowledging and calling attention to this issue the hope is to promote discussion and action towards

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

more complete use of Inclusive Language reflective of the diverse and innovative population of the technical community
that works on standards.

1.2 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of the UEFI Driver Model is to
provide a replacement for “PC-AT”-style option ROMs. It is important to point out that drivers written to the UEFI
Driver Model are designed to access boot devices in the preboot environment. They are not designed to replace the
high-performance, OS-specific drivers.

The UEFI Driver Model is designed to support the execution of modular pieces of code, also known as drivers, that
run in the preboot environment. These drivers may manage or control hardware buses and devices on the platform, or
they may provide some software-derived, platform-specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design and implement any com-
bination of bus drivers and device drivers that a platform might need to boot a UEFI-compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or device. The UEFI Speci-
fication describes how to write PCI bus drivers, PCI device drivers, USB bus drivers, USB device drivers, and SCSI
drivers. Additional details are provided that allow UEFI drivers to be stored in PCI option ROMs, while maintaining
compatibility with legacy option ROM images.

One of the design goals in the UEFI Specification is keeping the driver images as small as possible. However, if a
driver is required to support multiple processor architectures, a driver object file would also be required to be shipped
for each supported processor architecture. To address this space issue, this specification also defines the EFI Byte
Code Virtual Machine . A UEFI driver can be compiled into a single EFI Byte Code object file. UEFI Specification-
complaint firmware must contain an EFI Byte Code interpreter. This allows a single EFI Byte Code object file that
supports multiple processor architectures to be shipped. Another space saving technique is the use of compression.
This specification defines compression and decompression algorithms that may be used to reduce the size of UEFI
Drivers, and thus reduce the overhead when UEFI Drivers are stored in ROM devices.

The information contained in the UEFI Specification can be used by OSVs, IHVs, OEMs, and firmware vendors to
design and implement firmware conforming to this specification, drivers that produce standard protocol interfaces, and
operating system loaders that can be used to boot UEFI-compliant operating systems.

1.3 Organization

The high-level organization of this specification is as follows:

Table 1.1: Organization of this specification

Section(s) Description

Introduction / Overview Introduces the UEFI Specification, and describes the major components of UEFI.

Boot Manager Manager used to load drivers and applications written to this specification.

EFI System Table and Par- Describes an EFI System Table that is passed to every compliant driver and application,

titions and defines a GUID-based partitioning scheme.

Block Transition Table A layout and set of rules for doing block I/O that provide power fail write atomicity of
a single block.

Boot Services Contains the definitions of the fundamental services that are present in a UEFI-
compliant system before an OS is booted.

Runtime Services Contains definitions for the fundamental services that are present in a compliant system

before and after an OS is booted.

continues on next page

1.2. UEFI Driver Model Extensions 2

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 1.1 — continued from previous page

Protocols

EFI Byte Code Virtual
Machine

Firmware Update and Re-
porting

* The EFI Loaded Image Protocol describes a UEFI Image that has been loaded into
memory.

* The Device Path Protocol provides the information needed to construct and manage
device paths in the UEFI environment.

* The UEFI Driver Model describes a set of services and protocols that apply to
every bus and device type.

* The Console Support Protocol defines I/O protocols that handle input and output of
text-based information intended for the system user while executing in the boot
services environment.

* The Media Access Protocol defines the Load File protocol, file system format and
media formats for handling removable media.

* PCI Bus Support Protocols define PCI Bus Drivers, PCI Device Drivers, and PCI
Option ROM layouts. The protocols described include the PCI Root Bridge I/O
Protocol and the PCI I/O Protocol.

* SCSI Driver Models and Bus support defines the SCSI I/O Protocol and the
Extended SCSI Pass Thru Protocol that is used to abstract access to a SCSI channel
that is produced by a SCSI host controller.

* The iSCSI protocol defines a transport for SCSI data over TCP/IP.

* The USB Support Protocol defines USB Bus Drivers and USB Device Drivers.

* Debugger Support Protocols describe an optional set of protocols that provide the
services required to implement a source-level debugger for the UEFI environment.

* The Compression Algorithm Specification describes the
compression/decompression algorithm in detail, plus a standard EFI decompression
interface for use at boot time.

* ACPI Protocols may be used to install or remove an ACPI table from a platform.

* String Services: the Unicode Collation protocol allows code running in the boot
services environment to perform lexical comparison functions on Unicode strings for
given languages; the Regular Expression Protocol is used to match Unicode strings
against Regular Expression patterns.

Defines the EFI Byte Code virtual processor and its instruction set. It also defines
how EBC object files are loaded into memory, and the mechanism fo transitioning
from native code to EBC code and back to native code.

Provides an abstraction for devices to provide firmware management support.

continues on next page

1.3. Organization

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 1.1 — continued from previous page

Network Protocols
* SNP, PXE, BIS, and HTTP Boot protocols define the protocols that provide access
to network devices while executing in the UEFI boot services environment.
* Managed Network protocols define the EFI Managed Network Protocol, which
provides raw (unformatted) asynchronous network packet I/O services and Managed
Network Service Binding Protocol, used to locate communication devices that are
supported by an MNP driver.
* VLAN, EAP, Wi-Fi and Supplicant protocols define a protocol that is to provide a
manageability interface for VLAN configurations.
* Bluetooth protocol definitions.
» TCP, IP, PIPsec, FTP, GTLS, and Configurations protocols define the EFI TCPv4
(Transmission Control Protocol version 4) Protocol and the EFI IPv4 (Internet
Protocol version 4) Protocol.
* ARP, DHCP, DNS, HTTP, and REST protocols define the EFI Address Resolution
Protocol (ARP) Protocol interface and the EFI DHCPv4 Protocol.
* UDP and MTFTP protocols define the EFI UDPv4 (User Datagram Protocol
version 4) Protocol that interfaces over the EFI IPv4 Protocol and defines the EFI
MTFTPv4 Protocol interface that is built on the EFI UDPv4 Protocol.

Secure Boot and Driver Describes Secure Boot and a means of generating a digital signature for UEFI.

Signing

Human Interface Infras-

tructure * Defines the core code and (HII) services that are required for an implementation of
the Human Interface Infrastructure (HII), including basic mechanisms for managing
user input and code definitions for related protocols.
* Describes the data and APIs used to manage the system’s configuration: the actual
data that describes the knobs and settings.

Section(s) Description

User Identification Describes services that describe the current user of the platform.

Secure Technologies Describes the protocols for utilizing security technologies, including cryptographic
hashing and key management.

Miscellaneous Protocols The Timestamp protocol provides a platform independent interface for retrieving a

high resolution timestamp counter. The Reset Notification Protocol provides services
to register for a notification when ResetSystem is called.

continues on next page

1.3. Organization 4

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 1.1 — continued from previous page

Appendices

Index

e GUID and Time Formats.

* Console requirements for a basic text-based console required by EFI-conformant
systems to provide communication capabilities.

* Device Path examples of use of the data structures that define various hardware
devices to the boot services.

» Status Codes lists success, error, and warning codes returned by UEFI interfaces.

¢ Universal Network Driver Interfaces defines the 32/64-bit hardware and software
Universal Network Driver Interfaces (UNDIs).

* Using the Simple Pointer Protocol.

* Using the EFI Extended SCISI Pass-thru Protocol.

* Compression Source Code for an implementation of the Compression Algorithm.
* Decompression Source Code for an implementation of the EFI Decompression
Algorithm.

 The EFI Byte Code Virtual Machine Opcode List provides a summary of the
corresponding instruction set.

* Alphabetic Function Lists identify all UEFI interface functions alphabetically.

* EFI 1.10 Protocol Changes identifies the Protocol, GUID, and revision identifier
name changes compared to the EFI Specification 1.10.

* Formats: Language Codes and Language Code Arrays list the formats for language
codes and language code arrays.

* The Common Platform Error Record describes the common platform error record
format for representing platform hardware errors.

* The UEFI ACPI Data Table defines the UEFI ACPI table format.
» Hardware Error Record Persistence Usage.

* References

* Glossary

Provides an index to the key terms and concepts in the specification.

1.4 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry. Each new platform
capability or hardware innovation requires firmware developers to craft increasingly complex solutions, and often re-
quires OS developers to make changes to their boot code before customers can benefit from the innovation. This can
be a time-consuming process requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment that can alleviate some of these
considerations. In this goal, the specification is similar to other existing boot specifications. The main properties of
this specification can be summarized by these attributes:

* Coherent, scalable platform environment. The specification defines a complete solution for the firmware to
describe all platform features and surface platform capabilities to the OS during the boot process. The definitions
are rich enough to cover a range of contemporary processor designs.

* Abstraction of the OS from the firmware. The specification defines interfaces to platform capabilities. Through
the use of abstract interfaces, the specification allows the OS loader to be constructed with far less knowledge
of the platform and firmware that underlie those interfaces. The interfaces represent a well-defined and stable
boundary between the underlying platform and firmware implementation and the OS loader. Such a bound-
ary allows the underlying firmware and the OS loader to change provided both limit their interactions to the

1.4. Goals

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

defined interfaces. The standard interfaces defined in this specification may be complemented by companion
OS/firmware interfaces such as those defined by the ACPI specification. On the other hand, firmware-internal
interfaces, such as those defined by the PI Specification, are produced and consumed by firmware only, and are
not considered interfaces that a UEFI aware OS can connect to, interact with, or depend on.

* Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the OS loader to
have specific knowledge of the workings of certain hardware devices. This specification provides OS loader
developers with something different: abstract interfaces that make it possible to build code that works on a range
of underlying hardware devices without having explicit knowledge of the specifics for each device in the range.

 Abstraction of Option ROMs from the firmware. This specification defines interfaces to platform capabilities
including standard bus types such as PCI, USB, and SCSI. The list of supported bus types may grow over time,
so a mechanism to extend to future bus types is included. These defined interfaces, and the ability to extend
to future bus types, are components of the UEFI Driver Model. One purpose of the UEFI Driver Model is to
solve a wide range of issues that are present in existing “PC-AT” option ROMs. Like OS loaders, drivers use the
abstract interfaces so device drivers and bus drivers can be constructed with far less knowledge of the platform
and firmware that underlie those interfaces.

e Architecturally shareable system partition. Initiatives to expand platform capabilities and add new devices often
require software support. In many cases, when these platform innovations are activated before the OS takes con-
trol of the platform, they must be supported by code that is specific to the platform rather than to the customer’s
choice of OS. The traditional approach to this problem has been to embed code in the platform during manufac-
turing (for example, in flash memory devices). Demand for such persistent storage is increasing at a rapid rate.
This specification defines persistent store on large mass storage media types for use by platform support code
extensions to supplement the traditional approach. The definition of how this works is made clear in the specifi-
cation to ensure that firmware developers, OEMs, operating system vendors, and perhaps even third parties can
share the space safely while adding to platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways. Indeed, several al-
ternatives, perhaps viable from an academic point of view, already existed at the time this specification was written.
These alternatives, however, typically presented high barriers to entry given the current infrastructure capabilities sur-
rounding supported processor platforms. This specification is intended to deliver the attributes listed above, while also
recognizing the unique needs of an industry that has considerable investment in compatibility and a large installed
base of systems that cannot be abandoned summarily. These needs drive the requirements for the additional attributes
embodied in this specification:

* Evolutionary, not revolutionary. The interfaces and structures in the specification are designed to reduce the
burden of an initial implementation as much as possible. While care has been taken to ensure that appropri-
ate abstractions are maintained in the interfaces themselves, the design also ensures that reuse of BIOS code to
implement the interfaces is possible with a minimum of additional coding effort. In other words, on PC-AT plat-
forms the specification can be implemented initially as a thin interface layer over an underlying implementation
based on existing code. At the same time, introduction of the abstract interfaces provides for migration away
from legacy code in the future. Once the abstraction is established as the means for the firmware and OS loader
to interact during boot, developers are free to replace legacy code underneath the abstract interfaces at leisure. A
similar migration for hardware legacy is also possible. Since the abstractions hide the specifics of devices, it is
possible to remove underlying hardware, and replace it with new hardware that provides improved functionality,
reduced cost, or both. Clearly this requires that new platform firmware be written to support the device and
present it to the OS loader via the abstract interfaces. However, without the interface abstraction, removal of the
legacy device might not be possible at all.

» Compatibility by design. The design of the system partition structures also preserves all the structures that are
currently used in the “PC-AT” boot environment. Thus, it is a simple matter to construct a single system that is
capable of booting a legacy OS or an EFI-aware OS from the same disk.

* Simplifies addition of OS-neutral platform value-add. The specification defines an open, extensible interface that
lends itself to the creation of platform “drivers.” These may be analogous to OS drivers, providing support for
new device types during the boot process, or they may be used to implement enhanced platform capabilities,

1.4. Goals 6

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

such as fault tolerance or security. Furthermore, this ability to extend platform capability is designed into the
specification from the outset. This is intended to help developers avoid many of the frustrations inherent in trying
to squeeze new code into the traditional BIOS environment. As a result of the inclusion of interfaces to add new
protocols, OEMs or firmware developers have an infrastructure to add capability to the platform in a modular
way. Such drivers may potentially be implemented using high-level coding languages because of the calling
conventions and environment defined in the specification. This in turn may help to reduce the difficulty and cost
of innovation. The option of a system partition provides an alternative to nonvolatile memory storage for such
extensions.

* Built on existing investment. Where possible, the specification avoids redefining interfaces and structures in areas
where existing industry specifications provide adequate coverage. For example, the ACPI specification provides
the OS with all the information necessary to discover and configure platform resources. Again, this philosophical
choice for the design of the specification is intended to keep barriers to its adoption as low as possible.

1.5 Target Audience

This document is intended for the following readers:
* IHVs and OEMs who will be implementing UEFI drivers.
* OEMs who will be creating supported processor platforms intended to boot shrink-wrap operating systems.

* BIOS developers, either those who create general-purpose BIOS and other firmware products or those who
modify these products for use in supported processor-based products.

* Operating system developers who will be adapting their shrink-wrap operating system products to run on sup-
ported processor-based platforms.

1.6 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

* Reuse of existing table-based interfaces. In order to preserve investment in existing infrastructure support code,
both in the OS and firmware, a number of existing specifications that are commonly implemented on platforms
compatible with supported processor specifications must be implemented on platforms wishing to comply with
the UEFI specification. (For additional information, see References.)

» System partition. The System partition defines a partition and file system that are designed to allow safe sharing
between multiple vendors, and for different purposes. The ability to include a separate, sharable system partition
presents an opportunity to increase platform value-add without significantly growing the need for nonvolatile
platform memory.

* Boot services. Boot services provide interfaces for devices and system functionality that can be used during boot
time. Device access is abstracted through “handles” and “protocols.” This facilitates reuse of investment in ex-
isting BIOS code by keeping underlying implementation requirements out of the specification without burdening
the consumer accessing the device.

* Runtime services. A minimal set of runtime services is presented to ensure appropriate abstraction of base
platform hardware resources that may be needed by the OS during its normal operations.

The Figure below shows the principal components of UEFI and their relationship to platform hardware and OS software.

This Figure illustrates the interactions of the various components of an UEFI specification-compliant system that are
used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the System Partition. The specification provides
for a variety of mass storage device types including disk, CD-ROM, and DVD as well as remote boot via a network.

1.5. Target Audience 7

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

OPERATING SYSTEM

EF1 03 LOADER

[OTHER)

EFI RUNTIME

EFI BOOT SERVICES SERVICES

INTERFACES
FROM
OTHER
REQUIRED
SPECS

PLATFORM HARDWARE

EFI SYSTEM PARTITION
o

Fig. 1.1: UEFI Conceptual Overview

Through the extensible protocol interfaces, it is possible to add other boot media types, although these may require OS
loader modifications if they require use of protocols other than those defined in this document.

Once started, the OS loader continues to boot the complete operating system. To do so, it may use the EFI boot services
and interfaces defined by this or other required specifications to survey, comprehend, and initialize the various platform
components and the OS software that manages them. EFI runtime services are also available to the OS loader during
the boot phase.

1.7 UEFI Driver Model

This section describes the goals of a driver model for firmware conforming to this specification. The goal is for this
driver model to provide a mechanism for implementing bus drivers and device drivers for all types of buses and devices.
At the time of writing, supported bus types include PCI, USB, and so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms are increasing. This
trend is especially true in high-end servers. However, a more diverse set of bus types is being designed into desktop
and mobile systems and even some embedded systems. This increasing complexity means that a simple method for
describing and managing all the buses and devices in a platform is required in the preboot environment. The UEFI
Driver Model provides this simple method in the form of protocols services and boot services.

1.7.1 UEFI Driver Model Goals

The UEFI Driver Model has the following goals:

e Compatible — Drivers conforming to this specification must maintain compatibility with the EFI 1.10 Specifi-
cation and the UEFI Specification . This means that the UEFI Driver Model takes advantage of the extensibility
mechanisms in the UEFI 2. 0 Specification to add the required functionality.

* Simple — Drivers that conform to this specification must be simple to implement and simple to maintain. The
UEFI Driver Model must allow a driver writer to concentrate on the specific device for which the driver is
being developed. A driver should not be concerned with platform policy or platform management issues. These
considerations should be left to the system firmware.

1.7. UEFI Driver Model 8

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

¢ Scalable — The UEFI Driver Model must be able to adapt to all types of platforms. These platforms include
embedded systems, mobile, and desktop systems, as well as workstations and servers.

e Flexible — The UEFI Driver Model must support the ability to enumerate all the devices, or to enumerate only
those devices required to boot the required OS. The minimum device enumeration provides support for more
rapid boot capability, and the full device enumeration provides the ability to perform OS installations, system
maintenance, or system diagnostics on any boot device present in the system.

 Extensible — The UEFI Driver Model must be able to extend to future bus types as they are defined.
* Portable — Drivers written to the UEFI Driver Model processor architectures.

o Interoperable — Drivers must coexist with other drivers and system firmware and must do so without generating
resource conflicts.

* Describe complex bus hierarchies — The UEFI Driver Model must be able to describe a variety of bus topologies
from very simple single bus platforms to very complex platforms containing many buses of various types.

* Small driver footprint — The size of executables produced by the UEFI Driver Model must be minimized to
reduce the overall platform cost. While flexibility and extensibility are goals, the additional overhead required
to support these must be kept to a minimum to prevent the size of firmware components from becoming unman-
ageable.

* Address legacy option rom issues — The UEFI Driver Model must directly address and solve the constraints
and limitations of legacy option ROMs. Specifically, it must be possible to build add-in cards that support both
UEFI drivers and legacy option ROMs, where such cards can execute in both legacy BIOS systems and UEFI-
conforming platforms, without modifications to the code carried on the card. The solution must provide an
evolutionary path to migrate from legacy option ROMs driver to UEFI drivers.

1.7.2 Legacy Option ROM Issues

This idea of supporting a driver model came from feedback on the UEFI Specification that provided a clear, market-
driven requirement for an alternative to the legacy option ROM (sometimes also referred to as an expansion ROM).
The perception is that the advent of the UEFI Specification represents a chance to escape the limitations implicit in the
construction and operation of legacy option ROM images by replacing them with an alternative mechanism that works
within the framework of the UEFI Specification .

1.8 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification to a future time
when all platforms and operating systems implement to this specification. During this period, two major compatibility
considerations are important:

» The ability to continue booting legacy operating systems;

 The ability to implement UEFI on existing platforms by reusing as much existing firmware code to keep devel-
opment resource and time requirements to a minimum.

1.8. Migration Requirements 9

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

1.8.1 Legacy Operating System Support

The UEFI specification represents the preferred means for a shrink-wrap OS and firmware to communicate during
the boot process. However, choosing to make a platform that complies with this specification in no way precludes a
platform from also supporting existing legacy OS binaries that have no knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both the UEFI specification and
a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is to be implemented, it should be
developed in accordance with existing industry practice that is defined outside the scope of this specification. The
choice of legacy operating systems that are supported on any given platform is left to the manufacturer of that platform.

1.8.2 Supporting the UEFI Specification on a Legacy Platform

The UEFI specification has been carefully designed to allow for existing systems to be extended to support it with a
minimum of development effort. In particular, the abstract structures and services defined in the UEFI specification
can all be supported on legacy platforms.

For example, to accomplish such support on an existing and supported 32-bit-based platform that uses traditional
BIOS to support operating system boot, an additional layer of firmware code would need to be provided. This extra
code would be required to translate existing interfaces for services and devices into support for the abstractions defined
in this specification.

1.9 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.9.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of a multibyte data
item in memory is at the lowest address, while the high-order byte is at the highest address. Some supported 64-bit
processors may be configured for both “little endian” and “big endian” operation. All implementations designed to
conform to this specification use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved . Software must initialize such fields to zero
and ignore them when read. On an update operation, software must preserve any reserved field.

1.9.2 Protocol Descriptions

A protocol description generally has the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol interface.

Protocol Interface Structure: A “C-style” data structure definition containing the procedures and data fields produced
by this protocol interface.

Parameters: A brief description of each field in the protocol interface structure.

Description: A description of the functionality provided by the interface, including any limitations and caveats of
which the caller should be aware.

1.9. Conventions Used in this Document 10

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Related Definitions: The type declarations and constants that are used in the protocol interface structure or any of its
procedures.

1.9.3 Procedure Descriptions

A procedure description generally has the following format:
ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.
Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface, including any limitations and caveats of
which the caller should be aware.

Related Definitions: The type declarations and constants that are used only by this procedure.

Status Codes Returned: A description of any codes returned by the interface. The procedure is required to implement
any status codes listed in this table. Additional error codes may be returned, but they will not be tested by standard
compliance tests, and any software that uses the procedure cannot depend on any of the extended error codes that an
implementation may provide.

1.9.4 Instruction Descriptions

An instruction description for EBC instructions generally has the following format:
InstructionName: The formal name of the instruction.
Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction accompanied by a table that details the
instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions: An item-by-item description of the behavior of each operand involved in the instruction
and any restrictions that apply to the operands or the instruction.

1.9.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in this document are
intended to be compiled directly. The code is presented at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an ordered list of homo-
geneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding style, particularly
the indentation style, is used for readability and does not necessarily comply with an implementation of the UEFI
Specification .

1.9. Conventions Used in this Document 11

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

1.9.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:
Plain text

The normal text typeface is used for the vast majority of the descriptive text in a specification.
Plain text (blue)

Any plain text that is underlined and in blue indicates an active link to the cross-reference. Click on the
word to follow the hyperlink.

Bold

In text, a Bold typeface identifies a processor register name. In other instances, a Bold typeface can be
used as a running head within a paragraph.

Italic

In text, an Italic typeface can be used as emphasis to introduce a new term or to indicate a manual or
specification name.

BOLD Monospace

Computer code, example code segments, and all prototype code segments use a BOLD Monospace type-
face with a dark red color. These code listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace (Blue, underlined)

Words in a Bold Monospace typeface that is underlined and in blue indicate an active hyperlink to the code
definition for that function or type definition. Click on the word to follow the hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on each page is an
active link. Subsequent references on the same page will not be actively linked to the definition and will use the standard,
nonunderlined BOLD Monospace typeface. Find the first instance of the name (in the underlined BOLD Monospace
typeface) on the page and click on the word to jump to the function or type definition.

Italic Monospace

In code or in text, words in Italic Monospace indicate placeholder names for variable information that must
be supplied (i.e., arguments).

1.9.7 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the Western-Arabic nu-
merals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).

Underscores or spaces may be included between characters in binary number representations to increase readability or
delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

1.9. Conventions Used in this Document 12

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

1.9.7.1 Hexadecimal
A hexadecimal number is represented in this standard by Ox preceding any sequence of digits consisting of only the
Western-Arabic numerals 0 through 9 and/or the upper-case English letters A through F (e.g., 0xFA23).

Underscores or spaces may be included between characters in hexadecimal number representations to increase read-
ability or delineate field boundaries (e.g., 0xB FD8C FA23 or 0xB_FDS8C_FA23).

1.9.7.2 Decimal
A decimal number is represented in this standard by any sequence of digits consisting of only the Arabic numerals O
through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).
This standard uses the following conventions for representing decimal numbers:
* the decimal separator (i.e., separating the integer and fractional portions of the number) is a period;
* the thousands separator (i.e., separating groups of three digits in a portion of the number) is a comma;

* the thousands separator is used in the integer portion and is not used in the fraction portion of a number.

1.9.8 Sl & Binary prefixes

This standard uses the prefixes defined in the International System of Units (SI) for values that are powers of ten. See
“Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “SI Binary Prefixes”.

SI prefixes
Table 1.2: SI Prefixes
103 1,000 kilo K
10° 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units — Part 13: Information science
and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for values that are powers of two.

Binary prefixes

Table 1.3: Binary Prefixes

Factor Factor Name Symbol
210 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

1.9. Conventions Used in this Document 13

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

1.9.9 Revision Numbers

Updates to the UEFI specification are considered either new revisions or errata as described below:

* A new revision is produced when there is substantive new content or changes that may modify existing behavior.
New revisions are designated by a major.minor version number (e.g. xx.yy). In cases where the changes are
exceptionally minor, we may have a major.minor.minor naming convention (e.g. XX.yy.z).

 Errata versions are produced when approved updates to the specification do not include any significant new
material or modify existing behavior. Errata are designated by adding an upper-case letter at the end of the
version number, such as xx.yy errata A.

1.9. Conventions Used in this Document 14

CHAPTER
TWO

OVERVIEW

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI application images. When UEFI
drivers and UEFI applications are loaded they have access to all UEFI-defined runtime and boot services. See the
Booting Sequence figure below.

EFI
Ser 4 OS Loader

EFI API

EFI
0S Loader
Load

EFl Image

Load Services

Terminate

Standard Driversand Boot from Operation
firmware applications ordered list handed off
platform loaded of EFIOS to OS loader
initialization iteratively loaders

—> APl specified ---9 Value add implementation
Boot Manager . EFl binaries

OM13144

Fig. 2.1: Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware into a single platform firmware
menu. These platform firmware menus will allow the selection of any UEFI OS loader from any partition on any boot
medium that is supported by UEFI boot services. An UEFI OS loader can support multiple options that can appear
on the user interface. It is also possible to include legacy boot options, such as booting from the A: or C: drive in the
platform firmware boot menus.

15

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined System Partition. An UEFI-
defined System Partition is required by UEFI to boot from a block device. UEFI does not require any change to the first
sector of a partition, so it is possible to build media that will boot on both legacy architectures and UEFI platforms.

2.1 Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this specification (including OS first
stage loader) or UEFI drivers from any file on an UEFI-defined file system or through the use of an UEFI-defined image
loading service. UEFI defines NVRAM variables that are used to point to the file to be loaded. These variables also
contain application-specific data that are passed directly to the UEFI application. The variables also contain a human
readable string that can be displayed in a menu to the user.

The variables defined by UEFI allow the system firmware to contain a boot menu that can point to all of the operating
systems, and even multiple versions of the same operating systems. The design goal of UEFI was to have one set of
boot menus that could live in platform firmware. UEFI specifies only the NVRAM variables used in selecting boot
options. UEFI leaves the implementation of the menu system as value added implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the PC-AT-class system. The
PC-AT-class systems today are restricted to boot from the first floppy, hard drive, CD-ROM, USB keys, or network
card attached to the system. Booting from a common hard drive can cause many interoperability problems between
operating systems, and different versions of operating systems from the same vendor.

2.1.1 UEFI Images

UEFI Images are a class of files defined by UEFI that contain executable code. The most distinguishing feature of
UEFI Images is that the first set of bytes in the UEFI Image file contains an image header that defines the encoding of
the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The modification to the signature
value in the PE32+ image is done to distinguish UEFI images from normal PE32 executables. The “+” addition to
PE32 provides the 64-bit relocation fix-up extensions to standard PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header are defined below. The major
differences between image types are the memory type that the firmware will load the image into, and the action taken
when the image’s entry point exits or returns. A UEFI application image is always unloaded when control is returned
from the image’s entry point. A UEFI driver image is only unloaded if control is passed back with a UEFI error code.

// PE32+ Subsystem type for EFI images

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

// PE32+ Machine type for EFI images

#define EFI_IMAGE_MACHINE_IA32 0x014c
#define EFI_IMAGE_MACHINE_IA64 0x0200
#define EFI_IMAGE_MACHINE_EBC 0xOEBC
#define EFI_IMAGE_MACHINE_x64 0x8664
#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2
#define EFI_IMAGE_MACHINE_AARCH64 0xAA64
#define EFI_IMAGE_MACHINE_RISCV32 0x5032
#define EFI_IMAGE_MACHINE_RISCV64 0x5064
#define EFI_IMAGE_MACHINE_RISCV128 0x5128

(continues on next page)

2.1. Boot Manager 16

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

#define EFI_IMAGE_MACHINE_LOONGARCH32 0x6232
#define EFI_IMAGE_MACHINE_LOONGARCH64 0x6264
© Note

This image type is chosen to enable UEFI images to contain Thumb and Thumb? instructions while defining the
EFI interfaces themselves to be in ARM mode.

Table 2.1: UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type
EFI_IMAGE_SUSBS EfiLoaderCode EfiLoaderData
YTEM_EFI_APPLICATION

EFI _IMAGE_SUBSYSTEM_EFI EfiBootServicesCode EfiBootServicesData
_BOOT_SERVICE_DRIVER

EFI_IMAGE_SUBSYSTE Ef iRuntimeServicesCode Ef iRuntimeServicesData

M_EFI_RUNTIME_DRIVER

The Machine value that is found in the PE image file header is used to indicate the machine code type of the image. The
machine code types for images with the UEFI image signature are defined below. A given platform must implement
the image type native to that platform and the image type for EFI Byte Code (EBC). Support for other machine code
types is optional to the platform.

A UEFI image is loaded into memory through the EFI_BOOT _SERVICES.Loadlmage() Boot Service. This service
loads an image with a PE32+ format into memory. This PE32+ loader is required to load all sections of the PE32+
image into memory. Once the image is loaded into memory, and the appropriate fix-ups have been performed, control is
transferred to a loaded image at the AddressOfEntryPoint reference according to the normal indirect calling conventions
of applications based on supported 32-bit, 64-bit, or 128-bit processors. All other linkage to and from an UEFI image
is done programmatically.

2.1.2 UEFI Applications

Applications written to this specification are loaded by the Boot Manager or by other UEFI applications. To load a UEFI
application the firmware allocates enough memory to hold the image, copies the sections within the UEFI application
image to the allocated memory, and applies the relocation fix-ups needed. Once done, the allocated memory is set to be
the proper type for code and data for the image. Control is then transferred to the UEFI application’s entry point. When
the application returns from its entry point, or when it calls the Boot Service EFI_BOOT_SERVICES.Loadlmage(),
the UEFI application is unloaded from memory and control is returned to the UEFI component that loaded the UEFI
application.

When the Boot Manager loads a UEFI application, the image handle may be used to locate the “load options” for the
UEFI application. The load options are stored in nonvolatile storage and are associated with the UEFI application being
loaded and executed by the Boot Manager.

2.1. Boot Manager 17

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.1.3 UEFI OS Loaders

A UEFI OS loader is a special type of UEFI application that normally takes over control of the system from firmware
conforming to this specification. When loaded, the UEFI OS loader behaves like any other UEFI application in that
it must only use memory it has allocated from the firmware and can only use UEFI services and protocols to access
the devices that the firmware exposes. If the UEFI OS loader includes any boot service style driver functions, it must
use the proper UEFI interfaces to obtain access to the bus specific-resources. That is, /O and memory-mapped device
registers must be accessed through the proper bus specific I/O calls like those that a UEFI driver would perform.

If the UEFI OS loader experiences a problem and cannot load its operating system correctly, it can release all allocated
resources and return control back to the firmware via the Boot Service Exit() call. The Exit() call allows both an error
code and ExitData to be returned. The ExitData contains both a string and OS loader-specific data to be returned.
If the UEFI OS loader successfully loads its operating system, it can take control of the system by using the Boot
Service EFI_BOOT _SERVICES.ExitBootServices() . After successfully calling ExitBootServices() , all boot services
in the system are terminated, including memory management, and the UEFI OS loader is responsible for the continued
operation of the system.

2.1.4 UEFI Drivers

UEFI drivers are loaded by the Boot Manager, firmware conforming to this specification, or by other UEFI ap-
plications. To load a UEFI driver the firmware allocates enough memory to hold the image, copies the sections
within the UEFI driver image to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then transferred to the
UEFI driver’s entry point. When the UEFI driver returns from its entry point, or when it calls the Boot Service
EFI_BOOT_SERVICES.ExitBootServices() , the UEFI driver is optionally unloaded from memory and control is re-
turned to the component that loaded the UEFI driver. A UEFI driver is not unloaded from memory if it returns a status
code of EFI_SUCCESS . If the UEFI driver’s return code is an error status code, then the driver is unloaded from
memory.

There are two types of UEFI drivers: boot service drivers and runtime drivers. The only difference between these two
driver types is that UEFI runtime drivers are available after a UEFI OS loader has taken control of the platform with
the Boot Service EFI_BOOT_SERVICES.ExitBootServices().

UEFI boot service drivers are terminated when ExitBootServices() is called, and all the memory resources consumed
by the UEFI boot service drivers are released for use in the operating system environment.

A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER gets fixed up with virtual mappngs
when the OS calls SetVirtualAddressMap() .

2.1. Boot Manager 18

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot services and runtime services.

2.2.1 UEFI Services

The purpose of the UEFI interfaces is to define a common boot environment abstraction for use by loaded UEFI images,
which include UEFI drivers, UEFI applications, and UEFI OS loaders. The calls are defined with a full 64-bit interface,
so that there is headroom for future growth. The goal of this set of abstracted platform calls is to allow the platform
and OS to evolve and innovate independently of one another. Also, a standard set of primitive runtime services may be
used by operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option ROMs as the underlying
implementation methodology for the boot services. The interfaces have been designed in such as way as to map back
into legacy interfaces. These interfaces have in no way been burdened with any restrictions inherent to legacy Option
ROM:s.

The UEFI platform interfaces are intended to provide an abstraction between the platform and the OS that is to boot
on the platform. The UEFI specification also provides abstraction between diagnostics or utility programs and the
platform; however, it does not attempt to implement a full diagnostic OS environment. It is envisioned that a small
diagnostic OS-like environment can be easily built on top of an UEFI system. Such a diagnostic environment is not
described by this specification. Interfaces added by this specification are divided into the following categories and are
detailed later in this document:

* Runtime services

* Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols

— Protocol services

2.2.2 Runtime Services

This section describes UEFI runtime service functions. The primary purpose of the runtime services is to abstract
minor parts of the hardware implementation of the platform from the OS. Runtime service functions are available
during the boot process and also at runtime provided the OS switches into flat physical addressing mode to make the
runtime call. However, if the OS loader or OS uses the Runtime Service SetVirtualAddressMap() service, the OS will
only be able to call runtime services in a virtual addressing mode. All runtime interfaces are non-blocking interfaces
and can be called with interrupts disabled if desired.To ensure maximum compatibility with existing platforms it is
recommended that all UEFI modules that comprise the Runtime Services be represented in the MemoryMap as a
single EFI_MEMORY_DESCRIPTOR of Type EfiRuntimeServicesCode.

In all cases memory used by the runtime services must be reserved and not used by the OS. runtime services memory
is always available to an UEFI function and will never be directly manipulated by the OS or its components. UEFI
is responsible for defining the hardware resources used by runtime services, so the OS can synchronize with those
resources when runtime service calls are made, or guarantee that the OS never uses those resources. See the table
below for lists of the Runtime Services functions.

2.2. Firmware Core 19

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.2: UEFI Runtime Services

Name

GetTime()

SetTime()

GetWakeupTime()

SetWakeupTime()

GetVariable()

GetNextVariableName()

SetVariable()

SetVirtualAddressMap()

ConvertPointer()

Get Next High Monotonic Count

ResetSystem()

Update Capsule

QueryCapsuleCapabilities()

QueryVariablelnfo()

Description
Returns the current time, time context, and time keeping
capabilities.

Sets the current time and time context.

Returns the current wakeup alarm settings.

Sets the current wakeup alarm settings.

Returns the value of a named variable.

Enumerates variable names.

Sets, and if needed creates, a variable.

Switches all runtime functions from physical to virtual

addressing.

Used to convert a pointer from physical to virtual ad-
dressing.

Subsumes the platform’s monotonic counter functional-
ity.

Resets all processors and devices and reboots the system.

Passes capsules to the firmware with both virtual and
physical mapping.

Returns if the capsule can be supported via UpdateCap-
sule().
Returns information about the EFI variable store.

2.2. Firmware Core

20

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through pointers in common, archi-
tecturally defined, calling onventions found in C compilers. Pointers to the various global UEFI functions are found in
the EFI_RUNTIME_SERVICES and EFI_BOOT_SERVICES tables that are located via the system table. Pointers to
other functions defined in this specification are located dynamically through device handles. In all cases, all pointers to
UEFI functions are cast with the word EFIAPI . This allows the compiler for each architecture to supply the proper com-
piler keywords to achieve the needed calling conventions. When passing pointer arguments to Boot Services, Runtime
Services, and Protocol Interfaces, the caller has the following responsibilities:

* It is the caller’s responsibility to pass pointer parameters that reference physical memory locations. If a pointer
is passed that does not point to a physical memory location (i.e., a memory mapped I/O region), the results are
unpredictable and the system may halt.

* Itis the caller’s responsibility to pass pointer parameters with correct alignment. If an unaligned pointer is passed
to a function, the results are unpredictable and the system may halt.

* It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is explicitly allowed. If a
NULL pointer is passed to a function, the results are unpredictable and the system may hang.

* Unless otherwise stated, a caller should not make any assumptions regarding the state of pointer parameters if
the function returns with an error.

* A caller may not pass structures that are larger than native size by value and these structures must be passed by
reference (via a pointer) by the caller. Passing a structure larger than native width (4 bytes on supported 32-bit
processors; 8 bytes on supported 64-bit processor instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are described in more detail below. Any
function or protocol may return any valid return code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public interfaces include the image
entry point, UEFI event handlers, and protocol member functions. The type EFIAPI is used to indicate conformance to
the calling conventions defined in this section. Non public interfaces, such as private functions and static library calls,
are not required to follow the UEFI calling conventions and may be optimized by the compiler.

2.3.1 Data Types

See the table below which lists the common data types that are used in the interface definitions, and the following table,
Modifiers for Common UEFI Data Types, lists their modifiers. Unless otherwise specified all data types are naturally
aligned. Structures are aligned on boundaries equal to the largest internal datum of the structure and internal data are
implicitly padded to achieve natural alignment.

The values of the pointers passed into or returned by the UEFI interfaces must provide natural alignment for the under-
lying types.

Common UEFI Data Types
Table 2.3: Common UEFI Data Types
Mnemonic Description
BOOLEAN Logical Boolean. 1-byte value containing a O for FALSE or a 1 for TRUE. Other
values are undefined.
INTN Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8

bytes on supported 64-bit processor instructions, 16 bytes on supported 128-bit pro-
cessor instructions)

continues on next page

2.3. Calling Conventions 21

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.3 — continued from previous page

UINTN

INTS
UINTS
INTI16
UINTI6
INT32
UINT32
INT64
UINT64
INTI28
UINTI28
CHARS

CHARI6

VOID
EFI GUID

EFI STATUS
EFI_HANDLE
EFI_EVENT
EFI_LBA

EFI TPL
EFI_MAC_ADDRESS
EFI_IPv4_ADDRESS
EFI_IPv6_ADDRESS
EFI IP_ADDRESS

<Enumerated Type>

sizeof (VOID *)

Unsigned value of native width. (4 bytes on supported 32-bit processor instructions,
8 bytes on supported 64-bit processor instructions, 16 bytes on supported 128-bit pro-
cessor instructions)

1-byte signed value.

1-byte unsigned value.

2-byte signed value.

2-byte unsigned value.

4-byte signed value.

4-byte unsigned value.

8-byte signed value.

8-byte unsigned value.

16-byte signed value.

16-byte unsigned value.

1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and strings
are stored in 8-bit ASCII encoding format, using the ISO-Latin-1 character set.
2-byte Character. Unless otherwise specified all characters and strings are stored in
the UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.
Undeclared type.

128-bit buffer containing a unique identifier value. Unless otherwise specified, aligned
on a 64-bit boundary.

Status code. Type UINTN.

A collection of related interfaces. Type VOID *.

Handle to an event structure. Type VOID *.

Logical block address. Type UINT64.

Task priority level. Type UINTN.

32-byte buffer containing a network Media Access Control address.

4-byte buffer. An IPv4 internet protocol address.

16-byte buffer. An IPv6 internet protocol address.

16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol ad-
dress.

Element of a standard ANSI C enum type declaration. Type INT32.or UINT32. ANSI
C does not define the size of sign of an enum so they should never be used in structures.
ANSI C integer promotion rules make INT32 or UINT32 interchangeable when passed
as an argument to a function.

4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit pro-
cessor instructions. 16 bytes on supported 128-bit processor.

Bitfields Bitfields are ordered such that bit O is the least significant bit.
Table 2.4: Modifiers for Common UEFI Data Types
Mnemonic Description
IN Datum is passed to the function.
ouTt Datum is returned from the function.
OPTIONAL Passing the datum to the function is optional, and a NULL may be passed if the value
is not supplied.
CONST Datum is read-only.
EFIAPI Defines the calling convention for UEFI interfaces.

2.3. Calling Conventions

22

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.2 1A-32 Platforms

All functions are called with the C language calling convention. The general-purpose registers that are volatile across
function calls are eax, ecx, and edx. All other general-purpose registers are nonvolatile and are preserved by the target
function. In addition, unless otherwise specified by the function definition, all other registers are preserved.

Firmware boot ‘services and runtime services run in the following processor execution mode prior to the OS calling
ExitBootServices():

* Uniprocessor, as described in chapter 8.4 of:
- Intel 64 and TA-32 Architectures Software Developer’s Manual
- Volume 3, System Programming Guide, Part 1
- Order Number: 253668-033US, December 2009

- See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel Pro-
cessor Manuals.””

* Protected mode

* Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address Extensions) mode is
recommended. If paging mode is enabled, any memory space defined by the UEFI memory map is identity
mapped (virtual address equals physical address). The mappings to other regions are undefined and may
vary from implementation to implementation.

* Selectors are set to be flat and are otherwise not used.

* Interrupts are enabled-though no interrupt services are supported other than the UEFI boot services timer
functions (All loaded device drivers are serviced synchronously by “polling.”)

* Direction flag in EFLAGsS is clear.
* Other general purpose flag registers are undefined.
* 128 KiB, or more, of available stack space.

* The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped page
tables.

* Floating-point control word must be initialized to 0x027F (all exceptions masked, double-precision,
round-to-nearest).

* Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions masked,
round-to-nearest, flush to zero for masked underflow).

* CRO.EM must be zero.
* CRO.TS must be zero.

An application written to this specification may alter the processor execution mode, but the UEFI image must ensure
firmware boot services and runtime services are executed with the prescribed execution environment.

After an Operating System calls ExitBootServices() , firmware boot services are no longer available and it is illegal
to call any boot service. After ExitBootServices, firmware runtime services are still available and may be called with
paging enabled and virtual address pointers if SetVirtualAddressMap() has been called describing all virtual address
ranges used by the firmware runtime service. For an operating system to use any UEFI runtime services, it must:

* Preserve all memory in the memory map marked as runtime code and runtime data
* Call the runtime service functions, with the following conditions:

- In protected mode

2.3. Calling Conventions 23

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- Paging may or may not be enabled, however if paging is enabled and SetVirtual AddressMap()
has not been called, any memory space defined by the UEFI memory map is identity mapped
(virtual address equals physical address), although the attributes of certain regions may not have
all read, write, and execute attributes or be unmarked for purposes of platform protection. The
mappings to other regions are undefined and may vary from implementation to implementation.
See description of SetVirtualAddressMap() for details of memory map after this function has
been called.

- Direction flag in EFLAGs clear
- 4 KiB, or more, of available stack space
- The stack must be 16-byte aligned

- Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

- Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all excep-
tions masked, round-to-nearest, flush to zero for masked underflow)

- CRO.EM must be zero
- CRO.TS must be zero
- Interrupts disabled or enabled at the discretion of the caller

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (rec-
ommended) or EfiACPIMemoryNVS . ACPI FACS must be contained in memory of type EfiACPIMem-
oryNVS.

* The system firmware must not request a virtual mapping for any memory descriptor of type EfiACPIRe-
claimMemory or EfiACPIMemoryNVS .

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI MEMORY_DESCRIPTOR
having the EFI_ MEMORY_RUNTIME bit set must be aligned on a 4 KiB boundary and must be a multiple
of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EAACPIMemoryNVS . The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended), EfiBootServicesData , EfiACPIReclaimMem-
ory or EfiACPIMemoryNVS . Tables loaded at runtime must be contained in memory of type EfiRuntime-
ServicesData (recommended) or ERACPIMemoryNVS .

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be

2.3. Calling Conventions 24

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

used for the storage of any EFI Configuration Tables. Also, only OSes conforming to the UEFI Specification are
guaranteed to handle SMBIOS table in memory of type EfiBootServicesData.

2.3.2.1 Handoff State

When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit mode. All descriptors
are set to their 4GiB limits so that all of memory is accessible from all segments.

The Figure below (Stack After AddressOfEntryPoint Called, IA-32)shows the stack after AddressOfEntryPoint in the
image’s PE32+ header has been called on supported 32-bit systems. All UEFI image entry points take two parameters.
These are the image handle of the UEFI image, and a pointer to the EFI System Table.

Stack Location

EFI_SYSTEM_TABLE * ESP + 8
EFI_HANDLE ESP +4
<return address> ESP

OM13145

Fig. 2.2: Stack After AddressOfEntryPoint Called, IA-32

2.3.2.2 Calling Convention

All functions are called with the C language calling convention. The general-purpose registers that are volatile across
function calls are eax , ecx , and edx . All other general-purpose registers are nonvolatile and are preserved by the target
function.

In addition, unless otherwise specified by the function definition, all other CPU registers (including MMX and XMM)
are preserved.

The floating point status register is not preserved by the target function. The floating point control register and MMX
control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(0).

2.3.3 Intel®ltanium®-Based Platforms
UEFI executes as an extension to the SAL execution environment with the same rules as laid out by the SAL specifica-
tion.
During boot services time the processor is in the following execution mode:
* Uniprocessor, as detailed in chapter 13.1.2 of:
- Intel Itanium Architecture Software Developer’s Manual
- Volume 2: System Architecture

- Revision 2.2

2.3. Calling Conventions 25

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- January 2006

- See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel Ita-
nium Documentation”.

- Document Number: 245318-005
* Physical mode
* 128 KiB, or more, of available stack space
* 16 KiB, or more, of available backing store space
- FPSR.traps: Set to all 1’s (all exceptions disabled)
- FPSR.sf0:
* .pc: Precision Control - 11b (extended precision)
* rc: Rounding Control - 0 (round to nearest)
* .wre: Widest Range Exponent - 0 (IEEE mode)
* ftz: Flush-To-Zero mode - O (off)
- FPSR.sf1:
* .td: Traps Disable = 1 (traps disabled)
* pc: Precision Control - 11b (extended precision)
* rc: Rounding Control - 0 (round to nearest)
* wreWidest Range Exponent - 1 (full register exponent range)
* ftz Flush-To-Zero mode - O (off)
- FPSR.sf2,3:
* td Traps Disable = 1 (traps disabled)
* pc: Precision Control - 11b (extended precision)
* .rc: Rounding Control - O (round to nearest)
* wre: Widest Range Exponent - 0 (IEEE mode)
* ftz: Flush-To-Zero mode - 0 (off)

An application written to this specification may alter the processor execution mode, but the UEFI image must ensure
firmware boot services and runtime services are executed with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available and it is illegal to
call any boot service. After ExitBootServices, firmware runtime services are still available When calling runtime ser-
vices, paging may or may not be enabled, however if paging is enabled and SetVirtual AddressMap() has not been called,
any memory space defined by the UEFI memory map is identity mapped (virtual address equals physical address). The
mappings to other regions are undefined and may vary from implementation to implementation. See description of
SetVirtualAddressMap() for details of memory map after this function has been called. After ExitBootServices(), run-
time service functions may be called with interrupts disabled or enabled at the discretion of the caller.

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (recom-
mended) or ERACPIMemoryNVS. CPI FACS must be contained in memory of type EfiACPIMemoryNVS.

* The system firmware must not request a virtual mapping for any memory descriptor of type EfiACPIRe-
claimMemory or EfiACPIMemoryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS. must be aligned
on an 8 KiB boundary and must be a multiple of 8 KiB in size.

2.3. Calling Conventions 26

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_MEMORY_DESCRIPTOR
having the EFI_MEMORY_RUNTIME bit set must be aligned on an 8 KiB boundary and must be a
multiple of 8 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EiACPIMemoryNVS . The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in mem-
ory of type EfiRuntimeServicesData (recommended), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type EfiRuntimeSer-
vicesData (recommended) or EfiACPIMemoryNVS.

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. Also, only OSes conforming to the UEFI Specification are guaranteed to handle SMBIOS table in
memory of type EfiBootServicesData.

Refer to the TA-64 System Abstraction Layer Specification (References) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel® Itanium®-based applications.
Refer to the document 64 Bit Runtime Architecture and Software Conventions for IA-64 (References) for more infor-
mation.

2.3.3.1 Handoff State

UEFI uses the standard P64 C calling conventions that are defined for Itanium-based operating systems. The Figure
below shows the stack after ImageEntryPoint has been called on Itanium-based systems. The arguments are also stored
in registers: outQ contains EFI_HANDLE and outl contains the address of the EFI_SYSTEM_TABLE . The gp for
the UEFI Image will have been loaded from the plabel pointed to by the AddressOfEntryPoint in the image’s PE32+
header. All UEFI image entry points take two parameters. These are the image handle of the image, and a pointer to
the System Table.

Stack Location Register

EFI_SYSTEM_TABLE * SP+38 out1
EFI_HANDLE SP out0

OM13146

Fig. 2.3: Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (References) defines the state of the system registers at boot handoff. The SAL specification
also defines which system registers can only be used after UEFI boot services have been properly terminated.

2.3. Calling Conventions 27

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.3.2 Calling Convention

UEFI executes as an extension to the SAL execution environment with the same rules as laid out by the SAL specifica-
tion. UEFI procedures are invoked using the P64 C calling conventions defined for Intel®Itanium®-based applications.
Refer to the document 64 Bit Runtime Architecture and Software Conventions for IA-64 (see the index appendix for
more information).

For floating point, functions may only use the lower 32 floating point registers Return values appear in f8-f15 registers.
Single, double, and extended values are all returned using the appropriate format. Registers f6-f7 are local registers
and are not preserved for the caller. All other floating point registers are preserved. Note that, when compiling UEFI
programs, a special switch will likely need to be specified to guarantee that the compiler does not use f32-f127, which
are not normally preserved in the regular calling convention for Itanium. A procedure using one of the preserved
floating point registers must save and restore the caller’s original contents without generating a NaT consumption fault.

Floating point arguments are passed in f8-f15 registers when possible. Parameters beyond the registers appear in
memory, as explained in Section 8.5 of the Itanium Software Conventions and Runtime Architecture Guide. Within the
called function, these are local registers and are not preserved for the caller. Registers f6-f7 are local registers and are
not preserved for the caller. All other floating point registers are preserved. Note that, when compiling UEFI programs,
a special switch will likely need to be specified to guarantee that the compiler does not use f32-f127, which are not
normally preserved in the regular calling convention for Itanium. A procedure using one of the preserved floating point
registers must save and restore the caller’s original contents without generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function. Flags fields in SF1,2,3 are not pre-
served for the caller. Flags fields in SFO upon return will reflect the value passed in, and with bits set to 1 corresponding
to any IEEE exceptions detected on non-speculative floating-point operations executed as part of the callee.

Floating-point operations executed by the callee may require software emulation. The caller must be prepared to handle
FP Software Assist (FPSWA) interruptions. Callees should not raise IEEE traps by changing FPSR.traps bits to 0 and
then executing floating-point operations that raise such traps.

2.3.4 x64 Platforms

All functions are called with the C language calling convention. Detailed Calling Conventions for more detail.
During boot services time the processor is in the following execution mode:
* Uniprocessor, as described in chapter 8.4 of:

- Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3, System Program-
ming Guide, Part 1, Order Number: 253668-033US, December 2009

-See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel Pro-
cessor Manuals”.

* Long mode, in 64-bit mode

* Paging mode is enabled and any memory space defined by the UEFI memory map is identity mapped
(virtual address equals physical address), although the attributes of certain regions may not have all read,
write, and execute attributes or be unmarked for purposes of platform protection. The mappings to other
regions, such as those for unaccepted memory, are undefined and may vary from implementation to im-
plementation.

* Selectors are set to be flat and are otherwise not used.

* Interrupts are enabled-though no interrupt services are supported other than the UEFI boot services timer
functions (All loaded device drivers are serviced synchronously by “polling.”)

* Direction flag in EFLAGs is clear

* Other general purpose flag registers are undefined

2.3. Calling Conventions 28

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* 128 KiB, or more, of available stack space

* The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped page
tables.

* Floating-point control word must be initialized to 0x037F (all exceptions masked, double-extended-
precision, round-to-nearest)

* Multimedia-extensions control word (if supported) must be initialized to Ox 1F80 (all exceptions masked,
round-to-nearest, flush to zero for masked underflow).

* CRO.EM must be zero
* CRO.TS must be zero

For an operating system to use any UEFI runtime services, it must:

* Preserve all memory in the memory map marked as runtime code and runtime data
* Call the runtime service functions, with the following conditions:

* In long mode, in 64-bit mode

* Paging enabled

* All selectors set to be flat with virtual = physical address. If the UEFI OS loader or OS used SetVirtu-
alAddressMap() to relocate the runtime services in a virtual address space, then this condition does not
have to be met. See description SetVirtualAddressMap() for details of memory map after this function has
been called.

* Direction flag in EFLAGs clear
* 4 KiB, or more, of available stack space
* The stack must be 16-byte aligned

* Floating-point control word must be initialized to 0x037F (all exceptions masked, double-extended-
precision, round-to-nearest)

* Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions masked,
round-to-nearest, flush to zero for masked underflow)

* CRO.EM must be zero
* CRO.TS must be zero
* Interrupts may be disabled or enabled at the discretion of the caller.

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (rec-
ommended) or EfiACPIMemoryNVS . ACPI FACS must be contained in memory of type EfiACPIMem-
oryNVS .

* The system firmware must not request a virtual mapping for any memory descriptor of type EfiACPIRe-
claimMemory or EfiACPIMemoryNVS .

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_ MEMORY_DESCRIPTOR
having the EFI_ MEMORY_RUNTIME bit set must be aligned on a 4 KiB boundary and must be a multiple
of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

23.

Calling Conventions

29

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* ACPI tables loaded at runtime must be contained in memory of type EAACPIMemoryNVS . The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended), EfiBootServicesData , EfiACPIReclaimMem-
ory or EiACPIMemoryNVS . Tables loaded at runtime must be contained in memory of type EfiRuntime-
ServicesData (recommended) or EfiACPIMemoryNVS.

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. Also, only OSes conforming to the UEFI Specification are guaranteed to handle SMBIOS table in
memory of type EfiBootServicesData.

2.3.4.1 Handoff State

Rex - EFI_HANDLE
Rdx - EFI_SYSTEM_TABLE*

RSP - <return address>

2.3.4.2 Detailed Calling Conventions

The caller passes the first four integer arguments in registers. The integer values are passed from left to right in Rcx,
Rdx, R8, and RO registers. The caller passes arguments five and above onto the stack. All arguments must be right-
justified in the register in which they are passed. This ensures the callee can process only the bits in the register that
are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The caller passes structures and
unions of size 8, 16, 32, or 64 bits as if they were integers of the same size. The caller is not allowed to pass structures
and unions of other than these sizes and must pass these unions and structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The most common requirement is to
take the address of an argument.

If the parameters are passed through varargs then essentially the typical parameter passing applies, including spilling
the fifth and subsequent arguments onto the stack. The callee must dump the arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does not fit within 64-bits, then
the caller must allocate and pass a pointer for the return value as the first argument, Rcx. Subsequent arguments are
then shifted one argument to the right, so for example argument one would be passed in Rdx. User-defined types to be
returned must be 1,2,4,8,16,32, or 64 bits in length.

The registers Rax, Rcx Rdx R8, R9, R10, R11, and XMMO0-XMMS are volatile and are, therefore, destroyed on function
calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMMI15 are considered nonvolatile and must
be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require special treatment.

A caller must always call with the stack 16-byte aligned.

2.3. Calling Conventions 30

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

For MMX, XMM and floating-point values, return values that can fit into 64-bits are returned through RAX (including
MMX types). However, XMM 128-bit types, floats, and doubles are returned in XMMO. The floating point status
register is not saved by the target function. Floating-point and double-precision arguments are passed in XMMO -
XMM3 (up to 4) with the integer slot (RCX, RDX, R8, and R9) that would normally be used for that cardinal slot being
ignored (see example) and vice versa. XMM types are never passed by immediate value but rather a pointer will be
passed to memory allocated by the caller. MMX types will be passed as if they were integers of the same size. Callees
must not unmask exceptions without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers (including MMX and XMM)
are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application

Boot Services define an execution environment where paging is not enabled (supported 32-bit) or where translations
are enabled but mapped virtual equal physical (x64) and this section will describe how to write an application with
alternate translations or with paging enabled. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time.

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure that the firmware executes
with each supplanted data structure. There are two ways that firmware conforming to this specification can execute
when the application has paging enabled.

* Explicit firmware call
* Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before each UEFI call. However the
possibility of preemption may require the translation enabled application to disable interrupts while alternate transla-
tions are enabled. It’s legal for the translation enabled application to enable interrupts if the application catches the
interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the UEFI ISR con-
text is executed it will return to the translation enabled application context and restore any mappings required by the
application.

2.3.5 AArch32 Platforms

All functions are called with the C language calling convention specified in Detailed Calling Convention . In addition,
the invoking OSs can assume that unaligned access support is enabled if it is present in the processor.

During boot services time the processor is in the following execution mode:
* Unaligned access should be enabled if supported; Alignment faults are enabled otherwise.
* Uniprocessor.
* A privileged mode.

* The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any RAM defined
by the UEFI memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation

* The core will be configured as follows (common across all processor architecture revisions):
- MMU enabled
- Instruction and Data caches enabled
- Access flag disabled

- Translation remap disabled

2.3. Calling Conventions 31

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- Little endian mode

- Domain access control mechanism (if supported) will be configured to check access
permission bits in the page descriptor

- Fast Context Switch Extension (FCSE) must be disabled
This will be achieved by:

- Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1,
C=1, B=0, TRE=0, AFE=0, M=1

- Configuring the CP15 ¢3 Domain Access Control Register (DACR) to
0x33333333.

- Configuring the CP15 cl System Control Register (SCTLR), A=1 on
ARMv4 and ARMv5, A=0, U=1 on ARMv6 and ARMV7.

The state of other system control register bits is not dictated by this specification.

* Implementations of boot services will enable architecturally manageable caches and TLBs i.e., those that
can be managed directly using CP15 operations using mechanisms and procedures defined in the ARM
Architecture Reference Manual. They should not enable caches requiring platform information to manage
or invoke non-architectural cache/TLB lockdown mechanisms

* MMU configuration — Implementations must use only 4k pages and a single translation base register.
On devices supporting multiple translation base registers, TTBR0O must be used solely. The binding does
not mandate whether page tables are cached or un-cached.

- On processors implementing the ARMv4 through ARMv6K architecture definitions, the core
is additionally configured to disable extended page tables support, if present. This will be
achieved by configuring the CP15 c1 System Control Register (SCTLR) as follows: XP=0

- On processors implementing the ARMv7 and later architecture definitions, the core will be
configured to enable the extended page table format and disable the TEX remap mechanism.
This will be achieved by configuring the CP15 c1 System Control Register (SCTLR) as follows:
XP=1, TRE=0

* Interrupts are enabled-though no interrupt services are supported other than the UEFI boot services timer
functions (All loaded device drivers are serviced synchronously by “polling.”)

* 128 KiB or more of available stack space
For an operating system to use any runtime services, it must:
* Preserve all memory in the memory map marked as runtime code and runtime data
* Call the runtime service functions, with the following conditions:
- In a privileged mode.

- The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See description
of SetVirtual AddressMap() for details of memory map after this function has been called.

- The processor must be in a mode in which it has access to the system address regions specified
in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

- 4 KiB, or more, of available stack space

- Interrupts may be disabled or enabled at the discretion of the caller

2.3. Calling Conventions 32

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

An application written to this specification may alter the processor execution mode, but the invoking OS must ensure

firmware boot services and runtime services are executed with the prescribed execution environment.
If ACPI is supported:

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (rec-
ommended) or EiACPIMemoryNVS. ACPI FACS must be contained in memory of type EfiACPIMemo-
ryNVS

* The system firmware must not request a virtual mapping for any memory descriptor of type EfiACPIRe-
claimMemory or EiACPIMemoryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_MEMORY_DESCRIPTOR
having the EFI. MEMORY_RUNTIME bit set must be aligned on a 4 KiB boundary and must be a multiple
of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended), EfiBootServicesData , EfiACPIReclaimMem-
ory or EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type EfiRuntime-
ServicesData (recommended) or EiACPIMemoryNVS.

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. Also, only OSes conforming to the UEFI Specification are guaranteed to handle SMBIOS table in

memory of type EfiBootServicesData*.

2.3.5.1 Handoff State

RO - EFI_HANDLE
R1 - EFI_SYSTEM_TABLE*
R14 - Return Address

2.3. Calling Conventions

33

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.5.2 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an application that
creates an alternative execution environment. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure that the firmware
executes with each supplanted functionality. There are two ways that firmware conforming to this specification can
execute in this alternate execution environment:

* Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before each UEFI call.
However the possibility of preemption may require the alternate execution-enabled application to disable interrupts
while the alternate execution environment is active. It’s legal for the alternate execution environment enabled appli-
cation to enable interrupts if the application catches the interrupt and restores the EFI firmware environment prior to
calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will return to the alternate execution envi-
ronment enabled application context.

An alternate execution environment created by a UEFI application must not change the semantics or behavior of the
MMU configuration created by the UEFI firmware prior to invoking ExitBootServices(), including the bit layout of the
page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception vector to point to appropriate
code.

2.3.5.3 Detailed Calling Convention

The base calling convention for the ARM binding is defined here:
Procedure Call Standard for the ARM Architecture V2.06 (or later)

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm Architecture Base Calling Con-
vention”.

This binding further constrains the calling convention in these ways:

* Calls to UEFI defined interfaces must be done assuming that the target code requires the ARM instruction
set state. Images are free to use other instruction set states except when invoking UEFI interfaces.

* Floating point, SIMD, vector operations and other instruction set extensions must not be used.
* Only little endian operation is supported.

* The stack will maintain 8 byte alignment as described in the AAPCS for public interfaces.

* Use of coprocessor registers for passing call arguments must not be used

* Structures (or other types larger than 64-bits) must be passed by reference and not by value

* The EFI ARM platform binding defines register r9 as an additional callee-saved variable register.

2.3. Calling Conventions 34

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.6 AArch64 Platforms

AArch64 UEFI will only execute 64-bit ARM code, as the ARMv8 architecture does not allow for the mixing of 32-bit
and 64-bit code at the same privilege level.

All functions are called with the C language calling convention specified in Detailed calling Convention section below.
During boot services only a single processor is used for execution. All secondary processors must be either powered
off or held in a quiescent state.

The primary processor is in the following execution mode:
* Unaligned access must be enabled.

* Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or Non-secure
EL1(Kernel).

* The MMU is enabled and any RAM defined by the UEFI memory map is identity mapped (virtual address
equals physical address). The mappings to other regions are undefined and may vary from implementation
to implementation

* The core will be configured as follows:

- MMU enabled - Instruction and Data caches enabled - Little endian mode - Stack Alignment
Enforced - NOT Top Byte Ignored - Valid Physical Address Space - 4K Translation Granule

This will be achieved by:
1. Configuring the System Control Register SCTLR_EL2 or SCTLR_EL1:
* EE=0, I=1, SA=1, C=1, A=0, M=1
2. Configuring the appropriate Translation Control Register:
* TCR_EL2
- TBI=0 - PS must contain the valid Physical Address Space Size. - TG0=00
* TCR_EL1
- TBIO=0 - IPS must contain the valid Intermediate Physical Address Space Size. - TG0=00
Note: The state of other system control register bits is not dictated by this specification.

* All floating point traps and exceptions will be disabled at the relevant exception levels (FPCR=0,
CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will be enabled by default.

* Implementations of boot services will enable architecturally manageable caches and TLBs i.e., those that
can be managed directly using implementation independent registers using mechanisms and procedures
defined in the ARM Architecture Reference Manual. They should not enable caches requiring platform
information to manage or invoke non-architectural cache/TLB lockdown mechanisms.

* MMU configuration: Implementations must use only 4k pages and a single translation base register. On
devices supporting multiple translation base registers, TTBRO must be used solely. The binding does not
mandate whether page tables are cached or un-cached.

* Interrupts are enabled, though no interrupt services are supported other than the UEFI boot services
timer functions (All loaded device drivers are serviced synchronously by “polling”). All UEFI interrupts
must be routed to the IRQ vector only.

* The architecture generic timer must be initialized and enabled. The Counter Frequency register (CNT-
FRQ) must be programmed with the timer frequency. Timer access must be provided to non-secure EL.1
and ELO by setting bits ELIPCTEN and EL1PCEN in register CNTHCTL_EL2.

* The system firmware is not expected to initialize EL2 registers that do not have an architectural reset
value, except in cases where firmware itself is running at EL2 and needs to do so.

2.3. Calling Conventions 35

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* 128 KiB or more of available stack space

* The ARM architecture allows mapping pages at a variety of granularities, including 4KiB and 64KiB. If
a 64KiB physical page contains any 4KiB page with any of the following types listed below, then all 4KiB
pages in the 64KiB page must use identical ARM Memory Page Attributes (as described in Table 2.5):

- EfiRuntimeServicesCode
- EfiRuntimeServicesData
- EfiReserved

- EiACPIMemoryNVS

Mixed attribute mappings within a larger page are not allowed.

© Note

This constraint allows a 64K paged based Operating System to safely map runtime services memory.

For an operating system to use any runtime services, Runtime services must:
* Support calls from either the EL1 or the EL2 exception levels.

* Once called, simultaneous or nested calls from EL1 and EL2 are not permitted.

© Note

Sequential, non-overlapping calls from EL1 and EL2 are permitted.

Runtime services are permitted to make synchronous SMC and HVC calls into higher exception levels.

© Note

These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1 Operating System.
In this case a call to SetVirtual AddressMap()is expected to provided an EL1 appropriate set of mappings.

For an operating system to use any runtime services, it must:
* Enable unaligned access support.
* Preserve all memory in the memory map marked as runtime code and runtime data
* Call the runtime service functions, with the following conditions:
- From either EL1 or EL2 exception levels.

- Consistently call runtime services from the same exception level. Sharing of runtime services
between different exception levels is not permitted.

- Runtime services must only be assigned to a single operating system or hypervisor. They must
not be shared between multiple guest operating systems.

- The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See description
of SetVirtual AddressMap() for details of memory map after this function has been called.

2.3. Calling Conventions 36

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- The processor must be in a mode in which it has access to the system address regions specified
in the EFI memory map with the EFI_ MEMORY_RUNTIME bit set.

- 8 KiB, or more, of available stack space.
- The stack must be 16-byte aligned (128-bit).
- Interrupts may be disabled or enabled at the discretion of the caller.

- If the core implements the Scalable Matrix Extension, the OS must ensure that the per-core
Streaming SVE mode is disabled before the core calls a runtime service.

An application written to this specification may alter the processor execution mode, but the invoking OS must ensure
firmware boot services and runtime services are executed with the prescribed execution environment.

If ACPI is supported:

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (recom-
mended) or EfiACPIMemoryNVS.

* ACPI FACS must be contained in memory of type EiACPIMemoryNVS. The system firmware must not
request a virtual mapping for any memory descriptor of type EfiACPIReclaimMemory or EfiACPIMem-
oryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_MEMORY_DESCRIPTOR
having the EFI_MEMORY_RUNTIME bit set must be aligned on a 4 KiB boundary and must be a multiple
of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended), EfiBootServicesdata , EfiACPIReclaimMem-
ory or EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type EfiRuntime-
ServicesData (recommended) or EfiACPIMemoryNVS.

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the* EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. UEFI 2.0 clarified the situation moving forward. Also, only OSes conforming to UEFI Specification
are guaranteed to handle SMBIOS table in memory of type EfiBootServiceData.

2.3. Calling Conventions 37

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.6.1 Memory types

Table 2.5: Map EFI Cacheability Attributes to AArch64 Memory Types

EFI Memory Type

EFI_MEMORY_UC
cacheable)

(Not

EFI_MEMORY_WC (Write
combine)
EFI_MEMORY_WT (Write
through)

EFI_MEMORY_WB (Write
back)

EFI_MEMORY_UCE

EFI_MEMORY_ISA_MASK

ARM Memory
Type: MAIR at-
tribute encoding

Attr<n> [7:4] [3:0]

0000 0000

0100 0100

1011 1011

1111 1111

Direct copy of the

values of MAIR
Attr<n> [7:4][3:0]

ARM
Memory
Share-
ability
Attribute
SH [1:0]
Not applica-
ble

Not applica-
ble
11

11

Not applica-
ble

Not used or
defined

ARM Memory Type: Meaning

Device-nGnRnE (Device non-Gathering,
non-Reordering, no Early Write Acknowl-
edgement)

Normal Memory Outer non-cacheable Inner
non-cacheable

Normal Memory Outer Write-through non-
transient Inner Write-through non-transient,
inner-shareable

Normal Memory Outer Write-back non-
transient Inner Write-back non-transient,
inner-shareable

Not used or defined

As defined in the ARM Architecture Refer-
ence Manual.

Table 2.6: Map UEFI Permission Attributes to ARM Paging Attributes

EFI Memory Type

ARM Paging Attributes

EFI_MEMORY_XP

EFI_MEMORY_RO

EFI_MEMORY_RP,
EFI_MEMORY_WP

EL2 translation regime:
XN Execute never

EL1/0 translation regime:
UXN Unprivileged execute never
PXN Privileged execute never

Read only access AP[2]=1

Not used or defined

2.3. Calling Conventions

38

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.6.2 Handoff State

X0 - EFI_HANDLE
X1 - EFI_SYSTEM_TABLE
X30 - Return Address

2.3.6.3 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an application that
creates an alternative execution environment. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure that the firmware
executes with each supplanted functionality. There are two ways that firmware conforming to this specification can
execute in this alternate execution environment:

* Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before each UEFI call.
However the possibility of preemption may require the alternate execution-enabled application to disable interrupts
while the alternate execution environment is active. It’s legal for the alternate execution environment enabled appli-
cation to enable interrupts if the application catches the interrupt and restores the EFI firmware environment prior to
calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will return to the alternate execution envi-
ronment enabled application context.

An alternate execution environment created by a UEFI application must not change the semantics or behavior of the
MMU configuration created by the UEFI firmware prior to invoking ExitBootServices(), including the bit layout of the
page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception vector to point to appropriate
code.

2.3.6.4 Detailed Calling Convention
The base calling convention for the AArch64 binding is defined in the document Procedure Call Standard for the ARM
64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-bit Base Calling Conven-
tion”

This binding further constrains the calling convention in these ways:
* The AArch64 execution state must not be modified by the callee.
* All code exits, normal and exceptional, must be from the A64 instruction set.
* Floating point and SIMD instructions may be used.
* Optional vector and matrix operations and other instruction set extensions may only be used:
- After dynamically checking for their existence.
- Saving and then later restoring any additional execution state context.

- Additional feature enablement or control, such as power, must be explicitly managed.

2.3. Calling Conventions 39

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* Only little endian operation is supported.
* The stack will maintain 16 byte alignment.
* Structures (or other types larger than 64-bits) must be passed by reference and not by value.

* The EFI AArch64 platform binding defines the platform register (r18) as “do not use.” Avoiding use of
r18 in firmware makes the code compatible with both a fixed role for r18 defined by the OS platform ABI
and the use of r18 by the OS and its applications as a temporary register.

2.3.7 RISC-V Platforms

UEFI implementations may target RV32 (32-bit), RV64 (64-bit) and RV128 (128-bit) processors, supporting code
execution in native bitness mode only (e.g. an RV64 UEFI implementation will not support RV32 UEFI images).

All functions are called with the C language calling convention. See Detailed Calling Convention for more detail.
During boot services only a single processor is used for execution. All secondary processors are either powered off or
held in a quiescent state.

The processor is in the following execution mode during boot service time:

* The processor must be in little-endian Supervisor mode and running with native (XLEN) bitness. If the
processor implements the hypervisor extension and the UEFI implementation is not running in a virtual
machine environment, the processor must be in HS mode.

* The processor must support the following extensions:
- Atomic extension (A)
- Compressed extension (C)
- Base (integer) ISA (I)
- Integer multiplication and division extension (M)
- Standard privileged architecture (Zicsr, Zifencei)

* Implementations of boot services will enable architecturally manageable caches and TLBs i.e., those that
can be managed directly using implementation independent registers using mechanisms and procedures
defined in the RISC-V Volume 2, Privileged Spec and ratified extension specifications. They should not
enable caches requiring platform information to manage or invoke non-architectural cache/TLB lockdown
mechanisms.

* Address translation may be enabled. If enabled, any memory space defined by the UEFI memory map is
identity mapped (virtual address equals physical address), although the attributes of certain regions may
not have all read, write and execute attributes or be unmarked for purposes of platform protection. The
mappings to other regions are undefined and may vary from implementation to implementation.

* Interrupts are enabled, though no interrupt services are supported other than the UEFI boot services
timer functions (All loaded device drivers are serviced synchronously by “polling”).

* A timer is enabled and configured for Supervisor interrupt delivery, e.g. machine timer or supervisor
timer if the Sstc extension is present.

* 128 KiB or more of available stack space.
Runtime services are permitted to make ECALLs into higher privilege modes.
For an operating system to use any runtime services, it must:
* Preserve all memory in the memory map marked as runtime code and runtime data.

* Call the runtime service functions, with the following conditions:

2.3. Calling Conventions 40

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- Call runtime services consistently from the same privilege mode (either HS/S or VS mode).

- Runtime services must only be assigned to a single operating system or hypervisor. They must
not be shared between multiple guest operating systems.

- The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See description
of SetVirtual AddressMap() for details of memory map after this function has been called.

- The processor must be in a mode in which it has access to the system memory map with the
EFI_MEMORY_RUNTIME bit set.

- 8 KiB, or more, of available stack space.
- The stack must be 16-byte aligned (128-bit).
- Interrupts may be disabled or enabled at the discretion of the caller.

An application written to this specification may alter the processor execution mode, but the UEFI image must ensure
firmware boot services and runtime services are executed with the prescribed execution environment.

If ACPI is supported:

* ACPI Tables loaded at boot time can be contained in memory of type EiACPIReclaimMemory (recom-
mended) or EfiACPIMemoryNVS. ACPI FACS must be contained in memory of type EfiACPIMemoryNVS

* The system firmware must not request a virtual mapping for any memory descriptor of type EfiACPIRe-
claimMemory or EffACPIMemoryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned on
a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_MEMORY_DESCRIPTOR
having the EFI_MEMORY_RUNTIME bit set must be aligned on a 4 KiB boundary and must be a multiple
of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.

The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map. If no
information about the table location exists in the UEFI memory map, cacheability attributes may be obtained from
ACPI memory descriptors. If no information about the table location exists in the UEFI memory map or ACPI memory
descriptors, the table is assumed to be non-cached.

¢ In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in memory of
type EfiRuntimeServicesData (recommended), EfiBootServicesData, EfiACPIReclaimMemory or EfiACPIMem-
oryNVS. Tables loaded at runtime must be contained in memory of type EfiRuntimeServicesData (recommended)
or EfiACPIMemoryNVS.

© Note

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. The UEFI Specification intends to clarify the situation moving forward. Also, only OSes conforming
to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type EfiBootServicesData.

2.3. Calling Conventions 41

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.3.7.1 Handoff State

All UEFI images takes two parameters: the UEFI image handle and the pointer to EFI System Table. According to
the RISC-V calling convention, EFI_HANDLE is passed through the a0 register and EFI_SYSTEM_TABLE is passed
through the al register.

* x10 - EFI_HANDLE (ABI name: a0)
*x11 - EFI_SYSTEM_TABLE (ABI name: al)
* x1 - Return Address (ABI name: ra)

2.3.7.2 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an application that
creates an alternative execution environment. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure that the firmware
executes with each supplanted functionality. There are two ways that firmware conforming to this specification can
execute in this alternate execution environment:

* Explicit firmware call.
* Firmware preemption of application via timer event.

An application with an alternate execution environment can restore the firmware environment before each UEFI call.
However the possibility of preemption may require the alternate execution-enabled application to disable interrupts
while the alternate execution environment is active. It’s legal for the alternate execution environment enabled appli-
cation to enable interrupts if the application catches the interrupt and restores the EFI firmware environment prior to
calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will return to the alternate execution envi-
ronment enabled application context.

An alternate execution environment created by a UEFI application must not change the semantics or behavior of the
MMU configuration created by the UEFI firmware prior to invoking ExitBootServices(), including the bit layout of the
page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception vector to point to appropriate
code.

2.3.7.3 Detailed Calling Convention

The base calling convention is defined in the RISC-V ELF psABI Specification. See Links to UEFI Specification-
Related Documents (https://uefi.org/uefi) under the heading “RISC-V ELF psABI Specification”, and the RISC-V
assembly programmer’s handbook section in the RISC-V Unprivileged ISA specification.

This binding further constrains the calling convention (EFIAPI) between UEFI-compliant images and firmware in the
following manner:

* Datatypes must be aligned at its natural size when stored in memory (code shall make no assumptions
on support for unaligned memory accesses).

* Calls will conform to LP64 ABI (make no use of floating point registers).
* Code may use RVC (compressed instructions).

* Optional floating point, vector and other extensions may be only used:

2.3. Calling Conventions 42

https://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

- After dynamically checking for their existence.

- Saving and then later restoring any additional execution state, hiding use of the additional
functionality from other components (incl. OS for EFI Runtime Service calls).

* Only little-endian operation is supported.
* The stack will maintain 16 byte alignment.

* UEFI firmware must neither trust the values of x3 (ABI name: gp) and x4 (ABI name: tp) nor make an
assumption of owning the write access to these registers in any circumstances.

- This includes UEFI boot services, UEFI runtime services, Management Mode service and any
UEFI firmware interfaces which may invoked by the drivers, OS or external firmware payload.

- Preserve the values in x3 and x4 registers if UEFI firmware needs to change them, and never
touch them after ExitBootServices(). Whether and how to preserve x3 and x4 in the UEFI
firmware environment is implementation-specific.

2.3.8 LoongArch Platforms

All functions are called with the C language calling convention specified in the Detailed Calling Conventions section
in2.3.8.2.

LoongArch processor cores are divided into four privilege levels (PLVO to PLV3). Usually, the PLV3 are recommended
for the user mode.

LoongArch UEFI will only be executed in PLVO mode. PLVO is the privilege level with the highest privilege and is the
only privilege level that can use privileged instructions and access all privileged resources. The three privilege levels,
PLV1 to PLV3, cannot execute privileged instructions to access privileged resources.

The processor is in the following execution mode during boot service:

* Total 32 general-purpose integer registers, rO-r31.

* FP unit can be used(CSR.EUEN.FPE to enable), calling convention refer to 2.3.8.2. If the FP unit is used,
it is recommended to save and restore floating-point registers in exception context to improve security.

* Instruction and Data caches enabled.

* MMU enabled.

* Address space is uniform addressing.

* The processor reset vactor has been fixed and the address is 0x1c00,0000.
* Enable unaligned access support.

* Control and Status Resgers(CSRs) are support.

* 1/O access is through memory map 1/0O.

* The memory is in physical addressing mode. LoongArch architecture defines two memory access modes,
namely direct address translation mode and mapped address translation mode. In driect address translation
mode, the address load/store consistent cacheable type determined by CSR.DATM, and in the mapped
address translation mode, the consistent cacheable type determined by TLB consistent cacheable type.

* 128 KiB or more available stack space.
* The stack must be 16-byte aligned.
* Stable counter enabled.

* Timer Interrupt enabled.

23.

Calling Conventions 43

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

An application written to this specification may alter the processor execution mode, but the UEFI image must ensure
firmware boot services and runtime services are executed with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available and it is illegal to
call any boot service. After ExitBootServices, firmware runtime services are still available and may be called with
paging enabled and virtual address pointers if SetVirtualAddressMap() has been called describing all virtual address
ranges used by the firmware runtime service.

For an operating system to use any UEFI runtime services, it must:
* Preserve all memory in the memory map marked as runtime code and runtime data.
* Call the runtime service functions, with the following conditions:
- In PLVO mode.

- The system address regions described by all the entries in the EFI memory map that have
the EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See description
of SetVirtual AddressMap() for details of memory map after this function has been called.

- 16 KiB, or more, of available stack space.
- The stack must be 16-byte aligned (128-bit).
If ACPI is supported:

* ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory (recom-
mended) or EfiACPIMemoryNVS.

* ACPI FACS must be contained in memory of type EiACPIMemoryNVS. The system firmware must not
request a virtual mapping for any memory descriptor of type EfiACPIReclaimMemory or EfiACPIMem-
oryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be aligned
on a 64 KiB boundary and must be a multiple of 64 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the EFI_MEMORY_DESCRIPTOR
having the EFI_ MEMORY_RUNTIME bit set must be aligned on a 64 KiB boundary and must be a
multiple of 64 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If the
system memory map does not contain cacheability attributes, the ACPI Memory Op-region must inherit its
cacheability attributes from the ACPI name space. If no cacheability attributes exist in the system memory
map or the ACPI name space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory map.
If no information about the table location exists in the UEFI memory map, cacheability attributes may be
obtained from ACPI memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended), EfiBootServicesdata, EfiACPIReclaimMem-
ory or EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type EfiRuntime-
ServicesData (recommended) or EfiACPIMemoryNVS.

© Note

2.3. Calling Conventions 44

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the EfiReservedMemoryType and there
was no guidance provided for other EFI Configuration Tables. EfiReservedMemoryType is not intended to be used
by firmware. UEFI 2.0 clarified the situation moving forward. Also, only OSes conforming to UEFI Specification
are guaranteed to handle SMBIOS table in memory of type EfiBootServiceData.

2.3.8.1 Handoff Statue

All UEFI image takes two parameters, these are UEFI image handle and the pointer to EFI System. Accord-
ing the LoongArch calling convention, two registers are used to pass them. EFI_HANDLE is passed by a0, and
EFI_SYSTEM_TABLE * is passed by al.

*r4 - EFI_HANDLE(ABI name: a0)
15 - EFI_SYSTEM_TABLE(ABI name: al)

*rl - Return Address(ABI name: ra)

2.3.8.2 Detailed Calling Convention

LoongArch architecture defines 32 general-purpose registers, and the ABI refer to https://loongson.github.io/
LoongArch-Documentation/LoongArch-ELF-ABI-EN.html. The basic principle of the LoongArch procedure calling
convention is to pass arguments in registers as much as possible (i.e. floating-point arguments are passed in floating-
point registers and non floating-point arguments are passed in general-purpose registers, as much as possible); argu-
ments are passed on the stack only when no appropriate register is available.

Eight general-purpose register r4-r11(general-pupose argument registers, ABI name: a0-a7) used for pass integer ar-
guments, with a0-al reused to return values. Eight floating-point registers fO-f7(floating-point argument registers, ABI
name: fa0-fa7) used for pass floating-point arguments, and fa0-fal are also used to return values. Generally, the general-
pupose argument registers are used to pass fixed-point arguments, and floating-point arguments when no floating-point
argument register is available. Bit fields are stored in little endian. In addition, subroutines should ensure that the
values of general-purpose registers r22-r31(ABI name: s0-s9) and floating-point registers f24-f31(ABI name: fsO-fs7)
are preserved across procedure calls.

2.4 Protocols

The protocols that a device handle supports are discovered through the EFI_BOOT_SERVICES.HandleProtocol() Boot
Service or EFI_BOOT_SERVICES.OpenProtocol() Boot Service. Each protocol has a specification that includes the
following:

* The protocol’s globally unique ID (GUID)
* The Protocol Interface structure
* The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime memory and the protocol
member functions should not be called at runtime. If not explicitly specified a protocol member function can be called
at a TPL level of less than or equal to TPL_NOTIFY (Event, Timer, and Task Priority Services). Unless otherwise
specified a protocol’s member function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be implemented, Additional error
codes may be returned, but they will not be tested by standard compliance tests, and any software that uses the procedure
cannot depend on any of the extended error codes that an implementation may provide.

2.4. Protocols 45

https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

To determine if the handle supports any given protocol, the protocol’s GUID is passed to HandleProtocol() or OpenPro-
tocol() . If the device supports the requested protocol, a pointer to the defined Protocol Interface structure is returned.
The Protocol Interface structure links the caller to the protocol-specific services to use for this device.

The Figue below shows the construction of a protocol. The UEFI driver contains functions specific to one or more proto-
col implementations, and registers them with the Boot Service, see EFI_BOOT_SERVICES.InstallProtocollnterface().
The firmware returns the Protocol Interface for the protocol that is then used to invoke the protocol specific services.
The UEFI driver keeps private, device-specific context with protocol interfaces.

HandleProtocol (GUID, ...)

) Protocol Interface Protocol
Invoking one of . = specific
the protocol ———— Function Pointer functions
services Function Pointer
H ——> Device, or
] m next Driver
Protocol
specific
functions

Fig. 2.4: Construction of a Protocol

The following C code fragment illustrates the use of protocols:

// There is a global "EffectsDevice" structure. This
// structure contains information to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (
EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectsDevice.IllustrationProtocol

DE

// Use the EffectsDevice illustration protocol’s "MakeEffects"
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect

Dk

The Table below, UEFI Protocols , lists the UEFI protocols defined by this specification.

Table 2.7: UEFI Protocols

Protocol Description
EFI Loaded Image Protocol Provides information on the image.

continues on next page

2.4. Protocols 46

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.7 — continued from previous page

EFI Loaded Image Device Path Protocol

EFI Device Path Protocol

EFI Driver Binding Protocol
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL
EFI Platform Driver Override Protocol
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCC
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL
EFI_COMPONENT_NAME2_PROTOCOL
EFI_SIMPLE_TEXT _INPUT_PROTOCOL
EFI_SIMPLE_TEXT OUTPUT_PROTOCOL
EFI_SIMPLE_POINTER_PROTOCOL
EFI_SERIAL_IO_PROTOCOL

EFI_LOAD_FILE _PROTOCOL
EFI_LOAD_FILE2_PROTOCOL
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

EFI FILE PROTOCOL
EFI_DISK_I0_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

EFI BLOCK_102_PROTOCOL

EFI_UNICODE_COLLATION_PROTOCOL
EFI PCI ROOT_BRIDGE 10_PROTOCOL

EFI PCI I/O Protocol

EFI_USB_IO_PROTOCOL
EFI_SIMPLE NETWORK_PROTOCOL

EFI_ PXE BASE _CODE_PROTOCOL

Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service Load-
Image().

Provides the location of the device.

Provides services to determine if an UEFI driver sup-
ports a given controller, and services to start and stop a
given controller.

Provides a the Driver Family Override mechanism for
selecting the best driver for a given controller.

Provide a platform specific override mechanism for the
selection of the best driver for a given controller.
Provides a bus specific override mechanism for the se-
lection of the best driver for a given controller.

Provides diagnostics services for the controllers that
UEFI drivers are managing.

Provides human readable names for UEFI Drivers and
the controllers that the drivers are managing.

Protocol interfaces for devices that support simple con-
sole style text input.

Protocol interfaces for devices that support console style
text displaying.

Protocol interfaces for devices such as mice and track-
balls.

Protocol interfaces for devices that support serial char-
acter transfer.

Protocol interface for reading a file from an arbitrary de-
vice.

Protocol interface for reading a non-boot option file from
an arbitrary device

Protocol interfaces for opening disk volume containing
a UEFI file system.

Provides access to supported file systems.

A protocol interface that layers onto any BLOCK_IO or
BLOCK_IO_EX interface.

Protocol interfaces for devices that support block I/O
style accesses.

Protocol interfaces for devices that support block I/O
style accesses. This interface is capable of non-blocking
transactions.

Protocol interfaces for string comparison operations.
Protocol interfaces to abstract memory, I/O, PCI config-
uration, and DMA accesses to a PCI root bridge con-
troller.

Protocol interfaces to abstract memory, I/O, PCI config-
uration, and DMA accesses to a PCI controller on a PCI
bus.

Protocol interfaces to abstract access to a USB con-
troller.

Provides interface for devices that support packet based
transfers.

Protocol interfaces for devices that support network
booting.

continues on next page

2.4. Protocols

47

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.7 — continued from previous page

EFI_BIS_PROTOCOL

EFI Debug Support Protocol

EFI Debugport Protocol
EFI_DECOMPRESS_PROTOCOL
EFI_EBC_PROTOCOL
EFI_GRAPHICS_OUTPUT_PROTOCOL
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
EFI_EXT _SCSI_PASS_THRU_PROTOCOL
EFI_USB2_HC_PROTOCOL
EFI_AUTHENTICATION_INFO_PROTOCOL
EFI_DEVICE_PATH_UTILITIES_PROTOCOL
EFI DEVICE_PATH _TO_TEXT PROTOCOL
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL
EFI_EDID_DISCOVERED_PROTOCOL
EFI_EDID_ACTIVE_PROTOCOL

EFI EDID_OVERRIDE_PROTOCOL

EFIiSCSI Initiator Name Protocol

EFI TAPE 10_PROTOCOL
EFI Managed Network Protocol

EFI ARP_SERVICE_BINDING_PROTOCOL

EFI_ARP_PROTOCOL

EFI DHCP4_SERVICE_BINDING_PROTOCOL

EFI_DHCP4_PROTOCOL

EFI_TCP4_SERVICE_BINDING_PROTOCOL

EFI_TCP4_PROTOCOL

Protocol interfaces to validate boot images before they
are loaded and invoked.

Protocol interfaces to save and restore processor context
and hook processor exceptions.

Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.
Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.
Protocols interfaces required to support an EFI Byte
Code interpreter.

Protocol interfaces for devices that support graphical
output.

Protocol interfaces that allow NVM Express commands
to be issued to an NVM Express controller.

Protocol interfaces for a SCSI channel that allows SCSI
Request Packets to be sent to SCSI devices.

Protocol interfaces to abstract access to a USB Host Con-
troller.

Provides access for generic authentication information
associated with specific device paths

Aids in creating and manipulating device paths.
Converts device nodes and paths to text.

Converts text to device paths and device nodes.
Contains the EDID information retrieved from a video
output device.

Contains the EDID information for an active video out-
put device.

Produced by the platform to allow the platform to pro-
vide EDID information to the producer of the Graphics
Output protocol

Sets and obtains the iSCSI Initiator Name.

Provides services to control and access a tape drive.
Used to locate communication devices that are supported
by an MNP driver and create and destroy instances of the
MNP child protocol driver that can use the underlying
communications devices.

Used to locate communications devices that are sup-
ported by an ARP driver and to create and destroy in-
stances of the ARP child protocol driver.

Used to resolve local network protocol addresses into
network hardware addresses.

Used to locate communication devices that are supported
by an EFI DHCPv4 Protocol driver and to create and de-
stroy EFI DHCPv4 Protocol child driver instances that
can use the underlying communications devices.

Used to collect configuration information for the EFI
IPv4 Protocol drivers and to provide DHCPv4 server and
PXE boot server discovery services.

Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other
host using TCP protocol.

Provides services to send and receive data stream.

continues on next page

2.4. Protocols

48

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.7 — continued from previous page

EFI IP4_SERVICE BINDING PROTOCOL Used to locate communication devices that are supported
by an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver
that can use the underlying communication device.

EFI IP4 PROTOCOL Provides basic network IPv4 packet I/O services.

EFI IP4_CONFIG2_PROTOCOL The EFI IPv4 Config Protocol driver performs platform-
and policy-dependent configuration of the EFI IPv4 Pro-
tocol driver.

EFI IP4 CONFIG2_PROTOCOL The EFI IPv4 Configuration II Protocol driver performs
platform- and policy-dependent configuration of the EFI
IPv4 Protocol driver.

EFI _ UDP4_SERVICE_BINDING _PROTOCOL Used to locate communication devices that are supported
by an EFI UDPv4 Protocol driver and to create and de-
stroy instances of the EFI UDPv4 Protocol child proto-
col driver that can use the underlying communication de-

vice.
EFI_UDP4_PROTOCOL Provides simple packet-oriented services to transmit and
receive UDP packets.
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are supported

by an EFI MTFTPv4 Protocol driver and to create and
destroy instances of the EFI MTFTPv4 Protocol child
protocol driver that can use the underlying communica-
tion device.

EFI_MTFTP4_PROTOCOL Provides basic services for client-side unicast or multi-
cast TFTP operations.

EFI HASH PROTOCOL Allows creating a hash of an arbitrary message digest us-
ing one or more hash algorithms.

EFI_HASH_SERVICE_BINDING _PROTOCOL Used to locate hashing services support provided by a

driver and create and destroy instances of the EFI Hash
Protocol so that a multiple drivers can use the underlying
hashing services.

EFI SD MMC PASS THRU PROTOCOL Protocol interface that allows SD/eMMC commands to
be sent to an SD/eMMC controller.

2.5 UEFI Driver Model

The UEFI Driver Model is intended to simplify the design and implementation of device drivers, and produce small
executable image sizes. As a result, some complexity has been moved into bus drivers and in a larger part into common
firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on which the driver was
loaded. It then waits for the system firmware to connect the driver to a controller. When that occurs, the device driver is
responsible for producing a protocol on the controller’s device handle that abstracts the I/O operations that the controller
supports. A bus driver performs these exact same tasks. In addition, a bus driver is also responsible for discovering
any child controllers on the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more processors connected to one
or more core chipsets. The core chipsets are responsible for producing one or more I/O buses. The UEFI Driver Model
does not attempt to describe the processors or the core chipsets. Instead, the UEFI Driver Model describes the set of
I/O buses produced by the core chipsets, and any children of these I/O buses. These children can either be devices or
additional I/O buses. This can be viewed as a tree of buses and devices with the core chipsets at the root of that tree.

2.5. UEFI Driver Model 49

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could include keyboards,
displays, disks, network, etc. The nonleaf nodes are the buses that move data between devices and buses, or between
different bus types. Desktop System shows a sample desktop system with four buses and six devices.

CPU A—m « =55 »f<=>| Keyboard
us

ATA
North Hard |V
—~ -t ore

<= CD-ROM

!

Mouse

- VGA

Bus Controller

PCl Bus Device Controller

Other

<

Fig. 2.5: Desktop System

Server System is an example of a more complex server system. The idea is to make the UEFI Driver Model simple
and extensible so more complex systems like the one below can be described and managed in the preboot environment.
This system contains six buses and eight devices.

The combination of firmware services, bus drivers, and device drivers in any given platform is likely to be produced by
a wide variety of vendors including OEMs, IBVs, and IHVs. These different components from different vendors are
required to work together to produce a protocol for an I/O device than can be used to boot a UEFI compliant operating
system. As a result, the UEFI Driver Model is described in great detail in order to increase the interoperability of these
components

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the legacy option ROM issues
that the UEFI Driver Model is designed to address, the entry point of a driver, host bus controllers, properties of device
drivers, properties of bus drivers, and how the UEFI Driver Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues

Legacy option ROMs have a number of constraints and limitations that restrict innovation on the part of platform
designers and adapter vendors. At the time of writing, both ISA and PCI adapters use legacy option ROMs. For the
purposes of this discussion, only PCI option ROMs will be considered; legacy ISA option ROMs are not supported as
part of the UEFI Specification .

The following is a list of the major constraints and limitations of legacy option ROMs. For each issue, the design
considerations that went into the design of the UEFI Driver Model are also listed. Thus, the design of the UEFI Driver
Model directly addresses the requirements for a solution to overcome the limitations implicit to PC-AT-style legacy
option ROMs.

2.5. UEFI Driver Model 50

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

g SCSI

[PCI Bus A
North Hard
- -l e | [55 -
[Hard
- MOUSE Drive =
Hard
Drive [*™
PCl Bus
Hard
Drive [*™

Fig. 2.6: Server System

2.5.1.1 32-bit/16-Bit Real Mode Binaries

Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means that the legacy option
ROM on a PCI card cannot be used in platforms that do not support the execution of IA-32 real mode binaries. Also,
16-bit real mode only allows the driver to access directly the lower 1 MiB of system memory. It is possible for the driver
to switch the processor into modes other than real mode in order to access resources above 1 MiB, but this requires a
lot of additional code, and causes interoperability issues with other option ROMs and the system BIOS. Also, option
ROMs that switch the processor into to alternate execution modes are not compatible with Itanium Processors.

UEFI Driver Model design considerations:
* Drivers need flat memory mode with full access to system components.
* Drivers need to be written in C so they are portable between processor architectures.

* Drivers may be compiled into a virtual machine executable, allowing a single binary driver to work on
machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs

Since legacy option ROMs can only directly address the lower 1 MiB of system memory, this means that the code from
the legacy option ROM must exist below 1 MiB. In a PC-AT platform, memory from 0x00000-0x9FFFF is system
memory. Memory from 0xA0000-0xBFFFF is VGA memory, and memory from 0xF0000-OxFFFFF is reserved for
the system BIOS. Also, since system BIOS has become more complex over the years, many platforms also use 0xE0000-
OxEFFFF for system BIOS. This leaves 128 KiB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to allocate memory from
Extended BIOS Data Area (EBDA), allocate memory through a Post Memory Manager (PMM), or search for free

2.5. UEFI Driver Model 51

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

memory based on a heuristic. Of these, only EBDA is standard, and the others are not used consistently between
adapters, or between BIOS vendors, which adds complexity and the potential for conflicts.

UEFI Driver Model design considerations:
* Drivers need flat memory mode with full access to system components.

* Drivers need to be capable of being relocated so that they can be loaded anywhere in memory (PE/COFF
Images)

* Drivers should allocate memory through the boot services. These are well-specified interfaces, and can
be guaranteed to function as expected across a wide variety of platform implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some legacy option ROMs search
the entire system for controllers to manage. This can be a lengthy process depending on the size and complexity of the
platform. Also, due to limitation in BIOS design, all the legacy option ROMs must be executed, and they must scan for
all the peripheral devices before an operating system can be booted. This can also be a lengthy process, especially if
SCSI buses must be scanned for SCSI devices. This means that legacy option ROMs are making policy decision about
how the platform is being initialized, and which controllers are managed by which legacy option ROMs. This makes
it very difficult for a system designer to predict how legacy option ROMs will interact with each other. This can also
cause issues with on-board controllers, because a legacy option ROM may incorrectly choose to manage the on-board
controller.

UEFI Driver Model design considerations:
* Driver to controller matching must be deterministic
* Give OEMs more control through Platform Driver Override Protocol and Driver Configuration Protocol

* It must be possible to start only the drivers and controllers required to boot an operating system.

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that directly touches
hardware registers. This can make them incompatible on legacy-free and headless platforms. Legacy option ROMs
may also contain setup programs that assume a PC-AT-like system architecture to interact with a keyboard or video
display. This makes the setup application incompatible on legacy-free and headless platforms.

UEFI Driver Model design considerations:

* Drivers should use well-defined protocols to interact with system hardware, system input devices, and
systemoutput devices.

2.5.1.5 Ambiguities in Specification and WorkaroundsBorn of Experience

Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities between legacy option
ROMs and system BIOS. These incompatibilities exist in part because there are no clear specifications on how to write
a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not always clear which
device will be the boot device for the OS.

UEFI Driver Model design considerations:

2.5. UEFI Driver Model 52

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* Drivers and firmware are written to follow this specification. Since both components have a clearly
defined specification, compliance tests can be developed to prove that drivers and system firmware are
compliant. This should eliminate the need to build workarounds into either drivers or system firmware
(other than those that might be required to address specific hardware issues).

* Give OEMs more control through Platform Driver Override Protocol and Driver Configuration Protocol
and other OEM value-add components to manage the boot device selection process.

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include ROM, FLASH, hard drives,
floppy drives, CD-ROM, or even a network connection. Once a driver image has been found, it can be loaded into system
memory with the boot service EFI_BOOT_SERVICES.Loadlmage() . Loadlmage() loads a PE/COFF formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol instance is placed on that handle.
A handle that contains a Loaded Image Protocol instance is called an Image Handle. At this point, the driver has not
been started. It is just sitting in memory waiting to be started. The figure below shows the state of an image handle for
a driver after LoadImage() has been called.

Image Handle

‘ BEF_LOADED_IMAGE_PROTOCOL H

| EFl_LOADED_IMAGE_DEVICE_PATH_PROTOCOL D

Fig. 2.7: Image Handle

After a driver has been loaded with the boot service Loadlmage(), it must be started with the boot service
EFI_BOOT _SERVICES.Startlmage(). This is true of all types of UEFI Applications and UEFI Drivers that can be
loaded and started on an UEFI-compliant system. The entry point for a driver that follows the UEFI Driver Model
must follow some strict rules. First, it is not allowed to touch any hardware. Instead, the driver is only allowed to
install protocol instances onto its own Image Handle. A driver that follows the UEFI Driver Model is required to
install an instance of the Driver Binding Protocol onto its own Image Handle . It may optionally install the Driver
Configuration Protocol, the Driver Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver
wishes to be unloadable it may optionally update the Loaded Image Protocol (EFI Loaded Image Protocol) to provide
its own Unload() EFI_LOADED_IMAGE_PROTOCOL.Unload() function. Finally, if a driver needs to perform any
special operations when the boot service EFI_BOOT_SERVICES.ExitBootServices() is called, it may optionally create
an event with a notification function that is triggered when the boot service ExitBootServices() is called. An Image
Handle that contains a Driver Binding Protocol instance is known as a Driver Image Handle . Driver Image Handle
shows a possible configuration for the Image Handle from Fig. 2.7 after the boot service StartiImage() has been called.

2.5. UEFI Driver Model 53

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

<

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL
<

EFI_DRIVER_BINDING_PROTOCOL

AN

Optional :> EFI_DRIVER _FAMILY_OVERRIDE_PROTOCOL

AN
Optional > || EFIDRIVER DIAGNOSTICS2_PROTOCOL

<
Optional C—> || EFICOMPONENT NAME2_PROTOCOL

N

Fig. 2.8: Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will be loaded and started,
but they will all be waiting to be told to manage one or more controllers in the system. A platform component, like
the Boot Manager, is responsible for managing the connection of drivers to controllers. However, before even the first
connection can be made, there has to be some initial collection of controllers for the drivers to manage. This initial
collection of controllers is known as the Host Bus Controllers. The I/O abstractions that the Host Bus Controllers
provide are produced by firmware components that are outside the scope of the UEFI Driver Model . The device
handles for the Host Bus Controllers and the I/O abstraction for each one must be produced by the core firmware on the
platform, or a driver that may not follow the UEFI Driver Model. See the PCI Root Bridge I/0 Protocol Specification
for an example of an I/O abstraction for PCI buses.

A platform can be viewed as a set of processors and a set of core chipset components that may produce one or more
host buses. The following figure shows a platform with n processors (CPUs), and a set of core chipset components that
produce m host bridges.

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol instance, and a protocol
instance that abstracts the I/O operations that the host bus can perform. For example, a PCI Host Bus Controller supports
one or more PCI Root Bridges that are abstracted by the PCI Root Bridge I/0 Protocol. The following figure shows an
example device handle for a PCI Root Bridge.

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the PCI devices in
the system. PCI Device Drivers should then be connected to these child handles, and produce I/O abstractions that
may be used to boot a UEFI compliant OS. The following section describes the different types of drivers that can be
implemented within the UEFI Driver Model. The UEFI Driver Model is very flexible, so all the possible types of
drivers will not be discussed here. Instead, the major types will be covered that can be used as a starting point for
designing and implementing additional driver types.

2.5. UEFI Driver Model 54

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

CPU 1 CPU 2 = = & CPU n

3L I

Front Side Bus

J L

Core Chipset Components

HB 1 HB 2 - HB m

B | = | =

= - ~_

Fig. 2.9: Host Bus Controllers

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

Fig. 2.10: PCI Root Bridge Device Handle

2.5. UEFI Driver Model 55

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs additional protocol interfaces on
an existing device handle. The most common type of device driver will attach an I/O abstraction to a device handle
that was created by a bus driver. This I/O abstraction may be used to boot a UEFI compliant OS. Some example I/O
abstractions would include Simple Text Output, Simple Input, Block I/O, and Simple Network Protocol. Fig. 2.11
shows a device handle before and after a device driver is connected to it. In this example, the device handle is a child
of the XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus supports. It also contains
a Device Path Protocol that was placed there by the XYZ Bus Driver. The Device Path Protocol is not required for all
device handles. It is only required for device handles that represent physical devices in the system. Handles for virtual
devices will not contain a Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

stop(Start()
Device Handle
‘ EFI_DEVICE_PATH_PROTOCOL
-‘ EFI_XYZ_I/O_PROTOCOL H
Un',’;iiz','lzﬂ E{,i}‘;ﬁ{; —_— ‘ EFI_BLOCK_I/O_PROTOCOL D

Fig. 2.11: Connecting Device Drivers

The device driver that connects to the device handle in the above Figure must have installed a Driver Bind-
ing Protocol on its own image handle. The Driver Binding Protocol contains three functions called Supported()
(EFI_DRIVER_BINDING_PROTOCOL.Supported()); Start() (EFI_DRIVER_BINDING _PROTOCOL.Start()), and
Stop() (EFI_DRIVER_BINDING_PROTOCOL.Stop()). The Supported() function tests to see if the driver supports a
given controller. In this example, the driver will check to see if the device handle supports the Device Path Protocol and
the XYZ I/O Protocol. If a driver’s Supported() function passes, then the driver can be connected to the controller by
calling the driver’s Start() function. The Start() function is what actually adds the additional I/O protocols to a device
handle. In this example, the Block I/O Protocol is being installed. To provide symmetry, the Driver Binding Protocol
also has a Stop()function that forces the driver to stop managing a device handle. This will cause the device driver to
uninstall any protocol interfaces that were installed in Start().

The Supported() , Start() , and Stop() functions of the EFI Driver Binding Protocol are required to make
use of the boot service EFI_BOOT_SERVICES.OpenProtocol() to get a protocol interface and the boot service
EFI_BOOT_SERVICES.CloseProtocol() to release a protocol interface. OpenProtocol() and CloseProtocol() update
the handle database maintained by the system firmware to track which drivers are consuming protocol interfaces. The
information in the handle database can be used to retrieve information about both drivers and controllers. The new boot
service EFI_BOOT_SERVICES.OpenProtocollnformation() can be used to get the list of components that are currently
consuming a specific protocol interface.

2.5. UEFI Driver Model 56

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.5.5 Bus Drivers

Bus drivers and device drivers are virtually identical from the UEFI Driver Model ’s point of view. The only difference
is that a bus driver creates new device handles for the child controllers that the bus driver discovers on its bus. As a result,
bus drivers are slightly more complex than device drivers, but this in turn simplifies the design and implementation of
device drivers. There are two major types of bus drivers. The first creates handles for all child controllers on the first
call to Start() . The other type allows the handles for the child controllers to be created across multiple calls to Start()
. This second type of bus driver is very useful in supporting a rapid boot capability. It allows a few child handles or
even one child handle to be created. On buses that take a long time to enumerate all of their children (e.g. SCSI), this
can lead to a very large timesaving in booting a platform. Connecting Bus Drivers shows the tree st ructure of a bus
controller before and after Start() is called. The dashed line coming into the bus controller node represents a link to the
bus controller’s parent controller. If the bus controller is a Host Bus Controller , then it will not have a parent controller.
Nodes A, B, C ,D, and E represent the child controllers of the bus controller.

HOMONONONO

Fig. 2.12: Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start() might choose to create child C first, and then child
E, and then the remaining children A, B, and D. The Supported() , Start() , and Stop() functions of the Driver Binding
Protocol are flexible enough to allow this type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum, it must install
a protocol interface that provides an I/O abstraction of the bus’s services to the child controllers. If the bus driver
creates a child handle that represents a physical device, then the bus driver must also install a Device Path Pro-
tocol instance onto the child handle. A bus driver may optionally install a Bus Specific Driver Override Protocol
onto each child handle. This protocol is used when drivers are connected to the child controllers. The boot service
EFI_BOOT_SERVICES.ConnectController() uses architecturally defined precedence rules to choose the best set of
drivers for a given controller. The Bus Specific Driver Override Protocol has higher precedence than a general driver
search algorithm, and lower precedence than platform overrides. An example of a bus specific driver selection occurs
with PCI. A PCI Bus Driver gives a driver stored in a PCI controller’s option ROM a higher precedence than drivers
stored elsewhere in the platform. Child Device Handle with a Bus Specific Override shows an example child device
handle that was created by the XYZ Bus Driver that supports a bus specific driver override mechanism.

2.5.6 Platform Components

Under the UEFI Driver Model , the act of connecting and disconnecting drivers from controllers in a platform
is under the platform firmware’s control. This will typically be implemented as part of the UEFI Boot Man-
ager, but other implementations are possible. The boot services EFI_BOOT_SERVICES.ConnectController() and
EFI_BOOT_SERVICES.DisconnectController() can be used by the platform firmware to determine which controllers
get started and which ones do not. If the platform wishes to perform system diagnostics or install an operating system,
then it may choose to connect drivers to all possible boot devices. If a platform wishes to boot a preinstalled operating
system, it may choose to only connect drivers to the devices that are required to boot the selected operating system.
The UEFI Driver Model supports both these modes of operation through the boot services ConnectController() and

2.5. UEFI Driver Model 57

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Optional >

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Fig. 2.13: Child Device Handle with a Bus Specific Override

DisconnectController() . In addition, since the platform component that is in charge of booting the platform has to work
with device paths for console devices and boot options, all of the services and protocols involved in the UEFI Driver
Model are optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles and gain access to
a boot device, the OS present device drivers cannot assume that a UEFI driver for a device has been executed. The
presence of a UEFI driver in the system firmware or in an option ROM does not guarantee that the UEFI driver will be
loaded, executed, or allowed to manage any devices in a platform. All OS present device drivers must be able to handle
devices that have been managed by a UEFI driver and devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol. This is similar
to the Bus Specific Driver Override Protocol, but it has higher priority. This gives the platform firmware the highest
priority when deciding which drivers are connected to which controllers. The Platform Driver Override Protocol is
attached to a handle in the system. The boot service ConnectController() will make use of this protocol if it is present
in the system.

2.5.7 Hot-Plug Events

In the past, system firmware has not had to deal with hot-plug events in the preboot environment. However, with the
advent of buses like USB, where the end user can add and remove devices at any time, it is important to make sure that it
is possible to describe these types of buses in the UEFI Driver Model. It is up to the bus driver of a bus that supports the
hot adding and removing of devices to provide support for such events. For these types of buses, some of the platform
management is going to have to move into the bus drivers. For example, when a keyboard is hot added to a USB bus
on a platform, the end user would expect the keyboard to be active. A USB Bus driver could detect the hot-add event
and create a child handle for the keyboard device. However, because drivers are not connected to controllers unless
EFI_BOOT _SERVICES.ConnectController() is called, the keyboard would not become an active input device. Making
the keyboard driver active requires the USB Bus driver to call ConnectController() when a hot-add event occurs. In
addition, the USB Bus Driver would have to call EFI_BOOT_SERVICES.DisconnectController() when a hot-remove
event occurs. If EFI_BOOT _SERVICES.DisconnectController() returns an error the USB Bus Driver needs to retry
EFI_BOOT_SERVICES.DisconnectController() from a timer event until it succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be removed without any
notice. This means that the Stop() functions of USB device drivers will have to deal with shutting down a driver for a
device that is no longer present in the system. As a result, any outstanding I/O requests will have to be flushed without
actually being able to touch the device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers and device drivers.
Adding this support is up to the driver writer, so the extra complexity and size of the driver will need to be weighed
against the need for the feature in the preboot environment.

2.5. UEFI Driver Model 58

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.5.8 EFI Services Binding

The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and simple combinations of
software services that layer on top of hardware devices. However, the UEFI driver Model does not map well onto
complex combinations of software services. As a result, an additional set of complementary protocols are required for
more complex combinations of software services.

Figure below, Software Service Relationships , contains three examples showing the different ways that software ser-
vices relate to each other. In the first two cases, each service consumes one or more other services, and at most one
other service consumes all of the services. Case #3 differs because two different services consume service A. The
EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but it cannot be used to model case
#3 because of the way that the UEFI Boot Service OpenProtocol() behaves. When used with the BY_DRIVER open
mode, OpenProtocol() allows each protocol to have only at most one consumer. This feature is very useful and pre-
vents multiple drivers from attempting to manage the same controller. However, it makes it difficult to produce sets of
software services that look like case #3.
G

Case #2: Multiple Dependencies

Case #1: Linear Stack

Case #3: Multiple Consumers

Fig. 2.14: Software Service Relationships

Software Service Relationships The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that al-
lows protocols to have more than one consumer. The EFI_SERVICE_BINDING_PROTOCOL is used with
the EFI_DRIVER_BINDING _PROTOCOL. A UEFI driver that produces protocols that need to be available
to more than one consumer at the same time will produce both the EFI_DRIVER_BINDING_PROTOCOL
and the EFI_SERVICE_BINDING_PROTOCOL. This type of driver is a hybrid driver that will produce the
EFI_DRIVER_BINDING_PROTOCOL in its driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started. The
EFI_SERVICE_BINDING_PROTOCO*L is slightly different from other protocols defined in the UEFI Specifi-
cation. It does not have a GUID associated with it. Instead, this protocol instance structure actually represents
a family of protocols. Each software service driver that requires an *EFI_SERVICE_BINDING_PROTOCOL
instance will be required to generate a new GUID for its own type of EFI_SERVICE_BINDING_PROTOCOL.
This requirement is why the various network protocols in this specification contain two GUIDs. One is the
EFI_SERVICE_BINDING_PROTOCOL GUID for that network protocol, and the other GUID is for the protocol that
contains the specific member services produced by the network driver. The mechanism defined here is not limited
to network protocol drivers. It can be applied to any set of protocols that the EFI_DRIVER_BINDING_PROTOCOL

2.5. UEFI Driver Model 59

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

cannot directly map because the protocols contain one or more relationships like case #3 in Software Service
Relationships .

Neither the EFI_DRIVER _BINDING _PROTOCOL nor the combination of the EFI_DRIVER _BINDING _PROTOCOL
and the EFI_SERVICE_BINDING_PROTOCOL can handle circular dependencies. There are methods to allow circular
references, but they require that the circular link be present for short periods of time. When the protocols across the
circular link are used, these methods also require that the protocol must be opened with an open mode of EXCLUSIVE
, so that any attempts to deconstruct the set of protocols with a call to DisconnectController() will fail. As soon as the
driver is finished with the protocol across the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify architecture in ways that allow
maximum flexibility in implementation. However, there are certain requirements on which elements of this specification
must be implemented to ensure that operating system loaders and other code designed to run with UEFI boot services
can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into required and optional elements. In
general, an optional element is completely defined in the section that matches the element name. For required elements
however, the definition may in a few cases not be entirely self contained in the section that is named for the particular
element. In implementing required elements, care should be taken to cover all the semantics defined in this specification
that relate to the particular element.

A system vendor may choose not to implement all the required elements, for example on specialized system configu-
rations that do not support all the services and functionality implied by the required elements. However, since most
applications, drivers and operating system loaders are written assuming all the required elements are present on a sys-
tem that implements the UEFI specification; any such code is likely to require explicit customization to run on a less
than complete implementation of the required elements in this specification. On such systems, the implementation may
choose to advertise the profile which it conforms to using EFI_CONFORMANCE_PROFILES_TABLE (see Section
4.6).

2.6.1 Required Elements

Required UEFI Implementation Elements lists the required elements. Any system that is designed to conform to this
specification must provide a complete implementation of all these elements. This means that all the required service
functions and protocols must be present and the implementation must deliver the full semantics defined in the specifi-
cation for all combinations of calls and parameters. Implementers of applications, drivers or operating system loaders
that are designed to run on a broad range of systems conforming to the UEFI specification may assume that all such
systems implement all the required elements.

Table 2.8: Required UEFI Implementation Elements

Element Description

EFI System Table Provides access to UEFI Boot Services, UEFI Runtime
Services, consoles, firmware vendor information, and
the system configuration tables.

EFI_BOOT _SERVICES All functions defined as boot services.

EFI_RUNTIME_SERVICES All functions defined as runtime services.

EFI Loaded Image Protocol Provides information on the image.

EFI Loaded Image Device Path Protocol Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service Load-
Image().

continues on next page

2.6. Requirements 60

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 2.8 — continued from previous page

EFI Device Path Protocol Provides the location of the device.

EFI_DECOMPRESS_PROTOCOL Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL Protocol interfaces to create and manipulate UEFI de-

vice paths and UEFI device path nodes.

2.6.2 Platform-Specific Elements

There are a number of elements that can be added or removed depending on the specific features that a platform
requires. Platform firmware developers are required to implement UEFI elements based upon the features included.
The following is a list of potential platform features and the elements that are required for each feature type:

1. If a platform includes console devices, the EFI_SIMPLE TEXT INPUT _PROTOCOL,
EFI SIMPLE TEXT INPUT_EX_PROTOCOL, and EFI SIMPLE TEXT OUTPUT_PROTOCOL must
be implemented.

2. If a platform includes a configuration infrastructure, then EFI_HII DATABASE _PROTOCOL,
EFI_HII STRING_PROTOCOL, EFI HII Configuration Routing Protocol, and
EFI_HII_CONFIG_ACCESS_PROTOCOL are required. If you support bitmapped fonts, you must sup-
port EFI_HII FONT_PROTOCOL .

3. If a platform includes graphical console devices, then FEFI_GRAPHICS_OUTPUT_PROTOCOL,
EFI_EDID_DISCOVERED_PROTOCOL, and EFI_EDID_ACTIVE_PROTOCOL must be implemented.
In order to support the EFI_GRAPHICS_OUTPUT_PROTOCOL ; a platform must contain a driver to consume
EFI_GRAPHICS_OUTPUT_PROTOCOL and produce EFI_SIMPLE_TEXT _OUTPUT_PROTOCOL even if
the EFI_GRAPHICS_OUTPUT_PROTOCOL is produced by an external driver.

4. If a platform includes a pointer device as part of its console support, EFI_SIMPLE _POINTER_PROTOCOL
must be implemented.

5. If a platform includes the ability to boot from a disk device, then EFI_BLOCK_IO_PROTOCOL,
EFI_DISK 10_PROTOCOL, EFI _SIMPLE FILE SYSTEM_PROTOCOL, and
EFI_UNICODE_COLLATION_PROTOCOL are required. In addition, partition support for MBR, GPT,
and El Torito must be implemented. For disk devices supporting the security commands of the SPC-4 or
ATAS8-ACS command set EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is also required. An external
driver may produce the Block I/O Protocol and the EFI_STORAGE_SECURITY_COMMAND_PROTOCOL .
All other protocols required to boot from a disk device must be carried as part of the platform.

6. If a platform includes the ability to perform a TFTP-based boot from a network device, then
EFI_PXE_BASE_CODE_PROTOCOL is required. The platform must be prepared to pro-
duce this protocol on any of EFI_ NETWORK INTERFACE IDENTIFIER_PROTOCOL (UNDI),
EFI_SIMPLE_NETWORK_PROTOCOL, or EFI Managed Network Protocol . If a platform includes the
ability to validate a boot image received through a network device, it is also required that image verification be
supported, including SetupMode equal zero and the boot image hash or a verification certificate corresponding
to the image exist in the ‘db’ variable and not in the ‘dbx’ variable. An external driver may produce the UNDI
interface. All other protocols required to boot from a network device must be carried by the platform.

7. If a platform supports UEFI general purpose network applications, then the EFI Man-
aged Network Protocol, EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL,
EFI_ARP_PROTOCOL, EFI_ARP_SERVICE_BINDING_PROTOCOL, EFI_DHCP4_PROTOCOL,
EFI_DHCP4_SERVICE_BINDING_PROTOCOL, EFI_TCP4_PROTOCOL, EFI_TCP4_SERVICE_BINDING_PROTOCOL,
EFI_IP4_CONFIG2_PROTOCOL, EFI_IP4_SERVICE_BINDING_PROTOCOL,
EFI_IP4_CONFIG2_PROTOCOL, EFI_UDP4_PROTOCOL,and EFI_UDP4_SERVICE_BINDING_PROTOCOL
are required. If additional IPv6 support is needed for the platform,
then EFI DHCP6 Protocol, EFI_DHCP6_SERVICE_BINDING_PROTOCOL,

2.6. Requirements 61

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

EFI_TCP6_PROTOCOL, EFI_TCP6_SERVICE_BINDING_PROTOCOL, EFI_IP6_PROTOCOL,
EFI_IP6_SERVICE_BINDING _PROTOCOL , EFI_IP6_CONFIG_PROTOCOL EFI_UDP6_PROTOCOL
. EFI_UDP6_SERVICE_BINDING_PROTOCOL are additionally required. If the network application requires
DNS capability, EFI_DNS4_SERVICE_BINDING_PROTOCOL and EFI_DNS4_PROTOCOL are required for
the IPv4 stack. EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL are required for
the IPv6 stack. If the network environment requires TLS feature, EFI TLS Service Binding Protocol, EFI TLS
Protocol . EFI TLS Configuration Protocol are required. If the network environment requires IPSEC feature,
EFI_IPSEC_CONFIG_PROTOCOL and EFI IPsec2 Protocol are required. If the network environment requires
VLAN features, EFI_VLAN_CONFIG_PROTOCOL is required.

. If a platform includes a byte-stream device such as a UART, then the EFI_SERIAL_IO_PROTOCOL must be

implemented.

. If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, the EFI PCI I/O

Protocol, must be implemented.

If a platform includes USB bus support, then EFI_USB2_HC_PROTOCOL and EFI_USB_IO_PROTOCOL must
be implemented. An external device can support USB by producing a USB Host Controller Protocol.

If a platform includes an NVM Express controller, then EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL must
be implemented.

If a platform supports booting from a Dblock-oriented NVM Express controller, then
EFI_BLOCK_IO_PROTOCOL must be implemented. An external driver may produce the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL . All other protocols required to boot from an NVM
Express subsystem must be carried by the platform.

If a platform includes an I/O subsystem that utilizes SCSI command packets, then
EFI_EXT _SCSI_PASS_THRU_PROTOCOL must be implemented.

If a platform supports booting from a block oriented SCSI peripheral, then EFI SCSI /O Proto-
col and EFI_BLOCK_IO_PROTOCOL must be implemented. @~ An external driver may produce the
EFI_EXT _SCSI_PASS_THRU_PROTOCOL . All other protocols required to boot from a SCSI I/O subsystem
must be carried by the platform.

If a platform supports booting from an iSCSI peripheral, then the EFI iSCSI Initiator Name Protocol and
EFI_AUTHENTICATION_INFO_PROTOCOL must be implemented.

If a platform includes debugging capabilities, then EFI Debug Support Protocol, the EFI Debugport Protocol,
and the EFI Image Info Table must be implemented.

If a platform includes the ability to override the default driver to the controller matching algorithm provided by
the UEFI Driver Model, then EFI Platform Driver Override Protocol must be implemented.

If a platform includes an I/O subsystem that utilizes ATA command packets, then the
EFI_ATA_PASS_THRU_PROTOCOL must be implemented.

If a platform supports option ROMs from devices not permanently attached to the platform and it supports the
ability to authenticate those option ROMs, then it must support the option ROM validation methods described in
Network Protocols — UDP and MTFTP and the authenticated EFI variables described in Exception for Machine
Check, INIT, and NMI .

If a platform includes the ability to authenticate UEFI images and the platform potentially supports more than
one OS loader, it must support the methods described in Secure Boot and Driver Signing and the authenticated
UEFI variables described in Variable Services.

EBC support is no longer required as of UEFI Specification version 2.8. If an EBC interpreter is implemented,
then it must produce the EFI_EBC_PROTOCOL interface.

If a platform includes the ability to perform a HTTP-based boot from a network de-
vice, then the EFI HTTP_SERVICE BINDING PROTOCOL, EFI HTTP_PROTOCOL and

2.6.

Requirements 62

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

EFI_HTTP_UTILITIES_PROTOCOL are required. If it includes the ability to perform a HTTPS-based
boot from network device, besides above protocols EFI TLS Service Binding Protocol, EFI TLS Protocol and
EFI TLS Configuration Protocol are also required. If it includes the ability to perform a HTTP(S)-based boot
with DNS feature, then EFI_DNS4_SERVICE_BINDING _PROTOCOL, EFI_DNS4_PROTOCOL are required
for the IPv4 stack; EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL are required
for the IPv6 stack.

If a platform includes the ability to perform a wireless boot from a network device with EAP feature, and if
this platform provides a standalone wireless EAP driver, then EFI_FAP_PROTOCOL, EFI EAP Configuration
Protocol, and EFI EAP Management2 Protocol are required; if the platform provides a standalone wireless
supplicant, then EFI Supplicant Protocol and EFI EAP Configuration Protocol are required. If it includes the
ability to perform a wireless boot with TLS feature, then EFI TLS Service Binding Protocol, EFI TLS Protocol
and EFI TLS Configuration Protocol are required.

If a platform supports classic Bluetooth, then EFI_ BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_IO_PROTOCOL, and EFI_BLUETOOTH_CONFIG_PROTOCOL must be imple-
mented, and EFI Bluetooth Attribute Protocol may be implemented. If a platform supports Bluetooth Smart
(Bluetooth Low Energy), then EFI_ BLUETOOTH_HC_PROTOCOL, EFI Bluetooth Attribute Protocol and
EFI_BLUETOOTH_LE_CONFIG_PROTOCOL must be implemented. If a platform supports both Bluetooth
classic and BluetoothLE, then both above requirements should be satisfied.

If a platform supports RESTful communication over HTTP or over an in-band path to a BMC, then the
EFI REST Protocol or EFI_REST_EX_PROTOCOL must be implemented. If EFI_REST_EX_PROTOCOL
is implemented, EFI_REST_EX_ SERVICE_BINDING_PROTOCOL must be implemented as well. If
a platform supports Redfish communication over HTTP or over an in-band path to a BMC, the
EFI_REDFISH_DISCOVER_PROTOCOL and EFI REST JSON Structure Protocol may be implemented.

If a platform includes the ability to use a hardware feature to create high quality random numbers, this capability
should be exposed by instance of EFI_RNG_PROTOCOL with at least one EFI RNG Algorithm supported.

If a platform permits the installation of Load Option Variables, (Boot####, or Driver####, or SysPrep####), the
platform must support and recognize all defined values for Attributes within the variable and report these capa-
bilities in BootOptionSupport. If a platform supports installation of Load Option Variables of type Driver####,
all installed Driver#### variables must be processed and the indicated driver loaded and initialized during every
boot. And all installed SysPrep#### options must be processed prior to processing Boot#### options.

If the platform supports UEFI secure boot as described in Secure Boot and Driver Signing, the platform must
provide the PKCS verification functions described in PKCS7 Verify Protocol .

If a platform includes an I/O subsystem that utilizes SD or eMMC command packets, then the
EFI_SD_MMC_PASS_THRU_PROTOCOL must be implemented.

If a platform includes the ability to create/destroy a specified RAM disk, the EFI_RAM_DISK_PROTOCOL must
be implemented and only one instance of this protocol exists.

If a platform includes a mass storage device which supports hardware-based erase on a specified range, then
EFI_ERASE_BLOCK_PROTOCOL must be implemented.

If a platform includes the ability to register for notifications when a call to ResetSystem is called, then the
EFI_RESET _NOTIFICATION_PROTOCOL must be implemented.

If a platform includes UFS devices, the EFI UFS Device Config Protocol must be implemented.

If a platform cannot support calls defined in EFI_RUNTIME_SERVICES after ExitBootServices() is called, that
platform is permitted to provide implementations of those runtime services that return EFI_UNSUPPORTED
when invoked at runtime. On such systems, an EFI_RT_PROPERTIES_TABLE configuration table should be
published describing which runtime services are supported at runtime.

If a platform includes support for CXL devices with coherent memory, then the platform must support extracting
the Coherent Device Attribute Table (CDAT) from the device, using either the CXL Data Object Exchange ser-

2.6.

Requirements 63

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

vices (as defined in the CXL 2.0 Specification) or the EFI_ADAPTER_INFORMATION_PROTOCOL instance
(with EFI_ADAPTER_INFO_CDAT_TYPE_GUID type) installed on that device.

36. RISC-V platform firmware must implement the RISCV_EFI_BOOT_PROTOCOL. OS loaders should use the
RISCV_EFI_BOOT_PROTOCOL.GetBootHartId() to obtain the boot hart ID. The boot hart ID information
provided by either SMBIOS or Device Tree is to be ignored by OS loaders. See “Links to UEFI Specification-
Related Document” on https://uefi.org/uefi under the heading “RISC-V EFI Boot Protocol.”

© Note

Some of the required protocol instances are created by the corresponding Service Binding Protocol. For example,
EFI_IP4_PROTOCOL is created by EFI_IP4_SERVICE_BINDING_PROTOCOL. Please refer to the correspond-
ing sections of Service Binding Protocol for the details.

2.6.3 Driver-Specific Elements

There are a number of UEFI elements that can be added or removed depending on the features that a specific driver
requires. Drivers can be implemented by platform firmware developers to support buses and devices in a specific
platform. Drivers can also be implemented by add-in card vendors for devices that might be integrated into the platform
hardware or added to a platform through an expansion slot.

The following list includes possible driver features, and the UEFI elements that are required for each feature type:

1. If a driver follows the driver model of this specification, the EFI Driver Binding Protocol must be implemented.
It is strongly recommended that all drivers that follow the driver model of this specification also implement the
EFI_ COMPONENT_NAME2_PROTOCOL .

2. If a driver requires configuration information, the driver must use the EFI_HII_DATABASE_PROTOCOL . A
driver should not otherwise display information to the user or request information from the user.

3. Ifadriver requires diagnostics, the EFI_DRIVER _DIAGNOSTICS2_PROTOCOL must be implemented. In order
to support low boot times, limit diagnostics during normal boots. Time consuming diagnostics should be deferred
until the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is invoked.

4. If a bus supports devices that are able to provide containers for drivers (e.g. option ROMs), then the bus driver
for that bus type must implement the EF/_BUS_SPECIFIC_DRIVER_OVERRIDE _PROTOCOL .

5. If a driver is written for a console output device, then the EFI_SIMPLE _TEXT _OUTPUT_PROTOCOL must be
implemented.

6. If a driver is written for a graphical console output device, then the EFI_GRAPHICS_OUTPUT_PROTOCOL,
EFI_EDID_DISCOVERED_PROTOCOL and EFI_EDID_ACTIVE_PROTOCOL must be implemented.

7. If a driver is written for a console input device, then the EFI_SIMPLE TEXT INPUT PROTOCOL and
EFI _SIMPLE TEXT INPUT _EX_PROTOCOL must be implemented.

8. If a driver is written for a pointer device, then the EFI_SIMPLE_POINTER_PROTOCOL must be implemented.

9. If a driver is written for a network device, then the EFI_ NETWORK INTERFACE IDENTIFIER _PROTOCOL,
EFI_SIMPLE_NETWORK_PROTOCOL or EFI Managed Network Protocol must be implemented.
If VLAN is supported in hardware, then driver for the network device may implement the
EFI_VLAN_CONFIG_PROTOCOL . If a network device chooses to only produce the EFI Managed Network
Protocol, then the driver for the network device must implement the EF/ VLAN_CONFIG_PROTOCOL
. If a driver is written for a network device to supply wireless feature, besides above protocols,
EFI_ADAPTER_INFORMATION_PROTOCOL must be implemented. If the wireless driver does not provide
user configuration capability, EFI Wireless MAC Connection II Protocol must be implemented. If the wireless

2.6. Requirements 64

https://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

driver is written for a platform which provides a standalone wireless EAP driver, EFI_EAP_PROTOCOL must
be implemented.

If a driver is written for a disk device, then the EFI_ BLOCK_IO_PROTOCOL
and the EFI BLOCK_IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices supporting
the security commands of the SPC-4 or ATA8-ACS command set. In addition, for devices that support incline
encryption in the host storage controller, the EFI_BLOCK _I0_CRYPTO_PROTOCOL must be supported.

If a driver 1is written for a disk device, then the EFI_ BLOCK I0_PROTOCOL
and the EFI BLOCK IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices supporting
the security commands of the SPC-4 or ATA8-ACS command set.

If a driver is written for a device that is not a block oriented device but one that can provide a file system-like
interface, then the EFI_SIMPLE_FILE _SYSTEM_PROTOCOL must be implemented.

If a driver is written for a PCI root bridge, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and the EFI
PCI I/O Protocol must be implemented.

If a driver is written for an NVM Express controller, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
must be implemented.

If a driver is written for a USB host controller, then the EFI USB2 HC PROTOCOL and the
EFI_USB_IO_PROTOCOL must be implemented.

If a driver is written for a SCSI controller, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be imple-
mented.

If adriver is digitally signed, it must embed the digital signature in the PE/COFF image as described in Embedded
Signatures .

If a driver is written for a boot device that is not a block-oriented device, a file system-based device, or a console
device, then the EFI_LOAD_FILE2_PROTOCOL must be implemented.

If adriver follows the driver model of this specification, and the driver wants to produce warning or error messages
for the user, then the EFI Driver Health Protocol must be used to produce those messages. The Boot Manager
may optionally display the messages to the user.

If a driver follows the driver model of this specification, and the driver needs to perform a repair operation that
is not part of the normal initialization sequence, and that repair operation requires an extended period of time,
then the EFI Driver Health Protocol must be used to provide the repair feature. If the Boot Manager detects a
boot device that requires a repair operation, then the Boot Manager must use the EF/ Driver Health Protocol to
perform the repair operation. The Boot Manager can optionally display progress indicators as the repair operation
is performed by the driver.

If a driver follows the driver model of this specification, and the driver requires the user to make software and/or
hardware configuration changes before the boot devices that the driver manages can be used, then the EFI Driver
Health Protocol must be produced. If the Boot Manager detects a boot device that requires software and/or
hardware configuration changes to make the boot device usable, then the Boot Manager may optionally allow the
user to make those configuration changes.

If a driver is written for an ATA controller, then the EFI_ATA_PASS_THRU_PROTOCOL must be implemented.

If a driver follows the driver model of this specification, and the driver wants to be used with higher pri-
ority than the Bus Specific Driver Override Protocol when selecting the best driver for controller, then the
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL must be produced on the same handle as the EFI Driver Bind-
ing Protocol.

If a driver supports firmware management by an external agent or application, then the
EFI_FIRMWARE _MANAGEMENT_PROTOCOL must be used to support firmware management.

2.6.

Requirements 65

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

25. If a driver follows the driver model of this specification and a driver is a device driver as defined in UEFI Driver
Model, it must perform bus transactions via the bus abstraction protocol produced by a parent bus driver. Thus
a driver for a device that conforms to the PCI specification must use EF7 PCI I/O Protocol for all PCI memory
space, PCI I/O, PCI configuration space, and DMA operations.

26. If a driver is written for a classic Bluetooth controller, then EFI BLUETOOTH _HC PROTOCOL,
EFI BLUETOOTH_I0_PROTOCOL and EFI_ BLUETOOTH_CONFIG_PROTOCOL must be implemented,
and EFI Bluetooth Attribute Protocol may be implemented. If a driver written for a Bluetooth Smart (Blue-
tooth Low Energy) controller, then EFI_BLUETOOTH_HC_PROTOCOL, EFI Bluetooth Attribute Protocol and
EFI_BLUETOOTH_LE_CONFIG_PROTOCOL must be implemented. If a driver supports both Bluetooth clas-
sic and BluetoothLE, then both above requirements should be satisfied.

27. If a driver is written for an SD controller or eMMC controller, then the
EFI_SD_MMC_PASS_THRU_PROTOCOL must be implemented.

28. If a driver is written for a UFS device, then EFI_UFS_DEVICE_CONFIG_PROTOCOL must be implemented.

2.6.4 Extensions to this Specification Published Elsewhere

This specification has been extended over time to include support for new devices and technologies. As the name of
the specification implies, the original intent in its definition was to create a baseline for firmware interfaces that is
extensible without the need to include extensions in the main body of this specification.

Readers of this specification may find that a feature or type of device is not treated by the specification. This does not
necessarily mean that there is no agreed “standard” way to support the feature or device in implementations that claim
conformance to this Specification. On occasion, it may be more appropriate for other standards organizations to publish
their own extensions that are designed to be used in concert with the definitions presented here. This may for example
allow support for new features in a more timely fashion than would be accomplished by waiting for a revision to this
specification or perhaps that such support is defined by a group with a specific expertise in the subject area. Readers
looking for means to access features or devices that are not treated in this document are therefore recommended to
inquire of appropriate standards groups to ascertain if appropriate extension publications already exist before creating
their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of extension publications that are
compatible with and designed for use with this specification. Such extensions include:

* Developers Interface Guide for Itanium® Architecture Based Servers: published and hosted by the DIG64 group
(See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Developers Interface Guide
for Itanium® Architecture Based Servers”). This document is a set of technical guidelines that define hardware,
firmware, and operating system compatibility for Itanium™-based servers;

e TCG EFI Platform Specification: published and hosted by the Trusted Computing Group (See “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “TCG EFI Platform Specification”). This document
is about the processes that boot an EFI platform and boot an OS on that platform. Specifically, this specification
contains the requirements for measuring boot events into TPM PCRs and adding boot event entries into the Event
Log.

* TCG EFI Protocol Specification: published and hosted by the Trusted Computing Group (See “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “TCG EFI Protocol Specification). This document
defines a standard interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have been created since the last
revision of this document.

2.6. Requirements 66

http://uefi.org/uefi
http://uefi.org/uefi
http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2.6.5 Cryptographic Algorithm Requirement

1. UEFI variable authentication

e For EFI_VARIABLE_AUTHENTICATION_3 or EFI_VARIABLE AUTHENTICATION_2 descrip-
tor, SignedData.digestAlgorithms shall support SHA-256 (oid: 2.16.840.1.101.3.4.2.1), Signer-
Info.digestEncryptionAlgorithm be support digest encryption algorithm of RSA with PKCS #1 v1.5
padding (RSASSA_PKCS1v1_5) (oid: sha256WithRSAEncryption: 1.2.840.113549.1.1.11).

2. EAP protocol

* The cryptographic strength of EFI_EAP_TYPE_TLS shall be at least of hash strength SHA-256 and RSA
key length of at least 2048 bits.

3. TLS protocol
¢ The recommended TLS version is 1.2 or 1.3.
4. Secure Boot

* The platform key (PK) format shall be at least RSA-2048. The hash of the UEFI image binary in the dbx
shall be at least SHA-256.

5. Hash Protocol and Hash2 Protocol

* SHA-1 and MDS5 shall only be used for backwards compatibility. For example, SHA-1 shall only be used
to support TPM1.2. MDS5 shall only be used for iSCSI CHAP.

6. PKCS7 Verify Protocol.

* Digest (Hash) Algorithm shall support SHA-256 (oid: 2.16.840.1.101.3.4.2.1). Digest Encryption shall
support sha256 WithRSAEncryption (oid: 1.2.840.113549.1.1.11).

2.6. Requirements 67

CHAPTER
THREE

BOOT MANAGER

The UEFI boot manager is a firmware policy engine that can be configured by modifying architecturally defined global
NVRAM variables. The boot manager will attempt to load UEFI drivers and UEFI applications (including UEFI OS
boot loaders) in an order defined by the global NVRAM variables. The platform firmware must use the boot order
specified in the global NVRAM variables for normal boot. The platform firmware may add extra boot options or
remove invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an exceptional condition is
discovered in the firmware boot process. One example of a value added feature would be not loading a UEFI driver if
booting failed the first time the driver was loaded. Another example would be booting to an OEM-defined diagnostic
environment if a critical error was discovered in the boot process.

The boot sequence for UEFI consists of the following:

* The boot order list is read from a globally defined NVRAM variable. Modifications to this variable are only
guaranteed to take effect after the next platform reset. The boot order list defines a list of NVRAM variables that
contain information about what is to be booted. Each NVRAM variable defines a name for the boot option that
can be displayed to a user.

» The variable also contains a pointer to the hardware device and to a file on that hardware device that contains the
UEFI image to be loaded.

* The variable might also contain paths to the OS partition and directory along with other configuration specific
directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The platform firmware has no
knowledge of what is contained in the load options. The load options are set by higher level software when it writes
to a global NVRAM variable to set the platform firmware boot policy. This information could be used to define the
location of the OS kernel if it was different than the location of the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that determines which drivers and
applications should be explicitly loaded and when. Once compliant firmware is initialized, it passes control to the boot
manager. The boot manager is then responsible for determining what to load and any interactions with the user that
may be required to make such a decision.

The actions taken by the boot manager depend upon the system type and the policies set by the system designer.
For systems that allow the installation of new Boot Variables (See Bootr Option Recovery), the Boot Manager must
automatically or upon the request of the loaded item, initialize at least one system console, as well as perform all
required initialization of the device indicated within the primary boot target. For such systems, the Boot Manager is
also required to honor the priorities set in BootOrder variable.

68

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

In particular, likely implementation options might include any console interface concerning boot, integrated platform
management of boot selections, and possible knowledge of other internal applications or recovery drivers that may be
integrated into the system through the boot manager.

3.1.1 Boot Manager Programming

Programmatic interaction with the boot manager is accomplished through globally defined variables. On initialization
the boot manager reads the values which comprise all of the published load options among the UEFI environment
variables. By using the SetVariable() function the data that contain these environment variables can be modified. Such
modifications are guaranteed to take effect after the next system boot commences. However, boot manager implemen-
tations may choose to improve on this guarantee and have changes take immediate effect for all subsequent accesses to
the variables that affect boot manager behavior without requiring any form of system reset.

Each load option entry resides in a Boot####, Driver####, SysPrep####, OsRecovery#### or PlatformRecovery####
variable where #### is replaced by a unique option number in printable hexadecimal representation using the digits
0-9, and the upper case versions of the characters A-F (0000-FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load options are then logically
ordered by an array of option numbers listed in the desired order. There are two such option ordering lists when booting
normally. The first is DriverOrder that orders the Driver#### load option variables into their load order. The second
is BootOrder that orders the Boot#### load options variables into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the option number of the
new Boot#### variable would be added to the BootOrder ordered list and the BootOrder variable would be rewritten.
To change boot option on an existing Boot#### , only the Boot#### variable would need to be rewritten. A similar
operation would be done to add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS , platform firmware supports boot manager menu,
and if firmware is configured to boot in an interactive mode, the boot manager will stop processing the BootOrder
variable and present a boot manager menu to the user. If any of the above-mentioned conditions is not satisfied, the
next Boot#### in the BootOrder variable will be tried until all possibilities are exhausted. In this case, boot option
recovery must be performed (See Boor Option Recovery).

The boot manager may perform automatic maintenance of the database variables. For example, it may remove unref-
erenced load option variables or any load option variables that cannot be parsed, and it may rewrite any ordered list
to remove any load options that do not have corresponding load option variables. The boot manager can also, at its
own discretion, provide an administrator with the ability to invoke manual maintenance operations as well. Examples
include choosing the order of any or all load options, activating or deactivating load options, initiating OS-defined or
platform-defined recovery, etc. In addition, if a platform intends to create PlatformRecovery#### , before attempting to
load and execute any DriverOrder or BootOrder entries, the firmware must create any and all PlatformRecovery####
variables (See Platform-Defined Boot Option Recovery). The firmware should not, under normal operation, automat-
ically remove any correctly formed Boot#### variable currently referenced by the BootOrder or BootNext variables.
Such removal should be limited to scenarios where the firmware is guided by direct user interaction.

The contents of PlatformRecovery#### represent the final recovery options the firmware would have attempted had
recovery been initiated during the current boot, and need not include entries to reflect contingencies such as significant
hardware reconfiguration, or entries corresponding to specific hardware that the firmware is not yet aware of.

The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, Firmware/OS Key Exchange:
Passing Public Keys.

3.1. Firmware Boot Manager 69

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

3.1.2 Load Option Processing

The boot manager is required to process the Driver load option entries before the Boot load option entries. If
the EFI_OS_INDICATIONS_START_OS_RECOVERY bit has been set in Oslndications , the firmware shall at-
tempt OS-defined recovery (See OS-Defined Boot Option Recovery) rather than normal boot processing. If the
EFI OS_INDICATIONS_START PLATFORM_RECOVERY bit has been set in OsIndications , the firmware shall at-
tempt platform-defined recovery (See Platform-Defined Boot Option Recovery) rather than normal boot processing or
handling of the EFI_OS_INDICATIONS_START_OS_RECOVERY bit. In either case, both bits should be cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option specified by the BootNext variable
as the first boot option on the next boot, and only on the next boot. The boot manager removes the BootNext variable
before transferring control to the BootNext boot option. After the BootNext boot option is tried, the normal BootOrder
list is used. To prevent loops, the boot manager deletes BootNext before transferring control to the preselected boot
option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the firmware has been instructed
to attempt boot order recovery, the firmware must attempt boot option recovery (See Boot Option Recovery).

The boot manager must call EFI_BOOT_SERVICES.Loadlmage() which supports at least
EFI_SIMPLE _FILE SYSTEM _PROTOCOL and EFI LOAD_FILE PROTOCOL for resolving load options.
If Loadlmage() succeeds, the boot manager must enable the watchdog timer for 5 minutes by using the
EFI_BOOT_SERVICES.SetWatchdogTimer() boot service prior to calling EFI_BOOT_SERVICES.StartImage().
If a boot option returns control to the boot manager, the boot manager must disable the watchdog timer with an
additional call to the SertWarchdogTimer() boot service.

If the boot image is not loaded via EFI_BOOT_SERVICES.Loadlmage() the boot manager is required to check for
a default application to boot. Searching for a default application to boot happens on both removable and fixed
media types. This search occurs when the device path of the boot image listed in any boot option points di-
rectly to an EFI_SIMPLE_FILE _SYSTEM_PROTOCOL device and does not specify the exact file to load. The
file discovery method is explained in Boor Option Recovery. The default media boot case of a protocol other than
EFI_SIMPLE _FILE SYSTEM_PROTOCOL is handled by the EFI LOAD_FILE PROTOCOL for the target device
path and does not need to be handled by the boot manager.

The UEFI boot manager must support booting from a short-form device path that starts with the first element being a
USB WWID (USB WWID Device Path) or a USB Class (USB Class Device Path) device path. For USB WWID, the
boot manager must use the device vendor ID, device product id, and serial number, and must match any USB device
in the system that contains this information. If more than one device matches the USB WWID device path, the boot
manager will pick one arbitrarily. For USB Class, the boot manager must use the vendor ID, Product ID, Device Class,
Device Subclass, and Device Protocol, and must match any USB device in the system that contains this information.
If any of the ID, Product ID, Device Class, Device Subclass, or Device Protocol contain all F’s (OxXFFFF or OxFF), this
element is skipped for the purpose of matching. If more than one device matches the USB Class device path, the boot
manager will pick one arbitrarily.

The boot manager must also support booting from a short-form device path that starts with the first element being a
hard drive media device path (Hard Drive Media Device Path). The boot manager must use the GUID or signature
and partition number in the hard drive device path to match it to a device in the system. If the drive supports the GPT
partitioning scheme the GUID in the hard drive media device path is compared with the UniquePartitionGuid field of
the GUID Partition Entry (GPT Partition Entry). If the drive supports the PC-AT MBR scheme the signature in the
hard drive media device path is compared with the UniqueMBRSignature in the Legacy Master Boot Record (Legacy
MBR). If a signature match is made, then the partition number must also be matched. The hard drive device path can
be appended to the matching hardware device path and normal boot behavior can then be used. If more than one device
matches the hard drive device path, the boot manager will pick one arbitrarily. Thus the operating system must ensure
the uniqueness of the signatures on hard drives to guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts with the first element being a File
Path Media Device Path (File Path Media Device Path). When the boot manager attempts to boot a short-form File
Path Media Device Path, it will enumerate all removable media devices, followed by all fixed media devices, creating

3.1. Firmware Boot Manager 70

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

boot options for each device. The boot option FilePathList[0] is constructed by appending short-form File Path Media
Device Path to the device path of a media. The order within each group is undefined. These new boot options must
not be saved to non volatile storage, and may not be added to BootOrder. The boot manager will then attempt to boot
from each boot option. If a device does not support the EFI SIMPLE FILE SYSTEM_ PROTOCOL , but supports the
EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service ConnectController must be called for this device
with DriverlmageHandle and RemainingDevicePath set to NULL and the Recursive flag is set to TRUE. The firmware
will then attempt to boot from any child handles produced using the algorithms outlined above.

The boot manager must also support booting from a short-form device path that starts with the first element being a
URI Device Path (URI Device Path). When the boot manager attempts to boot a short-form URI Device Path, it could
attempt to connect any device which will produce a device path protocol including a URI device path node until it
matches a device, or fail to match any device. The boot manager will enumerate all LoadFile protocol instances, and
invoke LoadFile protocol with FilePath set to the short-form device path during the matching process.

3.1.3 Load Options

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte packed buffer of variable length
fields.

typedef struct _EFI_LOAD_OPTION {

UINT32 Attributes;

UINT16 FilePathListLength;
// CHAR16 Description[];

// EFI_DEVICE_PATH_PROTOCOL FilePathList[];

// UINT8 OptionalDatal[];

} EFI_LOAD_OPTION;

Parameters

Attributes
The attributes for this load option entry. All unused bits must be zero and are reserved by the UEFI specification
for future growth. See “Related Definitions.”

FilePathListLength
Length in bytes of the FilePathList. OptionalData starts at offset sizeof(UINT32) + sizeof(UINT16) + Str-
Size(Description) + FilePathListLength of the EFI_LOAD_OPTION descriptor.

Description
The user readable description for the load option. This field ends with a Null character.

FilePathList
A packed array of UEFI device paths. The first element of the array is a device path that describes the device and
location of the Image for this load option. The FilePathList[0] is specific to the device type. Other device paths
may optionally exist in the FilePathList, but their usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure. Because the size of Description is arbitrary, this data structure
is not guaranteed to be aligned on a natural boundary. This data structure may have to be copied to an aligned
natural boundary before it is used.

OptionalData
The remaining bytes in the load option descriptor are a binary data buffer that is passed to the loaded image.
If the field is zero bytes long, a NULL pointer is passed to the loaded image. The number of bytes in Op-
tionalData can be computed by subtracting the starting offset of OptionalData from total size in bytes of the
EFI_LOAD_OPTION.

3.1. Firmware Boot Manager 71

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

© Note

Each device path in the FilePathList can be a single instance or a multi-instance device path.

Related Definitions

7 % e e e e e e e e e e g e B e e e de e g e e e e g de s e e de e s de s e
// Attributes
//7'::':7’:7‘:7‘:7'::':7'::‘:7':7'::':7‘:7‘:7‘:7'::'.‘7\‘7‘:7':7':7'.‘7‘:7‘:7':7':7\“.‘:7‘:7'::':7\“.‘:7':7'::':7':-.‘:7':7'::':7‘:7‘:7‘:7'::':7‘:7‘:7':7’:7’:7‘:7‘:7‘:7’:7’:
#define LOAD_OPTION_ACTIVE 0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002
#define LOAD_OPTION_HIDDEN 0x00000008
#define LOAD_OPTION_CATEGORY 0x00001F00
#define LOAD_OPTION_CATEGORY_BOOT 0x00000000
#define LOAD_OPTION_CATEGORY_APP 0x00000100

// All values 0x00000200-0x00001F00 are reserved

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the size of the DaraSize argument
to the SetVariable() call that created the variable. When creating a new load option, all undefined attribute bits must
be written as zero. When updating a load option, all undefined attribute bits must be preserved.

If a load option is marked as LOAD_OPTION_ACTIVE, the boot manager will attempt to boot automatically using the
device path information in the load option. This provides an easy way to disable or enable load options without needing
to delete and re-add them.

If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT , then all of the UEFI drivers
in the system will be disconnected and reconnected after the last Driver#### load option is processed. This allows a
UEFI driver loaded with a Driver#### load option to override a UEFI driver that was loaded prior to the execution of
the UEFI Boot Manager.

The executable indicated by FilePathList[0] in Driver#### load option must be of type
EFI IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER or EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER
otherwise the indicated executable will not be entered for initialization.

The executable indicated by FilePathList[0O] in SysPrep### , Boot#### , or OsRecovery#### load option must be of
type EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION, otherwise the indicated executable will not be entered.

The LOAD_OPTION_CATEGORY is a sub-field of Attributes that provides details to the boot manager to describe how
it should group the Boot#### load options. This field is ignored for variables of the form Driver#### , SysPrep####,
or OsRecovery####.

Boot#### load options with LOAD_OPTION_CATEGORY set to LOAD_OPTION_CATEGORY_BOOT are meant to
be part of the normal boot processing.

Boot#### load options with LOAD_OPTION_CATEGORY setto LOAD_OPTION_CATEGORY_APP are executables
which are not part of the normal boot processing but can be optionally chosen for execution if boot menu is provided,
or via Hot Keys. See See Launching Boot#### Load Options Using Hot Keys for details.

Boot options with reserved category values, will be ignored by the boot manager.

If any Boot#### load option is marked as LOAD_OPTION_HIDDEN |, then the load option will not appear in the menu
(if any) provided by the boot manager for load option selection.

3.1. Firmware Boot Manager 72

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

3.1.4 Boot Manager Capabilities

The boot manager can report its capabilities through the global variable BootOptionSupport. 1f the global variable is
not present, then an installer or application must act as if a value of 0 was returned.

#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001
#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002
#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010
#define EFI_BOOT_OPTION_SUPPORT_COUNT 0x00000300

If EFI_BOOT_OPTION_SUPPORT _KEY is set then the boot manager supports launching of Boot#### load options
using key presses. If EFI_BOOT_OPTION_SUPPORT_APP is set then the boot manager supports boot options with
LOAD_OPTION_CATEGORY_APP.If EFI BOOT_OPTION_SUPPORT_SYSPREP is set then the boot manager sup-
ports boot options of form SysPrep####.

The value specified in EFI_BOOT_OPTION_SUPPORT_COUNT describes the maximum number of key presses
which the boot manager supports in the EFI_KEY_OPTION .KeyData.InputKeyCount. This value is only valid if
EFI_BOOT_OPTION_SUPPORT_KEY is set. Key sequences with more keys specified are ignored.

3.1.5 Launching Boot#### Applications

The boot manager may support a separate category of Boot#### load option for applications. The boot manager
indicates that it supports this separate category by setting the EFI_BOOT_OPTION_SUPPORT_APP in the BootOp-
tionSupport global variable.

When an application’s Boot#### option is being added to the BootOrder , the installer should clear
LOAD_OPTION_ACTIVE so that the boot manager does not attempt to automatically “boot” the application. If the
boot manager indicates that it supports a separate application category, as described above, the installer should set
LOAD_OPTION_CATEGORY_APP. If not, it should set LOAD_OPTION_CATEGORY_BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys

The boot manager may support launching a Boot#### load option using a special key press. If so, the boot manager
reports this capability by setting EFI_BOOT_OPTION_SUPPORT_KEY in the BootOptionSupport global variable.

A boot manager which supports key press launch reads the current key information from the console. Then, if there was
a key press, it compares the key returned against zero or more Key#### global variables. If it finds a match, it verifies
that the Boot#### load option specified is valid and, if so, attempts to launch it immediately. The #### in the Key####
is a printable hexadecimal number (‘0’-‘9’, ‘A’-‘F’) with leading zeroes. The order which the Key#### variables are
checked is implementation-specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap with those used for internal boot
manager functions. It is recommended that the boot manager delete these keys.

The Key#### variables have the following format:

Prototype

typedef struct _EFI_KEY_OPTION {
EFI_BOOT_KEY_DATA KeyData;
UINT32 BootOptionCrc;
UINT16 BootOption;

// EFI_INPUT_KEY Keys[];

} EFI_KEY_OPTION;

Parameters

3.1. Firmware Boot Manager 73

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

KeyData
Specifies options about how the key will be processed. Type EFI_BOOT_KEY_DATA is defined in “Related
Definitions” below.

BootOptionCrc
The CRC-32 which should match the CRC-32 of the entire EFI_LOAD_OPTION to which BootOption refers.
If the CRC-32s do not match this value, then this key option is ignored.

BootOption
The Boot#### option which will be invoked if this key is pressed and the boot option is active
(LOAD_OPTION_ACTIVE is set).

Keys
The key codes to compare against those returned by the EFI_SIMPLE_TEXT_INPUT and

EFI_SIMPLE_TEXT_INPUT_EX protocols. The number of key codes (0-3) is specified by the
EFI_KEY_CODE_COUNT field in KeyOptions.

Related Definitions

typedef union {
struct {
UINT32 Revision : 8;
UINT32 ShiftPressed : 1;
UINT32 ControlPressed : 1;
UINT32 AltPressed : 1;
UINT32 LogoPressed : 1;
UINT32 MenuPressed : 1
UINT32 SysReqPressed : 1;
UINT32 Reserved : 16;
UINT32 InputKeyCount : 2;
} Options;
UINT32 PackedValue;
} EFI_BOOT_KEY_DATA;

Revision
Indicates the revision of the EFI_KEY OPTION structure. This revision level should be 0.

ShiftPressed
Either the left or right Shift keys must be pressed (1) or must not be pressed (0).

ControlPressed
Either the left or right Control keys must be pressed (1) or must not be pressed (0).

AltPressed
Either the left or right Alt keys must be pressed (1) or must not be pressed (0).

LogoPressed
Either the left or right Logo keys must be pressed (1) or must not be pressed (0).

MenuPressed
The Menu key must be pressed (1) or must not be pressed (0).

SysReqPressed
The SysReq key must be pressed (1) or must not be pressed (0).

InputKeyCount
Specifies the actual number of entries in EFI_KEY_OPTION. Keys, from 0-3. If zero, then only the shift state is
considered. If more than one, then the boot option will only be launched if all of the specified keys are pressed
with the same shift state.

3.1. Firmware Boot Manager 74

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Example #1: ALT is the hot key. KeyData.PackedValue = 0x00000400.
Example #2: CTRL-ALT-P-R. KeyData.PackedValue = 0x80000600.

Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications

A load option of the form SysPrep#### is intended to designate a UEFI application that is required to execute in order
to complete system preparation prior to processing of any Boot#### variables. The execution order of SysPrep####
applications is determined by the contents of the variable SysPrepOrder in a way directly analogous to the ordering of
Boot#### options by BootOrder.

The platform is required to examine all SysPrep#### variables referenced in SysPrepOrder. If Attributes bit
LOAD_OPTION_ACTIVE is set, and the application referenced by FilePathList[0] is present, the UEFI Applications
thus identified must be loaded and launched in the order they appear in SysPrepOrder and prior to the launch of any
load options of type Boot####.

When launched, the platform is required to provide the application loaded by S ysPrep#### , with the same services
such as console and network as are normally provided at launch to applications referenced by a Boot#### variable.
SysPrep#### application must exit and may not call ExitBootServices(). Processing of any Error Code returned at exit
is according to system policy and does not necessarily change processing of following boot options. Any driver portion
of the feature supported by SysPrep#### boot option that is required to remain resident should be loaded by use of
Driver#### variable.

The Attributes option LOAD_OPTION_FORCE_RECONNECT is ignored for SysPrep#### variables, and in the event
that an application so launched performs some action that adds to the available hardware or drivers, the system prepa-
ration application shall itself utilize appropriate calls to ConnectController() or DisconnectController() to revise con-
nections between drivers and hardware

After all SysPrep#### variables have been launched and exited, the platform shall notify
EFI_ EVENT GROUP_READY_TO_BOOT and EFI_EVENT_GROUP_AFTER_READY_TO_BOOT event groups.
This should happen when the Boot Manager is about to load and execute Boot#### variables with Attributes set to
LOAD_OPTION_CATEGORY_BOOT according to the order defined by BootOrder.

3.2 Boot Manager Policy Protocol

3.2.1 EFI_BOOT_MANAGER_POLICY PROTOCOL

Summary
This protocol is used by EFI Applications to request the UEFI Boot Manager to connect devices using platform policy.
GUID

#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_GUID \
{ OXFEDF8EOC, OxE147, Ox11E3,\
{ 0x99, 0x03, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }

Protocol Interface Structure

3.2. Boot Manager Policy Protocol 75

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL
EFI_BOOT_MANAGER_POLICY_PROTOCOL;
struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL {

UINT64 Revision;
EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH ConnectDevicePath;
EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS ConnectDeviceClass;
3
ConnectDevicePath

Connect a Device Path following the platforms EFI Boot Manager policy.

ConnectDeviceClass
Connect a class of devices, named by EFI_GUID, following the platforms UEFI Boot Manager policy.

Description

The EFI_BOOT_MANAGER_POLICY_PROTOCOL is produced by the platform firmware to ex-
pose Boot Manager policy and platform specific =~ EFI_BOOT_SERVICES.ConnectController()
EFI_BOOT_SERVICES.ConnectController() behavior.

Related Definitions

[#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_REVISION 0x00010000]

3.2.2 EFI_BOOT_MANAGER_POLICY_PROTOCOL.ConnectDevicePath()

Summary

Connect a device path following the platform’s EFI Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH) (
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
IN EFI_DEVICE_PATH *DevicePath,
IN BOOLEAN Recursive
DN
Parameters
This
A pointer to the EFI_ BOOT_MANAGER_POLICY_PROTOCOL instance. Type

EFI_BOOT_MANAGER_POLICY_PROTOCOL defined above.

DevicePath
Points to the start of the EFI device path to connect. If DevicePath is NULL then all the controllers in the system
will be connected using the platform’s EFI Boot Manager policy.

Recursive
If TRUE, then ConnectController() is called recursively until the entire tree of controllers below the controller
specified by DevicePath have been created. If FALSE, then the tree of controllers is only expanded one level. If
DevicePath is NULL then Recursive is ignored.

Description

3.2. Boot Manager Policy Protocol 76

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The ConnectDevicePath() function allows the caller to connect a DevicePath using the same policy as the EFI Boot
Manager.

If Recursive is TRUE , then ConnectController() is called recursively until the entire tree of controllers below the
controller specified by DevicePath have been created. If Recursive is FALSE, then the tree of controllers is only
expanded one level. If DevicePath is NULL then Recursive is ignored.

Status Codes Returned

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.
EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers
EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

3.2.3 EFI_BOOT_MANAGER_POLICY_PROTOCOL.ConnectDeviceClass()

Summary

Connect a class of devices using the platform Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS) (
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
IN EFI_GUID *Class
);
Parameters
This
A pointer to the EFI_BOOT_MANAGER_POLICY_PROTOCOL instance. Type
EFI_BOOT_MANAGER_POLICY_PROTOCOL is defined above.
Class
A pointer to an EFI_GUID that represents a class of devices that will be connected using the Boot Manager’s
platform policy.
Description

The ConnectDeviceClass() function allows the caller to request that the Boot Manager connect a class of devices.

If Class is EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID then the Boot Manager will use platform policy to
connect consoles. Some platforms may restrict the number of consoles connected as they attempt to fast boot, and call-
ing ConnectDeviceClass() with a Class value of EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID must connect
the set of consoles that follow the Boot Manager platform policy, and the EFI_SIMPLE _TEXT INPUT_PROTOCOL ,
EFI _SIMPLE TEXT INPUT_EX PROTOCOL , and the EFI_SIMPLE TEXT OUTPUT_PROTOCOL are produced
on the connected handles. The Boot Manager may restrict which consoles get connect due to platform policy, for
example a security policy may require that a given console is not connected.

If Class is EFI_BOOT_MANAGER_POLICY_NETWORK_GUID then the Boot Manager will connect the protocols the
platform supports for UEFI general purpose network applications on one or more handles. The protocols associated
with UEFI general purpose network applications are defined in Platform-Specific Elements , list item number 7. If more
than one network controller is available a platform will connect, one, many, or all of the networks based on platform
policy. Connecting UEFI networking protocols, like EFI_DHCP4_PROTOCOL , does not establish connections on

3.2. Boot Manager Policy Protocol 77

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

the network. The UEFI general purpose network application that called ConnectDeviceClass() may need to use the
published protocols to establish the network connection. The Boot Manager can optionally have a policy to establish a
network connection.

If Class is EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID then the Boot Manager will connect all UEFI
drivers using the UEFI Boot Service EFI_BOOT_SERVICES.ConnectController(). If the Boot Manager has policy
associated with connect all UEFI drivers this policy will be used.

A platform can also define platform specific Class values as a properly generated EFI_GUID would never conflict with
this specification.

Related Definitions

#define EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID \

{ 0xCABOE94C, OxE15F, Ox11E3,\

{ 0x91, 0x8D, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_NETWORK_GUID \

{ 0xD04159DC, OxE15F, Ox11E3,\

{ 0xB2, Ox61, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID \

{ 0x113B2126, OxFC8A, Ox11E3,\

{ 0xBD, 0x6C, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }

Status Codes Returned
EFI_SUCCESS At least one devices of the Class was connected.
EFI_DE ERROR Devices were not connected due to an error.
EFI_NOT_FOUND The Class is not supported by the platform.
EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

3.3 Globally Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to the defined data con-
tent, each such variable has an architecturally defined attribute that indicates when the data variable may be accessed.
The variables with an attribute of NV are nonvolatile. This means that their values are persistent across resets and
power cycles. The value of any environment variable that does not have this attribute will be lost when power is re-
moved from the system and the state of firmware reserved memory is not otherwise preserved. The variables with an
attribute of BS are only available before EFI_BOOT _SERVICES.ExitBootServices() is called. This means that these
environment variables can only be retrieved or modified in the preboot environment. They are not visible to an op-
erating system. Environment variables with an attribute of RT are available before and after ExitBootServices() is
called. Environment variables of this type can be retrieved and modified in the preboot environment, and from an
operating system. The variables with an attribute of AT are variables with a time-based authenticated write access
defined in Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor. All architecturally defined variables use the
EFI_GLOBAL_VARIABLE VendorGuid.

#define EFI_GLOBAL_VARIABLE \
{0x8BE4DF61,0x93CA,0x11d2,\
{0xAA, 0x0D, 0x00, O0xEQ, 0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal firmware data variables that
are not defined here must be saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or any other
GUID defined by the UEFI Specification. Implementations must only permit the creation of variables with a UEFI
Specification-defined VendorGuid when these variables are documented in the UEFI Specification.

3.3. Globally Defined Variables 78

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3.3: Global Variables

Variable Name Attribute Description

AuditMode BS, RT Whether the system is operating in Audit Mode (1) or not (0). All
other values are reserved. Should be treated as read-only except
when DeployedMode is 0. Always becomes read-only after Exit-
BootServices() is called.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No Ox or h is in-
cluded in the hex value.

BootCurrent BS, RT The boot option that was selected for the current boot.

BootNext NV, BS, RT The boot option for the next boot only.

BootOrder NV, BS, RT The ordered boot option load list.

BootOptionSupport BS,RT, The types of boot options supported by the boot manager. Should be
treated as read-only.

Conln NV, BS, RT The device path of the default input console.

ConInDev BS, RT The device path of all possible console input devices.

ConOut NV, BS, RT The device path of the default output console.

ConOutDev BS, RT The device path of all possible console output devices.

Cryptolndications NV, BS, RT Allows the OS to request the crypto algorithm to BIOS.

Cryptolndication- BS, RT Allows the firmware to indicate supported crypto algorithm to OS.

sSupported

Cryptolndications- BS, RT Allows the firmware to indicate activated crypto algorithm to OS.

Activated

dbDefault BS, RT The OEM’s default secure boot signature store. Should be treated as
read-only.

dbrDefault BS, RT The OEM’s default OS Recovery signature store. Should be treated
as read-only.

dbtDefault BS, RT The OEM’s default secure boot timestamp signature store. Should
be treated as read-only.

dbxDefault BS, RT The OEM’s default secure boot blacklist signature store. Should be
treated as read-only.

DeployedMode BS, RT Whether the system is operating in Deployed Mode (1) or not (0).

All other values are reserved. Should be treated as read-only when
its value is 1. Always becomes read-only after ExitBootServices() is
called.

devAuthBoot BS, RT Whether the platform firmware is operating in device authentication
boot mode (1) or not (0). All other values are reserved. Should be
treated as read-only.

devdbDefault BS, RT The OEM’s default device authentication signature store. Should be
treated as read-only.

Driver#t#H# NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

ErrOut NV, BS, RT The device path of the default error output device.

ErrOutDev BS, RT The device path of all possible error output devices.

HwErrRecSupport NV, BS, RT Identifies the level of hardware error record persistence support

implemented by the platform. This variable is only modified by
firmware and is read-only to the OS.

KEK NV, BS, RT,AT The Key Exchange Key Signature Database.

KEKDefault BS, RT The OEM’s default Key Exchange Key Signature Database. Should
be treated as read-only.

Key### NV, BS, RT Describes hot key relationship with a Boot#### load option.

Oslndications NV, BS, RT Allows the OS to request the firmware to enable certain features and

to take certain actions.

continues on next page

3.3. Globally Defined Variables 79

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 3.3 — continued from previous page

OslIndicationsSup- BS, RT Allows the firmware to indicate supported features and actions to the

ported OS.

OsRecoveryOrder BS,RT,NV,AT OS-specified recovery options.

PK NV, BS, RT,AT The public Platform Key.

PKDefault BS, RT The OEM’s default public Platform Key. Should be treated as read-
only.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

PlatformRecov- BS, RT Platform-specified recovery options. These variables are only mod-

ery#t ified by firmware and are read-only to the OS.

SignatureSupport BS, RT Array of GUIDs representing the type of signatures supported by the
platform firmware. Should be treated as read-only.

SecureBoot BS, RT Whether the platform firmware is operating in Secure boot mode (1)
or not (0). All other values are reserved. Should be treated as read-
only.

SetupMode BS, RT Whether the system should require authentication on SetVariable()

requests to Secure Boot policy variables (0) or not (1). Should be
treated as read-only. The system is in “Setup Mode” when Setup-
Mode==1, AuditMode==0, and DeployedMode==0.

SysPrep#### NV, BS, RT A System Prep application load option containing an
EFI_LOAD_OPTION descriptor. #### is a printed hex value.

SysPrepOrder NV, BS, RT The ordered System Prep Application load option list.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds, before initiating
the default boot selection.

VendorKeys BS, RT Whether the system is configured to use only vendor-provided keys

or not. Should be treated as read-only.

The PlatformLangCodes variable contains a null- terminated ASCII string representing the language codes that the
firmware can support. At initialization time the firmware computes the supported languages and creates this data
variable. Since the firmware creates this value on each initialization, its contents are not stored in nonvolatile memory.
This value is considered read-only. PlatformLangCodes is specified in Native RFC 4646 format. See Formats —
Language Codes and Language Code Arrays.

The PlatformLang variable contains a null- terminated ASCII string language code that the machine has been configured
for. This value may be changed to any value supported by PlatformLangCodes. If this change is made in the preboot
environment, then the change will take effect immediately. If this change is made at OS runtime, then the change does
not take effect until the next boot. If the language code is set to an unsupported value, the firmware will choose a
supported default at initialization and set PlatformLang to a supported value. PlatformLang is specified in Native RFC
4646 array format. See Formats — Language Codes and Language Code Arrays.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the firmware will wait before
initiating the original default boot selection. A value of 0 indicates that the default boot selection is to be initiated
immediately on boot. If the value is not present, or contains the value of OxFFFF then firmware will wait for user input
before booting. This means the default boot selection is not automatically started by the firmware.

The Conln , ConOut , and ErrOut variables each contain an EFI Device Path Protocol descriptor that defines the default
device to use on boot. Changes to these values made in the preboot environment take effect immediately. Changes to
these values at OS runtime do not take effect until the next boot. If the firmware cannot resolve the device path, it is
allowed to automatically replace the values, as needed, to provide a console for the system. If the device path starts
with a USB Class device path (USB Class Device Path), then any input or output device that matches the device path
must be used as a console if it is supported by the firmware.

The ConiInDev , ConOutDev , and ErrOutDev variables each contain an EFI_DEVICE_PATH_PROTOCOL descriptor
that defines all the possible default devices to use on boot. These variables are volatile, and are set dynamically on

3.3. Globally Defined Variables 80

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

every boot. Conln , ConOut , and ErrOut are always proper subsets of ConlnDev , ConOutDev , and ErrOutDev .

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the name “Boot” appended with
a unique four digit hexadecimal number. For example, Boot0001, Boot0002, BootOA02, etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID structure specifies a
namespace for variables containing OS-defined recovery entries (See OS-Defined Boot Option Recovery). Write access
to this variable is controlled by the security key database dbr (Using the EFI_VARIABLE_AUTHENTICATION_3
descriptor).

PlatformRecovery#### variables share the same structure as Boot#### variables. These variables are processed when
the system is performing recovery of boot options.

The BootOrder variable contains an array of UINT16 ’s that make up an ordered list of the Boot#### options. The first
element in the array is the value for the first logical boot option, the second element is the value for the second logical
boot option, etc. The BootOrder order list is used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried first on the next boot.
After the BootNext boot option is tried the normal BootOrder list is used. To prevent loops, the boot manager deletes
this variable before transferring control to the preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was selected on the current boot.
The platform sets this variable before signaling EFI_EVENT_GROUP_READY_TO_BOOT. This variable is not set
when attempting to launch OsRecovery### or PlatformRecovery### options.

The BootOptionSupport variable is a UINT32 that defines the types of boot options supported by the boot manager.

The CryptolndicationsSupported variable indicates which crypto algorithms the firmware supports. This variable is
recreated by firmware every boot, and cannot be modified by the OS (see SetVariable()Attributes usage rules once
ExitBootServices() is performed).

The CryptolndicationsActivated variable indicates which crypto algorithms the firmware activates. This variable is
recreated by firmware every boot, and cannot be modified by the OS (see SetVariable()Attributes usage rules once
ExitBootServices() is performed). It must be a subset of CryptolndicationsSupported.

The Cryptolndications variable is used to indicate which crypto algorithms the OS wants firmware to activate in the
next boot. It must be a subset of CryptolndicationsSupported. The OS will supply this data with a SetVariable() call.
See Section 8.5.4 for the variable definition. Once the data is consulted by the firmware and synced to Cryptolndica-
tionsActivated, the firmware must delete this variable.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is appended with a unique
number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16 ’s that make up an ordered list of the Driver#### variable. The
first element in the array is the value for the first logical driver load option, the second element is the value for the
second logical driver load option, etc. The DriverOrder list is used by the firmware’s boot manager as the default load
order for UEFI drivers that it should explicitly load.

The Key#### variable associates a key press with a single boot option. Each Key#### variable is the name “Key”
appended with a unique four digit hexadecimal number. For example, Key0001, Key0002, Key0OADO, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of support for Hardware Error Record
Persistence (Hardware Error Record Persistence) that is implemented by the platform. If the value is not present, then
the platform implements no support for Hardware Error Record Persistence. A value of zero indicates that the platform
implements no support for Hardware Error Record Persistence. A value of 1 indicates that the platform implements
Hardware Error Record Persistence as defined in Hardware Error Record Persistence. Firmware initializes this variable.
All other values are reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is should require authentication
(0) or not (1) on SetVariable() requests to Secure Boot Policy Variables. Secure Boot Policy Variables include:

* The global variables PK , KEK , and OsRecoveryOrder

3.3. Globally Defined Variables 81

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

¢ All variables named OsRecovery#### under all VendorGuids
¢ All variables with the VendorGuid EFI_IMAGE_SECURITY_DATABASE_GUID.
Secure Boot Policy Variables must be created using the EFI_VARIABLE_AUTHENTICATION_2 structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is currently operating in Audit
Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system is currently operating in
Deployed Mode.

The KEK variable contains the current Key Exchange Key database.
The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security Boot Policy Variables have been
modified by anyone other than the platform vendor or a holder of the vendor-provided keys. A value of O indicates that
someone other than the platform vendor or a holder of the vendor-provided keys has modified the Secure Boot Policy
Variables Otherwise, the value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key database. This is not used at
runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents of this variable
do not include an EFI_VARIABLE AUTHENTICATION or EFI_VARIABLE AUTHENTICATION? structure.

The PKDefault variable, if present, contains the platform-defined Platform Key. This is not used at runtime but is
provided in order to allow the OS to recover the OEM’s default key setup. The contents of this variable do not include
an EFI_VARIABLE_AUTHENTICATION? structure.

The dbDefault variable, if present, contains the platform-defined secure boot signature database. This is not used at
runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents of this variable
do not include an EFI_VARIABLE AUTHENTICATION?2 structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized recovery signature database.
This is not used at runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents
of this variable do not include an EFI_VARIABLE AUTHENTICATION? structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp signature database. This is
not used at runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents of
this variable do not include an EFI_VARIABLE _AUTHENTICATION? structure.

The dbxDefault variable, if present, contains the platform-defined secure boot blacklist signature database. This is not
used at runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents of this
variable do not include an EFI_VARIABLE AUTHENTICATION?2 structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a type of signature which
the platform firmware supports for images and other data. The different signature types are described in “Signature
Database”.

The SecureBoot variable is an 8-bit unsigned integer that defines whether the platform firmware is operating with Secure
Boot enabled. A value of 1 indicates that platform firmware performs driver and boot application signature verification
as specified in UEFI Image Validation during the current boot. A value of 0 indicates that driver and boot application
signature verification is not active during the current boot. The SecureBoot variable is initialized prior to Secure Boot
image authentication and thereafter should be treated as read-only and immutable. Its initialization value is determined
by platform policy but must be 0 if the platform is in Setup Mode or Audit Mode during its initialization.

The OsindicationsSupported variable indicates which of the OS indication features and actions that the firmware sup-
ports. This variable is recreated by firmware every boot, and cannot be modified by the OS (see SetVariable() Attributes
usage rules once ExitBootServices() is performed).

The OsIndications variable is used to indicate which features the OS wants firmware to enable or which actions the OS
wants the firmware to take. The OS will supply this data with a SetVariable() call. Exchanging information between

3.3. Globally Defined Variables 82

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

the OS and Firmware for the variable definition.

The devAuthBoot variable is an 8-bit unsigned integer that defines whether the platform firmware is operating with
device authentication boot enabled. A value of 1 indicates that platform firmware performs device authentication as
specified in Device Authentication during the current boot. A value of 0 indicates that device authentication is not
active during the current boot. The devAuthBoot variable is initialized prior to device authentication and thereafter
should be treated as read-only and immutable. Its initialization value is determined by platform policy.

The devdbDefault variable, if present, contains the platform-defined device authentication signature database. This is
not used at runtime but is provided in order to allow the OS to recover the OEM’s default key setup. The contents of
this variable do not include an EFI_VARIABLE AUTHENTICATION? structure.

3.4 Boot Option Recovery

Boot option recovery consists of two independent parts, operating system-defined recovery and platform-defined re-
covery. OS-defined recovery is an attempt to allow installed operating systems to recover any needed boot options, or
to launch full operating system recovery. Platform-defined recovery includes any remedial actions performed by the
platform as a last resort when no operating system is found, such as the Default Boot Behavior (Boot Option Variables
Default Boot Behavior). This could include behaviors such as warranty service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first attempt OS-defined recovery,
re-attempt normal booting via Boot#### and BootOrder variables, and finally attempt platform-defined recovery if no
options have succeeded.

3.4.1 OS-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in OsIndications , or if processing of BootOrder
does not result in success, the platform must process OS-defined recovery options. In the case where
OS-defined recovery is entered due to Oslndications , SysPrepOrder and SysPrep#### variables should not
be processed. Note that in order to avoid ambiguity in intent, this bit is ignored in Oslndications if
EFI_OS_INDICATIONS_START _PLATFORM_RECOVERY is set.

OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with vendor specific VendorGuid
values and a name following the pattern OsRecovery####. Each of these variables must be an authenticated variable
with the EFI_VARIABLE _TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID structures in the OsRecoveryOrder
variable, and each GUID specified is treated as a VendorGuid associated with a series of variable names. For each
GUID, the firmware attempts to load and execute, in hexadecimal sort order, every variable with that GUID and a
name following the pattern OsRecovery####. These variables have the same format as Boot#### variables, and the
boot manager must verify that each variable it attempts to load was created with a public key that is associated with a
certificate chaining to one listed in the authorized recovery signature database dbr and not in the forbidden signature
database, or is created by a key in the Key Exchange Key database KEK or the current Platform Key PK .

If the boot manager finishes processing OsRecovery#### options without EFI_BOOT _SERVICES.ExitBootServices()
or ResetSystem() having been called, it must attempt to process BootOrder a second time. If booting does not succeed
during that process, OS-defined recovery has failed, and the boot manager must attempt platform-based recovery.

If, while processing OsRecovery#### variables, the boot manager encounters an entry which cannot be loaded or
executed due to a security policy violation, it must ignore that variable.

3.4. Boot Option Recovery 83

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

3.4.2 Platform-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in OsiIndications , or if OS-defined recov-
ery has failed, the system firmware must commence with platform-specific recovery by iterating its PlatformRecov-
ery#### variables in the same manner as OsRecovery#### , but must stop processing if any entry is successful. In
the case where platform-specific recovery is entered due to OsIndications , SysPrepOrder and SysPrep#### variables
should not be processed.

3.4.3 Boot Option Variables Default Boot Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot options require a standard
default behavior in the exceptional case that valid boot options are not present on a platform. The default behavior must
be invoked any time the BootOrder variable does not exist or only points to nonexistent boot options, or if no entry in
BootOrder can successfully be executed.

If system firmware supports boot option recovery as described in Boot Option Recovery , system firmware must include
a PlatformRecovery#### variable specifying a short-form File Path Media Device Path (Load Option Processing)
containing the platform default file path for removable media (UEFI Image Types). It is recommended for maximal
compatibility with prior versions of this specification that this entry be the first such variable, though it may be at any
position within the list.

It is expected that this default boot will load an operating system or a maintenance utility. If this is an operating system
setup program it is then responsible for setting the requisite environment variables for subsequent boots. The platform
firmware may also decide to recover or set to a known set of boot options.

3.5 Boot Mechanisms

EFI can boot from a device wusing the EFI_SIMPLE FILE SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the EFI_SIMPLE FILE_SYSTEM_PROTOCOL must
materialize a file system protocol for that device to be bootable. If a device does not wish to support a complete
file system it may produce an EFI_LOAD_FILE_PROTOCOL which allows it to materialize an image directly. The
Boot Manager will attempt to boot using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that fails, then the
EFI_LOAD_FILE_PROTOCOL will be used.

3.5.1 Boot via the Simple File Protocol

When booting viathe EFI_SIMPLE_FILE_SYSTEM_PROTOCOL , the FilePath will start with a device path that points
to the device that implements the EFI_SIMPLE FILE SYSTEM_PROTOCOL or the EFI BLOCK_I0_PROTOCOL.
The next part of the FilePath may point to the file name, including subdirectories, which contain the bootable image.
If the file name is a null device path, the file name must be generated from the rules defined below.

If the FilePathList[0] device does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL , but supports the
EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service EFI_BOOT_SERVICES.ConnectController() must
be called for FilePathList[0] with DriverImageHandle and RemainingDevicePath set to NULL and the Recursive flag
is set to TRUE.The firmware will then attempt to boot from any child handles produced using the algorithms outlined
below.

The format of the file system specified is contained in File System Format. While the firmware must produce an
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file system, any file system can be abstracted
with the EFI_SIMPLE FILE SYSTEM_PROTOCOL interface.

3.5. Boot Mechanisms 84

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

3.5.1.1 Removable Media Boot Behavior

To generate a file name when none is present in the FilePath, the firmware must append a default file name in the
form \EFT\BOOT\BOOT{machine type short-name}.EFI where machine type short-name defines a PE32+ image
format architecture. Each file only contains one UEFI image type, and a system may support booting from one or more
images types. See Table 3.4 for a list of the UEFI image types.

Table 3.4: UEFI Image Types

File Name Convention PE Executable Machine Type *
32-bit BOOTIA32.EFI Ox14c
x64 BOOTx64.EFI 0x8664
Itanium architecture BOOTIA64.EFI 0x200
AArch32 architecture BOOTARM.EFI 0x01c2
AArch64 architecture BOOTAAG64.EFI 0xAA64
RISC-V 32-bit architecture BOOTRISCV32.EFI 0x5032
RISC-V 64-bit architecture BOOTRISCV64.EFI 0x5064
RISC-V 128-bit architecture BOOTRISCV128.EFI 0x5128
LoongArch32 architecture BOOTLOONGARCH32.EFI 0x6232
LoongArch64 architecture BOOTLOONGARCHG64.EFI 0x6264

© Note

The PE Executable machine type is contained in the machine field of the COFF file header as defined in the Mi-
crosoft Portable Executable and Common Object File Format Specification, Revision 6.0*

Media may support multiple architectures by simply having a file \EFI\BOOT\BOOT{machine type short-name}.
EFT for each possible machine type.

3.5.2 Boot via the Load File Protocol

When booting via the EFI_LOAD_FILE_PROTOCOL protocol, the FilePath is a device path that points to a device
that “speaks” the EFI_LOAD_FILE_PROTOCOL. The image is loaded directly from the device that supports the
EFI_LOAD_FILE_PROTOCOL. The remainder of the FilePath will contain information that is specific to the device.
Firmware passes this device-specific data to the loaded image, but does not use it to load the image. If the remainder of
the FilePath is a null device path it is the loaded image’s responsibility to implement a policy to find the correct boot
device.

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file systems. Network devices
commonly boot in this model where the image is materialized without the need of a file system.

3.5. Boot Mechanisms 85

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

3.5.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support Specification. PXE spec-
ifies UDP, DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent system
load server. UEFI defines special interfaces that are used to implement PXE. These interfaces are contained in the
EFI_PXE_BASE_CODE_PROTOCOL .

3.5.2.2 Future Boot Media

Since UEFI defines an abstraction between the platform and the OS and its loader it should be possible to add new
types of boot media as technology evolves. The OS loader will not necessarily have to change to support new types of
boot. The implementation of the UEFI platform services may change, but the interface will remain constant. The OS
will require a driver to support the new type of boot media so that it can make the transition from UEFI boot services
to OS control of the boot media.

3.5. Boot Mechanisms 86

CHAPTER
FOUR

EFI SYSTEM TABLE

This section describes the entry point to a UEFI image and the parameters that are passed to that entry point. There are
three types of UEFI images that can be loaded and executed by firmware conforming to this specification. These are
UEFI applications (UEFI Applications), UEFI boot service drivers (UEFI Drivers), and UEFI runtime drivers (UEF]
Drivers). UEFI applications include UEFI OS loaders (UEFI OS Loaders). There are no differences in the entry point
for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System Table (see definition immediately
below), the main entry point for a UEFI Image. The System Table contains pointers to the active console devices,
a pointer to the Boot Services Table, a pointer to the Runtime Services Table, and a pointer to the list of system
configuration tables such as ACPI, SMBIOS, and the SAL System Table. This section describes the System Table in
detail.

4.1.1 EFI_IMAGE_ENTRY_POINT

Summary
This is the main entry point for a UEFI Image. This entry point is the same for UEFI applications and UEFI drivers.
Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
s

Parameters

ImageHandle
The firmware allocated handle for the UEFI image.

SystemTable
A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system memory by the
EFI Boot Service EFI_BOOT_SERVICES.Loadlmage() . An EFI image is invoked through the EFI Boot Service
EFI_BOOT_SERVICES.StartImage().

87

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The first argument is the image’s image handle. The second argument is a pointer to the image’s system table.
The system table contains the standard output and input handles, plus pointers to the EFI_BOOT_SERVICES and
EFI_RUNTIME_SERVICES tables. The service tables contain the entry points in the firmware for accessing the core
EFI system functionality. The handles in the system table are used to obtain basic access to the console. In addition,
the System Table contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various func-
tions. The handle also supports one or more protocols that the image can use. All images support the
EFI_LOADED_IMAGE_PROTOCOL and the EFI LOADED_IMAGE_DEVICE_PATH_PROTOCOL that returns the
source location of the image, the memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE_PROTOCOL and EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL structures are de-
fined in EFI_LOADED_IMAGE_PROTOCOL.Unload() .

If the UEFI image is a UEFI application that is not a UEFI OS loader, then the application executes and either returns
or calls the EFI Boot Services EFI_BOOT_SERVICES.Exit() . A UEFI application is always unloaded from memory
when it exits, and its return status is returned to the component that started the UEFI application.

If the UEFI image is a UEFI OS Loader, then the UEFI OS Loader executes and either returns, calls the EFI Boot Service
Exit() , or calls the EFI Boot Service EFI_BOOT_SERVICES.ExitBootServices() . If the EFI OS Loader returns or calls
Exit() , then the load of the OS has failed, and the EFI OS Loader is unloaded from memory and control is returned to
the component that attempted to boot the UEFI OS Loader. If ExitBootServices() is called, then the UEFI OS Loader
has taken control of the platform, and EFI will not regain control of the system until the platform is reset. One method
of resetting the platform is through the EFI Runtime Service ResetSystem() .

If the UEFI image is a UEFI Driver, then the UEFI driver executes and either returns or calls the Boot Service Exit() . If
the UEFI driver returns an error, then the driver is unloaded from memory. If the UEFI driver returns EFI_SUCCESS
, then it stays resident in memory. If the UEFI driver does not follow the UEFI Driver Model, then it performs any
required initialization and installs its protocol services before returning. If the driver does follow the UEFI Driver
Model, then the entry point is not allowed to touch any device hardware. Instead, the entry point is required to create
and install the EFI Driver Binding Protocol (EFI Driver Binding Protocol) on the ImageHandle of the UEFI driver.
If this process is completed, then EFI_SUCCESS is returned. If the resources are not available to complete the UEFI
driver initialization, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The driver was initialized.
EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

4.1. UEFI Image Entry Point 88

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

4.2 EFI Table Header

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI table types. It includes
a signature that is unique for each table type, a revision of the table that may be updated as extensions are added to the
EFI table types, and a 32-bit CRC so a consumer of an EFI table type can validate the contents of the EFI table.

4.2.1 EFI_TABLE_HEADER

Summary
Data structure that precedes all of the standard EFI table types.
Related Definitions

typedef struct {

UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved;

} EFI_TABLE_HEADER;

Parameters

Signature
A 64-bit signature that identifies the type of table that follows. Unique signatures have been generated for the
EFI System Table, the EFI Boot Services Table, and the EFI Runtime Services Table.

Revision
The revision of the EFI Specification to which this table conforms. The upper 16 bits of this field contain the
major revision value, and the lower 16 bits contain the minor revision value. The minor revision value is a
decimal value split into two parts, the “upper decimal” and the “lower decimal”. The upper decimal is calculated
dividing the minor revision value by 10 using integer division. The lower decimal is calculated by taking the
minor revision value modulo 10.

When printed or displayed UEFI spec revision is referred as (Major revision).(Minor revision upper dig-
its).(Minor revision lowest digit) or (Major revision).(Minor revision upper digits) in case Minor revision lowest
digit is set to 0. For example:

 Specification revision value ((2<<16) | (10)) would be referred to as 2.1;

* Specification revision value ((2<<16) | (30)) would be referred to as 2.3;

 Specification revision value ((2<<16) | (31)) would be referred to as 2.3.1;

* Specification revision value ((2<<16) | (100)) would be referred to as 2.10;

* Specification revision value ((2<<16) | (101)) would be referred to as 2.10.1;
Note that EFI 1.10 did not follow this convention and was referred to as 1.10, not 1.1.

HeaderSize
The size, in bytes, of the entire table including the EFI_TABLE_HEADER.

CRC32
The 32-bit CRC for the entire table. This value is computed by setting this field to 0, and computing the 32-bit
CRC for HeaderSize bytes.

Reserved
Reserved field that must be set to 0.

4.2. EFI Table Header 89

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

NOTE: The capabilities found in the EFI system table, runtime table and boot services table may change over time.
The first field in each of these tables is an EFI_TABLE_HEADER. This header’s Revision field is incremented when
new capabilities and functions are added to the functions in the table. When checking for capabilities, code should
verify that Revision is greater than or equal to the revision level of the table at the point when the capabilities were
added to the UEFI specification.

NOTE: Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed polynomial value of
0x04c11db7 for its CRC calculations.

NOTE: The size of the system table, runtime services table, and boot services table may increase over time. It is very
important to always use the HeaderSize field of the EFI_TABLE_HEADER to determine the size of these tables.

4.3 EFI System Table

UEFI uses the EFI System Table, which contains pointers to the runtime and boot services tables. The definition for
this table is shown in the following code fragments. Except for the table header, all elements in the service tables
are pointers to functions as defined in Services — Boot Services and Services — Runtime Services . Prior to a call
to EFI_BOOT _SERVICES.ExitBootServices() , all of the fields of the EFI System Table are valid. After an operating
system has taken control of the platform with a call to ExitBootServices() , only the Hdr , FirmwareVendor , Firmwar-
eRevision , RuntimeServices , NumberOfTableEntries , and ConfigurationTable fields are valid.

4.3.1 EFI_SYSTEM_TABLE

Summary
Contains pointers to the runtime and boot services tables.

Related Definitions

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_2_100_SYSTEM_TABLE_REVISION ((2<<16) | (100))
#define EFI_2_90_SYSTEM_TABLE_REVISION ((2<<16) | (90))

#define EFI_2_80_SYSTEM_TABLE_REVISION ((2<<16) | (80))
#define EFI_2_70_SYSTEM_TABLE_REVISION ((2<<16) | (70))
#define EFI_2_60_SYSTEM_TABLE_REVISION ((2<<16) | (60))
#define EFI_2_50_SYSTEM_TABLE_REVISION ((2<<16) | (50))
#define EFI_2_40_SYSTEM_TABLE_REVISION ((2<<16) | (40))
#define EFI_2_31_SYSTEM_TABLE_REVISION ((2<<16) | (31))
#define EFI_2_30_SYSTEM_TABLE_REVISION ((2<<16) | (30))
#define EFI_2_20_SYSTEM_TABLE_REVISION ((2<<16) | (20))
#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE REVISION ((1<<16) | (02))
#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION
#define EFI_SYSTEM_TABLE_REVISION EFI_2_ 100_SYSTEM_TABLE_REVISION
typedef struct {
EFI_TABLE_HEADER Hdr;
CHAR16 “FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsoleInHandle;

EFI_SIMPLE_TEXT_INPUT_PROTOCOL *Conln;

(continues on next page)

4.3. EFIl System Table 90

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

EFI_HANDLE ConsoleOutHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;

EFI_HANDLE StandardErrorHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
EFI_RUNTIME_SERVICES “RuntimeServices;
EFI_BOOT_SERVICES “BootServices;

UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

Parameters

Hdr
The table header for the EFI System Table. This header contains the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size of the EFI_SYSTEM_TABLE structure and a
32-bit CRC to verify that the contents of the EFI System Table are valid.

FirmwareVendor
A pointer to a null terminated string that identifies the vendor that produces the system firmware for the platform.

FirmwareRevision
A firmware vendor specific value that identifies the revision of the system firmware for the platform.

ConsoleInHandle
The handle for the active console input device. This handle must support
EFI_SIMPLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT INPUT_EX_PROTOCOL. If there
is no active console, these protocols must still be present.

Conln

A pointer to the EFI_SIMPLE _TEXT _INPUT_PROTOCOL interface that is associated with ConsolelnHandle.
ConsoleOutHandle

The handle for the active console output device. This handle must support the

EFI_SIMPLE TEXT OUTPUT_PROTOCOL.
If there is no active console, this protocol must still be present.

ConOut
A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL interface that is associated with Console-
OutHandle.

StandardErrorHandle
The handle for the active standard error console device. This handle must support the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. If there is no active console, this protocol must still be
present.

StdErr
A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL interface that is associated with StandardEr-
rorHandle.

RuntimeServices
A pointer to the EFI Runtime Services Table.

BootServices
A pointer to the EFI Boot Services Table. See ref:efi-boot-services-table_efi_system_table.

NumberOfTableEntries
The number of system configuration tables in the buffer ConfigurationTable.

4.3. EFI System Table 91

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

ConfigurationTable
A pointer to the system configuration tables. The number of entries in the table is NumberOfIableEntries.

4.4 EFI Boot Services Table

UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of the boot services. The
definition for this table is shown in the following code fragments. Except for the table header, all elements in the EFI
Boot Services Tables are prototypes of function pointers to functions as defined in Services — Boot Services . The
function pointers in this table are not valid after the operating system has taken control of the platform with a call to
EFI_BOOT _SERVICES.ExitBootServices() .

4.4.1 EFI_BOOT_SERVICES

Summary
Contains a table header and pointers to all of the boot services.

Related Definitions

#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {

EFI_TABLE_HEADER Hdr;

//

// Task Priority Services

//

EFI_RAISE_TPL RaiseTPL; // EFI 1.0+

EFI_RESTORE_TPL RestoreTPL; // EFI 1.0+
//
// Memory Services
//
EFI_ALLOCATE_PAGES AllocatePages; // EFI 1.0+
EFI_FREE_PAGES FreePages; // EFI 1.0+
EFI_GET_MEMORY_MAP GetMemoryMap; // EFI 1.0+
EFI_ALLOCATE_POOL AllocatePool; // EFI 1.0+
EFI_FREE_POOL FreePool; // EFI 1.0+
//
// Event & Timer Services
//
EFI_CREATE_EVENT CreateEvent; // EFI 1.0+
EFI_SET_TIMER SetTimer; // EFI 1.0+
EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+
EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+
EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+
EFI_CHECK_EVENT CheckEvent; // EFI 1.0+
//

// Protocol Handler Services

(continues on next page)

4.4. EFI Boot Services Table 92

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

//

EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; // EFI 1.0+

EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; // EFI 1.0+

EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; // EFI 1.0+

EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+
VOID* Reserved; // EFI 1.0+

EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; // EFI 1.0+

EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+

EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+
EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI 1.0+

//

// Image Services

//

EFI_IMAGE_UNLOAD LoadImage; // EFI 1.0+

EFI_IMAGE_START StartImage; // EFI 1.0+

EFI_EXIT Exit; // EFI 1.0+

EFI_IMAGE_UNLOAD UnloadImage; // EFI 1.0+

EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFI 1.0+

//

// Miscellaneous Services

//

EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; // EFI 1.0+

EFI_STALL Stall; // EFI 1.0+

EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; // EFI 1.0+

//

// DriverSupport Services

//

EFI_CONNECT_CONTROLLER ConnectController; // EFI 1.1

EFI_DISCONNECT_CONTROLLER DisconnectController; // EFI 1.1+

//

// Open and Close Protocol Services

//

EFI_OPEN_PROTOCOL OpenProtocol; // EFI 1.1+

EFI_CLOSE_PROTOCOL CloseProtocol; // EFI 1.1+
EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation;// EFI 1.1+

//

// Library Services

//

EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; // EFI 1.1+

EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; // EFI 1.1+

EFI_LOCATE_PROTOCOL LocateProtocol; // EFI 1.1+

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolInterfaces; e

—EFI 1.1+

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocolInterfaces; [/
<EFI 1.1+%

//

(continues on next page)

4.4. EFI Boot Services Table 93

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

// 32-bit CRC Services

//

EFI_CALCULATE_CRC32 CalculateCrc32; // EFI 1.1+
//

// Miscellaneous Services

//

EFI_COPY_MEM CopyMem; // EFI 1.1+
EFI_SET_MEM SetMem; // EFI 1.1+

EFI_CREATE_EVENT_EX CreateEventEx; // UEFI 2.0+
} EFI_BOOT_SERVICES;

(continued from previous page)

Parameters

Hdr
The table header for the EFI Boot Services Table. This

header contains the

EFI_BOOT_SERVICES_SIGNATURE and EFI_BOOT_SERVICES_REVISION values along with the
size of the EFI_BOOT_SERVICES structure and a 32-bit CRC to verify that the contents of the EFI Boot

Services Table are valid.

RaiseTPL
Raises the task priority level.

RestoreTPL
Restores/lowers the task priority level.

AllocatePages
Allocates pages of a particular type.

FreePages
Frees allocated pages.

GetMemoryMap
Returns the current boot services memory map and memory map key.

AllocatePool
Allocates a pool of a particular type.

FreePool
Frees allocated pool.

CreateEvent
Creates a general-purpose event structure.

SetTimer
Sets an event to be signaled at a particular time.

WaitForEvent
Stops execution until an event is signaled.

SignalEvent
Signals an event.

CloseEvent
Closes and frees an event structure.

CheckEvent
Checks whether an event is in the signaled state.

4.4. EFI Boot Services Table

94

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

InstallProtocolInterface
Installs a protocol interface on a device handle.

ReinstallProtocollnterface
Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface
Removes a protocol interface from a device handle.

HandleProtocol
Queries a handle to determine if it supports a specified protocol.

Reserved
Reserved. Must be NULL.

RegisterProtocolNotify

Registers an event that is to be signaled whenever an interface is installed for a specified protocol.

LocateHandle
Returns an array of handles that support a specified protocol.

LocateDevicePath

Locates all devices on a device path that support a specified protocol and returns the handle to the device that is

closest to the path.

InstallConfigurationTable
Adds, updates, or removes a configuration table from the EFI System Table.

LoadImag
Loads an EFI image into memory.

StartImage
Transfers control to a loaded image’s entry point.

Exit
Exits the image’s entry point.

UnloadImage
Unloads an image.

ExitBootServices
Terminates boot services.

GetNextMonotonicCount
Returns a monotonically increasing count for the platform.

Stall
Stalls the processor.

SetWatchdogTimer
Resets and sets a watchdog timer used during boot services time.

ConnectController

Uses a set of precedence rules to find the best set of drivers to manage a controller.

DisconnectController
Informs a set of drivers to stop managing a controller.

OpenProtocol
Adds elements to the list of agents consuming a protocol interface.

CloseProtocol
Removes elements from the list of agents consuming a protocol interface.

4.4. EFI Boot Services Table

95

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

OpenProtocollnformtion
Retrieve the list of agents that are currently consuming a protocol interface.

ProtocolsPerHandle
Retrieves the list of protocols installed on a handle. The return buffer is automatically allocated.

LocateHandleBuffer
Retrieves the list of handles from the handle database that meet the search criteria. The return buffer is automat-
ically allocated.

LocateProtocol
Finds the first handle in the handle database the supports the requested protocol.

InstallMultipleProtocollnterfaces
Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocollnterfaces
Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32
Computes and returns a 32-bit CRC for a data buffer.

CopyMem
Copies the contents of one buffer to another buffer.

SetMem
Fills a buffer with a specified value.

CreateEventEx
Creates an event structure as part of an event group.

4.5 EFl Runtime Services Table

UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to all of the runtime services.
The definition for this table is shown in the following code fragments. Except for the table header, all elements in
the EFI Runtime Services Tables are prototypes of function pointers to functions as defined in Services — Runtime
Services . Unlike the EFI Boot Services Table, this table, and the function pointers it contains are valid after the UEFI
OS loader and OS have taken control of the platform with a call to EFI_BOOT_SERVICES.ExitBootServices(). If a
call to SetVirtualAddressMap() is made by the OS, then the function pointers in this table are fixed up to point to the
new virtually mapped entry points.

4.5.1 EFI_RUNTIME_SERVICES

Summary
Contains a table header and pointers to all of the runtime services.

Related Definitions

#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION
typedef struct {

EFI_TABLE_HEADER Hdr;

//
// Time Services

(continues on next page)

4.5. EFI Runtime Services Table 96

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

//

EFI_GET_TIME
EFI_SET_TIME
EFI_GET_WAKEUP_TIME
EFI_SET_WAKEUP_TIME

//

// Virtual Memory Services

//

EFI_SET_VIRTUAL_ADDRESS_MAP
EFI_CONVERT_POINTER

//

// Variable Services

//

EFI_GET_VARIABLE
EFI_GET_NEXT_VARIABLE_NAME
EFI_SET_VARIABLE

/7

// Miscellaneous Services

//
EFI_GET_NEXT_HIGH_MONO_COUNT
EFI_RESET_SYSTEM

//
// UEFI 2.0 Capsule Services

//
EFI_UPDATE_CAPSULE

EFI_QUERY_CAPSULE_CAPABILITIES

//

// Miscellaneous UEFI 2.0 Service

//
EFI_QUERY_VARIABLE_INFO
} EFI_RUNTIME_SERVICES;

(continued from previous page)

GetTime;
SetTime;
GetWakeupTime;
SetWakeupTime;

SetVirtualAddressMap;
ConvertPointer;

GetVariable;
GetNextVariableName;
SetVariable;

GetNextHighMonotonicCount;
ResetSystem;

UpdateCapsule;
QueryCapsuleCapabilities;

QueryVariableInfo;

Parameters

Hdr
The table header for the

Runtime Services Table. This header contains the

EFI_RUNTIME_SERVICES_SIGNATURE and EFI_RUNTIME_SERVICES_REVISION values along
with the size of the EFI_RUNTIME_SERVICES structure and a 32-bit CRC to verify that the contents of the

EFI Runtime Services Table are valid.

GetTime

Returns the current time and date, and the time-keeping capabilities of the platform.

SetTime

Sets the current local time and date information.

GetWakeupTime

Returns the current wakeup alarm clock setting.

4.5. EFI Runtime Services Table

97

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

SetWakeupTime
Sets the system wakeup alarm clock time.

SetVirtualAddressMap
Used by a UEFI OS loader to convert from physical addressing to virtual addressing.

ConvertPointer
Used by EFI components to convert internal pointers when switching to virtual addressing.

GetVariable
Returns the value of a variable.

GetNextVariableName
Enumerates the current variable names.

SetVariable
Sets the value of a variable.

GetNextHighMonotonicCount
Returns the next high 32 bits of the platform’s monotonic counter.

ResetSyste
Resets the entire platform.

UpdateCapsule
Passes capsules to the firmware with both virtual and physical mapping.

QueryCapsuleCapabilities
nReturns if the capsule can be supported via UpdateCapsule() .

QueryVariableIlnfo
Returns information about the EFI variable store.

4.6 EFI Configuration Table & Properties Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This table contains a set of
GUID/pointer pairs. Each element of this table is described by the EFI_CONFIGURATION_TABLE structure below.
The number of types of configuration tables is expected to grow over time. This is why a GUID is used to identify the
configuration table type. The EFI Configuration Table may contain at most once instance of each table type.

4.6.1 EFI_CONFIGURATION_TABLE

Summary
Contains a set of GUID/pointer pairs comprised of ConfigurationTable field in the EFI System Table.
Related Definitions

typedef struct{
EFI_GUID VendorGuid;
VOID “VendorTable;
} EFI_CONFIGURATION_TABLE;

Parameters

VendorGuid
The 128-bit GUID value that uniquely identifies the system configuration table.

4.6. EFI Configuration Table & Properties Table 98

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

VendorTable

A pointer to the table associated with VendorGuid. Type of the memory that is used to store the table as well
as whether this pointer is a physical address or a virtual address during runtime (whether or not a particular
address reported in the table gets fixed up when a call to SetVirtualAddressMap() is made) is determined by the
VendorGuid. Unless otherwise specified, memory type of the table buffer is defined by the guidelines set forth in
the Calling Conventions section in Chapter 2. It is the responsibility of the specification defining the VendorTable
to specify additional memory type requirements (if any) and whether to convert the addresses reported in the
table. Any required address conversion is a responsibility of the driver that publishes corresponding configuration
table.

4.6.1.1 Industry Standard Configuration Tables

The following list shows the GUIDs for tables defined in some of the industry standards. These industry standards
define tables accessed as UEFI Configuration Tables on UEFI-based systems. All the addresses reported in these table
entries will be referenced as physical and will not be fixed up when transition from preboot to runtime phase. This list
is not exhaustive and does not show GUIDs for all possible UEFI Configuration tables.

#define EFI_ACPI_20_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,\
{0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_TABLE_GUID \
{0xeb9d2d30,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define SAL_SYSTEM_TABLE_GUID \
{0xeb9d2d32,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define SMBIOS_TABLE_GUID \
{0xeb9d2d31,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define SMBIOS3_TABLE_GUID \
{0xf2fd1544, 0x9794, Ox4a2c,\
{0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

#define MPS_TABLE_GUID \
{0xeb9d2d2f,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}
//
// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID
//
#define EFI_ACPI_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,\
{0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define EFI_ACPI_20_TABLE_GUID EFI_ACPI_TABLE_GUID
#define ACPI_TABLE_GUID \
{0xeb9d2d30,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}?}

(continues on next page)

4.6. EFI Configuration Table & Properties Table 99

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

{#define ACPI_10_TABLE_GUID ACPI_TABLE_GUID*

4.6.1.2 JSON Configuration Tables

The following list shows the GUIDs for tables defined for reporting firmware configuration data to EFI Configura-
tion Tables and also for processing JSON payload capsule as defined in Section 23.5. The address reported in the
table entry identified by EFI_JSON_CAPSULE_DATA_TABLE_GUID will be referenced as physical and will not
be fixed up when transition from preboot to runtime phase. The addresses reported in these table entries identified
by EFI_JSON_CONFIG_DATA_TABLE_GUID and EFI_JSON_CAPSULE_RESULT_TABLE_GUID will be refer-
enced as virtual and will be fixed up when transition from preboot to runtime phase.

#define EFI_JSON_CONFIG_DATA_TABLE_GUID \
{0x87367£87, 0x1119, Ox4lce, \
{0xaa, Oxec, O0x8b, Oxe®d, Ox11, Ox1f, Ox55, Ox8a }}

#define EFI_JSON_CAPSULE_DATA_TABLE_GUID \
{0x35e7a725, 0x8dd2, Ox4cac, \
{ 0x80, Ox11, 0x33, Oxcd, Oxa8, 0x10, 0x90, 0x56 }}

#define EFI_JSON_CAPSULE_RESULT_TABLE_GUID \
{0xdbc461c3, 0xb3de, 0x422a,\
{0xb9, Oxb4, 0x98, 0x86, Oxfd, 0x49, Oxal, Oxe5 }}

4.6.1.3 Devicetree Tables

The following list shows the GUIDs for the Devicetree table (DTB). For more information, see “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the headings ‘“Devicetree Specification”. The DTB must be contained in
memory of type EfiACPIReclaimMemory. The address reported in this table entry will be referenced as physical
and will not be fixed up when transition from preboot to runtime phase. Firmware must have the DTB resident in
memory and installed in the EFI system table before executing any UEFI applications or drivers that are not part of the
system firmware image. Once the DTB is installed as a configuration table, the system firmware must not make any
modification to it or reference any data contained within the DTB.

UEFI applications are permitted to modify or replace the loaded DTB. System firmware must not depend on any data
contained within the DTB. If system firmware makes use of a DTB for its own configuration, it should use a separate
private copy that is not installed in the EFI System Table or otherwise be exposed to EFI applications.

//

// Devicetree table, in Flattened Devicetree Blob (DTB) format
//

#define EFI_DTB_TABLE_GUID \

{0xb1b621d5, 0xf19c, Ox41a5, \

{0x83, 0x0b, 0xd9, Ox15, Ox2c, 0x69, Oxaa, 0xe0}}

4.6. EFI Configuration Table & Properties Table 100

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

4.6.2 EFI_RT_PROPERTIES_TABLE

This table should be published by a platform if it no longer supports all EFI runtime services once ExitBootServices()
has been called by the OS. Note that this is merely a hint to the OS, which itis free to ignore, and so the platform is still re-
quired to provide callable implementations of unsupported runtime services that simply return EFI_UNSUPPORTED.

#define EFI_RT_PROPERTIES_TABLE_GUID \\
{ 0xeb66918a, Ox7eef, 0x402a, \\
{ 0x84, 0x2e, 0x93, Ox1ld, 0x21, Oxc3, 0x8a, 0xe9 }}

typedef struct {
UINT16 Version;
UINT16 Length;
UINT32 RuntimeServicesSupported;
} EFI_RT_PROPERTIES_TABLE;

Version
Version of the table, must be 0x1

[#define EFI_RT_PROPERTIES_TABLE_VERSION 0x1

Length
Size in bytes of the entire EFI_RT_PROPERTIES_TABLE, must be 8.

RuntimeServicesSupported
Bitmask of which calls are or are not supported, where a bit set to 1 indicates that the call is supported, and 0
indicates that it is not.

#define EFI_RT_SUPPORTED_GET_TIME 0x0001
#define EFI_RT_SUPPORTED_SET_TIME 0x0002
#define EFI_RT_SUPPORTED_GET_WAKEUP_TIME 0x0004
#define EFI_RT_SUPPORTED_SET_WAKEUP_TIME 0x0008
#define EFI_RT_SUPPORTED_GET_VARIABLE 0x0010
#define EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME 0x0020
#define EFI_RT_SUPPORTED_SET_VARIABLE 0x0040
#define EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP 0x0080
#define EFI_RT_SUPPORTED_CONVERT_POINTER 0x0100
#define EFI_RT_SUPPORTED_GET_NEXT_HIGH_MONOTONIC_COUNT 0x0200
#define EFI_RT_SUPPORTED_RESET_SYSTEM 0x0400
#define EFI_RT_SUPPORTED_UPDATE_CAPSULE 0x0800
#define EFI_RT_SUPPORTED_QUERY_CAPSULE_CAPABILITIES 0x1000
#define EFI_RT_SUPPORTED_QUERY_VARIABLE_INFO 0x2000

The address reported in the EFI configuration table entry of this type will be referenced as physical and will not be
fixed up when transitioning from preboot to runtime phase.

4.6. EFI Configuration Table & Properties Table 101

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

4.6.3 EFI_MEMORY_ATTRIBUTES_TABLE

Summary

When published by the system firmware, the EFI_ MEMORY_ATTRIBUTES_TABLE provides additional information
about regions within the run-time memory blocks defined in the EFI_MEMORY_DESCRIPTOR entries returned from
EFI_BOOT_SERVICES . GetMemoryMap() function. The Memory Attributes Table is currently used to describe
memory protections that may be applied to the EFI Runtime code and data by an operating system or hypervisor.
Consumers of this table must currently ignore entries containing any values for Type except for EfiRuntimeServicesData
and EfiRuntimeServicesCode to ensure compatibility with future uses of this table. The Memory Attributes Table may
define multiple entries to describe sub-regions that comprise a single entry returned by GetMemoryMap() however the
sub-regions must total to completely describe the larger region and may not cross boundaries between entries reported
by GetMemoryMap() . If a run-time region returned in GetMemoryMap() entry is not described within the Memory
Attributes Table, this region is assumed to not be compatible with any memory protections.

Only entire EFI_ MEMORY_DESCRIPTOR entries as returned by GetMemoryMap() may be passed to SetVirtual Ad-
dressMap() .

The address reported in the EFI configuration table entry of this type will be referenced as physical and will not be
fixed up when transition from preboot to runtime phase.

Prototype

#define EFI_MEMORY_ATTRIBUTES_TABLE_GUID \
{0xdcfa911d, 0x26eb, 0x469f, \
{0xa2, 0x20, 0x38, Oxb7, Oxdc, 0x46, 0x12, 0x20}}

With the following data structure:

% e e e el s e e e de e e de e e st de e s e s de e e de e de de e e de e de e
/% EFI_MEMORY_ATTRIBUTES_TABLE
/% e g g e e e g e e e g e e e g e s e s e e g e e e de e s e e
typedef struct {
UINT32 Version ;
UINT32 NumberOfEntries ;
UINT32 DescriptorSize ;
UINT32 Flags ;
// EFI_MEMORY_DESCRIPTOR Entry [1] ;

} EFI_MEMORY_ATTRIBUTES_TABLE;

Version
The version of this table. Present version is 0x00000002

NumberOfEntries
Count of EFI_MEMORY_DESCRIPTOR entries provided. This is typically the total number of PE/COFF sec-
tions within all UEFI modules that comprise the UEFI Runtime and all UEFI Data regions (e.g. runtime heap).

Entry
Array of Entries of type EFI_MEMORY_DESCRIPTOR.

DescriptorSize
Size of the memory descriptor.

Flags
Flags to provide more information for the memory attributes

4.6. EFI Configuration Table & Properties Table 102

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

#define EFI_MEMORY_ATTRIBUTES_FLAGS_RT_FORWARD_CONTROL_FLOW_GUARD 0x1
// BIT® implies that Runtime code includes the forward control flow guard
// instruction, such as X86 CET-IBT or ARM BTI.

Description

For each array entry, the EFI_ MEMORY_DESCRIPTOR . Aftribute field can inform a runtime agency, such as op-
erating system or hypervisor, as to what class of protection settings can be made in the memory management unit
for the memory defined by this entry. The only valid bits for Attribute field currently are EFI_MEMORY_RO ,
EFI_MEMORY_XP , plus EFI_MEMORY_RUNTIME . Irrespective of the memory protections implied by Attribute
, the EFI. MEMORY_DESCRIPTOR . Type field should match the type of the memory in enclosing SetMemoryMap()
entry. PhysicalStart must be aligned as specified in Calling Conventions . The list must be sorted by physical
start address in ascending order. VirtualStart field must be zero and ignored by the OS since it has no purpose
for this table. NumPages must cover the entire memory region for the protection mapping. Each Descriptor in the
EFI_MEMORY_ATTRIBUTES_TABLE with attribute EFI_MEMORY_RUNTIME must not overlap any other De-
scriptor in the EFI._ MEMORY_ATTRIBUTES_TABLE with attribute EFI_ MEMORY_RUNTIME . Additionally, ev-
ery memory region described by a Descriptor in EFI_ MEMORY_ATTRIBUTES _TABLE must be a sub-region of, or
equal to, a descriptor in the table produced by GetMemoryMap().

Table 4.1: Usage of Memory Attribute Definitions

EFI_MEMORY_RO EFI_MEMORY_XP EFI _MEM-
ORY_RUNTIME
No memory access protec- 0 0 1

tion is possible for Entry
Write-protected Code
Read/Write Data
Read-only Data 1 1 1

_
=
—

4.6.4 EFI_CONFORMANCE_PROFILE_TABLE

Summary

This table allows the platform to advertise its UEFI specification conformance in the form of pre-defined profiles. Each
profile is identified by a GUID, with known profiles listed in the Description section below.

The absence of this table shall indicate that the platform implementation is conformant with the UEFI specifica-
tion requirements, as defined in Section 2.6. This is equivalent to publishing this configuration table with the
EFI_CONFORMANCE_PROFILES_UEFI_SPEC_GUID conformance profile.

Prototype

#define EFI_CONFORMANCE_PROFILES_TABLE_GUID \
{ 0x36122546, Oxf7e7, 0x4c8f, \
{ 0xbd, 0x9b, Oxeb, 0x85, 0x25, 0xb5, 0x0c, 0x0b }}

typedef struct {

UINT16 Version;

UINT16 NumberOfProfiles;
//EFI_GUID ConformanceProfiles [];
} EFI_CONFORMANCE_PROFILES_TABLE;

Version

Version of the table, must be 0x1:

4.6. EFI Configuration Table & Properties Table 103

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

[#define EFI_CONFORMANCE_PROFILES_TABLE_VERSION 0x1

NumberOfProfiles

The number of conformance profiles GUIDs present in ConformanceProfiles.
ConformanceProfiles

An array of conformance profile GUIDs that are supported by this system.

The address reported in the EFI configuration table entry of this type will be referenced as physical and will not be
fixed up when transition from preboot to runtime phase.

Description

The following list shows the GUIDs of known conformance profiles. This list is not exhaustive and does not show
GUIDs for all possible profiles. Additional profiles can be defined and published in other specifications:

#define EFI_CONFORMANCE_PROFILES_UEFI_SPEC_GUID \
{ 0x523c91af, ®xal95, 0x4382, \
{ 0x81, 0x8d, 0x29, 0x5f, Oxe4, 0x00, 0x64, 0x65 }}

Conformance profile defined by this specification, as defined in Section 2.6.

4.6.5 Other Configuration Tables

The following list shows additional configuration tables defined in this specification:
* EFI_ MEMORY_RANGE_CAPSULE_GUID (Section 8.5.3.3)

EFI_DEBUG_IMAGE_INFO_TABLE (Section 18.4.3)

EFI_SYSTEM_RESOURCE_TABLE (Section 23.4)

* EFI_IMAGE_EXECUTION_INFO_TABLE (Section 32.6.3.1)

¢ User Information Table (Section 36.5)

HII Database export buffer (Section 33.2.11.1)

4.7 Image Entry Point Examples

The examples in the following sections show how the various table examples are presented in the UEFI environment.

4.7.1 Image Entry Point Examples

The following example shows the image entry point for a UEFI Application. This application makes use of the EFI
System Table, the EFI Boot Services Table, and the EFI Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiApplicationEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE “SystemTable

(continues on next page)

4.7. Image Entry Point Examples 104

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

EFI_STATUS Status;
EFI_TIME “Time;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

//

// Use EFI System Table to print "Hello World" to the active console output

// device.

//

Status = gST->ConOut->OutputString (gST->ConOut, L"Hello world\n\r"); if (EFI_ERROR.
— (Status)) {

return Status;

}

//

// Use EFI Boot Services Table to allocate a buffer to store the current time
// and date.

//

Status = gBS->AllocatePool (

EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
)N
if (EFI_ERROR (Status)) {
return Status;

}
/7

// Use the EFI Runtime Services Table to get the current time and date.
//

Status = gRT->GetTime (Time, NULL)

if (EFI_ERROR (Status)) {

return Status;

3

return Status;

The following example shows the UEFI image entry point for a driver that does not follow the UEFI Driver Model .
Since this driver returns EFI_SUCCESS , it will stay resident in memory after it exits.

EFI_SYSTEM_TABLE “gST;
EFI_BOOT_SERVICES “gBS;
EFI_RUNTIME_SERVICES “gRT;
EfiDriverEntryPoint (

IN EFI_HANDLE ImageHandle,

(continues on next page)

4.7. Image Entry Point Examples 105

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

IN EFI_SYSTEM_TABLE *“SystemTable
)
{
gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;
//
// Implement driver initialization here.
//

return EFI_SUCCESS;

The following example shows the UEFI image entry point for a driver that also does not follow the UEFI Driver Model
. Since this driver returns EFI_DEVICE_ERROR, it will not stay resident in memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *“gBS;
EFI_RUNTIME_SERVICES *“gRT;
EfiDriverEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{

gST = SystemTable;

gBS = gST->BootServices;

gRT = gST->RuntimeServices;

//

// Implement driver initialization here.
//

return EFI_DEVICE_ERROR;

4.7.2 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine for the ABC device con-
troller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL and the function prototypes for AbcSup-
ported(), AbcStart(), and AbcStop() are defined in EFI Driver Binding Protocol This function saves the driver’s image
handle and a pointer to the EFI boot services table in global variables, so the other functions in the same driver can
have access to these values. It then creates an instance of the EFI_DRIVER_BINDING_PROTOCOL and installs it
onto the driver’s image handle.

extern EFI_GUID gEfiloadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES “gBS;

(continues on next page)

4.7. Image Entry Point Examples 106

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL
};

AbcEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

EFI_STATUS Status;
gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,

NULL
);
return Status;

4.7.3 UEFI Driver Model Example (Unloadable)

The following is the same UEFI Driver Model example as above, except it also includes the code required to allow
the driver to be unloaded through the boot service Unload() EFI_LOADED_IMAGE_PROTOCOL.Unload() . Any
protocols installed or memory allocated in AbcEntryPoint() must be uninstalled or freed in the AbcUnload().

extern EFI_GUID gEfiloadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *“gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL
b

EFI_STATUS
AbcUnload (
IN EFI_HANDLE ImageHandle

(continues on next page)

4.7. Image Entry Point Examples 107

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

N

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
EFI_STATUS Status;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiloadedImageProtocolGuid,
&LoadedImage,

ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
DN
if (EFI_ERROR (Status)) {
return Status;
}
LoadedImage->Unload = AbcUnload;

mAbcDriverBinding->ImageHandle ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = ¢gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;

3

EFI_STATUS Status
AbcUnload (
IN EFI_HANDLE ImageHandle
)

{
EFI_STATUS Status;

Status = ¢gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
)3
return Status;

}

(continued from previous page)

4.7. Image Entry Point Examples

108

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

4.7.4 EFI Driver Model Example (Multiple Instances)

The following is the same as the first UEFI Driver Model example, except it produces three EFI Driver Binding Protocol
instances. The first one is installed onto the driver’s image handle. The other two are installed onto newly created
handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
AbcSupportedA,
AbcStartA,
AbcStopA,
1,
NULL,
NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
AbcSupportedB,
AbcStartB,
AbcStopB,
1,
NULL,
NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
AbcSupportedC,
AbcStartC,
AbcStopC,
1,
NULL,
NULL
};

AbcEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

EFI_STATUS Status;

gBS = SystemTable->BootServices;

//

// Install mAbcDriverBindingA onto ImageHandle

//

mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = ¢gBS->InstallMultipleProtocolInterfaces(

(continues on next page)

4.7. Image Entry Point Examples 109

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL
D
if (EFI_ERROR (Status)) {
return Status;

}

//

// Install mAbcDriverBindingB onto a newly created handle
//

mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = ¢gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
)3

if (EFI_ERROR (Status)) {

return Status;

//

// Install mAbcDriverBindingC onto a newly created handle
//

mAbcDriverBindingC->ImageHandle = ImageHandle;
mAbcDriverBindingC->DriverBindingHandle = NULL;

Status = ¢gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL
);

return Status;

3

4.7. Image Entry Point Examples 110

CHAPTER
FIVE

GUID PARTITION TABLE (GPT) DISK LAYOUT

5.1 GPT and MBR disk layout comparison

This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning scheme). The following list
outlines the advantages of using the GPT disk layout over the legacy Master Boot Record (MBR) disk layout:

* Logical Block Addresses (LBAs) are 64 bits (rather than 32 bits).

» Supports many partitions (rather than just four primary partitions).
* Provides both a primary and backup partition table for redundancy.
» Uses version number and size fields for future expansion.

* Uses CRC32 fields for improved data integrity.

* Defines a GUID for uniquely identifying each partition.

* Uses a GUID and attributes to define partition content type.

 Each partition contains a 36 character human readable name.

5.2 LBA 0 Format

LBA 0 (i.e., the first logical block) of the hard disk contains either
* alegacy Master Boot Record (MBR) (See Legacy Master Boot Record (MBR))

* or a protective MBR (See Protective MBR).

5.2.1 Legacy Master Boot Record (MBR)

A legacy MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is not using the GPT disk layout
(i.e., if it is using the MBR disk layout). The boot code on the MBR is not executed by UEFI firmware.

Table 5.1: Legacy MBR

Mnemonic Byte Offset Byte Description
Length
BootCode 0 424 x86 code used on a non-UEFI system to select an MBR par-

tition record and load the first logical block of that partition
. This code shall not be executed on UEFI systems.

continues on next page

111

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 5.1 — continued from previous page

UniqueMB RDiskSig- 440 4 Unique Disk Signature This may be used by the OS to iden-
nature tify the disk from other disks in the system. This value is al-
ways written by the OS and is never written by EFI firmware.
Unknown 444 2 Unknown. This field shall not be used by UEFI firmware.
PartitionRecord 446 16*4 Array of four legacy MBR partition records (See Legacy
MBR Partition Record).
Signature 510 2 Set to 0xAASS (i.e., byte 510 contains 0x55 and byte 5 11
contains OXxAA).
Reserved 512 Logical The rest of the logical block, if any, is reserved.
BlockSize -
512

The MBR contains four partition records (see Table 11) that each define the beginning and ending LBAs that a partition
consumes on a disk.

Table 5.2: Legacy MBR Partition Record

Mnemonic Byte Offset Byte Description
Length
Bootlndicator 0 1 0x80 indicates that this is the bootable legacy partition.

Other values indicate that this is not a bootable legacy par-
tition. This field shall not be used by UEFI firmware.

StartingCHS 1 3 Start of partition in CHS address format. This field shall not
be used by UEFI firmware.

OSType 4 1 Type of partition. See See OS Types .

EndingCHS 5 3 End of partition in CHS address format. This field shall not
be used by UEFI firmware.

StartingLBA 8 4 Starting LBA of the partition on the disk. This field is used
by UEFI firmware to determine the start of the partition.

SizeInLBA 12 4 Size of the partition in LBA units of logical blocks. This
field is used by UEFI firmware to determine the size of the
partition.

If an MBR partition has an OSType field of OxEF (i.e., UEFI System Partition), then the firmware must add the UEFI
System Partition GUID to the handle for the MBR partition using InstallProtocollnterface() . This allows drivers and
applications, including OS loaders, to easily search for handles that represent UEFI System Partitions.

The following test must be performed to determine if a legacy MBR s valid:

* The Signature must be Oxaa55

A Partition Record that contains an OSType value of zero or a SizeInLBA value of zero may be ignored.
Otherwise:

* The partition defined by each MBR Partition Record must physically reside on the disk (i.e., not exceed the
capacity of the disk).

» Each partition must not overlap with other partitions.
Figure 5.1 (below) shows an example of an MBR disk layout with four partitions.

Related Definitions

#pragma pack(1)
///

(continues on next page)

5.2. LBA 0 Format 112

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

fufg@/ Partition Peu‘(ilion Pag'ition %anition

MBR

LBAO ILBAz

Fig. 5.1: MBRDisk Layout with legacy MBR example

(continued from previous page)

/// MBR Partition Entry

///

typedef struct {
UINTS8 BootIndicator;
UINTS8 StartHead;
UINTS8 StartSector;
UINTS8 StartTrack;
UINTS8 OSIndicator;
UINTS8 EndHead;
UINTS8 EndSector;
UINTS8 EndTrack;
UINTS8 StartingLBA[4];
UINTS8 SizeInLBA[4];

} MBR_PARTITION_RECORD;

///

/// MBR Partition Table

///

typedef struct {
UINTS8 BootStrapCode[440];
UINTS8 UniqueMbrSignature[4];
UINTS8 Unknown[2];
MBR_PARTITION_RECORD Partition[4];
UINT16 Signature;

} MASTER_BOOT_RECORD;

#pragma pack()

5.2.2 OS Types

Unique types defined by this specification (other values are not defined by this specification):
* OxEF (i.e., UEFI System Partition) defines a UEFI system partition.

* OxEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake partition covering the entire
disk.

Other values are used by legacy operating systems, and are allocated independently of the UEFI specification.

NOTE: “Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading “OS Type values used in the MBR disk layout”.

5.2. LBA 0 Format 113

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

5.2.3 Protective MBR

For a bootable disk, a Protective MBR must be located at LBA 0 (i.e., the first logical block) of the disk if it is using
the GPT disk layout. The Protective MBR precedes the GUID Partition Table Header to maintain compatibility with
existing tools that do not understand GPT partition structures.

Table 5.3: Protective MBR

Mnemonic Byte Offset
Boot Code 0

Unique MBR Disk 440
Signature

Unknown 444
Partition Record 446
Signature 510
Reserved 512

Byte
Length
440

4

2
16*4

2

Logical
Block Size
-512

Contents

Unused by UEFI systems.
Unused. Set to zero.

Unused. Set to zero.

Array of four MBR partition records. Contains:
* one partition record as defined See Table (below); and
» three partition records each set to zero.

Set to OXxAASS (i.e., byte 510 contains 0x55 and byte 511
contains 0xAA).
The rest of the logical block, if any, is reserved. Set to zero.

One of the Partition Records shall be as defined in table 12, reserving the entire space on the disk after the Protective

MBR itself for the GPT disk layout.

Table 5.4: Protective MBR Partition Record protecting the entire disk*

Mnemonic Byte Offset
BootIndicator 0
StartingCHS 1

OSType

EndingCHS 5
StartingLBA 8
SizelnLBA 12

Byte
Length
1

W = W

Description

Set to 0x00 to indicate a non-bootable partition. If set to any
value other than 0x00 the behavior of this flag on non-UEFI
systems is undefined. Must be ignored by UEFI i mplemen-
tations.

Set to 0x000200, corresponding to the Starting LBA field.
Set to OXEE (i.e., GPT Protective)

Set to the CHS address of the last logical block on the disk.
Set to OxFFFFFF if it is not possible to represent the value
in this field.

Set to 0x00000001 (i.e., the LBA of the GPT Partition
Header).

Set to the size of the disk minus one. Set to OxFFFFFFFF
if the size of the disk is too large to be represented in this
field.

The remaining Partition Records shall each be set to zeros.

Figure 5.2 (below) shows an example of a GPT disk layout with four partitions with a protective MBR.

Figure 5.3 (below) shows an example of a GPT disk layout with four partitions with a protective MBR, where the disk

capacity exceeds LBA OxFFFFFFFF.

5.2. LBA 0 Format

114

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Protective 61{1‘115_ U]yFI Par*tion Pﬁtion Pﬁlion Backup GPT
MBR GPT system
partition
GPT Protective partition
\ A
LBAD ——— IBAzZ

Fig. 5.2: GPT disk layout with protective MBR

Protective ﬁl{n(U'LiFI Paraion Paﬁu’ on Pgﬂtiou Backup
MBR GPT system GPT

partition

GPT Protective partition

A\ A

LBM LBA OxFFFFFFFF LBAzZ

Fig. 5.3: GPT disk layout with protective MBR on a diskwith capacity > LBA OxFFFFFFFF

5.2.4 Partition Information

Install an EFI_PARTITION_INFO protocol on each of the device handles that logical EFI_BLOCK_IO_PROTOTOLs
are installed.

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview

The GPT partitioning scheme is depicted in the Figure GUID Partition Table (GPT) example . The GPT Header (GPT
Header) includes a signature and a revision number that specifies the format of the data bytes in the partition header.
The GUID Partition Table Header contains a header size field that is used in calculating the CRC32 that confirms the
integrity of the GPT Header. While the GPT Header’s size may increase in the future it cannot span more than one
logical block on the device.

LBA 0 (i.e., the first logical block) contains a protective MBR (See Protective MBR).

Two GPT Header structures are stored on the device: the primary and the backup. The primary GPT Header must be
located in LBA 1 (i.e., the second logical block), and the backup GPT Header must be located in the last LBA of the
device. Within the GPT Header the My LBA field contains the LBA of the GPT Header itself, and the Alternate LBA
field contains the LBA of the other GPT Header. For example, the primary GPT Header’s My LBA value would be 1
and its Alternate LBA would be the value for the last LBA of the device. The backup GPT Header’s fields would be
reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This range is defined to be

5.3. GUID Partition Table (GPT) Disk Layout 115

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

inclusive of First Usable LBA through Last Usable LBA on the logical device. All data stored on the volume must be
stored between the First Usable LBA through Last Usable LBA , and only the data structures defined by UEFI to manage
partitions may reside outside of the usable space. The value of Disk GUID is a GUID that uniquely identifies the entire
GPT Header and all its associated storage. This value can be used to uniquely identify the disk. The start of the GPT
Partition Entry Array is located at the LBA indicated by the Partition Entry LBA field. The size of a GUID Partition
Entry element is defined in the Size Of Partition Entry field. There is a 32-bit CRC of the GPT Partition Entry Array
that is stored in the GPT Header in Partition Entry Array CRC32 field. The size of the GPT Partition Entry Array is S
ize Of Partition Entry multiplied by Number Of Partition Entries . If the size of the GUID Partition Entry Array is not
an even multiple of the logical block size, then any space left over in the last logical block is Reserved and not covered
by the Partition Entry Array CRC32 field. When a GUID Partition Entry is updated, the Partition Entry Array CRC32
must be updated. When the Partition Entry Array CRC32 is updated, the GPT Header CRC must also be updated, since
the Partition Entry Array CRC32 is stored in the GPT Header.

First useable block Start partition
End partition
LBAO LBA1 LBAN
0|1 '
5 : 5
2|58 52
o o=
% T= Partition 1 =
o [=]
A O=s O5
A ol+ A
e n
4
Start partition End partition [
ast useable block
—_— —_—
Primary Partition Backup Partition
Table Table

Fig. 5.4: GUID Partition Table (GPT) example

The primary GPT Partition Entry Array must be located after the primary GPT Header and end before the First Usable
LBA. The backup GPT Partition Entry Array must be located after the Last Usable LBA and end before the backup
GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate locations on the disk. Each GPT
Partition Entry defines a partition that is contained in a range that is within the usable space declared by the GPT
Header. Zero or more GPT Partition Entries may be in use in the GPT Partition Entry Array. Each defined partition
must not overlap with any other defined partition. If all the fields of a GUID Partition Entry are zero, the entry is not
in use. A minimum of 16,384 bytes of space must be reserved for the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing 1 block for the Protective
MBR, 1 block for the Partition Table Header, and 32 blocks for the GPT Partition Entry Array); if the logical block size
is 4096, the First Useable LBA must be greater than or equal to 6 (allowing 1 block for the Protective MBR, 1 block
for the GPT Header, and 4 blocks for the GPT Partition Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is called the Long Logical Sector
feature set; an ATA device reports support for this feature set in IDENTIFY DEVICE data word 106 bit 12 and reports
the number of words (i.e., 2 bytes) per logical sector in IDENTIFY DEVICE data words 117-118 (see ATA8-ACS). A
SCSI device reports its logical block size in the READ CAPACITY parameter data Block Length In Bytes field (see
SBC-3).

The device may present a logical block size that is smaller than the physical block size (e.g., present a logical block
size of 512 bytes but implement a physical block size of 4,096 bytes). In ATA, this is called the Long Physical Sector
feature set; an ATA device reports support for this feature set in IDENTIFY DEVICE data word 106 bit 13 and reports
the Physical Sector Size/Logical Sector Size exponential ratio in IDENTIFY DEVICE data word 106 bits 3-0 (See

5.3. GUID Partition Table (GPT) Disk Layout 116

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

ATAS8-ACS). A SCSI device reports its logical block size/physical block exponential ratio in the READ CAPACITY
(16) parameter data Logical Blocks Per Physical Block Exponent field (see SBC-3).These fields return 2 x logical
sectors per physical sector (e.g., 3 means 2 3 =8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not aligned to the underlying physical
block boundaries. An ATA device reports the alignment of logical blocks within a physical block in IDENTIFY
DEVICE data word 209 (see ATA8-ACS). A SCSI device reports its alignment in the READ CAPACITY (16) parameter
data Lowest Aligned Logical Block Address field (see SBC-3). Note that the ATA and SCSI fields are defined differently
(e.g., to make LBA 63 aligned, ATA returns a value of 1 while SCSI returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see SBC-3) may also report a
granularity that is important for alignment purposes (e.g., RAID controllers may return their RAID stripe depth in that
field)

GPT partitions should be aligned to the larger of:
a — The physical block boundary, if any

b — The optimal transfer length granularity, if any.
For example

a — If the logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512 bytes x 8 logical blocks), there
is no optimal transfer length granularity, and logical block 0 is aligned to a physical block boundary, then each GPT
partition should start at an LBA that is a multiple of 8.

b — If the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512 bytes x 16 logical blocks), the
optimal transfer length granularity is 65,536 bytes (i.e., 512 bytes x 128 logical blocks), and logical block 0 is aligned
to a physical block boundary, then each GPT partition should start at an LBA that is a multiple of 128.

To avoid the need to determine the physical block size and the optimal transfer length granularity, software may align
GPT partitions at significantly larger boundaries. For example, assuming logical block O is aligned, it may use LBAs
that are multiples of 2,048 to align to 1,048,576 byte (1 MiB) boundaries, which supports most common physical block
sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS). By the
INCITS T13 technical committee. (See “Links to UEFI-Related Documents™ (http://uefi.org/uefi under the headings
“InterNational Committee on Information Technology Standards (INCITS)” and “INCITs T13 technical committee”).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from www.incits.org. By the IN-
CITS T10 technical committee (See “Links to UEFI-Related Documents” (http://uefi.org/uefi under the headings “In-
terNational Committee on Information Technology Standards (INCITS)” and “SCSI Block Commands”).

5.3.2 GPT Header

See Table (below) which defines the GPT Header.

Table 5.5: GPT Header

Mnemonic Byte Byte Description
Offset Length

Signature 0 8 Identifies EFI-compatible partition table header. This value must con-
tain the ASCII string “EFI PART”, encoded as the 64-bit constant 0x54
52415020494645.

Revision 8 4 The revision number for this header. This revision value is not related to the
UEFI Specification version. This header is version 1.0, so the correct value
is 0x00010000.

continues on next page

5.3. GUID Partition Table (GPT) Disk Layout 117

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 5.5 — continued from previous page

HeaderSize 12 4 Size in bytes of the GPT Header. The HeaderSize must be greater than or
equal to 92 and must be less than or equal to the logical block size.
HeaderCRC32 16 4 CRC32 checksum for the GPT Header structure. This value is computed by

setting this field to 0, and computing the 32-bit CRC for HeaderSize bytes.

Reserved 20 4 Must be zero.

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GPT Header.

40 8 The first usable logical block that may be used by a partition described by a
* FirstUs- GUID Partition Entry.
ableLBA*

LastUsableLBA 48 8 The last usable logical block that may be used by a partition described by a
GUID Partition Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the disk.

Par titionEn- 72 8 The starting LBA of the GUID Partition Entry array.

tryLBA

NumberOfPa 80 4 The number of Partition Entries in the GUID Partition Entry array.

rtitionEntries

SizeOf Partitio- 84 4 The size, in bytes, of each the GUID Partition Entry structures in the GUID

nEntry Partition Entry array. This field shall be set to a value of 128 x 2 n where n
is an integer greater than or equal to zero (e.g., 128, 256, 512, etc.). NOTE:
Previous versions of this specification allowed any multiple of 8..

FartitionE ntr- 88 4 The CRC32 of the GUID Partition Entry array. Starts at Par titionEntryLBA

yArrayCRC32 and is computed over a byte length of NumberOfP artitionEntries * SizeOfP
artitionEntry.

Reserved 92 Block- The rest of the block is reserved by UEFI and must be zero.

Size -
92

The following test must be performed to determine if a GPT is valid:
* Check the Signature
* Check the Header CRC
 Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
* Check the CRC of the GUID Partition Entry Array
If the GPT is the primary table, stored at LBA 1:
* Check the AlternateLBA to see if it is a valid GPT

If the primary GPT is corrupt, software must check the last LBA of the device to see if it has a valid GPT Header and
point to a valid GPT Partition Entry Array. If it points to a valid GPT Partition Entry Array, then software should restore
the primary GPT if allowed by platform policy settings (e.g. a platform may require a user to provide confirmation
before restoring the table, or may allow the table to be restored automatically). Software must report whenever it
restores a GPT.

Software should ask a user for confirmation before restoring the primary GPT and must report whenever it does modify
the media to restore a GPT. If a GPT formatted disk is reformatted to the legacy MBR format by legacy software, the
last logical block might not be overwritten and might still contain a stale GPT. If GPT-cognizant software then accesses
the disk and honors the stale GPT, it will misinterpret the contents of the disk. Software may detect this scenario if the
legacy MBR contains valid partitions rather than a protective MBR (Legacy Master Boot Record (MBR)).

Any software that updates the primary GPT must also update the backup GPT. Software may update the GPT Header
and GPT Partition Entry Array in any order, since all the CRCs are stored in the GPT Header. Software must update

5.3. GUID Partition Table (GPT) Disk Layout 118

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

the backup GPT before the primary GPT, so if the size of device has changed (e.g. volume expansion) and the update
is interrupted, the backup GPT is in the proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last logical block on the disk. If
the backup GPT is valid it must be used to restore the primary GPT. If the primary GPT is valid and the backup GPT
is invalid software must restore the backup GPT. If both the primary and backup GPTs are corrupted this block device
is defined as not having a valid GUID Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the size of a physical volume. This
is due to the GPT recovery scheme depending on locating the backup GPT at the end of the device. A volume may
grow in size when disks are added to a RAID device. As soon as the volume size is increased the backup GPT must be
moved to the end of the volume and the primary and backup GPT Headers must be updated to reflect the new volume
size.

5.3.3 GPT Partition Entry Array

The GPT Partition Entry Array contains an array of GPT Partition Entries. See Table (below) which defines the GPT
Partition Entry.

Table 5.6: GPT Partition Entry

Mnemonic Byte Offset Byte Description
Length
FartitionTypeGUID 0 16 Unique ID that defines the purpose and type of this Partition.
A value of zero defines that this partition entry is not being
used.
UniqueParti- 16 16 GUID that is unique for every partition entry. Every parti-
tionGUID tion ever created will have a unique GUID. This GUID must

be assigned when the GPT Partition Entry is created. The
GPT Partition Entry is created whenever the NumberOfPa
rtitionEntries in the GPT Header is increased to include a
larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition defined by this entry.
EndingLBA 40 8 Ending LBA of the partition defined by this entry.
Attributes 48 8 Attribute bits, all bits reserved by UEFI (Defined GPT Par-
tition Entry — Partition Type GUIDs.
PartitionName 56 72 Null-terminated string containing a human-readable name
of the partition.
Reserved 128 SizeOf Par- The rest of the GPT Partition Entry, if any, is reserved by
titionEntry ~ UEFI and must be zero.
- 128

The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID Partition Entry. Each partition
entry contains a Unique Partition GUID value that uniquely identifies every partition that will ever be created. Any
time a new partition entry is created a new GUID must be generated for that partition, and every partition is guaranteed
to have a unique GUID. The partition is defined as all the logical blocks inclusive of the StartingLBA and EndingLBA .

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to the OS Type field in
the MBR. Each filesystem must publish its unique GUID. The Attributes field can be used by utilities to make broad
inferences about the usage of a partition and is defined in Table (below).

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition using
EFI_BOOT_SERVICES.InstallProtocollnterface() . This will allow drivers and applications, including OS loaders, to
easily search for handles that represent EFI System Partitions or vendor specific partition types.

5.3. GUID Partition Table (GPT) Disk Layout 119

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Software that makes copies of GPT-formatted disks and partitions must generate new Disk GUID values in the GPT
Headers and new Unique Partition GUID values in each GPT Partition Entry. If GPT-cognizant software encounters
two disks or partitions with identical GUIDs, results will be indeterminate.

Table 5.7: Defined GPT Partition Entry — Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000

EFI System Partition C12A7328-F81F-11D2-BA4B-00A0C93EC93B
Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

OS vendors need to generate their own Partition Type GUIDs to identify their partition types.

Table 5.8: Defined GPT Partition Entry - Attributes

Bits Name Description

Bit0 Required Partition If this bit is set, the partition is required for the platform to function. The
owner/creator of the partition indicates that deletion or modification of the con-
tents can result in loss of platform features or failure for the platform to boot
or operate. The system cannot function normally if this partition is removed,
and it should be considered part of the hardware of the system. Actions such as
running diagnostics, system recovery, or even OS install or boot could poten-
tially stop working if this partition is removed. Unless OS software or firmware
recognizes this partition, it should never be removed or modified as the UEFI
firmware or platform hardware may become non-functional.

Bit 1 No Block IO Protocol If this bit is set, then firmware must not produce an
EFI_BLOCK_IO_PROTOCOL device for this partition. See Partition Dis-
covery for more details. By not producing an EFI_BLOCK_IO_PROTOCOL
partition, file system mappings will not be created for this partition in UEFI.

Bit2 Legacy BIOS Bootable This bit is set aside by this specification to let systems with traditional PC-
AT BIOS firmware implementations inform certain limited, special-purpose
software running on these systems that a GPT partition may be bootable. For
systems with firmware implementations conforming to this specification, the
UEFI boot manager (see chapter 3) must ignore this bit when selecting a UEFI-
compliant application, e.g., an OS loader (see 2.1.3). Therefore there is no need
for this specification to define the exact meaning of this bit.

Bits Undefined and must be zero. Reserved for expansion by future versions of the
3-47 UEFI specification.

Bits Reserved for GUID specific use. The use of these bits will vary depending on
48-63 the PartitionTypeGUID . Only the owner of the PartitionTypeGUID is allowed

to modify these bits. They must be preserved if Bits 0-47 are modified.

Related Definitions:

#pragma pack(1)

///

/// GPT Partition Entry.

///

typedef struct {
EFI_GUID PartitionTypeGUID;
EFI_GUID UniquePartitionGUID;
EFI_LBA StartingLBA;
EFI_LBA EndingLBA;

(continues on next page)

5.3. GUID Partition Table (GPT) Disk Layout 120

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

UINT64 Attributes;

CHAR16 PartitionName[36];
} EFI_PARTITION_ENTRY;
#pragma pack()

5.3. GUID Partition Table (GPT) Disk Layout 121

CHAPTER
SIX

BLOCK TRANSLATION TABLE (BTT) LAYOUT

This specification defines the Block Translation Table (BTT) metadata layout. The following sub-sections outline the
BTT format that is utilized on the media, the data structures involved, and a detailed description of how SW is to
interpret the BTT layout.

6.1 Block Translation Table (BTT) Background

A namespace defines a contiguously-addressed range of Non-Volatile Memory conceptually similar to a SCSI Logical
Unit (LUN) or a NVM Express® namespace. *

© Note

* NVM Express® and NVMe® are registered trademarks of NVM Express, Inc. for use in describing the NVM
Express, Inc. organization and items developed by NVM Express, Inc. NVMe-oF™ is an unregistered trademark
of NVM Express, Inc.

Any namespace being utilized for block storage may contain a Block Translation Table (BTT), which is a layout and
set of rules for doing block I/O that provide powerfail write atomicity of a single block. Traditional block storage,
including hard disks and SSDs, usually protect against torn sectors, which are sectors partially written when interrupted
by power failure. Existing software, mostly file systems, depend on this behavior, often without the authors realizing it.
To enable such software to work correctly on namespaces supporting block storage access, the BTT layout defined by
this document sub-divides a namespace into one or more BTT Arenas, which are large sections of the namespace that
contain the metadata required to provide the desired write atomicity. Each of these BTT Arenas contains a metadata
layout as shown in Figures 6-1 and 6-2 below.

Each arena contains the layout shown in Figure 6-1 (above), the primary info block, data area, map, flog, and a backup
info block. Each of these areas is described in the following sections. When the namespace is larger than 512 GiB,
multiple arenas are required by the BTT layout, as shown in Figure 6-2 (below). Each namespace using a BTT is divided
into as many 512 GiB arenas as shall fit, followed by a smaller arena to contain any remaining space as appropriate.
The smallest arena size is 16MiB so the last arena size shall be between 16MiB and 512GiBs. Any remaining space
less than 16MiB is unused. Because of these rules for arena placement, software can locate every primary Info block
and every backup Info block without reading any metadata, based solely on the namespace size.

122

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Label
Label Storage Area
backup Info Block
Hifherﬂ.ddre:i Flog
BTT Arena — Map
Data Area
Lower Address primary Info Block

Fig. 6.1: The BTT Layout in a BTT Arena

Higher Address
[~ Info Block H

Namespace « IFme I BTT Arenas

Map

Infc Block |

Lower Address
MEDIA

Fig. 6.2: A BTT With Multiple Arenas in a Large Namespace

6.1. Block Translation Table (BTT) Background 123

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

6.2 Block Translation Table (BTT) Data Structures

The following sub-sections outline the data structures associated with the BTT Layout.

6.2.1 BTT Info Block

// Alignment of all BTT structures
#define EFI_BTT_ALIGNMENT 4096
#define EFI_BTT_INFO_UNUSED_LEN 3968

#define EFI_BTT_INFO_BLOCK_SIG_LEN 16

// Constants for Flags field
#define EFI_BTT_INFO_BLOCK_FLAGS_ERROR 0x00000001

// Constants for Major and Minor version fields
#define EFI_BTT_INFO_BLOCK_MAJOR_VERSION 2
#define EFI_BTT_INFO_BLOCK_MINOR_VERSION 0

typdef struct _EFI_BTT_INFO_BLOCK {
CHAR8 Sig[EFI_BTT_INFO_BLOCK_SIG_LEN];
EFI_GUID Uuid;
EFI_GUID ParentUuid;
UINT32 Flags;
UINT16 Major;
UINT16 Minor;
UINT32 ExternallLbaSize;
UINT32 ExternalNLba;
UINT32 InternallbaSize;
UINT32 InternalNLba;
UINT32 NFree;
UINT32 InfoSize;
UINT64 NextOff;
UINT64 DataOff;
UINT64 MapOff;
UINT64 FlogOff;
UINT64 InfoOff;
CHARS8 Unused[EFI_BTT_INFO_UNUSED_LEN];
UINT64 Checksum;
} EFI_BTT_INFO_BLOCK

Sig
Signature of the BTT Index Block data structure. Shall be “BTT_ARENA_INFO00”.
UUID

UUID identifying this BTT instance. A new UUID is created each time the initial BTT Arenas are written. This
value shall be identical across all BTT Info Blocks within all arenas within a namespace.

ParentUuid
UUID of containing namespace, used when validating the BTT Info Block to ensure this instance of the BTT
layout is intended for the current surrounding namespace, and not left over from a previous namespace that used
the same area of the media. This value shall be identical across all BTT Info Blocks within all arenas within a
namespace.

6.2. Block Translation Table (BTT) Data Structures 124

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Flags
Boolean attributes of this BTT Info Block. See the additional description below on the use of the flags. The
following values are defined:

EFI_BTT_INFO_BLOCK_FLAGS_ERROR - The BTT Arena is in the error state. When a BTT implemen-
tation discovers issues such as inconsistent metadata or lost metadata due to unrecoverable media errors, the
error bit for the associated arena shall be set. See the BTT Theory of Operation section regarding handling of
EFI_BTT_INFO_BLOCK_FLAGS_ERROR.

Major
Major version number. Currently at version 2. This value shall be identical across all BTT Info Blocks within
all arenas within a namespace.

Minor
Minor version number. Currently at version 0. This value shall be identical across all BTT Info Blocks within
all arenas within a namespace.

ExternalLbaSize
Advertised LBA size in bytes. I/O requests shall be in this size chunk. This value shall be identical across all
BTT Info Blocks within all arenas within a namespace.

ExternalNLba
Advertised number of LBAs in this arena. The sum of this field, across all BTT Arenas, is the total number of
available LBAs in the namespace.

InternalLbaSize
Internal LBA size shall be greater than or equal to ExternalLbaSize and shall not be smaller than 512 bytes. Each
block in the arena data area is this size in bytes and contains exactly one block of data. Optionally, this may be
larger than the ExternalLbaSize due to alignment padding between LBAs. This value shall be identical across
all BTT Info Blocks within all arenas within a namespace.

InternalNLba
Number of internal blocks in the arena data area. This shall be equal to ExternalNLba + NFree because each
internal lba is either mapped to an external lba or shown as free in the flog.

NFree
Number of free blocks maintained for writes to this arena. NFree shall be equal to InternalNLba — Exter-
nalNLba. This value shall be identical across all BTT Info Blocks within all arenas within a namespace.

InfoSize
The size of this info block in bytes. This value shall be identical across all BTT Info Blocks within all arenas
within a namespace.

NextOff
Offset of next arena, relative to the beginning of this arena. An offset of 0 indicates that no arenas follow the
current arena. This field is provided for convience as the start of each arena can be calculated from the size of
the namespace as described in the Theory of Operation — Validating BTT Arenas at start-up description. This
value shall be identical in the primary and backup BTT Info Blocks within an arena.

DataOff
Offset of the data area for this arena, relative to the beginning of this arena. The internal-LBA number zero lives
at this offset. This value shall be identical in the primary and backup BTT Info Blocks within an arena.

MapOff
Offset of the map for this arena, relative to the beginning of this arena. This value shall be identical in the primary
and backup BTT Info Blocks within an arena.

FlogOff
Offset of the flog for this arena, relative to the beginning of this arena. This value shall be identical in the primary
and backup BTT Info Blocks within an arena.

6.2. Block Translation Table (BTT) Data Structures 125

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

InfoOff
Offset of the backup copy of this arena’s info block, relative to the beginning of this arena. This value shall be
identical in the primary and backup BTT Info Blocks within an arena.

Reserved
Shall be zero.

Checksum
64-bit Fletcher64 checksum of all fields. This field is considered as containing zero when the checksum is
computed.

BTT Info Block Description
The existence of a valid BTT Info Block is used to determine whether a namespace is used as a BTT block device.

Each BTT Arena contains two BTT Info Blocks, a primary copy at the beginning of the BTT Arena, at address off-
set 0, and ends with an identical backup BTT Info Block, in the highest block available in the arena aligned on a
EFI_BTT_ALIGNMENT boundary. When writing the BTT layout, implementations shall write out the info blocks
from the highest arena to the lowest, writing the backup info block and other BTT data structures before writing the
primary info block. Writing the layout in this manner shall ensure that a valid BTT layout is only detected after the
entire layout has been written.

6.2.2 BTT Map Entry

typedef struct _EFI_BTT_MAP_ENTRY {
UINT32 PostMapLba : 30;
UINT32 Error : 1;
UINT32 Zero : 1;

} EFI_BTT_MAP_ENTRY ;

PostMapLba
Post-map LBA number (block number in this arena’s data area)

Error
When set and Zero is not set, reads on this block return an error. Writes to this block clear this flag.

Zero
When set and Error is not set, reads on this block return a full block of zeros. Writes to this block clear this flag.

BTT Map Description

The BTT Map area maps an LBA that indexes into the arena, to its actual location. The BTT Map is located as high
as possible in the arena, after room for the backup info block and flog (and any required alignment) has been taken
into account. The terminology pre-map LBA and post-map LBA is used to describe the input and output values of this
mapping.

The BTT Map area is indexed by the pre-map LBA and each entry in the map contains the 30 bit post-map LBA and
bits to indicate if there is an error or if LBA contains zeroes (see EFI_BTT_MAP_ENTRY).

The Error and Zero bits indicate conditions that cannot both be true at the same time, so that combination is used to
indicate a normal map entry, where no error or zeroed block is indicated. The error condition is indicated only when
the Error bit is set and the Zero bit is clear, with similar logic for the zero block condition. When neither condition is
indicated, both Error and Zero are set to indicate a map entry in its normal, non-error state. This leaves the case where
both Error and Zero are bits are zero, which is the initial state of all map entries when the BTT layout is first written.
Both bits zero means that the map entry contains the initial identity mapping where the pre-map LBA is mapped to
the same post-map LBA. Defining the map this way allows an implementation to leverage the case where the initial
contents of the namespace is known to be zero, requiring no writes to the map when writing the layout. This can greatly
improve the layout time since the map is the largest BTT data structure written during layout.

6.2. Block Translation Table (BTT) Data Structures 126

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

6.2.3 BTT Flog

// Alignment of each flog structure
#define EFI_BTT _FLOG_ENTRY_ALIGNMENT 64

typedef struct _EFI_BTT_FLOG {
UINT32 Lba0;
UINT32 0ldMap®;
UINT32 NewMap®;
UINT32 Seq0;
UINT32 Lbal;
UINT32 0ldMap1;
UINT32 NewMapl;
UINT32 Seql;
} EFI_BTT_FLOG

Ibal
Last pre-map LBA written using this flog entry. This value is used as an index into the BTT Map when updating
it to complete the transaction.

OldMap0
Old post-map LBA. This is the old entry in the map when the last write using this flog entry occurred. If the
transaction is complete, this LBA is now the free block associated with this flog entry.

NewMap0
New post-map LBA. This is the block allocated when the last write using this flog entry occurred. By definition,
a write transaction is complete if the BTT Map entry contains this value.

Seq0
The Seq0 field in each flog entry is used to determine which set of fields is newer between the two sets (Lba0,
OldMap0, NewMpa0, Seq0 vs Lbal, Oldmapl, NewMapl, Seql). Updates to a flog entry shall always be made
to the older set of fields and shall be implemented carefully so that the Seq0 bits are only written after the other
fields are known to be committed to persistence. The figure below shows the progression of the Seq0 bits over
time, where the newer entry is indicated by a value that is clockwise of the older value.

Lbal
Alternate lba entry

OldMap1
Alternate old entry

NewMapl
Alternate new entry

Seql
Alternate Seq entry

BTT Flog Description

The BTT Flog is so named to illustrate that it is both a free list and a log, rolled into one data structure. The Flog size
is determined by the NFree field in the BTT Info Block which determines how many of these flog entries there are.
The flog location is the highest address in the arena after space for the backup info block and alignment requirements
have been taken in account.

6.2. Block Translation Table (BTT) Data Structures 127

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

i

Fig. 6.3: Cyclic Sequence Numbers for Flog Entries

6.2.4 BTT Data Area

Starting from the low address to high, the BTT Data Area starts immediately after the BTT Info Block and extends
to the beginning of the BTT Map data structure. The number of internal data blocks that can be stored in an arena is
calculated by first calculating the necessary space required for the BTT Info Blocks, map, and flog (plus any alignment
required), subtracting that amount from the total arena size, and then calculating how many blocks fit into the resulting
space.

6.2.5 NVDIMM Label Protocol Address Abstraction Guid

This version of the BTT layout and behavior is collectively described by the AddressAbstractionGuid in the UEFI
NVDIMM Label protocol section utilizing this GUID:

#define EFI_BTT_ABSTRACTION_GUID \
{0x18633bfc,0x1735,0x4217,
{0x8a,0xc9,0x17,0x23,0x92,0x82,0xd3,0x£f8}

6.3 BTT Theory of Operation

This section outlines the theory of operation for the BTT and describes the responsibilities that any software imple-
mentation shall follow.

A specific instance of the BTT layout depends on the size of the namespace and three administrative choices made at
the time the initial layout is created:

¢ ExternallLbaSize: the desired block size

« InternalLbaSize: the block size with any internal padding

6.3. BTT Theory of Operation 128

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* NFree: the number of concurrent writes supported by the layout

The BTT data structures do not support an InternalLLbaSize smaller than 512 bytes, so if ExternallLbaSize is smaller
than 512 bytes, the InternalLLbaSize shall be rounded up to 512. For performance, the InternalLbaSize may also
include some padding bytes. For example, a BTT layout supporting 520-byte blocks may use 576-byte blocks internally
in order to round up the size to a multiple of a 64-byte cache line size. In this example, the ExternalLbaSize, visible
to software above the BTT software, would be 520 bytes, but the InternalLbaSize would be 576 bytes.

Once these administrative choices above are determined, the namespace is divided up into arenas, as described in the
BTT Arenas section, where each arena uses the same values for ExternalLLbaSize, InternalLLbaSize, and Nfree.

6.3.1 BTT Arenas

In order to reduce the size of BTT metadata and increase the possibility of concurrent updates, the BTT layout in
a namespace is divided into arenas. An arena cannot be larger than 512GiB or smaller than 16MiB. A namespace
is divided into as many 512GiB arenas that shall fit, starting from offset zero and packed together without padding,
followed by one arena smaller than 512GiB if the remaining space is at least 16MiB. The smaller area size is rounded
down to be a multiple of EFI_BTT_ALIGNMENT if necessary. Because of these rules, the location and size of every
BTT Arena in a namespace can be determined from the namespace size.

Within an arena, the amount of space used for the Flog is NFree times the amount of space required for each Flog
entry. Flog entries shall be aligned on 64-byte boundaries. In addition, the full BTT Flog table shall be aligned on
a EFI_BTT_ALIGNMENT boundary and have a size that is padded to be multiple of EFI_BTT_ALIGNMENT. In
summary, the space in an arena taken by the Flog is:

FlogSize = roundup(NFree * roundup(sizeof(EFI_BTT_FLOG),
EFI_BTT_FLOG_ENTRY_ALIGNMENT), EFI_BTT_ALIGNMENT)

Within an arena, the amount of space available for data blocks and the associated Map is the arena size minus the space
used for the BTT Info Blocks and the Flog:

[DataAndMapSize = ArenaSize - 2 * sizeof(EFI_BTT_INFO_BLOCK) - FlogSize]

Within an arena, the number of data blocks is calculated by dividing the available space, DataAndMapSize, by the
InternalLbaSize plus the map overhead required for each block, and rounding down the result to ensure the data area
is aligned on a EFI_BTT_ALIGNMENT boundary:

sizeof (EFI_BTT_MAP_ENTRY)

InternalNLba = (DataAndMapSize - EFI_BTT_ALIGNMENT) / (InternallbaSize + ’

With the InternalNLba value known, the calculation for the number of external LBAs subtracts off NFree for the pool
of unadvertised free blocks:

[ExternalNLba = InternalNLba - Nfree]

Within an arena, the number of bytes required for the BTT Map is one entry for each external LBA, plus any alignment
required to maintain an alignment of EFI_BTT_ALIGNMENT for the entire map:

MapSize = roundup(ExternalNLba * sizeof(EFI_BTT_MAP_ENTRY),
EFI_BTT_ALIGNMENT)

The number of concurrent writes allowed for an arena is based on the NFree value chosen at BTT layout time. For
example, choosing NFree of 256 means the BTT Arena shall have 256 free blocks to use for in-flight write operations.
Since BTT Arenas each have NFree free blocks, the number of concurrent writes allowed in a namespace may be larger
when there are multiple arenas and the writes are spread out between multiple arenas.

6.3. BTT Theory of Operation 129

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

6.3.2 Atomicity of Data Blocks in an Arena

The primary reason for the BTT is to provide failure atomicity when writing data blocks, so that any write of a single
block cannot be torn by interruptions such as power loss. The BTT provides this by maintaining a pool of free blocks
which are not part of the capacity advertised to software layers above the BTT software. The BTT Data Area is large
enough to hold the advertised capacity as well as the pool of free blocks. The BTT software manages the blocks in the
BTT Data Area as a list of infernal LBAs, which are block numbers only visible internally to the BTT software. The
block numbers that make up the advertised capacity are known as external LBAs, and at any given point in time, each
one of those external LBAs is mapped by the BTT Map to one of the blocks in the BTT Data Area. Each block write
done by the BTT software starts by allocating one of the free blocks, writing the data to it, and only when that block
is fully persistent (including any flushes required), are steps taken to make that block active, as outlined in the BTT
Theory of Operations - Write Path section.

The BTT Flog (a combination of a free list and a log) is at the heart of the atomic updates when writing blocks. The
“quiet” state of a BTT Flog, when no in-flight writes are happening and no recovery steps are outstanding, is that the
NFree free blocks currently available for writes are contained in the OldMap fields in the Flog entries. A write shall
use one of those Flog entries to find a free block to write to, and then the Lba and NewMap fields in the Flog are
used as a write-ahead-log for the BTT Map update when the data portion of the write is complete, as described in the
Validating the Flog at start-up section.

It is up to run-time logic in the BTT software to ensure that only one Flog entry is in use at a time, and that any reads
still executing on the block indicated by the OldMap entry have finished before starting a write using that block.

6.3.3 Atomicity of BTT Data Structures

Byte-addressable persistent media may not support atomic updates larger than 8-bytes, so any data structure larger than
8-bytes in the BTT uses software-implemented atomicity for updates. Note that 8-byte write atomicity, meaning an
8-byte store to the persistent media cannot be torn by interruptions such as power failures, is a minimal requirement for
using the BTT described in this document.

There are four types of data structures in the BTT:
e The BTT Info Blocks
e The BTT Map
e The BTT Flog
e The BTT Data Area

The BTT Map entries are 4-bytes in size, and so can be updated atomically with a single store instruction. All other
data structures are updated by following the rules described in this document, which update an inactive version of the
data structure first, followed by steps to make it active atomically.

For the BTT Info Blocks, atomicity is provided by always writing the backup Info block first, and only after that update
is fully persistent (the block checksums correctly), is the primary BTT Info Block updated as described in the Writing
the initial BT T layout section. Recovery from an interrupted update is provided by checking the primary Info block’s
checksum on start-up, and if it is bad, copying the backup Info block to the primary to complete the interrupted update
as described in the Validating BTT Arenas at start-up section.

For the BTT Flog, each entry is double-sized, with two complete copies of every field (Lba, OldMap, NewMap, Seq).
The active entry has the higher Seq number, so updates always write to the inactive fields, and once those fields are
fully persistent, the Seq field for the inactive entry is updated to make it become the active entry atomically. This is
described in the Validating the Flog at start-up section.

For the BTT Data Area, all block writes can be thought of as allocating writes, where an inactive block is chosen from
the free list maintained by the Flog, and only after the new data written to that block is fully persistent, that block is
made active atomically by updating the Flog and Map entries as described in the Write Path section.

6.3. BTT Theory of Operation 130

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

6.3.4 Writing the Initial BTT layout

The overall layout of the BTT relies on the fact that all arenas shall be 512GiB in size, except the last arena which is
a minimum of 16MiB. Initializing the BTT on-media structures only happens once in the lifetime of a BTT, when it
is created. This sequence assumes that software has determined that new BTT layout needs to be created and the total
raw size of the namespace is known.

Immediately before creating a new BTT layout, the UUID of the surrounding namespace may be updated to a newly-
generated UUID. This optional step, depending on the needs of a BTT software implementation, has the effect of
invalidating any previous BTT Info Blocks in the namespace and ensuring the detection of an invalid layout if the BTT
layout creation process is interrupted. This detection works because the parent UUID field

The on-media structures in the BTT layout may be written out in any order except for the BTT Info Blocks, which shall
be written out as the last step of the layout, starting from the last arena (highest offset in the namespace) to the first
arena (lowest offset in the namespace), writing the backup BTT Info Block in each arena first, then writing the primary
BTT Info block for that arena second. This allows the detection of an incomplete BTT layout when the algorithm in
the Validating BTT Arenas at start-up section is executed.

Since the number of internal LBAs for an arena exceeds the number of external LBAs by NFree, there are enough
internal LBA numbers to fully initialize the BTT Map as well as the BTT Flog, where the BTT Flog is initialized with
the NFree highest internal LBA numbers, and the rest are used in the BTT Map.

The BTT Map in each arena is initialized to zeros. Zero entries in the map indicate the identity mapping of all pre-map
LBAs to the corresponding post-map LBAs. This uses all but NFree of the internal LBAs, leaving Nfree of them for
the BTT Flog.

The BTT Flog in each arena is initialized by starting with all zeros for the entire flog area, setting the Lba0 field in
each flog entry to unique pre-map LBAs, zero through NFree - 1, and both OldMap0 and NewMap0 fields in each
flog entry are set to one of the remaining internal LBAs. For example, flog entry zero would have Lba0 set to 0, and
OldMap0 and NewMap0 both set to the first internal LBA not represented in the map (since there are ExternalNLba
entries in the map, the next available internal LBA is equal to ExternalNLba).

6.3.5 Validating BTT Arenas at start-up

When software prepares to access the BTT layout in a namespace, the first step is to check the BTT Arenas for con-
sistency. Reading and validating BTT Arenas relies on the fact that all arenas shall be 512GiB in size, except the last
arena which is a minimum of 16MiB.

The following tests shall pass before software considers the BTT layout to be valid:
* For each BTT Arena:
— ReadAndVerifyPrimaryBttInfoBlock
% If the read of the primary BTT Info Block fails, goto ReadAndVerifyBackupBttInfoBlock

If the primary BTT Info Block contains an incorrect Sig field it is invalid, goto ReadAndVerifyBack-
upBttInfoBlock

% If the primary BTT Info Block ParentUuid field does not match the UUID of the surrounding names-
pace, goto ReadAndVerifyBackupBttInfoBlock

* If the primary BTT Info Block contains an incorrect Checksum it is invalid, goto ReadAnd Verify-
BackupBttInfoBlock

The primary BTT Info Block is valid. Use the NextOff field to find the start of the next arena and
continue BTT Info Block validation, goto ReadAndVerifyPrimaryBttInfoBlock

— ReadAndVerifyBackupBttInfoBlock

6.3. BTT Theory of Operation 131

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

% Determine the location of the backup BTT Info Block:

1. All of the arenas shall be the full 512GiB data area size except the last arena which is at least
16MiB.

2. The backup BTT Info Block is the last EFI_BTT_ALIGNMENT aligned block in the arena.

% If the read of the backup BTT Info Block at the high address of the BTT Arena fails, neither copy could
be read, and software shall assume that there is no valid BTT metadata layout for the namespace

If the backup BTT Info Block contains an incorrect Sig field it is invalid, and software shall assume
that there is no valid BTT metadata layout for the namespace

% If the backup BTT Info Block ParentUuid field does not match the UUID of the surrounding namespace
it is invalid, and software shall assume that there is no valid BTT metadata layout for the namespace

If the backup BTT Info Block contains an incorrect Checksum it is invalid, and software shall assume
that there is no valid BTT metadata layout for the namespace

% The backup BTT Info Block is valid. Since the primary copy is bad, software shall copy the contents
of the valid backup BTT Info Block down to the primary BTT Info Block before validation of all of
the BTT Info Blocks in all of the arenas can complete successfully.

6.3.6 Validating the Flog entries at start-up

After validating the BTT Info Blocks as described in the Validating BTT Arenas at start-up section, the next step
software shall take is to validate the BTT Flog entries. When blocks of data are being written, as described in the
Write Path section below, the persistent Flog and Map states are not updated until the free block is written with new
data. This ensures a power failure at any point during the data transfer is harmless, leaving the partially written data
in a free block that remains free. Once the Flog is updated (made atomic by the Seq bits in the Flog entry), the write
algorithm is committed to the update and a power failure from this point in the write flow onwards shall be handled
by completing the update to the BTT Map on recovery. The Flog contains all the information required to complete the
Map entry update.

Note that the Flog entry recovery outlined here is intended to happen single-threaded, on an inactive BTT (before
the BTT block namespace is allowed to accept I/O requests). The maximum amount of time required for recovery
is determined by NFree, but is only a few loads and a single store (and the corresponding cache flushes) for each
incomplete write discovered.

The following steps are executed for each flog entry in each arena, to recover any interrupted writes and to verify the
flog entries are consistent at start up. Any consistency issues found during these steps results in setting the error state
(EFI_BTT_INFO_BLOCK_FLAGS_ERROR) for the arena and terminates the flog validation process for this arena.

1. The Seq0 and Seq]1 fields are examined for the flog entry. If both fields are zero, or both fields are equal to each
other, the flog entry is inconsistent. Otherwise, the higher Seq field indicates which set of flog fields to use for
the next steps (Lba0, OldMap0, NewMap0, versus Lbal, OldMap1, NewMap1). From this point on in this
section, the chosen fields are referenced as Lba, OldMap, and NewMap.

2. If OldMap and NewMap are equal, this is a flog entry that was never used since the initial layout of the BTT was
created.

3. The Lba field is checked to ensure it is a valid pre-map LBA (in the range zero to ExternalNLba — 1). If the
check fails, the flog entry is inconsistent.

4. The BTT Map entry corresponding to the Flog entry Lba field is fetched. Since the Map can contain special
zero entries to indicate identity mappings, the fetched entry is adjusted to the corresponding internal LBA when
a zero is encountered (by interpreting the entry as the same LBA as the Flog entry Lba field).

6.3. BTT Theory of Operation 132

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

S.

If the adjusted map entry from the previous step does not match the NewMap field in the Flog entry, and it
matches the OldMap field, then an interrupted BTT Map update has been detected. The recovery step is to write
the NewMap field to the BTT Map entry indexed by the Flog entry Lba field.

6.3.7 Read Path

The following high level sequence describes the steps to read a single block of data while utilizing the BTT as is
illustrated in the Figure: BTT Read Path Overview below:

1.

If EFI_BTT_INFO_BLOCK_FLAGS_ERROR is setin the arena’s BTT Info Block, the BTT software may return
an error for the read, or an implementation may choose to continue to provide read-only access and continue these
steps.

Use the external LBA provided with the read operation to determine which BTT Arena to access. Starting from
the first arena (lowest offset in the namespace), and looping through the arena in order, the ExternalNLba field
in the BTT Info Block describes how many exernal LBAs are in that area. Once the correct arena is identified,
the external LBAs contained in the lower, skipped, arenas are subtracted from the provided LBA to obtain the
pre-map LBA for the selected arena.

Use the pre-map LBA to index into the arena’s BTT Map and the map entry.

If both the Zero and Error bits are set in the map entry, this indicates a normal entry. The PostMapLba field in
the Map entry is used to index into the arena Data Area by multiplying it by the InternalLLbaSize and adding the
result to the DataOff field from the arena’s BTT Info Block. This provides the location of the data in the arena
and software then copies ExternalLLbaSize bytes into the provided buffer to satisfy the read request.

Otherwise, if only the Error bit is set in the map entry, a read error is returned.

Otherwise, if only the Zero bit is set in the map entry, a block of ExternallLbaSize bytes of zeros is copied into
the provided buffer to satisfy the read request.

Finally, if both Zero and Error bits are clear, this the initial identity mapping and the pre-map LBA is used to
index into the arena Data Area by multiplying it by the InternalLbaSize and adding the result to the DataOff
field from the arena’s BTT Info Block. This provides the location of the data in the arena and software then
copies ExternalLLbaSize bytes into the provided buffer to satisfy the read request.

6.3.8 Write Path

The following high level sequence describes the steps to write a single block of data while utilizing the BTT as is
illustrated in the Figure: BTT Write Path Overview below:

1.

2.

If EFI_BTT_INFO_BLOCK_FLAGS_ERROR is set in the arena’s BTT Info Block, the BTT software shall
return an error for the write.

Use the external LBA provided with the write operation to determine which BTT Arena to access. Starting from
the first arena (lowest offset in the namespace), and looping through the arena in order, the ExternalNLba field
in the BTT Info Block describes how many exernal LBAs are in that area. Once the correct arena is identified,
the external LBAs contained in the lower, skipped, arenas are subtracted from the provided LBA to obtain the
pre-map LBA for the selected arena.

The BTT software allocates one of the Flog entries in the arena to be used for this write. The Flog entry shall not
be shared by multiple concurrent writes. The exact method for managing the exclusive use of the Flog entries is
BTT software implementation-dependent. There’s no on-media indication of whether a Flog entry is currently
allocated to a write request or not. Note that the free block tracked by the Flog entry in the OldMap field, may
still have reads from relatively slow threads operating on it. The BTT software implementation shall ensure any
such reads have completed before moving to the next step.

6.3. BTT Theory of Operation 133

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

namespace /0 BTT I/O
I,.l"-’ —H.\'\
Locate arena _*_ External LBA
cantain lmg LBA [READ
BTT arena = 1
data area
Fetch map entry
-
- -
.-""-'
#-F
-
- 1
- |
m----}- Fetch data at |—> block marked
I pust-ﬁap LBA | as Fero or error
-
BT arena — - -
-
-
-
-
- LBA dat
data area -—--H Check for errors -) ald
or error
' N vy

Fig. 6.4: BTT Read Path Overview

4. Lock out access to the BTT Map area associated with the pre-map LBA for the next three steps. The granularity
of the locking is implementation-dependent; an implementation may choose to lock individual Map entries, lock
the entire BTT Map, or something in-between.

5. Use the pre-map LBA to index into the arena’s BTT Map and fetch the old map entry.

6. Update the Flog entry by writing the inactive set of Flog fields (the lower Seq number). First, update the Lba,
OldMap, and NewMap fields with the pre-map LBA, old Map entry, and the free block chosen above, respectively.
Once those fields are fully persistent (with any required flushes completed), the Seq field is updated to make the
new fields active. This update of the Seq field commits the write - before this update, the write shall not take
place if the operation is interrupted. After the Seq field is updated, the write shall take place even if the operation
is interrupted because the Map update in the next step shall take place during the BTT recovery that happens on
start-up.

7. Update the Map entry with the free block chosen above.

8. Drop the map lock acquired in step 4 above. The write request is now satisfied.

6.3. BTT Theory of Operation 134

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

namespace 1/0

info
flog
map
BTT arena =
—
BTT arena ™

BTTI/O

Locate arena

(_ External LBA
READ

containing LBA
1

v

Fetch map entry

4

-
-
-

Fetch data at
post-map LBA

_> block marked
as zero or error

"
-
-
.-
Check for errors m=)» LBAdata
;/ or error

Fig. 6.5: BTT Write Path Overview

6.3. BTT Theory of Operation

135

CHAPTER
SEVEN

SERVICES — BOOT SERVICES

This section discusses the fundamental boot services that are present in a UEFI compliant system. The services are
defined by interface functions that may be used by code running in the UEFI environment. Such code may include
protocols that manage device access or extend platform capability, as well as applications running in the preboot envi-
ronment, and OS loaders.

Two types of services apply in an compliant system:
Boot Services

Functions that are available before a successful call to EFI_BOOT_SERVICES.ExitBootServices(). These functions are
described in this section.

Runtime Services

Functions that are available before and after any call to ExitBootServices(). These functions are described in Services
— Runtime Services .

During boot, system resources are owned by the firmware and are controlled through boot services interface functions.
These functions can be characterized as “global” or “handle-based.” The term “global” simply means that a function
accesses system services and is available on all platforms (since all platforms support all system services). The term
“handle-based” means that the function accesses a specific device or device functionality and may not be available on
some platforms (since some devices are not available on some platforms). Protocols are created dynamically. This
section discusses the “global” functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access devices and allocate memory.
On entry, an Image is provided a pointer to a system table which contains the Boot Services dispatch table and the default
handles for accessing the console. All boot services functionality is available until a UEFI OS loader loads enough of
its own environment to take control of the system’s continued operation and then terminates boot services with a call
to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to indicate that its loader is ready
to assume control of the platform and all platform resource management. Thus boot services are available up to this
point to assist the UEFI OS loader in preparing to boot the operating system. Once the UEFI OS loader takes control
of the system and completes the operating system boot process, only runtime services may be called. Code other than
the UEFI OS loader, however, may or may not choose to call ExitBootServices(). This choice may in part depend upon
whether or not such code is designed to make continued use of boot services or the boot services environment.

The rest of this section discusses individual functions. Global boot services functions fall into these categories:
 Event, Timer, and Task Priority Services Event, Timer, and Task Priority Services
* Memory Allocation Services Memory Allocation Services
* Protocol Handler Services Protocol Handler Services

* Image Services Image Services

136

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.1 Event, Timer, and Task Priority Services

The functions that make up the Event, Timer, and Task Priority Services are used during preboot to create, close, signal,
and wait for events; to set timers; and to raise and restore task priority levels. See the following table for details.

Table 7.1: Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure
CreateEventEx Boot Creates an event structure as part of an event group
CloseEvent Boot Closes and frees an event structure

SignalEvent Boot Signals an event

WaitForEvent Boot Stops execution until an event is signaled
CheckEvent Boot Checks whether an event is in the signaled state
SetTimer Boot Sets an event to be signaled at a particular time
RaiseTPL Boot Raises the task priority level

RestoreTPL Boot Restores/lowers the task priority level

Execution in the boot services environment occurs at different task priority levels, or TPLs. The boot services envi-
ronment exposes only three of these levels to UEFI applications and drivers (see table below: TPL Usage)

e TPL_APPLICATION — the lowest priority level
e TPL_CALLBACK — an intermediate priority level{
e TPL_NOTIFY — the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority level. For example, tasks
that run at the TPL_NOTIFY level may interrupt tasks that run at the TPL_APPLICATION or TPL_CALLBACK level.
While TPL_NOTIFY is the highest level exposed to the boot services applications, the firmware may have higher task
priority items it deals with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL_HIGH_LEVEL {link needed}, designed for use exclusively
by the firmware.

The intended usage of the priority levels is shown in the TPL Usage table below, from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the duration of the code
and the amount of blocking allowed decrease. Execution generally occurs at the TPL_APPLICATION level. Execu-
tion occurs at other levels as a direct result of the triggering of an event notification function(this is typically caused
by the signaling of an event). During timer interrupts, firmware signals timer events when an event’s “trigger time”
has expired. This allows event notification functions to interrupt lower priority code to check devices (for example).
The notification function can signal other events as required. After all pending event notification functions execute,

execution continues at the TPL_APPLICATION level.

Table 7.2: TPL Usage

Task Priority Level Usage

TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when no event
notifications are pending and which interacts with the user. User I/O (and blocking on
User 1/0) can be performed at this level. The boot manager executes at this level and
passes control to other UEFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level. Long term operations (such
as file system operations and disk I/O) can occur at this level.

continues on next page

7.1. Event, Timer, and Task Priority Services 137

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.2 — continued from previous page

TPL_NOTIFY

(Firmware Interrupts)

TPL_HIGH_LEVEL

Interrupts code executing below TPL_NOTIFY level. Blocking is not allowed at this
level. Code executes to completion and returns. If code requires more processing, it
needs to signal an event to wait to obtain control again at whatever level it requires.
This level is typically used to process low level IO to or from a device.

This level is internal to the firmware. It is the level at which internal interrupts occur.
Code running at this level interrupts code running at the TPL_NOTIFY level (or lower
levels). If the interrupt requires extended time to complete, firmware signals another
event (or events) to perform the longer term operations so that other interrupts can
occur.

Interrupts code executing below TPL_HIGH_LEVEL This is the highest priority level.
It is not interruptible (interrupts are disabled) and is used sparingly by firmware to
synchronize operations that need to be accessible from any priority level. For example,
it must be possible to signal events while executing at any priority level. Therefore,
firmware manipulates the internal event structure while at this priority level.

Executing code can temporarily raise its priority level by calling the EFI_BOOT_SERVICES.RaiseTPL() func-

tion.

Doing this masks event notifications from code running at equal or lower priority levels until the

EFI_BOOT_SERVICES.RestoreTPL() function is called to reduce the priority to a level below that of the pending event
notifications. There are restrictions on the TPL levels at which many UEFI service functions and protocol interface
functions can execute. 7PL Restrictions summarizes the restrictions.

Table 7.3: TPL Restrictions

Name Restrictions Task Priority

ACPI Table Protocol < TPL_NOTIFY

ARP <= TPL_CALLBACK
ARP Service Binding <= TPL_CALLBACK
Authentication Info <= TPL_NOTIFY
Block I/O Protocol <= TPL_CALLBACK
Block 1/0 2 Protocol <= TPL_CALLBACK
Bluetooth Host <= TPL_CALLBACK
Bluetooth Host Controller <= TPL_CALLBACK
Bluetooth IO Service Binding <= TPL_CALLBACK
Bluetooth 10 <= TPL_CALLBACK
Bluetooth Attribute <= TPL_CALLBACK
Bluetooth Configuration <= TPL_CALLBACK
BluetoorhLE Configuration <= TPL_CALLBACK
CheckEvent() < TPL_HIGH_LEVEL
CloseEvent() < TPL_HIGH_LEVEL
CreateEvent() < TPL_HIGH_LEVEL
Deferred Image Load Protocol <= TPL_NOTIFY
Device Path Utilities <= TPL_NOTIFY
Device Path From Text <= TPL_NOTIFY
DHCP4 Service Binding <= TPL_CALLBACK
DHCP4 <= TPL_CALLBACK
DHCP6 <= TPL_CALLBACK
DHCP6 Service Binding <= TPL_CALLBACK
Disk I/O Protocol <= TPL_CALLBACK
Disk 1/0 2 Protocol <= TPL_CALLBACK
DNS4 Service Binding <= TPL_CALLBACK
DNS4 <= TPL_CALLBACK
DNS6 Service Binding <= TPL_CALLBACK

continues on next page

7.1. Event, Timer, and Task Priority Services 138

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.3 — continued from previous page

DNS6

Driver Health

EAP

EAP Configuration

EAP Management

EAP Management2

EDID Active

EDID Discovered
EFI_SIMPLE_TEXT_INPUT_PROTOCOL

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset
EFI_SIMPLE_TEXT_INPUT_EX PROTOCOL

EFI_SIMPLE_TEXT_INPUT_EX_ PROTOCOL.ReadKeyStrokeEx
EFI_SIMPLE_TEXT_INPUT_EX_ PROTOCOL.Reset

Event Notification Levels
Event Notification Levels
Exit()

ExitBootServices()

Form Browser2 Protocol/SendForm
FTP

Graphics Output EDID Override
HII Protocols

HTTP Service Binding
HTTP

HTTP Utilities

IP4 Service Binding

P4

IP4 Config

IP4 Config2

IP6

IP6 Config

IPSec Configuration

iSCSI Initiator Name
LoadImage()

Managed Network Service Binding
Memory Allocation Services
MTFTP4 Service Binding
MTFTP4

MTFTP6

MTFTP6 Service Binding
PXE Base Code Protocol
Protocol Handler Services
REST

Serial I/O Protocol
SetTimer()

SignalEvent()

Simple File System Protocol
Simple Network Protocol
Simple Text Output Protocol
Stall()

TPL_CALLBACK

TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_NOTIFY
TPL_CALLBACK
TPL_APPLICATION
TPL_APPLICATION
TPL_CALLBACK
TPL_APPLICATION
TPL_APPLICATION
TPL_APPLICATION
TPL_HIGH_LEVEL
TPL_CALLBACK
TPL_APPLICATION
TPL_APPLICATION
TPL_CALLBACK
TPL_NOTIFY
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_HIGH_LEVEL
TPL_HIGH_LEVEL
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_HIGH_LEVEL

continues on next page

7.1. Event, Timer, and Task Priority Services

139

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.3 — continued from previous page

StartImage()
Supplicant

Tape 10

TCP4 Service Binding
TCP4

TCP6

TCP6 Service Binding
Time Services

TLS Service Binding
TLS

TLS Configuration
UDP4 Service Binding
UDP4

UDP6

UDP6 Service Binding
UnloadImage()

User Manager Protocol

User Manager Protocol/Identify()
User Credential Protocol

User Info Protocol
Variable Services
VLAN Configuration
WaitForEvent()

Wireless MAC Connection

Other protocols and services, if not listed above

TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_APPLICATION
TPL_NOTIFY
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_APPLICATION
TPL_CALLBACK
TPL_NOTIFY

7.1.1 EFI_BOOT_SERVICES.CreateEvent()

Summary
Creates an event.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_CREATE_EVENT) (

IN UINT32
IN EFI_TPL

IN EFI_EVENT_NOTIFY

IN VOID
OUT EFI_EVENT
DE

Type,

NotifyTpl,
NotifyFunction, OPTIONAL
“NotifyContext, OPTIONAL
*Event

Parameters

Type

The type of event to create and its mode and attributes. The #define statements in “Related Definitions” can be

used to specify an event’s mode and attributes.

NotifyTpl

The task priority level of event notifications, if needed. See EFI_BOOT_SERVICES.RaiseTPL() .

7.1. Event, Timer, and Task Priority Services

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

NotifyFunction
Pointer to the event’s notification function, if any. See “Related Definitions.”

NotifyContext
Pointer to the notification function’s context; corresponds to parameter Context in the notification function.

Event
Pointer to the newly created event if the call succeeds; undefined otherwise.

Related Definitions

//:’: k]
// EFI_EVENT

/ / FTeddeden e T dedee Y%
typedef VOID *EFI_EVENT

/7 % g e e e e e g e e e d e S e e d e e e e de e g e S e e e de e s e e
// Event Types

// B S R R S SR R O L TRk PR R e S W
// These types can be "ORed" together as needed - for example,
// EVT_TIMER might be "Ored" with EVT_NOTIFY_WAIT or

// EVT_NOTIFY_SIGNAL.

#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000
#define EVI_NOTIFY_WAIT 0x00000100
#define EVI_NOTIFY_SIGNAL 0x00000200
#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201

#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER
The event is a timer event and may be passed to EFI_BOOT_SERVICES.SetTimer(). Note that timers only func-
tion during boot services time.

EVT_RUNTIME
The event is allocated from runtime memory. If an event is to be signaled after the call to
EFI_BOOT_SERVICES.ExitBootServices() the event’s data structure and notification function need to be al-
located from runtime memory. For more information, see SerVirtualAddressMap() .

EVT_NOTIFY_WAIT
If an event of this type is not already in the signaled state, then the event’s NotificationFunction will be queued
at the event’s NotifyTpl whenever the event is being waited on via EFI_BOOT_SERVICES. WaitForEvent() or
EFI_BOOT_SERVICES.CheckEvent() .

EVT_NOTIFY_SIGNAL
The event’s NotifyFunction is queued whenever the event is signaled.

EVT_SIGNAL_EXIT BOOT_SERVICES
This event is of type EVT_NOTIFY_SIGNAL. It should not be combined with any other event
types. This event type is functionally equivalent to the EFI_EVENT_GROUP_EXIT_BOOT_SERVICES
event group. Refer to EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group description in
EFI_BOOT_SERVICES. CreateEventEx() section below for additional details.

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when SetVirtualAddressMap() is performed. This event type is a
composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME, and EVT_RUNTIME_CONTEXT and should not be
combined with any other event types.

7.1. Event, Timer, and Task Priority Services 141

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

[¥ s s s e sl i de s de s de sl desi dei de ol it o deot ol i dok dot oo e
// EFI_EVENT_NOTIFY
[s s e s de e de e s de s de s de e dede s de s de s de e e de s de el et et gl et e de i\
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (
IN EFI_EVENT Event,
IN VOID *Context
)3
Event
Event whose notification function is being invoked.
Context
Pointer to the notification function’s context, which is implementation-dependent. Context corresponds to Noti-
fyContext in EFI_BOOT_SERVICES.CreateEventEx() .
Description

The CreateEvent() function creates a new event of type Type and returns it in the location referenced by Event. The
event’s notification function, context, and task priority level are specified by NotifyFunction, NotifyContext, and Noti-
P Tpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts it in the “waiting”
state. When the event is signaled, firmware changes its state to “signaled” and, if EVT_NOTIFY_SIGNAL is specified,
places a call to its notification function in a FIFO queue. There is a queue for each of the “basic” task priority levels
defined in Event, Timer, and Task Priority Services (TPL_CALLBACK, and TPL_NOTIFY). The functions in these
queues are invoked in FIFO order, starting with the highest priority level queue and proceeding to the lowest priority
queue that is unmasked by the current TPL. If the current TPL is equal to or greater than the queued notification, it will
wait until the TPL is lowered via EFI_BOOT_SERVICES.RestoreTPL() .

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous events are closely
related to timers and are used to support periodic or timed interruption of program execution. This capability is typically
used with device drivers. For example, a network device driver that needs to poll for the presence of new packets could
create an event whose type includes EVT_TIMER and then call the EFI_BOOT _SERVICES.SetTimer() function. When
the timer expires, the firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that certain activities occur
following a call to a specific interface function. One example of this is the cleanup that needs to be performed in response
toacall tothe EFI_BOOT _SERVICES.ExitBootServices() function. ExitBootServices() can clean up the firmware since
it understands firmware internals, but it cannot clean up on behalf of drivers that have been loaded into the system.
The drivers have to do that themselves by creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES
and whose notification function is a function within the driver itself. Then, when ExitBootServices() has finished its
cleanup, it signals each event of type EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the wuse of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the SetVirtualAddressMap() .

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is specified, the caller
does not require any notification concerning the event and the NotifyTpl, NotifyFunction, and NotifyContext pa-
rameters are ignored. If EVT_NOTIFY_WAIT is specified and the event is not in the signaled state, then the
EVT_NOTIFY_WAIT notify function is queued whenever a consumer of the event is waiting for the event (via
EFI_BOOT_SERVICES.WaitForEvent() or EFI_BOOT_SERVICES.CheckEvent()). If the EVT_NOTIFY_SIGNAL
flag is specified then the event’s notify function is queued whenever the event is signaled.

NOTE: Because its internal structure is unknown to the caller, Event cannot be modified by the caller. The only way
to manipulate it is to use the published event interfaces.

7.1. Event, Timer, and Task Priority Services 142

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Status Codes Returned

EFI_SUCCESS The event structure was created.

EFI INVALID PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
- NotifyFunction is NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
NotifyTpl is not a supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.

7.1.2 EFI_BOOT_SERVICES.CreateEventEx()

Summary

Creates an event in a group.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREATE_EVENT_EX) (
IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction OPTIONAL,
IN CONST VOID *NotifyContext OPTIONAL,
IN CONST EFI_GUID *“EventGroup OPTIONAL,
OUT EFI_EVENT *Event
);
Parameters
Type
The type of event to create and its mode and attributes.
NotifyTpl

The task priority level of event notifications, if needed. See EFI_BOOT_SERVICES.RaiseTPL() .

NotifyFunction
Pointer to the event’s notification function, if any.

NotifyContext
Pointer to the notification function’s context; corresponds to parameter Context in the notification function.

EventGroup
Pointer to the unique identifier of the group to which this event belongs. If this is NULL, then the function
behaves as if the parameters were passed to CreateEvent.

Event
Pointer to the newly created event if the call succeeds; undefined otherwise.

Description

7.1. Event, Timer, and Task Priority Services 143

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The CreateEventEx function creates a new event of type Type and returns it in the specified location indicated by
Event. The event’s notification function, context and task priority are specified by NotifyFunction, NotifyContext, and
NotifyTpl, respectively. The event will be added to the group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same parameters had been passed to
CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one member event is signaled,
all other events are signaled and their individual notification actions are taken (as described in CreateEvent). All events
are guaranteed to be signaled before the first notification action is taken. All notification functions will be executed in
the order specified by their NotifyTpl.

A single event can only be part of a single event group. An event may be removed from an event group by using
CloseEvent.

The Type of an event wuses the same values as defined in CreateEvent except that
EVT_SIGNAL_EXIT _BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE are not valid.

If Type has EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT, then NotifyFunction must be non-NULL and NotifyTpl
must be a valid task priority level. Otherwise these parameters are ignored.

More than one event of type EVT_TIMER may be part of a single event group. However, there is no mechanism for
determining which of the timers was signaled.

Configuration Table Groups

The GUID for a configuration table also defines a corresponding event group GUID with the same value. If the data
represented by a configuration table is changed, InstallConfigurationTable() should be called. When InstallConfigu-
rationTable() is called, the corresponding event is signaled. When this event is signaled, any components that cache
information from the configuration table can optionally update their cached state.

For example, EFI_ACPI_TABLE_GUID defines a configuration table for ACPI data. When ACPI data is changed,
InstallConfigurationTable() is called. During the execution of InstallConfigurationTable(), a corresponding event group
with EFI_ACPI_TABLE_GUID is signaled, allowing an application to invalidate any cached ACPI data.

Pre-Defined Event Groups
This section describes the pre-defined event groups used by the UEFI specification.
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES

This event group is notified by the system when ExitBootServices() is invoked after notifying
EFI_EVENT_GROUP_BEFORE_EXIT_BOOT_SERVICES event group. This event group is functionally equivalent
to the EVT_SIGNAL_EXIT_BOOT_SERVICES flag for the Type argument of CreateEvent. The notification function
for this event must comply with the following requirements:

* The notification function is not allowed to use the Memory Allocation Services, or call any functions that use
the Memory Allocation Services, because these services modify the current memory map.

Note: Since consumer of the service does not necessarily knows if the service uses memory allocation services, this
requirement is effectively a mandate to reduce usage of any external services (services implemented outside of the
driver owning the notification function) to an absolute minimum required to perform an orderly transition to a runtime
environment. Usage of the external services may yield unexpected results. Since UEFI specification does not guarantee
any given order of notification function invocation, a notification function consuming the service may be invoked before
or after the notification function of the driver providing the service. As a result, a service being called by the notification
function may exhibit boot time behavior or a runtime behavior (which is undefined for a pure boot services).

» The notification function must not depend on timer events since timer services will be deactivated before any
notification functions are called.

Refer to EFI_BOOT_SERVICES .ExitBootServices() below for additional details.
EFI_EVENT_GROUP_BEFORE_EXIT BOOT_SERVICES

7.1. Event, Timer, and Task Priority Services 144

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

This event group is notified by the system ExitBootServices() is invoked right before notifying
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group. The event presents the last opportunity to use
firmware interfaces in the boot environment.

The notification function for this event must not depend on any kind of delayed processing (processing that happens in
a timer callback beyond the time span of the notification function) because system firmware deactivates timer services
right after dispatching handlers for this event group.

Refer to EFI_BOOT_SERVICES .ExitBootServices() below for additional details.
EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE

This event group is notified by the system when SetVirtualAddressMap() is invoked. This is functionally equivalent to
the VT_SIGNAL_VIRTUAL_ADDRESS_CHANGE flag for the Type argument of CreateEvent.

EFI_EVENT_GROUP_MEMORY_MAP_CHANGE

This event group is notified by the system when the memory map has changed. The notification function for this event
should not use Memory Allocation Services to avoid reentrancy complications.

EFI_EVENT_GROUP_READY_TO_BOOT

This event group is notified by the system right before notifying EFI_EVENT_GROUP_AFTER_READY_TO_BOOT
event group when the Boot Manager is about to load and execute a boot option or a platform or OS recovery option.
The event group presents the last chance to modify device or system configuration prior to passing control to a boot
option.

EFI_EVENT_GROUP_AFTER_READY_TO_BOOT

This event group is notified by the system immediately after notifying EFI_ EVENT_GROUP_READY_TO_BOOT
event group when the Boot Manager is about to load and execute a boot option or a platform or OS recovery option.
The event group presents the last chance to survey device or system configuration prior to passing control to a boot
option.

EFI_EVENT_GROUP_RESET_SYSTEM

This event group is notified by the system when ResetSystem() is invoked and the system is about to be reset. The event
group is only notified prior to ExitBootServices() invocation.

Related Definitions
EFI_EVENT is defined in CreateEvent.

EVT _SIGNAL_EXIT BOOT_SERVICE and EVT_SIGNAL_VIRTUAL _ADDRESS CHANGE are defined in Cre-
ateEvent.

#define EFI_EVENT_GROUP_EXIT_BOOT_SERVICES \
{0x27ab£f055, O0xb1b8, 0x4c26, 0x80, 0x48, 0x74, 0x8f, 0x37,\
Oxba, Oxa2, Oxdf}}

#define EFI_EVENT_GROUP_BEFORE_EXIT_BOOT_SERVICES \
{ 0x8bele274, 0x3970, 0x4b44, { 0x80, Oxc5, Oxla, O0xb9, Ox50, 0x2f, 0x3b, Oxfc } }

#define EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE \
{0x13fa7698, 0xc831, 0x49c7, 0x87, Oxea, Ox8f, 0x43, Oxfc,\
Oxc2, 0x51, 0x96}

#define EFI_EVENT_GROUP_MEMORY_MAP_CHANGE \
{0x78bee926, 0x692f, 0x48fd, 0x9%e, Oxdb, 0x1, 0x42, Ox2e, \
0xf0, O0xd7, Oxab}

(continues on next page)

7.1. Event, Timer, and Task Priority Services 145

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

#define EFI_EVENT_GROUP_READY_TO_BOOT \
{0x7ce88fb3, 0x4bd7, 0x4679, 0x87, 0xa8, 0xa8, 0xd8, Oxde,\
0xe5,0xd, O0x2b}

define EFI_EVENT_GROUP_AFTER_READY_TO_BOOT \
{ 0x3a2a00ad, 0x98b9, Ox4cdf, { Oxad, 0x78, 0x70, 0x27, Ox77,
Oxfl, Oxcl, Oxb } }

#define EFI_EVENT_GROUP_RESET_SYSTEM \
{ 0x62da6a56, Ox13fb, 0x485a, { 0xa8, Oxda, Oxa3, Oxdd, 0x79, 0x12, Oxcb, 0x6b
T}

Status Codes Returned

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
NotifyFunction is NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT set and
NotifyTpl is not a supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.

7.1.3 EFI_BOOT_SERVICES.CloseEvent()

Summary
Closes an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CLOSE_EVENT) (
IN EFI_EVENT Event

);

Parameters

Event
The event to close. Type EFI_EVENT is defined in the CreateEvent() function description.

Description

The CloseEvent() function removes the caller’s reference to the event, removes it from any event group to which it
belongs, and closes it. Once the event is closed, the event is no longer valid and may not be used on any subsequent
function calls. If Event was registered with RegisterProtocolNotify() then CloseEvent() will remove the corresponding
registration. It is safe to call CloseEvent() within the corresponding notify function.

Status Codes Returned

7.1. Event, Timer, and Task Priority Services 146

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS The event has been closed.

7.1.4 EFI_BOOT_SERVICES.SignalEvent()

Summary
Signals an event.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SIGNAL_EVENT) (
IN EFI_EVENT Event
)H

Parameters

Event
The event to signal. Type EFI_EVENT is defined in the EFI_BOOT _SERVICES.CheckEvent() function descrip-
tion.

Description

The supplied Event is placed in the signaled state. If Event is already in the signaled state, then EFI_SUCCESS is
returned. If Event is of type EVT_NOTIFY_SIGNAL, then the event’s notification function is scheduled to be invoked
at the event’s notification task priority level. SignalEvent() may be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group are also signaled and their
notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and then close the event to remove
it from the group. For example:

EFI_EVENT Event;
EFI_GUID gMyEventGroupGuid = EFI_MY_EVENT_GROUP_GUID;
gBS->CreateEventEx (

0,

0,

NULL,

NULL,

&gMyEventGroupGuid,

&Event

DN

gBS->SignalEvent (Event);
gBS->CloseEvent (Event);

Status Codes Returned

EFI_SUCCESS The event was signaled.

7.1. Event, Timer, and Task Priority Services 147

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.1.5 EFI_BOOT_SERVICES.WaitForEvent()

Summary
Stops execution until an event is signaled.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_WAIT_FOR_EVENT) (
IN UINTN NumberOfEvents,
IN EFI_EVENT “Event,
OUT UINTN *Index
s

Parameters

NumberOfEvents
The number of events in the Event array.

Event
An array of EFI_EVENT. Type EFI_EVENT is defined in UEFI Forum, Inc. March 2021 148
EFI_BOOT_SERVICES.CreateEvent() function description.

Index
Pointer to the index of the event which satisfied the wait condition.

Description

This function must be called at priority level TPL_APPLICATION. If an attempt is made to call it at any other priority
level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this evaluation is repeated until an event
is signaled or an error is detected. The following checks are performed on each event in the Event array.

* If an event is of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned and Index indi-
cates the event that caused the failure.

 Ifan eventis in the signaled state, the signaled state is cleared and EFI_SUCCESS is returned, and Index indicates
the event that was signaled.

« If an event is not in the signaled state but does have a notification function, the notification function is queued at
the event’s notification task priority level. If the execution of the event’s notification function causes the event
to be signaled, then the signaled state is cleared, EFI_SUCCESS is returned, and Index indicates the event that
was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as the last event in the list being
checked, or the CheckEvent() interface may be used.

Status Codes Returned

EFI_SUCCESS The event indicated by Index was signaled.
EFI_INVALID_PARAMETER NumberOfEvents is 0.

EFI_INVALID_PARAMETER The event indicated by Index is of type EVT_NOTIFY_SIGNAL.
EFI_UNSUPPORTED The current TPL is not TPL._APPLICATION.

7.1. Event, Timer, and Task Priority Services 148

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.1.6 EFI_BOOT_SERVICES.CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CHECK_EVENT) (

IN EFI_EVENT Event

)3

Parameters

Event
The event to check. Type EFI_EVENT is defined in the CreateEvent() function description.

Description

The CheckEvent() function checks to see whether Event is in the signaled state. If Event is of type
EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. Otherwise, there are three possibilities:

* If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.
* If Event is not in the signaled state and has no notification function, EFI_NOT_READY is returned.

 If Event is not in the signaled state but does have a notification function, the notification function is queued
at the event’s notification task priority level. If the execution of the notification function causes Event to be
signaled, then the signaled state is cleared and EFI_SUCCESS is returned; if the Event is not signaled, then
EFI_NOT_READY is returned.

Status Codes Returned

EFI_SUCCESS The event is in the signaled state.
EFI_NOT_READY The event is not in the signaled state.
EFI_INVALID_PARAMETER Event is of type EVT_NOTIFY_SIGNAL.

7.1.7 EFI_BOOT_SERVICES.SetTimer()

Summary
Sets the type of timer and the trigger time for a timer event.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SET_TIMER) (
IN EFI_EVENT Event,
IN EFI_TIMER_DELAY Type,
IN UINT64 TriggerTime
s

Parameters

7.1. Event, Timer, and Task Priority Services 149

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Event
The timer event that is to be signaled at the specified time. Type EFI_EVENT is defined in the CreateEvent()
function description.

Type
The type of time that is specified in TriggerTime. See the timer delay types in “Related Definitions.”

TriggerTime
The number of 100ns units until the timer expires. A TriggerTime of O is legal. If Type is TimerRelative and
TriggerTime is 0, then the timer event will be signaled on the next timer tick. If Type is TimerPeriodic and
TriggerTime is 0O, then the timer event will be signaled on every timer tick.

Related Definitions

/% e e e g e s e e e e e e e e e de e S de e s e e s e e e e de e e g de e s de e s de e de e
//EFI_TIMER_DELAY
/% % e e e e e e e e e e e S e e e e e e de e g e s e de e de e s e e
typedef enum {

TimerCancel,

TimerPeriodic,

TimerRelative
} EFI_TIMER_DELAY;

TimerCancel
The event’s timer setting is to be cancelled and no timer trigger is to be set. TriggerTime is ignored when canceling
a timer.

TimerPeriodic
The event is to be signaled periodically at TriggerTime intervals from the current time. This is the only timer
trigger Type for which the event timer does not need to be reset for each notification. All other timer trigger types
are “one shot.”

TimerRelative
The event is to be signaled in TriggerTime 100ns units.

Description

The SetTimer() function cancels any previous time trigger setting for the event, and sets the new trigger time for the
event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned

EFI_SUCCESS The event has been set to be signaled at the requested time.
EFI_INVALID_PARAMETER Event or Type is not valid.

7.1.8 EFI_BOOT_SERVICES.RaiseTPL()

Summary
Raises a task’s priority level and returns its previous level.

Prototype

typedef
EFI_TPL
(EFIAPI “EFI_RAISE_TPL) (

(continues on next page)

7.1. Event, Timer, and Task Priority Services 150

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)
IN EFI_TPL NewTpl
)3

Parameters

NewTpl
The new task priority level. It must be greater than or equal to the current task priority level. See “Related
Definitions.”

Related Definitions

//**
// EFI_TPL

//**
typedef UINTN EFI_TPL

//**
// Task Priority Levels
//**
#define TPL_APPLICATION 4

#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31
Description

This function raises the priority of the currently executing task and returns its previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services execution. The first is
TPL_APPLICATION where all normal execution occurs. That level may be interrupted to perform various asyn-
chronous interrupt style notifications, which occur at the TPL_CALLBACK or TPL_NOTIFY level. By raising the
task priority level to TPL_NOTIFY such notifications are masked until the task priority level is restored, thereby
synchronizing execution with such notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY .
TPL_CALLBACK is the typically used for application level notification functions. Device drivers will typically
use TPL_CALLBACK or TPL_NOTIFY for their notification functions. Applications and drivers may also use
TPL_NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with EFI_BOOT _SERVICES.RestoreTPL() to the previous level before
returning.

NOTE: If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally, only
TPL_APPLICATION, TPL_CALLBACK, ‘TPL _NOTIFY <Services%20Boot%20Services.htm#TPL_NOTIFY>"__,
and TPL_HIGH_LEVEL may be used. All other values are reserved for use by the firmware; using them will result in un-
predictable behavior. Good coding practice dictates that all code should execute at its lowest possible TPL level, and the
use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL levels above TPL_APPLICATION
for extended periods of time may also result in unpredictable behavior.

Status Codes Returned

Unlike other UEFI interface functions, EFI_BOOT _SERVICES.RaiseTPL() does not return a status code. Instead, it
returns the previous task priority level, which is to be restored later with a matching call to RestoreTPLJ().

7.1. Event, Timer, and Task Priority Services 151

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.1.9 EFI_BOOT_SERVICES.RestoreTPL()

Summary
Restores a task’s priority level to its previous value.

Prototype

typedef

VOID

(EFIAPI *EFI_RESTORE_TPL) (
IN EFI_TPL 01dTpl

)

Parameters

OldTpl
The previous task priority level to restore (the value from a previous, matching call to
EFI_BOOT_SERVICES.RaiseTPL() . Type EFI_TPL is defined in the RaiseTPL() function description.

Description

The RestoreTPL() function restores a task’s priority level to its previous value. Calls to RestoreTPL() are matched with
calls to RaiseTPL().

NOTE: If OldTpl is above the current TPL level, then the system behavior is indeterminate. Additionally, only
TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL*may be used*. All other values
are reserved for use by the firmware; using them will result in unpredictable behavior. Good coding practice dictates
that all code should execute at its lowest possible TPL level, and the use of TPL levels above TPL_APPLICATION
must be minimized. Executing at TPL levels above TPL_APPLICATION for extended periods of time may also result
in unpredictable behavior.

Status Codes Returned

None.

7.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to allocate and free memory, and to
obtain the system’s memory map, below, Memory Allocation Functions .

Table 7.8: Memory Allocation Functions

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and
memory map key.

AllocatePool Boot Allocates a pool of a particular type

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of UEFI memory design. This fea-
ture, which stipulates that EFI firmware owns the system’s memory map during preboot, has three major consequences:

* During preboot, all components (including executing EFI images) must cooperate with the firmware by al-
locating and freeing memory from the system with the functions EFI_BOOT_SERVICES.AllocatePages()
s EFI_BOOT_SERVICES.AllocatePool() s EFI_BOOT_SERVICES.FreePages() s and

7.2. Memory Allocation Services 152

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_BOOT_SERVICES.FreePool() . The firmware dynamically maintains the memory map as these functions
are called.

* During preboot, an executing EFI Image must only use the memory it has allocated.

* Before an executing EFI image exits and returns control to the firmware, it must free all resources it has explicitly
allocated. This includes all memory pages, pool allocations, open file handles, etc. Memory allocated by the
firmware to load an image is freed by the firmware when the image is unloaded.

This specification describes numerous memory buffers that are allocated by a service, where it is the caller’s respon-
sibility to free the allocated memory. Unless stated otherwise in this specification, it is assumed that such memory
buffers are allocated with AllocatePool() and freed with FreePool().

When memory is allocated, it is “typed” according to the values in EFI_MEMORY _TYPE (see the de-
scription for EFI_BOOT_SERVICES.AllocatePages() . Some of the types have a different usage before
EFI_BOOT_SERVICES.ExitBootServices() is called than they do afterwards. See Table, below, Memory Type Usage
before ExitBootServices() lists each type and its usage before the call; See Table Memory Type Usage after ExitBoot-
Services() lists each type and its usage after the call. The system firmware must follow the processor-specific rules
outlined in IA-32 Platforms and x64 Platforms in the layout of the EFI memory map to enable the OS to make the
required virtual mappings.

Table 7.9: Memory Type Usage before ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not usable.

EfiLoaderCode The code portions of a loaded UEFI application.

EfiLoaderData The data portions of a loaded UEFI application and the default data alloca-
tion type used by a UEFI application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded UEFI Boot Service Driver.

EfiBootServicesData The data portions of a loaded UEFI Boot Serve Driver, and the default data
allocation type used by a UEFI Boot Service Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded UEFI Runtime Driver.

EfiRuntimeServicesData The data portions of a loaded UEFI Runtime Driver and the default data
allocation type used by a UEFI Runtime Driver to allocate pool memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region be
mapped by the OS to a virtual address so it can be accessed by EFI runtime
services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory cycles
to IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the processor.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory. However, it
happens to also support byte-addressable non-volatility.

EfiUnacceptedMemoryType A memory region that represents unaccepted memory, that must be accepted

by the boot target before it can be used. Unless otherwise noted, all other EFI
memory types are accepted. For platforms that support unaccepted memory,
all unaccepted valid memory will be reported as unaccepted in the mem-
ory map. Unreported physical address ranges must be treated as not-present
memory.

Note: There is only one region of type EfiMemoryMappedloPortSpace defined in the architecture for Itanium-based
platforms. As a result, there should be one and only one region of type EfiMemoryMappedloPortSpace in the EFI
memory map of an Itanium-based platform.

7.2. Memory Allocation Services 153

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.10: Memory Type Usage after ExitBootServices()

Mnemonic Description
EfiReservedMemoryType Not usable.
EfiLoaderCode The UEFI OS Loader and/or OS may use this memory as they see fit. Note:

the UEFI OS loader that called EFI_BOOT_SERVICES.ExitBootServices()
is utilizing one or more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the OS
loader that called ExitBootServices() is utilizing one or more EfiLoaderData
ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the UEFI OS loader and OS
in the working and ACPI S1-S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the UEFI OS 1 loader and
OS in the working and ACPI S1-S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the UEFI OS loader and OS until ACPI

is enabled. Once ACPI is enabled, the memory in this range is available for
general use.

EfiACPIMemoryNVS This memory is to be preserved by the UEFI OS loader and OS in the working
and ACPI S1-S3 states.
EfiMemoryMappedlO This memory is not used by the OS. All system memory-mapped IO infor-

mation should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped 1O port
space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the UEFI OS loader and OS in the working
and ACPI S1-S4 states. This memory may also have other attributes that are
defined by the processor implementation.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory. However, it
happens to also support byte-addressable non-volatility.
EfiUnacceptedMemoryType A memory region that represents unaccepted memory, that must be accepted

by the boot target before it can be used. Unless otherwise noted, all other EFI
memory types are accepted. For platforms that support unaccepted memory,
all unaccepted valid memory will be reported as unaccepted in the mem-
ory map. Unreported physical address ranges must be treated as not-present
memory.

NOTE: An image that calls ExitBootServices() (i.e., a UEFI OS Loader) first calls
EFI_BOOT_SERVICES.GetMemoryMap() to obtain the current memory map. Following the ExitBootServices() call,
the image implicitly owns all unused memory in the map. This includes memory types EfiLoaderCode, EfiLoaderData,
EfiBootServicesCode, EfiBootServicesData, and EfiConventionalMemory. A UEFI OS Loader and OS must preserve
the memory marked as EfiRuntimeServicesCode and EfiRuntimeServicesData.

7.2. Memory Allocation Services 154

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.2.1 EFI_BOOT_SERVICES.AllocatePages()

Summary
Allocates memory pages from the system.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_PAGES) (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS *Memory
DN

Parameters

Type

The type of allocation to perform. See “Related Definitions.”

MemoryType
The type of memory to allocate. The type EFI_MEMORY_TYPE is defined in “Related Definitions” below.
These memory types are also described in more detail in Memory Type Usage before ExitBootServices(), and
Memory Type Usage after ExitBootServices() . Normal allocations (that is, allocations by any UEFI application)
are of type EfiLoaderData. MemoryType values in the range 0x70000000..0x7FFFFFFF are reserved for OEM
use. MemoryType values in the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI OS loaders that
are provided by operating system vendors.

Pages
The number of contiguous 4 KiB pages to allocate.

Memory
Pointer to a physical address. On input, the way in which the address is used depends on the value of Type. See
“Description” for more information. On output the address is set to the base of the page range that was allocated.
See “Related Definitions.”

NOTE: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of types EfiReservedMem-
oryType, EfiMemoryMappedlO, and EfiUnacceptedMemoryType.

Related Definitions

//**
//EFI_ALLOCATE_TYPE
/% e g e g de e e e e e e e e e de e e dede e g de e st de e s e e e e e e de e e S de e s de e s de e s de e e
// These types are discussed in the "Description" section below.
typedef enum {

AllocateAnyPages,

AllocateMaxAddress,

AllocateAddress,

MaxAllocateType
} EFI_ALLOCATE_TYPE;

//**

//EFI_MEMORY_TYPE

/ / kRN NN NN NN NN RN hhdddddddedededededededededededededededed

// These type values are discussed in Memory Type Usage before ExitBootServices() and .
(continues on next page)

7.2. Memory Allocation Services 155

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

—Memory Type Usage after ExitBootServices().

typedef enum {
EfiReservedMemoryType,
EfiloaderCode,
EfiloaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionallMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiPersistentMemory,
EfiUnacceptedMemoryType,
EfiMaxMemoryType

} EFI_MEMORY_TYPE;

//:’: Fededede ek
//EFI_PHYSICAL_ADDRESS

/ / NN NNNRRNNNNNN NN RN NN dedddddededededededededededededededededede
typedef UINT64 EFI_PHYSICAL_ADDRESS;

Description

The AllocatePages() function allocates the requested number of pages and returns a pointer to the base address of the
page range in the location referenced by Memory. The function scans the memory map to locate free pages. When it
finds a physically contiguous block of pages that is large enough and also satisfies the allocation requirements of Type,
it changes the memory map to indicate that the pages are now of type MemoryType.

In general, UEFI OS loaders and UEFI applications should allocate memory (and pool) of type EfiLoaderData. UEFI
boot service drivers must allocate memory (and pool) of type EfiBootServicesData. UREFI runtime drivers should
allocate memory (and pool) of type EfiRuntimeServicesData (although such allocation can only be made during boot
services time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that satisfies the request. On input,
the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages whose uppermost address is less
than or equal to the address pointed to by Memory on input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by Memory on input.

NOTE: UEFI drivers and UEFI applications that are not targeted for a specific implementation must perform memory
allocations for the following runtime types using AllocateAnyPages address mode:

EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiReservedMemoryType.

Status Codes Returned

7.2. Memory Allocation Services 156

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCEST The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or AllocateMaxAddress or AllocateAddress
EFI_INVALID_PARAMETER MemoryType is in the range EfiMaxMemoryType..0x6FFFFFFF.
EFI_INVALID_PARAMETER MemoryType is EfiPersistentMemoryType or EfiUnacceptedMemory.
EFI_INVALID_PARAMETER Memory is NULL.

EFI_NOT_FOUND The requested pages could not be found.

7.2.2 EFI_BOOT_SERVICES.FreePages()

Summary
Frees memory pages.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE_PAGES) (

IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);

Parameters

Memory
The base physical address of the pages to be freed. Type EFI_PHYSICAL_ADDRESS is defined in the
EFI_BOOT_SERVICES.AllocatePages() function description.

Pages
The number of contiguous 4 KiB pages to free.

Description
The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFFI_SUCCESS The requested memory pages were freed
EFI_NOT_FOUND The requested memory pages were not allocated with AllocatePages().
EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.

7.2.3 EFI_BOOT_SERVICES.GetMemoryMap()

Summary
Returns the current memory map.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_MAP) (
IN OUT UINTN *MemoryMapSize,

(continues on next page)

7.2. Memory Allocation Services 157

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *“DescriptorSize,
OUT UINT32 “DescriptorVersion
)5

Parameters

MemoryMapSize

A pointer to the size, in bytes, of the MemoryMap buffer. On input, this is the size of the buffer allocated by the
caller. On output, it is the size of the buffer returned by the firmware if the buffer was large enough, or the size
of the buffer needed to contain the map if the buffer was too small.

MemoryMap
A pointer to the buffer in which firmware places the current memory map. The map is an array of
EFI_MEMORY_DESCRIPTORs. See “Related Definitions.”

MapKey
A pointer to the location in which firmware returns the key for the current memory map.

DescriptorSize
A pointer to the location in which firmware returns the size, in bytes, of an individual
EFI_MEMORY_DESCRIPTOR.

Descriptor Version
A pointer to the location in which firmware returns the version number associated with the
EFI_MEMORY_DESCRIPTOR. See “Related Definitions.”

Related Definitions
..code-block:
[e g e fo e e e e e ¥ ¥ o % Je e e e e e ¥ ¥ ¥ ¥ ¥ ¥ o o ¥ o %
//EFI_MEMORY_DESCRIPTOR
/% e e e e de el s e e e e e e e dede e S de e s e e e de e e dede e g de e s de e s de e
typedef struct {
UINT32 Type;
EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_VIRTUAL_ADDRESS VirtualStart;
UINT64 NumberOfPages;
UINT64 Attribute;
} EFI_MEMORY_DESCRIPTOR;

Type
Type of the memory region. Type EFI_MEMORY TYPE is defined in the

EFI_BOOT_SERVICES.AllocatePages() function description.

PhysicalStart
Physical address of the first byte in the memory region. PhysicalStart must be aligned on a 4 KiB boundary, and
must not be above OxfHFTT000. Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description.

VirtualStart
Virtual address of the first byte in the memory region. VirtualStart must be aligned on a 4 KiB boundary, and
must not be above OxfHIfHTTTf000. Type EFI_VIRTUAL_ADDRESS is defined in “Related Definitions.”

NumberOfPages
Number of 4 KiB pages in the memory region. NumberOfPages must not be 0, and must not be any value that

7.2. Memory Allocation Services 158

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

would represent a memory page with a start address, either physical or virtual, above OxftfftfFfff000

Attribute
Attributes of the memory region that describe the bit mask of capabilities for that memory region, and not
necessarily the current settings for that memory region. See the following “Memory Attribute Definitions.”

Vis
// Memory Attribute Definitions
//7‘::’::’::‘::‘:7‘: Fedddk v Tt

// These types can be "ORed" together as needed.

#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_NV 0x0000000000008000
#define EFI_MEMORY_MORE_RELIABLE 0x0000000000010000
#define EFI_MEMORY_RO 0x0000000000020000
#define EFI_MEMORY_SP 0x0000000000040000
#define EFI_MEMORY_CPU_CRYPTO 0x0000000000080000
#define EFI_MEMORY_RUNTIME 0x8000000000000000
#define EFI_MEMORY_ISA_VALID 0x4000000000000000
#define EFI_MEMORY_ISA_MASK 0xOFFFFO0000000000

EFI_MEMORY_UC
Memory cacheability attribute: The memory region supports being configured as not cacheable.

EFI_MEMORY_WC
Memory cacheability attribute: The memory region supports being configured as write combining.

EFI_MEMORY_WT
Memory cacheability attribute: The memory region supports being configured as cacheable with a “write
through” policy. Writes that hit in the cache will also be written to main memory.

EFI_MEMORY_WB
Memory cacheability attribute: The memory region supports being configured as cacheable with a “write back”
policy. Reads and writes that hit in the cache do not propagate to main memory. Dirty data is written back to
main memory when a new cache line is allocated.

EFI_MEMORY_UCE
Memory cacheability attribute: The memory region supports being configured as not cacheable, exported, and
supports the “fetch and add” semaphore mechanism.

EFI_MEMORY_WP
Physical memory protection attribute: The memory region supports being configured as write-protected by sys-
tem hardware. This is typically used as a cacheability attribute today. The memory region supports being config-
ured as cacheable with a “write protected” policy. Reads come from cache lines when possible, and read misses
cause cache fills. Writes are propagated to the system bus and cause corresponding cache lines on all processors
on the bus to be invalidated.

EFI_MEMORY_RP
Physical memory protection attribute: The memory region supports being configured as read-protected by system
hardware.

EFI_MEMORY_XP

7.2. Memory Allocation Services 159

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Physical memory protection attribute: The memory region supports being configured so it is protected by system
hardware from executing code.

EFI_MEMORY_NV
Runtime memory attribute: The memory region refers to persistent memory

EFI_MEMORY_MORE_RELIABLE
The memory region provides higher reliability relative to other memory in the system. If all memory has the
same reliability, then this bit is not used.

EFI_MEMORY_RO
Physical memory protection attribute: The memory region supports making this memory range read-only by
system hardware.

EFI_MEMORY_SP
Specific-purpose memory (SPM). The memory is earmarked for specific purposes such as for specific device
drivers or applications. The SPM attribute serves as a hint to the OS to avoid allocating this memory for core
OS data or code that can not be relocated. Prolonged use of this memory for purposes other than the intended
purpose may result in suboptimal platform performance.

EFI_MEMORY_CPU_CRYPTO
If this flag is set, the memory region is capable of being protected with the CPU’s memory cryptographic ca-
pabilities. If this flag is clear, the memory region is not capable of being protected with the CPU’s memory
cryptographic capabilities or the CPU does not support CPU memory cryptographic capabilities.

EFI_MEMORY_RUNTIME
Runtime memory attribute: The memory region needs to be given a virtual mapping by the operating system
when SetVirtualAddressMap() is called (described in Virtual Memory Services.

EFI_MEMORY_ISA_VALID
If this flag is set, the memory region is described with additional ISA-specific memory attributes as specified in
EFI_MEMORY_ISA_MASK .

EFI_MEMORY_ISA_MASK
Defines the bits reserved for describing optional ISA-specific cacheability attributes that are not cov-
ered by the standard UEFI Memory Attributes cacheability bits (EFI_MEMORY_UC, EFI_MEMORY_WC,
EFI_MEMORY_WT, EFI_MEMORY_WB and EFI._ MEMORY_UCE). See Calling Conventions for further
ISA-specific enumeration of these bits.

© Note

UEFI Specification 2.5 and following use EFI_ MEMORY_RO as rite-protected physical memory protection at-
tribute. Also, EFI_ MEMORY_WP means cacheability attribute.

/ / O R R R R R R A R R R R R R R R R T e e e e e e
//EFI_VIRTUAL_ADDRESS

/ / Feddedededededede e dedefdedefdedefddfdedefddededdfdededdeddededdedededededdedefddddn
typedef UINT64 EFI_VIRTUAL_ADDRESS;

/ / R O R R R R R R R R R R R R R e e e e e o e e
// Memory Descriptor Version Number
//'«'::':7':7‘:'«':'«':7'::'::‘::‘::’::'::'::‘::'::'::'::'::‘::‘::'::'::‘::‘::‘::'::'::‘::‘::'::':-.'::‘::‘::’::’::‘::‘::‘::’::’-»'-‘ XX R Y T
#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Description

7.2. Memory Allocation Services 160

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The GetMemoryMap() function returns a copy of the current memory map. The map is an array of memory de-
scriptors, each of which describes a contiguous block of memory. The map describes all of memory, no mat-
ter how it is being used. That is, it includes blocks allocated by EFI_BOOT_SERVICES.AllocatePages() and
EFI_BOOT _SERVICES.AllocatePool(), as well as blocks that the firmware is using for its own purposes. The memory
map is only used to describe memory that is present in the system. The firmware does not return a range description
for address space regions that are not backed by physical hardware. Regions that are backed by physical hardware, but
are not supposed to be accessed by the OS, must be returned as EfiReservedMemoryType. The OS may use addresses
of memory ranges that are not described in the memory map at its own discretion.

Until EFI_BOOT_SERVICES.ExitBootServices() is called, the memory map is owned by the firmware and the currently
executing UEFI Image should only use memory pages it has explicitly allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and the MemoryMap-
Size value contains the size of the buffer needed to contain the current memory map. The actual size of the buffer
allocated for the consequent call to GetMemoryMap() should be bigger then the value returned in MemoryMapSize,
since allocation of the new buffer may potentially increase memory map size.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is changed every time
something in the memory map changes. In order to successfully invoke EFI_BOOT _SERVICES.ExitBootServices()
the caller must provide the current memory map key.

The GetMemoryMap() function also returns the size and revision number of the EFI_MEMORY_DESCRIPTOR. The
DescriptorSize represents the size in bytes of an EFI_MEMORY_DESCRIPTOR array element returned in Memo-
ryMap. The size is returned to allow for future expansion of the EFI_MEMORY_DESCRIPTOR in response to hard-
ware innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the future but it will remain
backwards compatible with the current definition. Thus OS software must use the DescriptorSize to find the start of
each EFI._ MEMORY_DESCRIPTOR in the MemoryMap array.

Status Codes Returned

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. Thecurrent buffer size needed to
hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER The MemoryMap buffer is not too small and MemoryMap is NULL.

7.2.4 EFI_BOOT_SERVICES.AllocatePool()

Summary
Allocates pool memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ALLOCATE_POOL) (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
DN

Parameters

PoolType
The type of pool to allocate. Type EFI_MEMORY_TYPE is defined in the

7.2. Memory Allocation Services 161

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Size

EFI_BOOT_SERVICES.AllocatePages() function description. PoolType values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use. PoolType values in the range 0x80000000..0xFFFFFFFF
are reserved for use by UEFI OS loaders that are provided by operating system vendors.

The number of bytes to allocate from the pool.

Buffer

Note:

A pointer to a pointer to the allocated buffer if the call succeeds; undefined otherwise.

UEFI applications and UEFI drivers must not allocate memory of type EfiReservedMemoryType.

Description

The AllocatePool() function allocates a memory region of Size bytes from memory of type PoolType and returns the
address of the allocated memory in the location referenced by Buffer. This function allocates pages from EfiConven-
tionalMemory as needed to grow the requested pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the EFI_BOOT_SERVICES.FreePool() function.

Status Codes Returned

EFI_SUCCESS The requested number of bytes was allocated.
EFI_OUT_OF_RESOURCES The pool requested could not be allocated.
EFI_INVALID_PARAMETER PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
EFI_INVALID_PARAMETER PoolType is EfiPersistentMemory.
EFI_INVALID_PARAMETER Buffer is NULL.

7.2.5 EFI_BOOT_SERVICES.FreePool()

Summary

Returns pool memory to the system.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_FREE_POOL) (
IN VOID *Buffer

DE

Parameters

Buffer

Descr

Pointer to the buffer to free.

iption

The FreePool() function returns the memory specified by Buffer to the system. On return, the memory’s type is Efi-
ConventionalMemory. The Buffer that is freed must have been allocated by AllocatePool().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.
EFI_INVALID_PARAMETER Buffer was invalid.

7.2. Memory Allocation Services 162

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol Interface structure.
The structure contains the functions and instance data that are used to access a device. The functions that make up
Protocol Handler Services allow applications to install a protocol on a handle, identify the handles that support a given
protocol, determine whether a handle supports a given protocol, and so forth. See the Table, below.

Table 7.14: Protocol Interface Functions

Name Type Description

InstallProtocollnter- Boot Installs a protocol interface on a device handle.

face

UninstallProtocolln- Boot Removes a protocol interface from a device handle.

terface

ReinstallProtocolln- Boot Reinstalls a protocolinterface on a device handle.

terface

RegisterProtocol- Boot Registers an event that is to be signaled whenever an interface is

Notify installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified protocol.

LocateDevicePath Boot Locates all devices on a device path that support a specified protocol
and returns the handle to the device that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol interface.

CloseProtocol Boot Removes elements from the list of agents consuming a protocol in-
terface.

OpenProtocollnfor- Boot Retrieve the list of agents that are currently consuming a protocol

mation interface.

ConnectController Boot Uses a set of precedence rules to find the best set of drivers to manage
a controller.

DisconnectCon- Boot Informs a set of drivers to stop managing a controller.

troller

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The return buffer
is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database that meet the
search criteria. The return buffer is automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports the re-
quested protocol.

InstallMultiplePro- Boot Installs one or more protocol interfaces onto a handle.

tocollnterfaces

UninstallMulti- Boot Uninstalls one or more protocol interfaces from a handle.

pleProtocollnter-

faces

The Protocol Handler boot services have been modified to take advantage of the information that is now being tracked
with the EFI_BOOT _SERVICES.OpenProtocol() and EFI_BOOT_SERVICES.CloseProtocol() . Since the usage of
protocol interfaces is being tracked with these new boot services, it is now possible to safely uninstall and reinstall
protocol interfaces that are being consumed by UEFI drivers.

As depicted in Figure 7-1 (below) the firmware is responsible for maintaining a *“data base” that shows which
protocols are attached to each device handle. (The figure depicts the “data base” as a linked list, but the
choice of data structure is implementation-dependent.) The “data base” is built dynamically by calling the
EFI_BOOT_SERVICES.InstallProtocollnterface() function. Protocols can only be installed by UEFI drivers or the
firmware itself. In the figure, a device handle (EFI_HANDLE) refers to a list of one or more registered protocol

7.3. Protocol Handler Services 163

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

interfaces for that handle. The first handle in the system has four attached protocols, and the second handle has two
attached protocols. Each attached protocol is represented as a GUID/Interface pointer pair. The GUID is the name of
the protocol, and Interface points to a protocol instance. This data structure will typically contain a list of interface
functions, and some amount of instance data.

Access to devices is initiated by calling the EFI_BOOT_SERVICES.HandleProtocol() function, which determines
whether a handle supports a given protocol. If it does, a pointer to the matching Protocol Interface structure is re-
turned.

When a protocol is added to the system, it may either be added to an existing device handle or it may be added to create
a new device handle. See Figure 7-1 (below) shows that protocol handlers are listed for each device handle and that
each protocol handler is logically a UEFI driver.

First Handle
‘ Device Handle I
¥ ! ¥)

GUID GUID GUID GUID
Interface Interface Interface Interface
Protocol Protocol Protocol Protocol
Interface Interface Interface Interface
Instance Instance Instance Instance
Data Data Data Data

| Device Handle l

|

GUID GUID
Interface Interface
< Protocol Protocol
Interface Interface
Instance Instance
Data Data

OM13155

Fig. 7.1: Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces provides great flexi-
bility. Layering makes it possible to add a new protocol that builds on a device’s basic protocols. An example of this
might be to layer on a EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL support that would build on the handle’s underlyin
EFI_SERIAL_IO_PROTOCOL .

The ability to add new handles can be used to generate new devices as they are found, or even to generate abstract
devices. An example of this might be to add a multiplexing device that replaces ConsoleOut with a virtual device that
multiplexes the EFI_SIMPLE _TEXT OUTPUT_PROTOCOL protocol onto multiple underlying device handles.

7.3. Protocol Handler Services 164

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.1 Driver Model Boot Services

Following is a detailed description of the new UEFI boot services that are required by the UEFI Driver Model. These
boot services are being added to reduce the size and complexity of the bus drivers and device drivers. This, in turn,
will reduce the amount of ROM space required by drivers that are programmed into ROMs on adapters or into system
FLASH, and reduce the development and testing time required by driver writers.

These new services fall into two categories. The first group is used to track the usage of protocol interfaces by
different agents in the system. Protocol interfaces are stored in a handle database. The handle database con-
sists of a list of handles, and on each handle there is a list of one or more protocol interfaces. The boot ser-
vices EFI_BOOT_SERVICES.InstallProtocollnterface() , EFI_BOOT_SERVICES. UninstallProtocollnterface() and
EFI_BOOT_SERVICES.ReinstallProtocollnterface() are used to add, remove, and replace protocol interfaces in the
handle database. The boot service EFI_BOOT_SERVICES.HandleProtocol() is used to look up a protocol interface
in the handle database. However, agents that call HandleProtocol() are not tracked, so it is not safe to call Uninstall-
Protocolinterface() or ReinstallProtocollnterface() because an agent may be using the protocol interface that is being
removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish this, each protocol
interface includes a list of agents that are consuming the protocol interface. Figure 7-2 (below) shows an example handle
database with these new agent lists. An agent consists of an image handle, a controller handle, and some attributes.
The image handle identifies the driver or application that is consuming the protocol interface. The controller handle
identifies the controller that is consuming the protocol interface. Since a driver may manage more than one controller,
the combination of a driver’s image handle and a controller’s controller handle uniquely identifies the agent that is
consuming the protocol interface. The attributes show how the protocol interface is being used.

First Handle

H“‘""‘"—.i.
| Device Handle
4" 4_ B & & &
GUID GUID
Interface H‘H\" Interface —'---\
Image Handle Image Handle
Protocol Controller Handle Controller Handle
Interface Attributes Protocol Attributes
7 Interface T
'E',‘j't‘:““ Image Handle Instance . e
Controller Handle Data
! Aﬁribu;es
Device Handle image Handle
Il Controller Handle
cGUID Attributeas
C’Interfat:e \
Protocol Image Handle
Interface Controller Handle
Instance Attributes
Data X
Image Handle
Controller Handle
¥ Attributes

Fig. 7.2: Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.

7.3. Protocol Handler Services 165

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

These are EFI_BOOT_SERVICES.OpenProtocol() EFI_BOOT_SERVICES.CloseProtocol() and
EFI_BOOT_SERVICES.OpenProtocollnformation() . OpenProtocol() adds elements to the list of agents con-
suming a protocol interface. CloseProtocol() removes elements from the list of agents consuming a protocol interface,
and EFI_BOOT _SERVICES.OpenProtocollnformation() retrieves the entire list of agents that are currently using a
protocol interface.

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are EFI_BOOT_SERVICES.ConnectController() and
EFI_BOOT_SERVICES.DisconnectController() . These services take advantage of the new features of the han-
dle database along with the new protocols described in this document to manage the drivers and controllers present
in the system. ConnectController() uses a set of strict precedence rules to find the best set of drivers for a controller.
This provides a deterministic matching of drivers to controllers with extensibility mechanisms for OEMs, IBVs, and
IHVs. DisconnectController() allows drivers to be disconnected from controllers in a controlled manner, and by using
the new features of the handle database it is possible to fail a disconnect request because a protocol interface cannot
be released at the time of the disconnect request.

The third group of boot services is designed to help simplify the implementation of drivers, and produce
drivers with smaller executable footprints. The EFI_BOOT_SERVICES.LocateHandleBuffer() is a new ver-
sion of EFI_BOOT_SERVICES.LocateHandle() that allocates the required buffer for the caller. This elim-
inates two calls to LocateHandle() and a call to EFI_BOOT_SERVICES.AllocatePool() from the caller’s
code. EFI_BOOT_SERVICES.LocateProtocol() searches the handle database for the first protocol in-
stance that matches the search criteria. The EFI_BOOT_SERVICES.InstallMultipleProtocollnterfaces() and
EFI_BOOT_SERVICES. UninstallMultipleProtocollnterfaces() are very useful to driver writers. These boot services
allow one or more protocol interfaces to be added or removed from a handle. In addition, InstallMultipleProtocol-
Interfaces() guarantees that a duplicate device path is never added to the handle database. This is very useful to bus
drivers that can create one child handle at a time, because it guarantees that the bus driver will not inadvertently create
two instances of the same child handle.

7.3.2 EFI_BOOT_SERVICES.InstallProtocolinterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added to the list of handles
in the system. InstallMultipleProtocollnterfaces() performs more error checking than InstallProtocollnterface(), so it
is recommended that InstallMultipleProtocollnterfaces() be used in place of InstallProtocollnterface()

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INSTALL_PROTOCOL_INTERFACE) (
IN OUT EFI_HANDLE “Handle,
IN EFI_GUID “Protocol,
IN EFI_INTERFACE_TYPE InterfaceType,
IN VOID *Interface
Js

Parameters

Handle

A pointer to the EFI_HANDLE on which the interface is to be installed. If * Handle is NULL on input, a new
handle is created and returned on output. If * Handle is not NULL on input, the protocol is added to the handle,
and the handle is returned unmodified. The type EFI_HANDLE is defined in “Related Definitions.” If * Handle
is not a valid handle, then EFI_INVALID_PARAMETER is returned.

7.3. Protocol Handler Services 166

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Protocol
The numeric ID of the protocol interface. The type EFI_GUID is defined in “Related Definitions.” It is the
caller’s responsibility to pass in a valid GUID. For a description of valid GUID values, see “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “RFC 4122”.

InterfaceType
Indicates whether Interface is supplied in native form. This value indicates the original execution environment
of the request. See “Related Definitions.”

Interface
A pointer to the protocol interface. The Interface must adhere to the structure defined by Protocol. NULL can
be used if a structure is not associated with Protocol.

Related Definitions

//**“****“**
//EFI HANDLE

// SR HBRNNNNNN NN N NN A hdddddedddedededededededededededehhhh NNk
typedef VOID *EFI_HANDLE;

//EFI GUID
e 1y 0 0 T B 0
typedef struct {
UINT32 Datal;
UINT16 Data2;
UINT16 Data3;
UINT8 Data4[8];
} EFI_GUID;
//EFI INTERFACE TYPE
// Fehhd Tehdhdfdhdfdhdefhdfhdfhdddhdhdhhd A it

typedef enum {
EFI_NATIVE_INTERFACE
} EFI_INTERFACE_TYPE;

Description

The InstallProtocollnterface() function installs a protocol interface (a GUID/Protocol Interface structure pair) on a
device handle. The same GUID cannot be installed more than once onto the same handle. If installation of a duplicate
GUID on a handle is attempted, an EFI_INVALID_PARAMETER will result.

Installing a protocol interface allows other components to locate the Handle, and the interfaces installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have registered to wait for
the installation of Protocol. For more information, see the EFI_BOOT _SERVICES.RegisterProtocolNotify() function
description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.
EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.
EFI_INVALID_PARAMETER HandLe is NULL
EFI_INVALID_PARAMETER ProtocoL is NULL.
EFI_INVALID_PARAMETER InterfaceType is not EFI_NATIVE_INTERFACE.

continues on next page

7.3. Protocol Handler Services 167

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.15 — continued from previous page
EFI_INVALID_PARAMETER ProtocoL is already installed on the handle specified by HandLe.

7.3.3 EFI_BOOT_SERVICES.UninstallProtocolinterface()

Summary

Removes a protocol interface from a device handle. It is recommended that UninstallMultipleProtocollnterfaces() be
used in place of UninstallProtocollnterface().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UNINSTALL_PROTOCOL_INTERFACE) (
IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID “Interface
)
Parameters
Handle
The handle on which the interface was installed. If Handle is not a wvalid handle,
then EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE 1is defined in the

EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

Protocol
The numeric ID of the interface. It is the caller’s responsibility to pass in a valid GUID. For a description of
valid GUID values, see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “RFC 4122”.
Type EFI_GUID is defined in the EFI_BOOT _SERVICES.InstallProtocollnterface() function description.

Interface
A pointer to the interface. NULL can be used if a structure is not associated with Protocol.

Description

The UninstallProtocollnterface() function removes a protocol interface from the handle on which it was previously
installed. The Protocol and Interface values define the protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been removed. In
some cases, outstanding reference information is not available in the protocol, so the protocol, once added, cannot be
removed. Examples include Console I/0, Block I/O, Disk I/O, and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.
EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There may be some
drivers that are currently consuming the protocol interface that needs to be uninstalled, so it may be dangerous to just
blindly remove a protocol interface from the system. Since the usage of protocol interfaces is now being tracked for
components that use the EFI_BOOT_SERVICES.OpenProtocol() and EFI_BOOT_SERVICES.CloseProtocol() . boot
services, a safe version of this function can be implemented. Before the protocol interface is removed, an attempt is
made to force all the drivers that are consuming the protocol interface to stop consuming that protocol interface. This
is done by calling EFI_BOOT_SERVICES.DisconnectController() for the driver that currently have the protocol inter-
face open with an attribute of EFI_OPEN_PROTOCOL_BY_DRIVER or EFI_OPEN_PROTOCOL_BY_DRIVER |
EFI_OPEN_PROTOCOL_EXCLUSIVE.

7.3. Protocol Handler Services 168

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

If the disconnect succeeds, then those agents will have called the boot service EFI_BOOT_SERVICES.CloseProtocol()
to release the protocol interface. Lastly, all of the agents that have the protocol interface open with an at-
tribute of EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL, EFI_OPEN_PROTOCOL_GET_PROTOCOL, or
EFI_OPEN_PROTOCOL_TEST_PROTOCOL are closed. If there are any agents remaining that still have the protocol
interface open, the protocol interface is not removed from the handle and EFI_ACCESS_DENIED is returned. In addi-
tion, all of the drivers that were disconnected with the boot service DisconnectController() earlier, are reconnected with
the boot service EFI_BOOT _SERVICES.ConnectController() . If there are no agents remaining that are consuming the
protocol interface, then the protocol interface is removed from the handle as described above.

Status Codes Returned

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface is still being used by a
driver.

EFI_INVALID_PARAMETER HandLe is NULL.

EFI_INVALID_PARAMETER ProtocoL is NULL.

7.3.4 EFI_BOOT_SERVICES.ReinstallProtocollnterface()

Summary

Reinstalls a protocol interface on a device handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REINSTALL_PROTOCOL_INTERFACE) (
IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *0ldInterface,
IN VOID “NewInterface
)
Parameters
Handle
Handle on which the interface is to be reinstalled. If Handle is not a valid handle,
then EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE is defined in the

EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

Protocol
The numeric ID of the interface. It is the caller’s responsibility to pass in a valid GUID. For a description
of valid GUID values, see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “RFC
4122”. Type EFI_GUID is defined in the InstallProtocollnterface() function description.

OldInterface
A pointer to the old interface. NULL can be used if a structure is not associated with Protocol.

NewlInterface
A pointer to the new interface. NULL can be used if a structure is not associated with Protocol.

Description

7.3. Protocol Handler Services 169

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The ReinstallProtocollnterface() function reinstalls a protocol interface on a device handle. The OldInterface for Pro-
tocol is replaced by the NewlInterface. NewlInterface may be the same as OldInterface. 1f it is, the registered protocol
notifies occur for the handle without replacing the interface on the handle.

As with InstallProtocollnterface(), any process that has registered to wait for the installation of the interface is notified.
The caller is responsible for ensuring that there are no references to the OldInterface that is being removed.
EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There may be some
number of drivers currently consuming the protocol interface that is being reinstalled. In this case, it may be dangerous
to replace a protocol interface in the system. It could result in an unstable state, because a driver may attempt to use the
old protocol interface after a new one has been reinstalled. Since the usage of protocol interfaces is now being tracked
for components that use the EFI_BOOT_SERVICES.OpenProtocol() and EFI_BOOT_SERVICES.CloseProtocol() boot
services, a safe version of this function can be implemented.

When this function is called, a call is first made to the boot service UninstallProtocollnterface(). This will guarantee that
all of the agents are currently consuming the protocol interface OldInterface will stop using OldInterface. If Uninstall-
Protocollnterface() returns EFI_ACCESS_DENIED, then this function returns EFI_ACCESS_DENIED, OldInterface
remains on Handle, and the protocol notifies are not processed because NewInterface was never installed.

If UninstallProtocollnterface() succeeds, then a call is made to the Dboot service
EFI_BOOT_SERVICES.InstallProtocollnterface() to put the NewInterface onto Handle.

Finally, the boot service EFI_BOOT_SERVICES.ConnectController() is called so all agents that were forced to release
OldInterface with UninstallProtocolInterface() can now consume the protocol interface NewInterface that was installed
with InstallProtocolInterface(). After OldInterface has been replaced with NewInterface, any process that has registered
to wait for the installation of the interface is notified.

Status Codes Returned

EFI_SUCCESS The protocol interface was reinstalled.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_ACCESS_DENIED The protocol interface could not be reinstalled, because OldInterface is still
being used by a driver that will not release it.

EFI_INVALID_PARAMETER HandLe is NULL.

EFI_INVALID_PARAMETER ProtocoL is NULL.

7.3.5 EFI_BOOT_SERVICES.RegisterProtocolNotify()

Summary
Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_PROTOCOL_NOTIFY) (
IN EFI_GUID *Protocol,
IN EFI_EVENT Event,
OUT VOID **Registration
s

Parameters

7.3. Protocol Handler Services 170

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Protocol
The numeric ID of the protocol for which the event is to be registered. Type EFI_GUID is defined in the
EFI_BOOT _SERVICES.InstallProtocollnterface() function description.

Event
Event that is to be signaled whenever a protocol interface is registered for Protocol. The type EFI_EVENT is
defined in the CreateEvent() function description. The same EFI_EVENT may be used for multiple protocol
notify registrations.

Registration
A pointer to a memory location to receive the registration value. This value must be saved and used by the
notification function of Event to retrieve the list of handles that have added a protocol interface of type Protocol.

Description

The RegisterProtocolNotify() function creates an event that is to be signaled whenever a protocol interface is installed
for Protocol by InstallProtocollnterface() or EFI_BOOT_SERVICES.ReinstallProtocollnterface() .

Once Event has been signaled, the EFI BOOT _SERVICES.LocateHandle() function can be called to iden-
tify the newly installed, or reinstalled, handles that support Protocol. = The Registration parameter in
EFI_BOOT _SERVICES.RegisterProtocolNotify() corresponds to the SearchKey parameter in LocateHandle(). Note
that the same handle may be returned multiple times if the handle reinstalls the target protocol ID multiple times. This
is typical for removable media devices, because when such a device reappears, it will reinstall the Block I/O protocol
to indicate that the device needs to be checked again. In response, layered Disk I/O and Simple File System protocols
may then reinstall their protocols to indicate that they can be re-checked, and so forth.

Events that have been registered for protocol interface notification can be unregistered by calling CloseEvent().

Status Codes Returned

EFI_SUCCESS The notification event has been registered.
EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.
EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Registration is NULL.

7.3.6 EFI_BOOT_SERVICES.LocateHandle()

Summary

Returns an array of handles that support a specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_HANDLE) (
IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID “Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *“BufferSize,
OUT EFI_HANDLE “Buffer
DN

Parameters

7.3. Protocol Handler Services 171

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

SearchType
Specifies which handle(s) are to be returned. Type EFI_LOCATE_SEARCH_TYPE is defined in “Related Def-
initions.”

Protocol

Specifies the protocol to search by. This parameter is only valid if SearchType is ByProtocol. Type EFI_GUID
is defined in the EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

SearchKey
Specifies the search key. This parameter is ignored if SearchType is AllHandles or ByProtocol. If
SearchType is ByRegisterNotify, the parameter must be the Registration value returned by function
EFI_BOOT_SERVICES.RegisterProtocolNotify() .

BufferSize
On input, the size in bytes of Buffer. On output, the size in bytes of the array returned in*Buffer*(if the buffer was
large enough) or the size, in bytes, of the buffer needed to obtain the array (if the buffer was not large enough).

Buffer
The buffer in which the array is returned. Type EFI_HANDLE is defined in the InstallProtocolInterface() function
description.

Related Definitions

% g e g gl e e e e S e e B e e e e S e e S e S e e e e et
// EFI_LOCATE_SEARCH_TYPE
/ / Tl Sl dedededededdede NN NN NN dedededededededededeNh NN NN NN dedededededededdedeNN NNk
typedef enum {

AllHandles,

ByRegisterNotify,

ByProtocol

} EFI_LOCATE_SEARCH_TYPE;

AllHandles
Protocol and SearchKey are ignored and the function returns an array of every handle in the system.

ByRegisterNotify
SearchKey supplies the Registration value returned by EFI_BOOT_SERVICES.RegisterProtocolNotify() . The
function returns the next handle that is new for the registration. Only one handle is returned at a time, starting
with the first, and the caller must loop until no more handles are returned. Protocol is ignored for this search

type.

ByProtocol
All handles that support Protocol are returned. SearchKey is ignored for this search type.

Description

The LocateHandle() function returns an array of handles that match the SearchType request. If the input value of
BufferSize is too small, the function returns EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the
buffer needed to obtain the array.

Status Codes Returned

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been updated with
the size needed to complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and SearchKey is NULL.

continues on next page

7.3. Protocol Handler Services 172

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.19 — continued from previous page

EFI_INVALID_PARAMETER SearchType is ByProtocol and ProtocoL is NULL.
EFI_INVALID_PARAMETER One or more matches are found and BufferSize is NULL.
EFI_INVALID_PARAMETER BufferSize is large enough for the result and Buffer is NULL.

7.3.7 EFI_BOOT_SERVICES.HandleProtocol()

Summary
Queries a handle to determine if it supports a specified protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_HANDLE_PROTOCOL) (
IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID **Interface
DK

Parameters

Handle
The handle being queried. If Handle is NULL, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

Protocol
The published unique identifier of the protocol. It is the caller’s responsibility to pass in a valid GUID. For
a description of valid GUID values, see “Links to UEFI-Related Documents™ (http://uefi.org/uefi) under the
heading “RFC 4122”. Type EFI_GUID is defined in the InstallProtocolInterface() function description.

Interface
Supplies the address where a pointer to the corresponding Protocol Interface is returned. NULL will be returned
in * Interface if a structure is not associated with Protocol.

Description

The HandleProtocol() function queries Handle to determine if it supports Protocol. If it does, then on return Interface
points to a pointer to the corresponding Protocol Interface. Inferface can then be passed to any protocol service to
identify the context of the request.

EFI 1.10 Extension

The HandleProtocol() function is still available for use by old EFI applications and drivers. However, all new appli-
cations and drivers should use EFI_BOOT_SERVICES.OpenProtocol() in place of HandleProtocol(). The following
code fragment shows a possible implementation of HandleProtocol() using OpenProtocol(). The variable EfiCoreIlm-
ageHandle is the image handle of the EFI core.

EFI_STATUS
HandleProtocol (
IN EFI_HANDLE Handle,
IN EFI_GUID “Protocol,
OUT VOID “*Interface
)
{

(continues on next page)

7.3. Protocol Handler Services 173

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

return OpenProtocol (
Handle,
Protocol,
Interface,
EfiCoreImageHandle,
NULL,
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
Js
}

Status Codes Returned

EFI_SUCCESS The interface information for the specified protocol was returned.
EFI_UNSUPPORTED The device does not support the specified protocol.
EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.

7.3.8 EFI_BOOT_SERVICES.LocateDevicePath()

Summary
Locates the handle to a device on the device path that supports the specified protocol.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_LOCATE_DEVICE_PATH) (
IN EFI_GUID *Protocol,
IN OUT EFI_DEVICE_PATH_PROTOCOL “*DevicePath,
OUT EFI_HANDLE “Device
Js

Parameters

Protocol
The protocol to search for. Type EFI_GUID is defined in the EFI_BOOT_SERVICES.InstallProtocollnterface()
function description.

DevicePath
On input, a pointer to a pointer to the device path. On output, the device path pointer is modified to point to the
remaining part of the device path—that is, when the function finds the closest handle, it splits the device path into
two parts, stripping off the front part, and returning the remaining portion. EFI_DEVICE_PATH_PROTOCOL
is defined in EFI Device Path Protocol .

Device
A pointer to the returned device handle. Type EFI_HANDLE is defined in the InstallProtocollnterface() function
description.

Description

The LocateDevicePath() function locates all devices on DevicePath that support Protocol and returns the handle to the
device that is closest to DevicePath. DevicePath is advanced over the device path nodes that were matched.

7.3. Protocol Handler Services 174

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

This function is useful for locating the proper instance of a protocol interface to use from a logical parent device driver.
For example, a target device driver may issue the request with its own device path and locate the interfaces to perform
I/O on its bus. It can also be used with a device path that contains a file path to strip off the file system portion of the
device path, leaving the file path and handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is advanced to the device
path terminator node. If DevicePath is a multi-instance device path, the function will operate on the first instance.

Status Codes Returned

EFI_SUCCESS The resulting handle was returned.
EFI_NOT_FOUND No handles matched the search.
EFI_INVALID_PARAMETER Protocol is NULL

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI INVALID PARAMETER A handle matched the search and Device is NULL.

7.3.9 EFI_BOOT_SERVICES.OpenProtocol()

Summary

Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the han-
dle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI boot service
EFI_BOOT_SERVICES.HandleProtocol() .

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL) (
IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID “*Interface OPTIONAL,
IN EFI_HANDLE AgentHandle,
IN EFI_HANDLE ControllerHandle,
IN UINT32 Attributes
)N
Parameters
Handle

The handle for the protocol interface that is being opened.

Protocol
The published unique identifier of the protocol. It is the caller’s responsibility to pass in a valid GUID. For
a description of valid GUID values, see “Links to UEFI-Related Documents™ (http://uefi.org/uefi) under the
heading “RFC 4122”.

Interface
Supplies the address where a pointer to the corresponding Protocol Interface is returned. NULL will be returned
in *Interface if a structure is not associated with Protocol. This parameter is optional, and will be ignored if
Attributes is EFI_OPEN_PROTOCOL_TEST_PROTOCOL.

AgentHandle
The handle of the agent that is opening the protocol interface specified by Protocol and Inter-
face. For agents that follow the UEFI Driver Model, this parameter is the handle that contains the

7.3. Protocol Handler Services 175

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_DRIVER_BINDING_PROTOCOL instance that is produced by the UEFI driver that is opening the pro-
tocol interface. For UEFI applications, this is the image handle of the UEFI application that is opening the
protocol interface. For applications that use HandleProtocol() to open a protocol interface, this parameter is the
image handle of the EFI firmware.

ControllerHandle
If the agent that is opening a protocol is a driver that follows the UEFI Driver Model, then this parameter is the
controller handle that requires the protocol interface. If the agent does not follow the UEFI Driver Model , then
this parameter is optional and may be NULL.

Attributes
The open mode of the protocol interface specified by Handle and Protocol. See “Related Definitions” for the list
of legal attributes.

Description

This function opens a protocol interface on the handle specified by Handle for the protocol specified by Protocol. The
first three parameters are the same as EFI_BOOT _SERVICES.HandleProtocol() . The only difference is that the agent
that is opening a protocol interface is tracked in an EFI’s internal handle database. The tracking is used by the UEFI
Driver Model, and also used to determine if it is safe to uninstall or reinstall a protocol interface.

The agent that is opening the protocol interface is specified by AgentHandle, ControllerHandle, and Attributes. If the
protocol interface can be opened, then AgentHandle, ControllerHandle, and Attributes are added to the list of agents
that are consuming the protocol interface specified by Handl and Protocol. In addition, the protocol interface is returned
in Interface, and EFI_SUCCESS is returned. If Attributes is TEST_PROTOCOL, then Interface is optional, and can
be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then AgentHandle,
ControllerHandle, and Attributes are not added to the list of agents consuming the protocol interface specified by
Handle and Protocol. Interface is returned unmodified for all error conditions except EFI_UNSUPPORTED and
EFI_ALREADY_STARTED, NULL will be returned in * Interface when EFI_UNSUPPORTED and Attributes
is not EFI_OPEN_PROTOCOL_TEST_PROTOCOL, the protocol interface will be returned in * Interface when
EFI_ALREADY_STARTED.

The following is the list of conditions that must be checked before this function can return EFI_SUCCESS :

* If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

e If Interface is NULL and Attributes is not TEST_PROTOCOL, then EFI_INVALID_PARAMETER is returned.
If Handle is NULL, then EFI_INVALID_PARAMETER is returned.
If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

If Attributes is not a legal value, then EFI_INVALID_PARAMETER is returned. The legal values are listed in
“Related Definitions.”

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, EXCLUSIVE, or BY_DRIVER|EXCULSIVE, and
AgentHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, or BY_DRIVER|EXCULSIVE, and Controller-
Handle is NULL, then EFI_INVALID_PARAMETER is returned.

If Attributes is BY_CHILD_CONTROLLER and Handle is identical to ControllerHandle, then
EFI_INVALID_PARAMETER is returned.

If Attributes is BY_DRIVER, BY_DRIVER EXCLUSIVE, or EXCLUSIVE, and there are any items on the
open list of the protocol interface with an attribute of EXCLUSIVE or BY_DRIVER|EXCLUSIVE, then
EFI_ACCESS_DENIED is returned.

7.3. Protocol Handler Services 176

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

o If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface with an attribute of
BY_DRIVER, and AgentHandle is the same agent handle in the open list item, then EFI_ALREADY_STARTED
is returned.

o If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface with an
attribute of BY_DRIVER, and AgentHandle is different than the agent handle in the open list item, then
EFI_ACCESS_DENIED is returned.

* If Attributes is BY_DRIVER EXCLUSIVE, and there are any items on the open list of the protocol interface with
an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is the same agent handle in the open list item, then
EFI_ALREADY_ STARTED is returned.

o If Artributes is BY_DRIVER EXCLUSIVE, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is different than the agent handle in the open
list item, then EFI_ACCESS_DENIED is returned.

o If Artributes is BY_DRIVER|IEXCLUSIVE or EXCLUSIVE, and there is an item on the
open list of the protocol interface with an attribute of BY_DRIVER, then the boot service
EFI_BOOT_SERVICES.DisconnectController() is called for the driver on the open list. If there is an item in the
open list of the protocol interface with an attribute of BY_DRIVER remaining after the DisconnectController()
call has been made, EFI_ACCESS_DENIED is returned.

Related Definitions

#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001

#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002
#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004
#define EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008
#define EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010
#define EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020

The following is the list of legal values for the Attributes parameter, and how each value is used.

BY_HANDLE_PROTOCOL Used in the implementation of EFI_BOOT_SERVICES.HandleProtocol() . Since
EFI_BOOT_SERVICES.OpenProtocol() performs the same function as HandleProtocol() with additional functionality,
HandleProtocol() can simply call OpenProtocol() with this A#tributes value.

GET_PROTOCOL Used by a driver to get a protocol interface from a handle. Care must be taken when us-
ing this open mode because the driver that opens a protocol interface in this manner will not be informed if the

protocol interface is uninstalled or reinstalled. The caller is also not required to close the protocol interface with
EFI_BOOT_SERVICES.CloseProtocol() .

TEST_PROTOCOL Used by a driver to test for the existence of a protocol interface on a handle. Interface is optional
for this attribute value, so it is ignored, and the caller should only use the return status code. The caller is also not
required to close the protocol interface with CloseProtocol().

BY_CHILD_CONTROLLER Used by bus drivers to show that a protocol interface is being used by one of the
child controllers of a bus. This information is used by the boot service EFI_BOOT_SERVICES.ConnectController()
to recursively connect all child controllers and by the boot service EFI_BOOT_SERVICES.DisconnectController() to
get the list of child controllers that a bus driver created.

BY_DRIVER Used by a driver to gain access to a protocol interface. When this mode is used, the driver’s Stop()
function will be called by EFI_BOOT _SERVICES.DisconnectController() if the protocol interface is reinstalled or
uninstalled. Once a protocol interface is opened by a driver with this attribute, no other drivers will be allowed to open
the same protocol interface with the BY_DRIVER attribute.

BY_DRIVER|EXCLUSIVE Used by a driver to gain exclusive access to a protocol interface. If any other drivers have
the protocol interface opened with an attribute of BY_DRIVER, then an attempt will be made to remove them with
DisconnectController().

7.3. Protocol Handler Services 177

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EXCLUSIVE Used by applications to gain exclusive access to a protocol interface. If any drivers have the protocol
interface opened with an attribute of BY_DRIVER, then an attempt will be made to remove them by calling the driver’s

Stop() function.
Status Codes Returned

EFI_SUCCESS

EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_UNSUPPORTED

EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER

EFI_ACCESS_DENIED
EFI_ACCESS_DENIED
EFI_ACCESS_DENIED
EFI_ALREADY_STARTED
EFI_ACCESS_DENIED

EFI_ALREADY_STARTED

EFI_ACCESS_DENIED

EFI_ACCESS_DENIED

An item was added to the open list for the protocol interface, and the protocol
interface was returned in Inferface.

Protocol is NULL.

Interface is NULL, and Attributes is not TEST_PROTOCOL.

Handle is NULL.

Handle does not support Protocol.

Attributes is not a legal value.

Attributes is BY _CHILD_CONTROLLER and AgentHandle is NULL.
Attributes is BY_DRIVER and AgentHandle is NULL.

Attribute is BY_DRIVEREXCLUSIVE and AgentHandle is NULL.
Attributes is EXCLUSIVE and AgentHandle is NULL.

Attributes is BY _CHILD_CONTROLLER and ControllerHandle is NULL.
Attributes is BY_DRIVER and ControllerHandle is NULL.

Attributes is BY _DRIVEREXCLUSIVE and ControllerHandle is NULL.
Attributes is BY_CHILD_CONTROLLER and Handle is identical to Con-
trollerHandle.

Attributes is BY_DRIVER and there is an item on the open list with an at-
tribute of BY_DRIVEREXCLUSIVE or EXCLUSIVE.

Attributes is BY_DRIVEREXCLUSIVE and there is an item on the open list
with an attribute of EXCLUSIVE.

Attributes is EXCLUSIVE and there is an item on the open list with an at-
tribute of BY_DRIVEREXCLUSIVE or EXCLUSIVE.

Attributes is BY_DRIVER and there is an item on the open list with an at-
tribute of BY _DRIVER whose agent handle is the same as AgentHandle.
Attributes is BY_DRIVER and there is an item on the open list with an at-
tribute of BY_DRIVER whose agent handle is different than AgentHandle.
Attributes is BY_DRIVEREXCLUSIVE and there is an item on the open list
with an attribute of BY_DRIVEREXCLUSIVE whose agent handle is the
same as AgentHandle.

Attributes is BY_DRIVEREXCLUSIVE and there is an item on the open
list with an attribute of BY_DRIVEREXCLUSIVE whose agent handle is
different than AgentHandle.

Attributes is BY_DRIVEREXCLSUIVE or EXCLUSIVE and there are
items in the open list with an attribute of BY_DRIVER that could not be
removed when EFI_BOOT_SERVICES.DisconnectController() was called
for that open item.

Examples

EFI_BOOT_SERVICES
EFI_HANDLE
EFI_DRIVER_BINDING_PROTOCOL
IN EFI_HANDLE

extern EFI_GUID
EFI_XYZ_I0_PROTOCOL
EFI_STATUS

*gBS;

ImageHandle;
*This;
ControllerHandle,
gEfiXyzIoProtocol;
*“XyzIlo;

Status;

(continues on next page)

7.3. Protocol Handler Services

178

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

//

// EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL example

// Retrieves the XYZ I/O Protocol instance from ControllerHandle

// The application that is opening the protocol is identified by ImageHandle
// Possible return status codes:

// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,

&gEfiXyzIoProtocol,

&XyzIlo,

ImageHandle,

NULL,

EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL

);
//

// EFI_OPEN_PROTOCOL_GET_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The driver that is opening the protocol is identified by the

// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIlo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
//

// EFI_OPEN_PROTOCOL_TEST_PROTOCOL example
// Tests to see if the XYZ I/0 Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
NULL,
This->DriverBindingHandle,

(continues on next page)

7.3. Protocol Handler Services 179

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
D
//
// EFI_OPEN_PROTOCOL_BY_DRIVER example
// Opens the XYZ I/0 Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
DN
//
// EFI_OPEN_PROTOCOL_BY_DRIVER \| EFI_OPEN_PROTOCOL_EXCLUSIVE example
// Opens the XYZ I/0 Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This.This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo. If //
a different driver had the XYZ I/O Protocol opened
// BY_DRIVER, then that driver was disconnected to
// allow this driver to open the XYZ I/0 Protocol.
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver that //
already has the protocol opened with an EXCLUSIVE // attribute.
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIlo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER \| EFI_OPEN_PROTOCOL_EXCLUSIVE
);

7.3. Protocol Handler Services

180

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.10 EFI_BOOT_SERVICES.CloseProtocol()

Summary
Closes a protocol on a handle that was opened using EFI_BOOT _SERVICES.OpenProtocol() .

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_CLOSE_PROTOCOL) (
IN EFI_HANDLE Handle,
IN EFI_GUID “Protocol,
IN EFI_HANDLE AgentHandle,
IN EFI_HANDLE ControllerHandle
s

Parameters

Handle
The handle for the protocol interface that was previously opened with OpenProtocol(), and is now being closed.

Protocol
The published unique identifier of the protocol. It is the caller’s responsibility to pass in a valid GUID. For
a description of valid GUID values, see “Links to UEFI-Related Documents™ (http://uefi.org/uefi) under the
heading “RFC 4122”.

AgentHandle
The handle of the agent that is closing the protocol interface. For agents that follow the UEFI Driver Model,
this parameter is the handle that contains the EFI_DRIVER_BINDING_PROTOCOL instance that is produced
by the UEFI driver that is opening the protocol interface. For UEFI applications, this is the image handle of
the UEFI application. For applications that used EFI_BOOT_SERVICES.HandleProtocol() to open the protocol
interface, this will be the image handle of the EFI firmware.

ControllerHandle
If the agent that opened a protocol is a driver that follows the UEFI Driver Model, then this parameter is the
controller handle that required the protocol interface. If the agent does not follow the UEFI Driver Model, then
this parameter is optional and may be NULL.

Description

This function updates the handle database to show that the protocol instance specified by Handle and Protocol is no
longer required by the agent and controller specified AgentHandle and ControllerHandle.

If Handle or AgentHandle is NULL, then EFI_INVALID_PARAMETER is returned. If ControllerHandle is not
NULL, and ControllerHandle is NULL, then EFI_INVALID PARAMETER is returned. If Protocol is NULL, then
EFI_INVALID_PARAMETER is returned.

If the interface specified by Protocol is not supported by the handle specified by Handle, then EFI_NOT_FOUND is
returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a check is made to see
if the protocol instance specified by Protocol and Handle was opened by AgentHandle and ControllerHandle with
EFI_BOOT_SERVICES.OpenProtocol() . If the protocol instance was not opened by AgentHandle and ControllerHan-
dle, then EFI_NOT_FOUND is returned. If the protocol instance was opened by AgentHandle and ControllerHandle,
then all of those references are removed from the handle database, and EFI_SUCCESS is returned.

Status Codes Returned

7.3. Protocol Handler Services 181

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER AgentHandle is NULL.

EFI_INVALID_PARAMETER ControllerHandle is not NULL and ControllerHandle is NULL.
EFI_INVALID_PARAMETER Protocol is NULL.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.
EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is not currently open

by AgentHandle and ControllerHandle.

Examples

EFI_BOOT_SERVICES *gBS;

EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;

IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//

// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//
Status = gBS->CloseProtocol (

ControllerHandle,

&gEfiXyzIoProtocol,

This->DriverBindingHandle,

ControllerHandle

DE

//
// Close the XYZ I/O Protocol that was opened with BY_HANDLE_PROTOCOL
//
Status = gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
ImageHandle,
NULL

DE

7.3.11 EFI_BOOT_SERVICES.OpenProtocollnformation()

Summary
Retrieves the list of agents that currently have a protocol interface opened.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL_INFORMATION) (
IN EFI_HANDLE Handle,
IN EFI_GUID *“Protocol,
OUT EFI_OPEN_PROTOCOL_INFORMATION_ENTRY “*EntryBuffer,

(continues on next page)

7.3. Protocol Handler Services 182

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)
OUT UINTN *“EntryCount
);

Parameters

Handle
The handle for the protocol interface that is being queried.

Protocol
The published unique identifier of the protocol. It is the caller’s responsibility to pass in a valid GUID. For
a description of valid GUID values, see “Links to UEFI-Related Documents™ (http://uefi.org/uefi) under the
heading “RFC 4122”.

EntryBuffer
A pointer to a buffer of open protocol information in the form of
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures. See “Related Definitions” for the decla-
ration of this type. The buffer is allocated by this service, and it is the caller’s responsibility to free this buffer
when the caller no longer requires the buffer’s contents.

EntryCount
A pointer to the number of entries in EntryBuffer.

Related Definitions

typedef struct {
EFI_HANDLE AgentHandle;
EFI_HANDLE ControllerHandle;
UINT32 Attributes;
UINT32 OpenCount;

} EFI_OPEN_PROTOCOL_INFORMATION_ENTRY;

Description

This function allocates and returns a buffer of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures. The
buffer is returned in EntryBuffer, and the number of entries is returned in EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then EFI_NOT_FOUND is
returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then EntryBuffer is allocated with
the boot service EFI_BOOT_SERVICES.AllocatePool() , and EntryCount is set to the number of entries in EntryBuffer.
Each entry of EntryBuffer is filled in with the image handle, controller handle, and attributes that were passed to
EFI_BOOT_SERVICES.OpenProtocol() when the protocol interface was opened. The field OpenCount shows the
number of times that the protocol interface has been opened by the agent specified by ImageHandle, ControllerHandle,
and Attributes. After the contents of EntryBuffer have been filled in, EFI_SUCCESS is returned. It is the caller’s
responsibility to call EFI_BOOT _SERVICES.FreePool() on EntryBuffer when the caller no longer required the contents
of EntryBuffer.

If there are not enough resources available to allocate EntryBuffer, then EFI_OUT_OF_RESOURCES is returned.
Status Codes Returned

EFI_SUCCESS The open protocol information was returned in EntryBuffer, and the number
of entries was returned EntryCount.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate EntryBuffer.

7.3. Protocol Handler Services 183

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Examples

See example in the EFI_BOOT_SERVICES.LocateHandleBuffer() function description for an example on how Locate-
HandleBufter(), OpenProtocol(), and EFI_BOOT_SERVICES.OpenProtocollnformation() can be used to traverse the
entire handle database.

7.3.12 EFI_BOOT_SERVICES.ConnectController()

Summary
Connects one or more drivers to a controller.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CONNECT_CONTROLLER) (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE *“DriverImageHandle OPTIONAL,
IN EFI_DEVICE_PATH_PROTOCOL “RemainingDevicePath OPTIONAL,
IN BOOLEAN Recursive
D

Parameters

ControllerHandle
The handle of the controller to which driver(s) are to be connected.

DriverImageHandle
A pointer to an ordered list handles that support the EFI_DRIVER_BINDING_PROTOCOL. The list is termi-
nated by a NULL handle value. These handles are candidates for the Driver Binding Protocol(s) that will manage
the controller specified by ControllerHandle. This is an optional parameter that may be NULL. This parameter
is typically used to debug new drivers.

RemainingDevicePath
A pointer to the device path that specifies a child of the controller specified by ControllerHandle. This is an
optional parameter that may be NULL. If it is NULL, then handles for all the children of ControllerHandle will
be created. This parameter is passed unchanged to the EFI_DRIVER_BINDING _PROTOCOL.Supported() and
EFI_DRIVER_BINDING_PROTOCOL.Start() services of the EFI_DRIVER_BINDING_PROTOCOL attached
to ControllerHandle.

Recursive
If TRUE, then ConnectController() is called recursively until the entire tree of controllers below the controller
specified by ControllerHandle have been created. If FALSE, then the tree of controllers is only expanded one
level.

Description

This function connects one or more drivers to the controller specified by ControllerHandle. If ControllerHandle is
NULL, then EFI_INVALID_PARAMETER is returned. If there are no EFI_DRIVER_BINDING_PROTOCOL in-
stances present in the system, then return EFI_NOT_FOUND. If there are not enough resources available to complete
this function, then EFI_OUT_OF_RESOURCES is returned.

If the platform supports user authentication, as specified in User Identification the device path associated with
ControllerHandle is checked against the connect permissions in the current user profile. If forbidden, then

7.3. Protocol Handler Services 184

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SECURITY_VIOLATION is returned. Then, before connecting any of the DriverlmageHandles, the device path
associated with the handle is checked against the connect permissions in the current user profile.

If Recursive is FALSE, then this function returns after all drivers have been connected to ControllerHandle. If Recursive
is TRUE, then ConnectController() is called recursively on all of the child controllers of ControllerHandle. The child
controllers can be identified by searching the handle database for all the controllers that have opened ControllerHandle
with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

This functions uses five precedence rules when deciding the order that drivers are tested against controllers. These five
rules from highest precedence to lowest precedence are as follows:

1. Context Override DriverImageHandle is an ordered list of handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The highest priority image handle is the first element of the list,
and the lowest priority image handle is the last element of the list. The list is terminated with a NULL image
handle.

2. Platform Driver Override: If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL instance is present in
the system, then the EFI Platform Driver Override Protocol service of this protocol is used to retrieve an or-
dered list of image handles for ControllerHandle. From this list, the image handles found in rule (1) above are
removed. The first image handle returned from GetDriver() has the highest precedence, and the last image handle
returned from GetDriver() has the lowest precedence. The ordered list is terminated when GetDriver() returns
EFI_NOT_FOUND. It is legal for no image handles to be returned by GetDriver(). There can be at most a single
instance in the system of the EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. If there is more than one,
then the system behavior is not deterministic.

3. Driver Family Override Search : The list of available driver image handles can be found by using the
boot service EFI_BOOT _SERVICES.LocateHandle() with a SearchType of ByProtocol for the GUID of the
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL. From this list, the image handles found in rules (1), and
(2) above are removed. The remaining image handles are sorted from highest to lowest based on the value
returned from the GetVersion() function of the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL associated
with each image handle.

4. Bus Specific Driver Override: If there is an instance of the EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

attached to ControllerHandle, then the EFI Platform Driver Override Protocol service of this protocol is used
to retrieve an ordered list of image handle for ControllerHandle. From this list, the image handles found in
rules (1), (2), and (3) above are removed. The first image handle returned from GetDriver() has the highest
precedence, and the last image handle returned from GetDriver() has the lowest precedence. The ordered list
is terminated when GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver().

5. Driver Binding Search: The list of available driver image handles can be found by using the boot
service EFI_BOOT_SERVICES.LocateHandle() with a SearchType of ByProtocol for the GUID of the
EFI_DRIVER_BINDING_PROTOCOL. From this list, the image handles found in rules (1), (2), (3), and (4)
above are removed. The remaining image handles are sorted from highest to lowest based on the Version field of
the EFI_DRIVER_BINDING_PROTOCOL instance associated with each image handle.

Each of the five groups of image handles listed above is tested against ControllerHandle in order by using the
EFI_DRIVER _BINDING _PROTOCOL.Supported() . RemainingDevicePath is passed into Supported() unmodified.
The first image handle whose Supported() service returns EFI_SUCCESS is marked so the image handle will not be
tried again during this call to ConnectController(). Then, EFI_DRIVER_BINDING _PROTOCOL.Start() service of the
EFI_DRIVER_BINDING_PROTOCOL is called for ControllerHandle. Once again, RemainingDevicePath is passed
in unmodified. Every time Supported() returns EFI_SUCCESS, the search for drivers restarts with the highest prece-
dence image handle. This process is repeated until no image handles pass the Supported() check.

If at least one image handle returned EFI_SUCCESS from its Start() service, then EFI_SUCCESS is returned.

If no image handles returned EFI_SUCCESS from their Start() service then EFI_NOT_FOUND is returned unless
RemainingDevicePath is not NULL, and RemainingDevicePath is an End Node. In this special case, EFI_SUCCESS
is returned because it is not an error to fail to start a child controller that is specified by an End Device Path Node.

7.3. Protocol Handler Services 185

Protocols%20UEFI%20Driver%20Model.htm#Start()

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Status Codes Returned

EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI _SUCCESS No drivers were connected to ControllerHandle, but RemainingDevicePath
is not NULL, and it is an End Device Path Node.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_NOT_FOUND There are no EFI_DRIVER_BINDING_PROTOCOL instances present in
the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the device path
associated with the ControllerHandle or specified by the RemainingDevi-
cePath.

Examples
//

// Connect All Handles Example
// The following example recursively connects all controllers in a platform.

/7

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,

NULL,

NULL,

&HandleCount,

&HandleBuffer

DE

if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = gBS->ConnectController (
HandleBuffer[HandleIndex],

NULL,
NULL,
TRUE
N
}
gBS->FreePool (HandleBuffer) ;
}
//

// Connect Device Path Example
// The following example walks the device path nodes of a device path, and
// connects only the drivers required to force a handle with that device path

(continues on next page)

7.3. Protocol Handler Services 186

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

// to be present in the handle database. This algorithms guarantees that
// only the minimum number of devices and drivers are initialized.

//

EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE Handle;

do {

//

// Find the handle that best matches the Device Path. If it is only a
// partial match the remaining part of the device path is returned in
// RemainingDevicePath.
//
RemainingDevicePath = DevicePath;
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&RemainingDevicePath,
&Handle
DE
if (EFI_ERROR(Status)) {
return EFI_NOT_FOUND;
}

//
// Connect all drivers that apply to Handle and RemainingDevicePath
// If no drivers are connected Handle, then return EFI_NOT_FOUND
// The Recursive flag is FALSE so only one level will be expanded.
//
Status = gBS->ConnectController (

Handle,

NULL,

RemainingDevicePath,

FALSE

);

if (EFI_ERROR(Status)) {
return EFI_NOT_FOUND;
}

/7

// Loop until RemainingDevicePath is an empty device path

//
} while (!IsDevicePathEnd (RemainingDevicePath));

//
// A handle with DevicePath exists in the handle database

//
return EFI_SUCCESS;

7.3. Protocol Handler Services 187

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.13 EFI_BOOT_SERVICES.DisconnectController()

Summary
Disconnects one or more drivers from a controller.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_DISCONNECT_CONTROLLER) (
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE DriverImageHandle OPTIONAL,
IN EFI_HANDLE ChildHandle OPTIONAL
s

Parameters

ControllerHandle
The handle of the controller from which driver(s) are to be disconnected.

DriverImageHandle
The driver to disconnect from ControllerHandle. If DriverImageHandle is NULL, then all the drivers currently
managing ControllerHandle are disconnected from ControllerHandle.

ChildHandle
The handle of the child to destroy. If ChildHandle is NULL, then all the children of ControllerHandle are
destroyed before the drivers are disconnected from ControllerHandle.

Description

This function disconnects one or more drivers from the controller specified by ControllerHandle. If DriverImageHan-
dle is NULL, then all of the drivers currently managing ontrollerHandle are disconnected from ControllerHandle. 1f
DriverImageHandle is not NULL, then only the driver specified by DriverlmageHandle is disconnected from Con-
trollerHandle. If ChildHandle is NULL, then all of the children of ControllerHandle are destroyed before the drivers
are disconnected from ControllerHandle. If ChildHandle is not NULL, then only the child controller specified by
ChildHandle is destroyed. If ChildHandle is the only child of ControllerHandle, then the driver specified by Driver-
ImageHandle will be disconnected from ontrollerHandle. A driver is disconnected from a controller by calling the
Stop() service of the EFI_DRIVER_BINDING_PROTOCOL. The EFI_DRIVER_BINDING_PROTOCOL is on the
driver image handle, and the handle of the controller is passed into the Stop() service. The list of drivers managing
a controller, and the list of children for a specific controller can be retrieved from the handle database with the boot
service EFI_BOOT _SERVICES.OpenProtocollnformation(). If all the required drivers are disconnected from Con-
trollerHandle, then EFI_SUCCESS is returned.

If ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned. If no drivers are managing Controller-
Handle, then EFI_SUCCESS is returned. If DriverImageHandle is not NULL, and DriverlmageHandle is not a valid
EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If DriverlmageHandle is not NULL, and Driverlm-
ageHandle is not currently managing ControllerHandle, then EFI_SUCCESS is returned. If ChildHandle is not NULL,
and ChildHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If there are not enough
resources available to disconnect drivers from ControllerHandle, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS One or more drivers were disconnected from the controller.
EFI_SUCCESS On entry, no drivers are managing ControllerHandle.
EFI_SUCCESS DriverlmageHandle is not NULL, and on entry DriverlmageHandle is not

managing ControllerHandle.

continues on next page

7.3. Protocol Handler Services 188

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.26 — continued from previous page

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER DriverlmageHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers from
ControllerHandle.

EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.

EFI_INVALID_PARAMETER DriverlmageHandle does not support the

EFI_DRIVER_BINDING_PROTOCOL.

Examples

//

// Disconnect All Handles Example

// The following example recursively disconnects all drivers from all
// controllers in a platform

//
EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandlelIndex;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,

NULL,

NULL,

&HandleCount,

&HandleBuffer

);

if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = ¢gBS->DisconnectController (
HandleBuffer[HandleIndex],
NULL,
NULL
N

}
gBS->FreePool (HandleBuffer);

7.3. Protocol Handler Services 189

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.14 EFI_BOOT_SERVICES.ProtocolsPerHandle()

Summary
Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated from pool.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PROTOCOLS_PER_HANDLE) (
IN EFI_HANDLE Handle,
OUT EFI_GUID ***ProtocolBuffer,
OUT UINTN *“ProtocolBufferCount
s

Parameters

Handle
The handle from which to retrieve the list of protocol interface GUIDs.

ProtocolBuffer
A pointer to the list of protocol interface GUID pointers that are installed on Handle. This buffer is allocated with
a call to the Boot Service EFI_BOOT_SERVICES.AllocatePool() . It is the caller’s responsibility to call the Boot
Service EFI_BOOT_SERVICES.FreePool() when the caller no longer requires the contents of ProtocolBuffer.

ProtocolBuffer Count
A pointer to the number of GUID pointers present in ProtocolBuffer.

Description

The ProtocolsPerHandle() function retrieves the list of protocol interface GUIDs that are installed on Handle. The list
is returned in ProtocolBuffer, and the number of GUID pointers in ProtocolBuffer is returned in ProtocolBufferCount.

If Handle is NULL or Handle is NULL, then EFI_INVALID_ PARAMETER is returned.

If ProtocolBuffer is NULL, then EFI_INVALID_PAREMETER is returned.

If ProtocolBufferCount is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuffer, then EFI_OUT_OF_RESOURCES is returned.
Status Codes Returned

EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was returned in
ProtocolBuffer. The number of protocol interface GUIDs was returned in
ProtocolBufferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER ProtocolBuffer is NULL.

EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.

Examples

See example in the EFI_BOOT _SERVICES.LocateHandleBuffer() function description for an example on how Lo-
cateHandleBuffer(), EFI_BOOT_SERVICES.ProtocolsPerHandle() , EFI_BOOT_SERVICES.OpenProtocol() . and
EFI_BOOT_SERVICES.OpenProtocollnformation() can be used to traverse the entire handle database.

7.3. Protocol Handler Services 190

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.15 EFI_BOOT_SERVICES.LocateHandleBuffer()

Summary

Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_HANDLE_BUFFER) (
IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID “Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
OUT UINTN “NoHandles,
OUT EFI_HANDLE “*Buffer
)

Parameters

SearchType

Specifies which handle(s) are to be returned.

Protocol
Provides the protocol to search by. This parameter is only valid for a SearchType of ByProtocol.

SearchKey
Supplies the search key depending on the SearchType.

NoHandles
The number of handles returned in Buffer.

Buffer
A pointer to the buffer to return the requested array of handles that support Profocol. This buffer is allocated
with a call to the Boot Service EFI_BOOT _SERVICES.AllocatePool() . It is the caller’s responsibility to call the
Boot Service EFI_BOOT_SERVICES.FreePool() when the caller no longer requires the contents of Buffer.

Description

The LocateHandleBuffer() function returns one or more handles that match the SearchType request. Buffer is allocated
from pool, and the number of entries in Buffer is returned in NoHandles. Each SearchType is described below:

AllHandles
Protocol and SearchKey are ignored and the function returns an array of every handle in the system.
ByRegisterNotify

SearchKey supplies the Registration returned by EFI_BOOT_SERVICES.RegisterProtocolNotify() . The function re-
turns the next handle that is new for the Registration. Only one handle is returned at a time, and the caller must loop
until no more handles are returned. Protocol is ignored for this search type.

ByProtocol

All handles that support Protocol are returned. SearchKey is ignored for this search type.

If NoHandles is NULL, then EFI_INVALID_PARAMETER is returned.

If Buffer is NULL, then EFI_INVALID_PARAMETER is returned.

If there are no handles in the handle database that match the search criteria, then EFI_NOT_FOUND is returned.
If there are not enough resources available to allocate Buffer, then EFI_OUT_OF_RESOURCES is returned.

7.3. Protocol Handler Services 191

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Status Codes Returned

EFI_SUCCESS The array of handles was returned in Buffer, and the number of handles in
Buffer was returned in NoHandles.

EFI_INVALID_PARAMETER NoHandles is NULL

EFI_INVALID_PARAMETER Buffer is NULL

EFI_NOT_FOUND
EFI_OUT_OF_RESOURCES

No handles match the search.
There is not enough pool memory to store the matching results.

Examples

//

// The following example traverses the entire handle database. First all of
// the handles in the handle database are retrieved by using

// LocateHandleBuffer(). Then it uses ProtocolsPerHandle() to retrieve the

// list of protocol GUIDs attached to each handle. Then it uses OpenProtocol()
// to get the protocol instance associated with each protocol GUID on the

// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of
// agents that have opened the protocol on the handle. The caller of these

// functions must make sure that they free the return buffers with FreePool()
// when they are done.

//
EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandlelIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,

NULL,

NULL,

&HandleCount,

&HandleBuffer

);

if (!EFI_ERROR (Status)) {

for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {

//

// Retrieve the list of all the protocols on each handle

//

Status = gBS->ProtocolsPerHandle (

(continues on next page)

7.3. Protocol Handler Services

192

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

HandleBuffer[HandleIndex],
&ProtocolGuidArray,
&ArrayCount
);
if (!EFI_ERROR (Status)) {
for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {

//

// Retrieve the protocol instance for each protocol

//

Status = gBS->OpenProtocol (
HandleBuffer[HandleIndex],
ProtocolGuidArray[ProtocolIndex],

&Instance,

ImageHandle,

NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
K

//

// Retrieve the list of agents that have opened each protocol

//

Status = gBS->OpenProtocolInformation (
HandleBuffer[HandleIndex],
ProtocolGuidArray[ProtocolIndex],

&0OpenInfo,
&0OpenInfoCount
s
if (!EFI_ERROR (Status)) {
for (OpenInfoIndex=0;0penInfoIndex<OpenInfoCount;OpenInfoIndex++) {
//
// HandleBuffer[HandleIndex] is the handle
// ProtocolGuidArray[ProtocolIndex] is the protocol GUID
// Instance is the protocol instance for the protocol
// OpenInfo[OpenInfoIndex] is an agent that has opened a protocol
//
}
if (OpenInfo != NULL) {
gBS->FreePool (OpenInfo) ;
}
}
}
if (ProtocolGuidArray != NULL) {
gBS->FreePool (ProtocolGuidArray) ;
}
}
}
if (HandleBuffer != NULL) {
gBS->FreePool (HandleBuffer);
}
}

7.3. Protocol Handler Services

193

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.3.16 EFI_BOOT_SERVICES.LocateProtocol()

Summary
Returns the first protocol instance that matches the given protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_LOCATE_PROTOCOL) (
IN EFI_GUID *Protocol,
IN VOID *Registration OPTIONAL,
OUT VOID **Interface

DE

Parameters

Protocol
Provides the protocol to search for.

Registration
Optional registration key returned from EFI_BOOT _SERVICES.RegisterProtocolNotify() . If Registration is
NULL, then it is ignored.

Interface
On return, a pointer to the first interface that matches Protocol and Registration.

Description

The LocateProtocol() function finds the first device handle that support Profocol, and returns a pointer to the protocol
interface from that handle in Interface. If no protocol instances are found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.
If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support Profocol, then EFI_NOT_FOUND
is returned.

If Registration is not NULL, and there are no new handles for Registration, then EFI_NOT_FOUND is returned.
Status Codes Returned

EFI_SUCCESS A protocol instance matching Protocol was found and returned in Interface.
EFI_INVALID_PARAMETER Interface is NULL. Protocol is NULL.
EFI_NOT_FOUND No protocol instances were found that match Protocol and Registration.

7.3.17 EFI_BOOT_SERVICES.InstallMultipleProtocolinterfaces()

Summary
Installs one or more protocol interfaces into the boot services environment.

Prototype

typedef
EFI_STATUS
EFTAPI *EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES) (

(continues on next page)

7.3. Protocol Handler Services 194

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

IN OUT EFI_HANDLE *Handle,
);
Parameters
Handle
The pointer to a handle to install the new protocol interfaces on, or a pointer to NULL if a new handle is to be
allocated.

... A variable argument list containing pairs of protocol GUIDs and protocol interfaces.
Description

This function installs a set of protocol interfaces into the boot services environment. It removes arguments from
the variable argument list in pairs. The first item is always a pointer to the protocol’s GUID, and the sec-
ond item is always a pointer to the protocol’s interface. These pairs are used to call the boot service, see
EFI_BOOT_SERVICES.InstallProtocollnterface() to add a protocol interface to Handle. If Handle is NULL on entry,
then a new handle will be allocated. The pairs of arguments are removed in order from the variable argument list until
a NULL protocol GUID value is found. If any errors are generated while the protocol interfaces are being installed,
then all the protocols installed prior to the error will be uninstalled with the boot service

EFI_BOOT_SERVICES. UninstallProtocolInterface() before the error is returned. The same GUID cannot
be installed more than once onto the same handle.

It is illegal to have two handles in the handle database with identical device paths. This service performs a test to
guarantee a duplicate device path is not inadvertently installed on two different handles. Before any protocol interfaces
are installed onto Handle, the list of GUID/pointer pair parameters are searched to see if a Device Path Protocol instance
is being installed. If a Device Path Protocol instance is going to be installed onto Handle, then a check is made to see
if a handle is already present in the handle database with an identical Device Path Protocol instance. If an identical
Device Path Protocol instance is already present in the handle database, then no protocols are installed onto Handle,
and EFI_ALREADY_STARTED is returned.

Status Codes Returned

EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in the
handle database.

EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by Handle.

7.3.18 EFI_BOOT_SERVICES.UninstallMultipleProtocollnterfaces()

Summary
Removes one or more protocol interfaces into the boot services environment.

Prototype

typedef

EFI_STATUS

EFIAPI *EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES) (
IN EFI_HANDLE Handle,

(continues on next page)

7.3. Protocol Handler Services 195

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

);

Parameters

Handle
The handle to remove the protocol interfaces from.

... A variable argument list containing pairs of protocol GUIDs and protocol interfaces.
Description

This function removes a set of protocol interfaces from the boot services environment. It removes arguments
from the variable argument list in pairs. The first item is always a pointer to the protocol’s GUID, and the
second item is always a pointer to the protocol’s interface. These pairs are used to call the boot service
EFI_BOOT_SERVICES.UninstallProtocollnterface() to remove a protocol interface from Handle. The pairs of ar-
guments are removed in order from the variable argument list until a NULL protocol GUID value is found. If all of the
protocols are uninstalled from Handle, then EFI_SUCCESS is returned. If any errors are generated while the protocol
interfaces are being uninstalled, then the protocols uninstalled prior to the error will be reinstalled with the boot service
EFI_BOOT_SERVICES.InstallProtocollnterface() and the status code EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS All the protocol interfaces were removed.
EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on Handle.

7.4 Image Services

Three types of images can be loaded: UEFI applications written (UEFI Applications , UEFI boot services drivers
(UEFI Drivers), and EFI runtime drivers (UEFI Drivers) . A UEFI OS Loader (UEFI OS Loaders) is a type of UEFI
application. The most significant difference between these image types is the type of memory into which they are
loaded by the firmware’s loader. See the Table, below, Image Type Differences Summary summarizes the differences
between images.

Table 7.30: Image Type Differences Summary

UEFI Application UEFI Boot Service UEFI Runtime Driver
Driver

continues on next page

7.4. Image Services 196

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.30 — continued from previous page

Descrip- A transient application A program that is loaded A program that is loaded into runtime
tion that is loaded during boot into boot services mem- services memory and stays resident dur-
services time. UEFI appli- ory and stays resident un- ing runtime. The memory required for
cations are either unloaded til boot services terminate. a UEFI runtime services driver must be
when they complete (see See UEFI Drivers . performed in a single memory allocation,
UEFI Applications , or and marked as EfiRuntimeServicesData.
they take responsibility (Note that the memory only stays resi-
for the continued oper- dent when booting an EFI-compatible op-
ation of the system via erating system. Legacy operating sys-
ExitBootServices() (see tems will reuse the memory.) See UEFI
UEFI OS Loaders . The Drivers .
UEFI applications are
loaded in sequential order
by the boot manager, but
one UEFI application may
dynamically load another.
Loaded EfiLoaderCode, EfiLoad- EfiBootServicesCode, EfiRuntimeServicesCode, EfiRuntime-
into mem- erData EfiBootServicesData ServicesData
ory type
Default EfiLoaderData EfiBootServicesData EfiRuntimeServicesData
pool al-
locations
from
memory
type
Exit behav- When an application exits, When a UEFI boot ser- When a UEFI runtime driver exits with
ior firmware frees the mem- vice driver exits with an an error code, firmware frees the memory
ory used to hold its image. error code, firmware frees used to hold its image. When a UEFI run-
the memory used to hold time services driver’s entry point com-
its image. When a UEFI pletes with EFI_SUCCESS, the image is
boot service driver’s en- retained in memory.
try point completes with
EFI_SUCCESS, the im-
age is retained in memory.
Notes This type of image would This type of image would A UEFI runtime driver can only allo-

not install any protocol in-
terfaces or handles.

typically use InstallProto-
collnterface().

cate runtime memory during boot ser-
vices time. Due to the complexity of per-
forming a virtual relocation for a runtime
image, this driver type is discouraged un-
less it is absolutely required.

Most UEFI images are loaded by the boot manager. When a UEFI application or UEFI driver is installed, the in-
stallation procedure registers itself with the boot manager for loading. However, in some cases a UEFI applica-
tion or UEFI driver may want to programmatically load and start another UEFI image. This can be done with the
EFI_BOOT_SERVICES.Loadlmage() and EFI_BOOT_SERVICES.StartImage() interfaces. UEFI drivers may only
load UEFI applications during the UEFI driver’s initialization entry point. The Table, below, Image Functions lists
the functions that make up Image Services.

Table 7.31: Image Functions

Name
LoadImage

Description
Loads an EFI image into memory.

continues on next page

Type
Boot

7.4. Image Services 197

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 7.31 — continued from previous page

StartImage Boot Transfers control to a loaded image’s entry point.
UnloadImage Boot Unloads an image.
EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

The Image boot services have been modified to take advantage of the information that is now being tracked with the
EFI_BOOT_SERVICES.OpenProtocol() and EFI_BOOT _SERVICES.CloseProtocol() boot services. Since the usage
of protocol interfaces is being tracked with these new boot services, it is now possible to automatically close protocol
interfaces when a UEFI application or a UEFI driver is unloaded or exited.

7.4.1 EFI_BOOT_SERVICES.Loadlmage()

Summary

Loads an EFI image into memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_LOAD) (
IN BOOLEAN BootPolicy,
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH_PROTOCOL “DevicePath OPTIONAL,
IN VOID *SourceBuffer OPTIONAL
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle
D
Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the boot manager is attempting
to load DevicePath as a boot selection. Ignored if SourceBuffer is not NULL.

ParentImageHandle
The caller’s image handle. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocollnterface() function description. This field is used to initialize the
ParentHandle field of the EFI Loaded Image Protocol for the image that is being loaded.

DevicePath
The DeviceHandle specific file path from which the image is loaded. EFI_DEVICE_PATH_PROTOCOL is
defined in EFI Device Path Protocol .

SourceBuffer
If not NULL, a pointer to the memory location containing a copy of the image to be loaded.

SourceSize
The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.

ImageHandle
Pointer to the returned image handle that is created when the image is successfully loaded. Type EFI_HANDLE
is defined in the InstallProtocollnterface() function description.

Related Definitions

7.4. Image Services 198

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

#define EFI_HII_PACKAGE_LIST_PROTOCOL_GUID \
{ Ox6alee763, Oxd47a, Ox43b4, \
{ Oxaa, Oxbe, Oxef, Ox1d, Oxe2, Oxab, 0x56, Oxfc } }

typedef EFI_HII_PACKAGE_LIST_HEADER *EFI_HII_PACKAGE_LIST_PROTOCOL;

Description

The Loadlmage() function loads an EFI image into memory and returns a handle to the image. The image is loaded in
one of two ways.

* If SourceBuffer is not NULL, the function is a memory-to-memory load in which SourceBuffer points to the
image to be loaded and SourceSize indicates the image’s size in bytes. In this case, the caller has copied the
image into SourceBuffer and can free the buffer once loading is complete. The DevicePath is optional in this
case. A DevicePath should still be provided since certain portions of firmware may use it to make certain security
policy decisions.

o If SourceBuffer is NULL, the function is a file copy operation that wuses the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL .

If there is no instance of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL associated with file path,
then this function will attempt to use EFI_LOAD_FILE_PROTOCOL (BootPolicy is TRUE) or
EFI_LOAD_FILE2_PROTOCOL, and then EFI_LOAD_FILE_PROTOCOL (BootPolicy is FALSE).

In all cases, this function will use the instance of these protocols associated with the handle that most closely matches
DevicePath will be used. See the boot service description for more information on how the closest handle is located.

* Inthe case of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the path name from the File Path Media Device Path
node(s) of DevicePath is used.

¢ In the case of EFI_LOAD_FILE_PROTOCOL, the remaining device path nodes of DevicePath and the BootPol-
icy flag are passed to the EFI_LOAD_FILE_PROTOCOL function. The default image responsible for booting is
loaded when DevicePath specifies only the device (and there are no further device nodes). For more information
see the discussion of EFI_LOAD_FILE_PROTOCOL .

* In the case of EFI_LOAD_FILE2_PROTOCOL, the behavior is the same as above, except that it is only used if
BootOption is FALSE. For more information, see the discussion of the EFI_LOAD_FILE2_PROTOCOL.

* If the platform supports driver signing, as specified in /mage Execution Information Table and the image signature
is not valid, then information about the image is recorded in the EFI_IMAGE_EXECUTION_INFO_TABLE
(see Using the Image Execution Information Table in section 32.4.2. {cross-reference needed} and
EFI_SECURITY_VIOLATION is returned.

« If the platform supports user authentication, as described in User Identification and loading of images on the
specified FilePath is forbidden in the current user profile, then the information about the image is recorded (see
Deferred Execution in Image Execution Information Table and EFI_SECURITY_VIOLATION is returned.

Once the image is loaded, firmware creates and returns an EFI._ HANDLE that identifies the image and supports EF/
Loaded Image Protocol and the EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL. The caller may fill in the
image’s “load options” data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling EFI_BOOT _SERVICES.Startlmage() . Also, once the image is loaded, the caller either starts it by
calling StartImage() or unloads it by calling EFI_BOOT_SERVICES.Unloadlmage() .

Once the image is loaded, Loadlmage() installs EFI_HII_PACKAGE_LIST_PROTOCOL on the handle if the image
contains a custom PE/COFF resource with the type ‘HII’. The protocol’s interface pointer points to the HII package
list which is contained in the resource’s data. The format of this is in £EFI HII PACKAGE _HEADER .

Status Codes Returned

7.4. Image Services 199

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND Both SourceBuffer and DevicePath are NULL.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_INVALID PARAMETER ParentlmageHandle is NULL.

EFI_INVALID_PARAMETER ParentlmageHandle is NULL.

EFI_UNSUPPORTED The image type is not supported.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not under-
stood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

EFI_ACCESS_DENIED Image was not loaded because the platform policy prohibits the image from
being loaded. NULL is returned in ImageHandle.

EFI_SECURITY_VIOLATION Image was loaded and an ImageHandle was created with a valid

EFI_LOADED_IMAGE_PROTOCOL. Howeyver, the current platform pol-
icy specifies that the image should not be started.

7.4.2 EFI_BOOT_SERVICES.Startimage()

Summary
Transfers control to a loaded image’s entry point.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_START) (
IN EFI_HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHARI16 **ExitData OPTIONAL
DN

Parameters

ImageHandle
Handle of 1image to be started. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

ExitDataSize
Pointer to the size, in bytes, of ExitData. If ExitData is NULL, then this parameter is ignored and the contents
of ExitDataSize are not modified.

ExitData
Pointer to a pointer to a data buffer that includes a Null-terminated string, optionally followed by additional
binary data. The string is a description that the caller may use to further indicate the reason for the image’s exit.

Description

The Startlmage() function transfers control to the entry point of an image that was loaded by
EFI_BOOT_SERVICES.Loadlmage() . The image may only be started one time.

Control returns from StartImage() when the loaded image’s EFI_IMAGE_ENTRY_POINT returns or when the loaded
image calls EFI_BOOT_SERVICES.Exit() When that call is made, the ExitData buffer and ExitDataSize from Exit()
are passed back through the ExitData buffer and ExitDataSize in this function. The caller of this function is responsible
for returning the ExitData buffer to the pool by calling EFI_BOOT _SERVICES.FreePool() when the buffer is no longer

7.4. Image Services 200

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

needed. Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that Exit() may
also return additional ExitData. Exit() function description defines clean up procedure performed by the firmware once
loaded image returns control.

EFI 1.10 Extension

To maintain compatibility with UEFI drivers that are written to the EFI 1.02 Specification, Startlmage() must monitor
the handle database before and after each image is started. If any handles are created or modified when an image is
started, then EFI_BOOT_SERVICES.ConnectController() must be called with the Recursive parameter set to TRUE
for each of the newly created or modified handles before StartImage() returns.

Status Codes Returned

EFI_INVALID_PARAMETER ImageHandle is either an invalid image handle or the image has already been
initialized with StartImage

Exit code from image Exit code from image.

EFI_SECURITY_VIOLATION The current platform policy specifies that the image should not be started.

7.4.3 EFI_BOOT_SERVICES.Unloadlmage()

Summary
Unloads an image.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_UNLOAD) (
IN EFI_HANDLE ImageHandle
s

Parameters

ImageHandle
Handle that identifies the image to be unloaded.

Description
The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the image and returns
EFI_SUCCESS.

If the image has been started and has an Unload() entry point, control is passed to that entry point. If the image’s unload
function returns EFI_SUCCESS, the image is unloaded; otherwise, the error returned by the image’s unload function
is returned to the caller. The image unload function is responsible for freeing all allocated memory and ensuring that
there are no references to any freed memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns EFI_UNSUPPORTED.
EFI 1.10 Extension

All of the protocols that were opened by ImageHandle using the boot service EFI_BOOT_SERVICES.OpenProtocol()
are automatically closed with the boot service EFI_BOOT_SERVICES.CloseProtocol() . If all of the open protocols are
closed, then EFI_SUCCESS is returned. If any call to CloseProtocol() fails, then the error code from CloseProtocol()
is returned.

Status Codes Returned

7.4. Image Services 201

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.
EFI INVALID PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from the image’s unload function.

7.4.4 EFI_IMAGE_ENTRY_POINT

Summary

This is the declaration of an EFI image entry point. This can be the entry point to an application written to this
specification, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE “SystemTable
D

Parameters

ImageHandle
Handle that identifies the loaded image. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

SystemTable
System Table for this image. Type EFI_SYSTEM_TABLE is defined in EFT System Table

Description

An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image into memory, control
is passed to the image’s entry point. The entry point is responsible for initializing the image. The image’s Image-
Handle is passed to the image. The ImageHandle provides the image with all the binding and data information it
needs. This information is available through protocol interfaces. However, to access the protocol interfaces on Im-
ageHandle requires access to boot services functions. Therefore, EFI_BOOT_SERVICES.Loadlmage() passes to the
EFI_IMAGE_ENTRY_POINT a SystemTable that is inherited from the current scope of LoadImage().

Allimage handles support the EFI Loaded Image Protocol and the EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL.
These protocol can be used to obtain information about the loaded image’s state—for example, the device from which

the image was loaded and the image’s load options. In addition, the ImageHandle may support other protocols
provided by the parent image.

If the image supports dynamic unloading, it must supply an wunload function in the
EFI_LOADED_IMAGE_PROTOCOL structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling EFI_ BOOT _SERVICES.EXxit() or by
returning control from its entry point. If the image returns control from its entry point, the firmware passes control to
Exit() using the return code as the ExitStatus parameter to Exit().

See Exit() below for entry point exit conditions.

7.4. Image Services 202

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.4.5 EFI_BOOT_SERVICES.EXxit()

Summary
Terminates a loaded EFI image and returns control to boot services.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_EXIT) (
IN EFI_HANDLE ImageHandle,
IN EFI_STATUS ExitStatus,
IN UINTN ExitDataSize,
IN CHAR16 *ExitData OPTIONAL
D

Parameters

ImageHandle
Handle that identifies the image. This parameter is passed to the image on entry.

ExitStatus
The image’s exit code.

ExitDataSize
The size, in bytes, of ExitData. Ignored if ExitStatus is EFI_SUCCESS.

ExitData
Pointer to a data buffer that includes a Null-terminated string, optionally followed by additional binary data. The
string is a description that the caller may use to further indicate the reason for the image’s exit. ExitData is
only valid if ExitStatu is something other than EFI_SUCCESS. The ExitData buffer must be allocated by calling
EFI_BOOT_SERVICES.AllocatePool() .

Description

The Exit() function terminates the image referenced by ImageHandle and returns control to boot services. This function
may not be called if the image has already returned from its entry point (EFI_IMAGE_ENTRY_POINT) or if it has
loaded any child images that have not exited (all child images must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that Exit() may also return
additional ExitData.

When an application exits a compliant system, firmware frees the memory used to hold the image. The firmware also
frees its references to the ImageHandle and the handle itself. Before exiting, the application is responsible for freeing
any resources it allocated. This includes memory (pages and/or pool), open file system handles, and so forth. The only
exception to this rule is the ExitData buffer, which must be freed by the caller of EFI_BOOT_SERVICES.StartImage()
. (If the buffer is needed, firmware must allocate it by calling EFI_BOOT_SERVICES.AllocatePool() and must return
a pointer to it to the caller of StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if the ExitStatus is an
error code; otherwise the image stays resident in memory. The driver must not return an error code if it has installed
any protocol handlers or other active callbacks into the system that have not (or cannot) be cleaned up. If the driver
exits with an error code, it is responsible for freeing all resources before exiting. This includes any allocated memory
(pages and/or pool), open file system handles, and so forth.

It is valid to call Exit() or UnloadImage() for an image that was loaded by EFI_BOOT_SERVICES.Loadlmage() before
calling EFI_BOOT_SERVICES.Startlmage() . This will free the image from memory without having started it.

EFI 1.10 Extension

7.4. Image Services 203

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

If ImageHandle is a UEFI application, then all of the protocols that were opened by ImageHandle us-
ing the boot service EFI_BOOT_SERVICES.OpenProtocol() are automatically closed with the boot service
EFI_BOOT _SERVICES.CloseProtocol() . If ImageHandle is a UEFI boot service driver or UEFI runtime service
driver, and ExitStatus is an error code, then all of the protocols that were opened by ImageHandle using the boot ser-
vice OpenProtocol() are automatically closed with the boot service CloseProtocol(). If ImageHandle is a UEFI boot
service driver or UEFI runtime service driver, and ExitStatus is not an error code, then no protocols are automatically
closed by this service.

Status Codes Returned

(Does not return.) Image exit. Control is returned to the StartImage() call that invoked the im-
age specified by ImageHandle.
EFI_SUCCESS The image specified by ImageHandle was unloaded. This condition only

occurs for images that have been loaded with Loadlmage() but have not been
started with StartImage().

EFI_INVALID_PARAMETER The image specified by ImageHandle has been loaded and started with Load-
Image() and StartImage(), but the image is not the currently executing image.

7.4.6 EFI_BOOT_SERVICES.ExitBootServices()

Summary
Terminates all boot services.

Prototype

EFI_STATUS

(EFIAPI *EFI_EXIT_BOOT_SERVICES) (
IN EFI_HANDLE ImageHandle,
IN UINTN MapKey
)3

Parameters

ImageHandle
Handle that identifies the exiting image. Type EFI_HANDLE is defined in the Image Execution Information
Table function description.

MapKey
Key to the latest memory map.

Description

The ExitBootServices() function is called by the currently executing UEFI OS loader image to termi-
nate all boot services. = On success, the UEFI OSloader becomes responsible for the continued oper-
ation of the system. All events from the EFI_EVENT_GROUP_BEFORE_EXIT_BOOT_SERVICES
and EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event notification groups as well as events of type
EVT_SIGNAL_EXIT_BOOT_SERVICES must be signaled before ExitBootServices() returns EFI_SUCCESS.
The events are only signaled once even if ExitBootServices() is called multiple times.

A UEFI OS loader must ensure that it has the system’s current memory map at the time it calls Ex-
itBootServices(). This is done by passing in the current memory map’s MapKey value as returned by
EFI_BOOT_SERVICES.GetMemoryMap() . Care must be taken to ensure that the memory map does not change be-
tween these two calls. It is suggested that GetMemoryMap() be called immediately before calling ExitBootServices().
If MapKey value is incorrect, ExitBootServices() returns EFI_INVALID_PARAMETER and GetMemoryMap() with
ExitBootServices() must be called again. Firmware implementation may choose to do a partial shutdown of the boot

7.4. Image Services 204

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

services during the first call to ExitBootServices(). A UEFI OS loader should not make calls to any boot service
function other than Memory Allocation Services after the first call to ExitBootServices().

On success, the UEFI OS loader owns all available memory in the system. In addition, the UEFI OS loader can treat all
memory in the map marked as EfiBootServicesCode and EfiBootServicesData as available free memory. No further
calls to boot service functions or EFI device-handle-based protocols may be used, and the boot services watchdog timer
is disabled. On success, several fields of the EFI System Table should be set to NULL. These include ConsolelnHandle,
Conlin, ConsoleOutHandle, ConOut, StandardErrorHandle, StdErr, and BootServicesTable. In addition, since fields
of the EFI System Table are being modified, the 32-bit CRC for the EFI System Table must be recomputed.

Firmware must guarantee the following order of processing:
* EFI_EVENT_GROUP_BEFORE_EXIT_BOOT_SERVICES handlers are called.
» Timer services are deactivated (timer event activity stopped).

e EVT_SIGNAL_EXIT_BOOT_SERVICES and EFI_EVENT_GROUP_BEFORE_EXIT _BOOT_SERVICES
handlers are called.

NOTE: The EVT_SIGNAL_EXIT_BOOT_SERVICES event type and EFI_EVENT_GROUP_BEFORE_EXIT_BOOT_SERVICES
event group are functionally equivalent. Firmware does not distinguish between the two while ordering the handlers.

Refer to EFI_EVENT_GROUP_EXIT_BOOT_SERVICES description in the EFI_BOOT_SERVICES.CreateEventEx()
section above for additional restrictions on EXIT BOOT_SERVICES handlers.

Status Codes Returned

EFI_SUCCESS Boot services have been terminated.
EFI INVALID PARAMETER MapKey is incorrect.

7.5 Miscellaneous Boot Services

This section contains the remaining function definitions for boot services not defined elsewhere but which are required
to complete the definition of the EFI environment. The Table, below, lists the Miscellaneous Boot Services Functions.

Table 7.37: Miscellaneous Boot Services Functions

Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.
Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonic- Boot Returns a monotonically increasing count for the platform.

Count

InstallConfigura- Boot Adds, updates, or removes a configuration table from the EFI System
tionTable Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

The EFI_BOOT_SERVICES.CalculateCre32() service was added because there are several places in EFI that 32-bit
CRCs are used. These include the EFI System Table, the EFI Boot Services Table, the EFI Runtime Services Table,
and the GUID Partition Table (GPT) structures. The CalculateCrc32() service allows new 32-bit CRCs to be computed,
and existing 32-bit CRCs to be validated.

7.5. Miscellaneous Boot Services 205

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.5.1 EFI_BOOT_SERVICES.SetWatchdogTimer()

Summary
Sets the system’s watchdog timer.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SET_WATCHDOG_TIMER) ((
IN UINTN Timeout,
IN UINT64 WatchdogCode,
IN UINTN DataSize,
IN CHAR16 *WatchdogData OPTIONAL
D

Parameters

Timeout
The number of seconds to set the watchdog timer to. A value of zero disables the timer.

WatchdogCode
The numeric code to log on a watchdog timer timeout event. The firmware reserves codes 0x0000 to OxFFFF.
Loaders and operating systems may use other timeout codes.

DataSize
The size, in bytes, of WatchdogData.

WatchdogData
A data buffer that includes a Null-terminated string, optionally followed by additional binary data. The string is
a description that the call may use to further indicate the reason to be logged with a watchdog event.

Description
The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either reset with the Runtime
Service ResetSystem() or perform a platform specific action that must eventually cause the platform to be reset. The
watchdog timer is armed before the firmware’s boot manager invokes an EFI boot option. The watchdog must be set to
a period of 5 minutes. The EFI Image may reset or disable the watchdog timer as needed. If control is returned to the
firmware’s boot manager, the watchdog timer must be disabled.

The watchdog timer is only wused during boot services. On successful completion of
EFI_BOOT_SERVICES.ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

Status Codes Returned

EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.

EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware error.

7.5. Miscellaneous Boot Services 206

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.5.2 EFI_BOOT_SERVICES.Stall()

Summary
Induces a fine-grained stall.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_STALL) (
IN UINTN Microseconds
)

Parameters

Microseconds
The number of microseconds to stall execution.

Description

The Stall() function stalls execution on the processor for at least the requested number of microseconds. Execution of
the processor is not yielded for the duration of the stall.

Status Codes Returned

EFI_SUCCESS Execution was stalled at least the requested number of Microseconds.

7.5.3 EFI_BOOT_SERVICES.CopyMem()

Summary
The CopyMem() function copies the contents of one buffer to another buffer.

Prototype

typedef
VOID
(EFIAPI *EFI_COPY_MEM) (
IN VOID “Destination,
IN VOID *Source,
IN UINTN Length
s

Parameters

Destination
Pointer to the destination buffer of the memory copy.

Source
Pointer to the source buffer of the memory copy.

Length
Number of bytes to copy from Source to Destination.

7.5. Miscellaneous Boot Services 207

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Description
The CopyMem() function copies Length bytes from the buffer Source to the buffer Destination.

The implementation of CopyMem() must be reentrant, and it must handle overlapping Source and Destination buffers.
This means that the implementation of CopyMem() must choose the correct direction of the copy operation based on
the type of overlap that exists between the Source and Destination buffers. If either the Source buffer or the Destination
buffer crosses the top of the processor’s address space, then the result of the copy operation is unpredictable.

The contents of the Destination buffer on exit from this service must match the contents of the Source buffer on entry to
this service. Due to potential overlaps, the contents of the Source buffer may be modified by this service. The following
rules can be used to guarantee the correct behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination > Source and Destination < (Source + Length), then the data should be copied from the Source
buffer to the Destination buffer starting from the end of the buffers and working toward the beginning of the
buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer starting from the beginning
of the buffers and working toward the end of the buffers.

Status Codes Returned

None.

7.5.4 EFI_BOOT_SERVICES.SetMem()

Summary
The SetMem() function fills a buffer with a specified value.

Prototype

typedef
VOID
EFIAPI *EFI_SET_MEM) (
IN VOID “Buffer,
IN UINTN Size,
IN UINT8 Value
DN

Parameters

Buffer
Pointer to the buffer to fill.

Size
Number of bytes in Buffer to fill.

Value
Value to fill Buffer with.

Description

This function fills Size bytes of*Buffer*with Value. The implementation of SetMem() must be reentrant. If Buffer
crosses the top of the processor’s address space, the result of the SetMem() operation is unpredictable.

Status Codes Returned

None.

7.5. Miscellaneous Boot Services 208

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

7.5.5 EFI_BOOT_SERVICES.GetNextMonotonicCount()

Summary
Returns a monotonically increasing count for the platform.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_GET_NEXT_MONOTONIC_COUNT) (
OUT UINT64 *Count
DN

Parameters

Count
Pointer to returned value.

Description

The GetNextMonotonicCount() function returns a 64-bit value that is numerically larger then the last time the function
was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits. The low 32-bit value
is volatile and is reset to zero on every system reset. It is increased by 1 on every call to GetNextMonotonicCount().
The high 32-bit value is nonvolatile and is increased by one on whenever the system resets or the low 32-bit counter
overflows.

Status Codes Returned

EFI_SUCCESS The next monotonic count was returned.
EFI_DEVICE_ERROR The device is not functioning properly.
EFI_INVALID_PARAMETER Count is NULL.

7.5.6 EFI_BOOT_SERVICES.InstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_INSTALL_CONFIGURATION_TABLE) (
IN EFI_GUID *Guid,
IN VOID “Table
N

Parameters
Guid
A pointer to the GUID for the entry to add, update, or remove.

Table
A pointer to the configuration table for the entry to add, update, or remove. May be NULL.

7.5. Miscellaneous Boot Services 209

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Description

The InstallConfigurationTable() function is used to maintain the list of configuration tables that are stored in the EFI
System Table. The list is stored as an array of (GUID, Pointer) pairs. The list must be allocated from pool memory
with PoolType set to EfiRuntimeServicesData.

If Guid is NULL, EFI_INVALID_PARAMETER is returned. If Guid is valid, there are four possibilities:

If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table) pair is added to the
System Table. See Note below.

If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND is returned.

If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair is updated with the
new Table value.

If Guid is present in the System Table, and 7able is NULL , then the entry associated with Guid is removed from
the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

Note:

If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.
EFI_INVALID_PARAMETER Guid is NULL.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.
EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.

7.5.7 EFI_BOOT_SERVICES.CalculateCrc32()

Summary

Computes and returns a 32-bit CRC for a data buffer.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_CALCULATE_CRC32)

IN VOID *Data,

IN UINTN DataSize,
OUT UINT32 *Crc32

DE

Parameters

Data
A pointer to the buffer on which the 32-bit CRC is to be computed.

DataSize
The number of bytes in the buffer Data.

Crc32

The 32-bit CRC that was computed for the data buffer specified by Data and DataSize.

Description

7.5. Miscellaneous Boot Services

210

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

This function computes the 32-bit CRC for the data buffer specified by Data and *DataSize. If the 32-bit CRC is
computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Data is NULL, then EFI_INVALID_PARAMETER is returned.
If Crc32 is NULL, then EFI_INVALID_PARAMETER is returned.
If DataSize is 0, then EFI_INVALID_PARAMETER is returned.
Status Codes Returned

EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in Crc32.
EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER Crc32 is NULL.

EFI_INVALID_PARAMETER DataSize is 0.

7.5. Miscellaneous Boot Services 211

CHAPTER
EIGHT

SERVICES — RUNTIME SERVICES

This section discusses the fundamental services that are present in a compliant system. The services are defined by
interface functions that may be used by code running in the EFI environment. Such code may include protocols that
manage device access or extend platform capability, as well as applications running in the preboot environment and
EFI OS loaders.

Two types of services are described here:

* Boot Services. Functions that are available before a successful call to
EFI_BOOT_SERVICES.ExitBootServices(), described in EFI_BOOT_SERVICES.ExitBootServices() .

* Runtime Services. Functions that are available before and after any call to ExitBootServices(). These functions
are described in this section.

During boot, system resources are owned by the firmware and are controlled through boot services interface functions.
These functions can be characterized as “global” or “handle-based.” The term “global” simply means that a function
accesses system services and is available on all platforms (since all platforms support all system services). The term
“handle-based” means that the function accesses a specific device or device functionality and may not be available on
some platforms (since some devices are not available on some platforms). Protocols are created dynamically. This
section discusses the “global” functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access devices and allocate memory.
On entry, an image is provided a pointer to a system table which contains the Boot Services dispatch table and the default
handles for accessing the console. All boot services functionality is available until a UEFI OS loader loads enough of
its own environment to take control of the system’s continued operation and then terminates boot services with a call
to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to indicate that its loader is ready
to assume control of the platform and all platform resource management. Thus boot services are available up to this
point to assist the UEFI OS loader in preparing to boot the operating system. Once the UEFI OS loader takes control
of the system and completes the operating system boot process, only runtime services may be called. Code other than
the UEFI OS loader, however, may or may not choose to call ExitBootServices(). This choice may in part depend upon
whether or not such code is designed to make continued use of EFI boot services or the boot services environment.

The rest of this section discusses individual functions. Runtime Services fall into these categories:
¢ Runtime Rules and Restrictions (Runtime Services Rules and Restrictions)
e Variable Services (Variable Services)
* Time Services (Time Services)
* Virtual Memory Services (Virtual Memory Services)

* Miscellaneous Services (Miscellaneous Runtime Services)

212

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.1 Runtime Services Rules and Restrictions

All of the Runtime Services may be called with interrupts enabled if desired. The Runtime Service functions will
internally disable interrupts when it is required to protect access to hardware resources. The interrupt enable control
bit will be returned to its entry state after the access to the critical hardware resources is complete.

All callers of Runtime Services are restricted from calling the same or certain other Runtime Service functions prior
to the completion and return of a previous Runtime Service call. These restrictions apply to:

* Runtime Services that have been interrupted
* Runtime Services that are active on another processor.

Callers are prohibited from using certain other services from another processor or on the same processor following an
interrupt as specified in Rules for Reentry Into Runtime Services. For this table ‘Busy’ is defined as the state when a
Runtime Service has been entered and has not returned to the caller.

The consequence of a caller violating these restrictions is undefined except for certain special cases described below.

Table 8.1: Rules for Reentry Into Runtime Services

If previous call is busy in Forbidden to call

Any SetVirtual AddressMap()

ConvertPointer() ConvertPointer()
ResetSystem()

SetVariable(),

UpdateCapsule(),

SetTime()

SetWakeupTime(),

GetNextHighMonotonicCount()

GetVariable() GetVariable(),

GetNextVariableName() GetNextVariableName(),

SetVariable() SetVariable(),

Query VariableInfo() Query Variablelnfo(),

UpdateCapsule() UpdateCapsule(),

QueryCapsuleCapabilities()
GetNextHighMonotonicCount()

QueryCapsuleCapabilities(),
GetNextHighMonotonicCount()

GetTime() GetTime()
SetTime() SetTime()
GetWakeupTime() GetWakeupTime()
SetWakeupTime() SetWakeupTime()

If any EFI_RUNTIME_SERVICES*

supported for use by the OS at

EFI_RT_PROPERTIES_TABLE configuration table should be published describing which runtime services are
supported at runtime (EFI Configuration Table & Properties Table). Note that this is merely a hint to the OS, which
it is free to ignore, and so the platform is still required to provide callable implementations of unsupported runtime
services that simply return EFI_UNSUPPORTED.

8.1. Runtime Services Rules and Restrictions 213

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.1.1 Exception for Machine Check, INIT, and NMI

Certain asynchronous events (e.g., NMI on TA-32 and x64 systems, Machine Check and INIT on Itanium systems) can
not be masked and may occur with any setting of interrupt enabled. These events also may require OS level handler’s
involvement that may involve the invocation of some of the runtime services (see below).

If SetVirtual AddressMap() has been called, all calls to runtime services after Machine Check, INIT, or NMI, must be
made using the virtual address map set by that call.

A Machine Check may have interrupted a runtime service (see below). If the OS determines that the Machine Check
is recoverable, the OS level handler must follow the normal restrictions in the Table Rules for Reentry Into Runtime
Services.

If the OS determines that the Machine Check is non-recoverable, the OS level handler may ignore the normal restrictions
and may invoke the runtime services described in the Table Functions that may be called after Machine Check, INIT
and NMI even in the case where a previous call was busy. The system firmware will honor the new runtime service
call(s) and the operation of the previous interrupted call is not guaranteed. Any interrupted runtime functions will not
be restarted.

The INIT and NMI events follow the same restrictions.

NOTE: On Itanium systems, the OS Machine Check Handler must not call ResetSystem(). If a reset is required, the OS
Machine Check Handler may request SAL to reset upon return to SAL_CHECK.

The platform implementations are required to clear any runtime services in progress in order to enable the OS handler
to invoke these runtime services even in the case where a previous call was busy. In this case, the proper operation of
the original interrupted call is not guaranteed.

Table 8.2: Functions that may be called after Machine Check, INIT and

NMI
Function Called after Machine Check, INIT and NMI
GetTime() Yes, even if previously busy
GetVariable() Yes, even if previously busy
GetNextVari- Yes, even if previously busy
ableName()
QueryVariable- Yes, even if previously busy
Info()
SetVariable() Yes, even if previously busy
UpdateCap- Yes, even if previously busy
sule()
QueryCapsule- Yes, even if previously busy
Capabilities()
ResetSystem() Yes, even if previously busy

8.2 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the key) and arbitrary
data (the value). Variables are intended for use as a means to store data that is passed between the EFI environment
implemented in the platform and EFI OS loaders and other applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must be persistent in most
cases. This implies that the EFI implementation on a platform must arrange it so that variables passed in for storage
are retained and available for use each time the system boots, at least until they are explicitly deleted or overwritten.

8.2. Variable Services 214

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Provision of this type of nonvolatile storage may be very limited on some platforms, so variables should be used
sparingly in cases where other means of communicating information cannot be used.

The Table below lists the variable services functions described in this section:

Table 8.3: Variable Services Functions

Name Type Description

GetVari- Runtime Returns the value of a variable.

able

Get- Runtime Enumerates the current variable names.
NextVari-

ableName

SetVariable Runtime Sets the value of a variable.

QueryVari- Runtime Returns information about the EFI variables
ablelnfo

8.2.1 GetVariable()

Summary

Returns the value of a variable.

Prototype
typedef
EFI_STATUS
GetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data OPTIONAL
Db
Parameters
VariableName
A Null-terminated string that is the name of the vendor’s variable.
VendorGuid
A unique identifier for the vendor. Type EFI_GUID is defined in the

EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

Attributes
If not NULL, a pointer to the memory location to return the attributes bitmask for the variable. See
“Related Definitions.” If not NULL, then Attributes is set on output both when EFI_SUCCESS and when
EFI_BUFFER_TOO_SMALL is returned.

DataSize
On input, the size in bytes of the return Data buffer. On output the size of data returned in Data.

Data
The buffer to return the contents of the variable. May be NULL with a zero DataSize in order to determine the
size buffer needed.

Related Definitions

8.2. Variable Services 215

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

/7 % e e e e e e g e e e e S e e e e s e de e g de s e e e g e s e e

// Variable Attributes

// Tehdededd Tedkdededd o Yo Yo e NN

#define EFI_VARIABLE_NON_VOLATILE 0x00000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x00000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x00000004
#define EFI_VARIABLE_HARDWARE_ERROR_RECORD 0x00000008 \

//This attribute is identified by the mnemonic 'HR' elsewhere
//in this specification.

Reserved 0x00000010
#define EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS 0x00000020
#define EFI_VARIABLE_APPEND_WRITE 0x00000040
#define EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS 0x00000080

//This attribute indicates that the variable payload begins
//with an EFI_VARIABLE_AUTHENTICATION_3 structure, and
//potentially more structures as indicated by fields of this
//structure. See definition below and in SetVariable().

Description

Each vendor may create and manage its own variables without the risk of name conflicts by using a unique
VendorGuid. When a variable is set its Attributes are supplied to indicate how the data variable should be
stored and maintained by the system. The attributes affect when the variable may be accessed and volatil-
ity of the data. If EFI_BOOT_SERVICES.ExitBootServices() has already been executed, data variables with-
out the EFI_VARIABLE_RUNTIME_ACCESS attribute set will not be visible to GetVariable() and will return an
EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is returned
and DataSize is set to the required buffer size to obtain the data.

The EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS may be set in the returned Attributes
bitmask parameter of a GetVariable() call. The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the
returned Attributes bitmask parameter.

Variables stored with the EFI_VARIABLE ENHANCED_AUTHENTICATED ACCESS attribute set will return
metadata in addition to variable data when GetVariable() is called. If a GetVariable() call indicates that this attribute
is set, the GetVariable() payload must be interpreted according to the metadata headers. In addition to the headers
described in SetVariable(), the following header is used to indicate what certificate may be currently associated with a
variable.

//
// EFI_VARIABLE_AUTHENTICATION_3_CERT_ID descriptor

//
// An extensible structure to identify a unique x509 cert
// associated with a given variable

//
#define EFI_VARIABLE_ AUTHENTICATION_3_CERT_ID_SHA256 1

typedef struct {

UINTS8 Type;
UINT32 IdSize;
// UINT8 Id[IdSize];

} EFI_VARIABLE_AUTHENTICATION_3_CERT_ID;

Type
Identifies the type of ID that is returned and how the ID should be interpreted.

8.2. Variable Services 216

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

IdSize
Indicates the size of the Id buffer that follows this field in the structure.

Id (Not a formal structure member)
This is a unique identifier for the associated certificate as defined by the Type field. For CERT_ID_SHA256, the
buffer will be a SHA-256 digest of the tbsCertificate (To Be Signed Certificate data defined in x509) data for the
cert.

When the attribute EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS is set, the Data buffer shall be
interpreted as follows:

// NOTE: “||” indicates concatenation.
/ Example: EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE

EFI_VARIABLE_AUTHENTICATION_3 || EFI_TIME || EFI_VARIABLE_AUTHENTICATION_3_CERT_ID ||
Data

/ Example: EFI_VARIABLE AUTHENTICATION_3_NONCE_TYPE

EFI_VARIABLE_AUTHENTICATION_3 I EFI_VARIABLE_AUTHENTICATION_3_NONCE [
EFI_VARIABLE_AUTHENTICATION_3_CERT_ID || Data

NOTE: The MetadataSize field of the EFI_VARIABLE AUTHENTICATION 3 structure in each of these examples
does not include any WIN_CERTIFICATE_UEFI_GUID structures. These structures are used in the SetVariable()
interface, not GetVariable(), as described in the above examples.

Status Codes Returned

EFI_SUCCESS The function completed successfully.
EFI_NOT_FOUND The variable was not found.
EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has been updated with

the size needed to complete the request. If Aztributes is not NULL, then the
attributes bitmask for the variable has been stored to the memory location
pointed-to by Attributes.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.
EFI_SECURITY_VIOLATION The variable could not be retrieved due to an authentication failure.
EFI_UNSUPPORTED After ExitBootServices() has been called, this return code may be returned if

no variable storage is supported. The platform should describe this runtime
service as unsupported at runtime via an EFI_RT_PROPERTIES_TABLE
configuration table.

8.2.2 GetNextVariableName()

Summary
Enumerates the current variable names.

Prototype

typedef
EFI_STATUS
GetNextVariableName (
(continues on next page)

8.2. Variable Services 217

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

IN OUT UINTN “VariableNameSize,
IN OUT CHARI16 *“VariableName,
IN OUT EFI_GUID *VendorGuid
)N
Parameters
VariableNameSize
The size of the VariableName buffer. The size must be large enough to fit input string supplied in VariableName
buffer.
VariableName

On input, supplies the last VariableName that was returned by * GetNextVariableName(). On output, returns the
Null-terminated string of the current variable.

VendorGuid
On input, supplies the last VendorGuid that was returned by GetNextVariableName(). On
output, returns the VendorGuid of the current variable. Type EFI_GUID is defined in the
EFI_BOOT_SERVICES.InstallProtocollnterface() function description.

Description

GetNextVariableName() is called multiple times to retrieve the VariableName and VendorGuid of all variables currently
available in the system. On each call to GetNextVariableName() the previous results are passed into the interface, and
on output the interface returns the next variable name data. When the entire variable list has been returned, the error
EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small for the next variable.
When such an error occurs, the VariableNameSize is updated to reflect the size of buffer needed. In all cases when
calling GetNextVariableName() the VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName. The VariableNameSize must not be smaller the size of the variable name string passed to GetNextVari-
ableName() on input in the VariableName buffer.

To start the search, a Null-terminated string is passed in VariableName; that is, VariableName is a pointer to a Null
character. This is always done on the initial call to GetNextVariableName(). When VariableName is a pointer to a Null
character, VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return variable names with a
specific GUID. Instead, the entire list of variables must be retrieved, and the caller may act as a filter if it chooses. Calls
to SetVariable() between calls to GetNextVariableName() may produce unpredictable results. If a VariableName bufter
on input is not a Null-terminated string, EFI_INVALID_PARAMETER is returned. If input values of VariableName
and VendorGuid are not a name and GUID of an existing variable, EFI_INVALID_PARAMETER is returned.

Once EFI_BOOT_SERVICES.ExitBootServices() is performed, variables that are only visible during boot services will
no longer be returned. To obtain the data contents or attribute for a variable returned by GetNextVariableName(), the
GetVariable() interface is used.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result. VariableNameSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableNameSize is NULL.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and

GUID of an existing variable.

continues on next page

8.2. Variable Services 218

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 8.5 — continued from previous page

EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of the input
VariableName buffer.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.

EFI_UNSUPPORTED After ExitBootServices() has been called, this return code may be returned if

no variable storage is supported. The platform should describe this runtime
service as unsupported at runtime via an EFI_RT_PROPERTIES_TABLE
configuration table.

8.2.3 SetVariable()

Summary

Sets the value of a variable. This service can be used to create a new variable, modify the value of an existing variable,
or to delete an existing variable.

Prototype

typedef

EFI_STATUS

SetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID “VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data

D

Parameters

VariableName

A Null-terminated string that is the name of the vendor’s variable. Each VariableName is unique for each
VendorGuid. VariableName must contain 1 or more characters. If VariableName is an empty string, then
EFI_INVALID_PARAMETER is returned.

VendorGuid
A unique identifier for the vendor. Type EFI_GUID is defined in the
EFI_BOOT _SERVICES.InstallProtocollnterface() function description.
Attributes
Attributes bitmask to set for the variable. Refer to the GerVariable() function description.
DataSize
The size in bytes of the Data buffer. Unless the EFI_VARIABLE_ APPEND_WRITE,

EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS,
or EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set, a size of zero

causes the variable to be deleted. When the EFI_VARIABLE_APPEND_WRITE attribute is set, then a
SetVariable() call with a DataSize of zero will not cause any change to the variable value (the timestamp

associated with the variable may be updated however, even if no new data value is provided;see the description

of the EFI_VARIABLE_AUTHENTICATION_2 descriptor below). In this case the DataSize will not be zero

since the EFI_VARIABLE_AUTHENTICATION_2 descriptor will be populated).

Data
The contents for the variable.

Related Definitions

8.2. Variable Services 219

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

//

// EFI_VARIABLE_AUTHENTICATION_2 descriptor

//

// A time-based authentication method descriptor template

//

typedef struct {
EFI_TIME TimeStamp;
WIN_CERTIFICATE_UEFI_GUID AuthInfo;

} EFI_VARIABLE_AUTHENTICATION_2;

TimeStamp
Time associated with the authentication descriptor. For the TimeStamp value, components Padl, Nanosecond,
TimeZone, Daylight and Pad?2 shall be set to 0. This means that the time shall always be expressed in GMT.

AuthInfo
Provides the authorization for the variable access. Only a CertType of EFI_CERT_TYPE_PKCS7_GUID is
accepted.

//

// EFI_VARIABLE_AUTHENTICATION_3 descriptor

//

// An extensible implementation of the Variable Authentication
// structure.

//

#define EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE 1

#define EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE 2

typedef struct {
UINT8 Version;
UINT8 Type;
UINT32 MetadataSize;
UINT32 Flags;
} EFI_VARTABLE_AUTHENTICATION_3;

Version
This field is used in case the EFI_VARIABLE_AUTHENTICATION_3 structure itself ever requires updating.
For now, it is hardcoded to “0x1”.

Type
Declares what structure immediately follows this structure in the Variable Data payload. For
EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE, it will be an instance of EFI_TIME
(for the TimeStamp). For EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE the structure will
be an instance of EFI_VARIABLE_AUTHENTICATION_3_NONCE. This structure is defined below.
Note that none of these structures contains a WIN_CERTIFICATE_UEFI_GUID structure. See Using the
EFI_VARIABLE AUTHENTICATION_3 descriptor for an explanation of structure sequencing.

MetadataSize
Declares the size of all variable authentication metadata (data related to the authentication of the vari-
able that is not variable data itself), including this header structure, and type-specific structures (eg.
EFI_VARIABLE_AUTHENTICATION_3_NONCE), and any WIN_CERTIFICATE_UEFI_GUID structures.

Flags

Bitfield indicating any optional configuration for this call. Currently, the only defined value is: #define
EFI_VARIABLE_ENHANCED_AUTH_FLAG_UPDATE_CERT 0x00000001 The presence of this flag on
SetVariable() indicates that there are two instances of the WIN_CERTIFICATE_UEFI_GUID structure

8.2. Variable Services 220

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

following the type-specific structures. The first instance describes the new cert to be set as the authority for the
variable. The second is the signed data to authorize the current updated.

NOTE: All other bits are currently Reserved on SetVariable().

NOTE: All flags are reserved on GetVariable().

//
// EFI_VARIABLE_AUTHENTICATION_3_NONCE descriptor
//
// A nonce-based authentication method descriptor template. This
// structure will always be followed by a
// WIN_CERTIFICATE_UEFI_GUID structure.
//
typedef struct {
UINT32 NonceSize;
// UINT8 Nonce[NonceSize];
} EFI_VARIABLE_AUTHENTICATION_3_NONCE;

NonceSize
Indicates the size of the Nonce buffer that follows this field in the structure. Must not be 0.

Nonce (Not a formal structure member)
Unique, random value that guarantees a signed payload cannot be shared between multiple machines or machine
families. On SetVariable(), if the Nonce field is all 0’s, the host machine will try to use an internally generated
random number. Will return EFI_UNSUPPORTED if not possible. Also, on SetVariable() if the variable already
exists and the nonce is identical to the current nonce, will return EFI_INVALID_PARAMETER.

Description

Variables are stored by the firmware and may maintain their values across power cycles. Each vendor may create and
manage its own variables without the risk of name conflicts by using a unique VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value. If the
EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in normal memory and it
is not maintained across a power cycle. Such variables are used to pass information from one component to another.
An example of this is the firmware’s language code support variable. It is created at firmware initialization time for
access by EFI components that may need the information, but does not need to be backed up to nonvolatile storage.

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited storage capacity; some-
times a severely limited capacity. Software should only use a nonvolatile variable when absolutely necessary. In
addition, if software uses a nonvolatile variable it should use a variable that is only accessible at boot services time if
possible.

A variable must contain one or more bytes of Data. Unless the EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS, or EFI_VARIABLE_ENHANCED _AU-
THENTICATED_ACCESS attribute is set (see below), using SetVariable() with a DataSize of zero will cause the entire
variable to be deleted. The space consumed by the deleted variable may not be available until the next power cycle.

If a variable with matching name, GUID, and attributes already exists, its value is updated.

The Attributes have the following usage rules:

8.2. Variable Services 221

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

If a preexisting variable is rewritten with different attributes, SetVariable() shall not modify the variable and
shall return EFI_INVALID_PARAMETER. The only exception to this is when the only attribute differing is
EFI_VARIABLE_APPEND_WRITE. In such cases the call’s successful outcome or not is determined by the
actual value being written. There are two exceptions to this rule:

— If a preexisting variable is rewritten with no access attributes specified, the variable will be deleted.

— EFI_VARIABLE_APPEND_WRITE attribute presents a special case. It is acceptable to rewrite the variable
with or without EFI_VARIABLE_APPEND_WRITE attribute.

Setting a data variable with no access attributes causes it to be deleted.

Unless the EFI_VARIABLE_APPEND_WRITE, EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS,

or EFI_VARIABLE_ENHANCED_AUTHENTICATED_WRITE_ACCESS attribute is set, setting a data vari-
able with zero DataSize specified, causes it to be deleted.

Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have EFI_VARIABLE_BOOTSERVICE_ACCESS
set. The caller is responsible for following this rule.

Once EFI_BOOT _SERVICES.ExitBootServices() 1is performed, data variables that did not have
EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to GetVariable().

Once ExitBootServices() is performed, only variables that have EFI_VARIABLE_RUNTIME_ACCESS and
EFI_VARIABLE_NON_VOLATILE set can be set with SetVariable(). Variables that have runtime access
but that are not nonvolatile are read-only data variables once ExitBootServices() is performed. When the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute is set in a SetVariable() call, the au-
thentication shall use the EFI_VARIABLE_AUTHENTICATION_3 descriptor, which will be followed by any
descriptors indicated in the Type and Flags fields.

When the EFI_VARIABLE_TIME_BASED AUTHENTICATED_ WRITE_ACCESS attribute is set in a Set-
Variable() call, the authentication shall use the EFI_VARIABLE_AUTHENTICATION_2 descriptor.

If both the EFI_VARIABLE TIME_ BASED_AUTHENTICATED_WRITE_ACCESS and the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute are set in a SetVariable() call,
then the firmware must return EFI_INVALID PARAMETER.

If the EFI_VARIABLE_APPEND_WRITE attribute is set in a SetVariable() call, then any existing variable
value shall be appended with the value of the Data parameter. If the firmware does not support the append
operation, then the SetVariable() call shall return EFI_INVALID_PARAMETER. If the variable does not exist
and EFI_VARIABLE_APPEND_WRITE is set and the size is non-zero, the variable is created. If the variable
does not exist and EFI_VARIABLE_APPEND_WRITE is set and the size is zero, the variable is not created and
EFI_SUCCESS is returned.

If the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set in
a SetVariable() call, and firmware does not support signature type of the certificate included in
the EFI_VARIABLE_AUTHENTICATION_2 descriptor, then the SetVariable() call shall return
EFI_INVALID_PARAMETER. The list of signature types supported by the firmware is defined by the
SignatureSupport variable. Signature type of the certificate is defined by its digest and encryption algorithms.

If the EFI_VARIABLE_HARDWARE_ERROR_RECORD attribute is set, VariableName and VendorGuid must
comply with the rules stated in Hardware Error Record Variables and Hardware Error Record Persistence Usage.
Otherwise, the SetVariable() call shall return EFI_INVALID_PARAMETER.

Globally Defined Variables must be created with the attributes defined in the Table Global Variables . If a
globally defined variable is created with the wrong attributes, the result is indeterminate and may vary between
implementations.

If using the EFI_VARIABLE_ENHANCED_AUTHETICATED_ACCESS interface to update the cert authority
for a given variable, it is valid for the Data region of the payload to be empty. This would update the cert without

8.2.

Variable Services 222

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

modifying the data itself. If the Data region is empty AND no NewCert is specified, the variable will be deleted
(assuming all authorizations are verified).

* Secure Boot Policy Variable must be created with the EFI_VARIABLE_TIME_BASED_AUTHENTICATED
_WRITE_ACCESS attribute set, and the authentication shall use the EFI_VARIABLE_AUTHENTICATION_2
descriptor. If the appropriate attribute bit is not set, then the firmware shall return EFI_INVALID_PARAMETER.

The only rules the firmware must implement when saving a nonvolatile variable is that it has actually been saved to
nonvolatile storage before returning EFI_SUCCESS, and that a partial save is not performed. If power fails during a
call to SetVariable() the variable may contain its previous value, or its new value. In addition there is no read, write,
or delete security protection.

To delete a variable created with the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS at-
tribute, SetVariable must be used with attributes matching the existing variable and the DataSize set to the size of
the Authinfo descriptor. The Data buffer must contain an instance of the AuthlInfo descriptor which will be validated
according to the steps in the appropriate section above referring to updates of Authenticated variables. An attempt
to delete a variable created with the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS at-
tribute for which the prescribed Authinfo validation fails or when called using DataSize of zero will fail with an
EFI_SECURITY_VIOLATION status.

To delete a variable created with the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute, Set-
Variable must be used with attributes matching the existing variable and the DataSize set to the size of the
entire payload including all descriptors and certificates. The Dara buffer must contain an instance of the
EFI_VARIABLE_AUTHENTICATION_3 descriptor which will indicate how to validate the payload according to the
description in Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor. An attempt to delete a variable created
with the EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS attribute for which the prescribed validation
fails or when called using DataSize of zero will fail with an EFI_SECURITY_VIOLATION status.

Status Codes Returned

EFI_SUCCESS The firmware has successfully stored the variable and its data as defined by
the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits, name, and GUID was supplied, or
the DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.
EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.
EFI_WRITE_PROTECTED The variable in question is read-only.
EFI_WRITE_PROTECTED The variable in question cannot be deleted.

EFI_SECURITY_VIOLATION
The variable could not be written due to
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS or
EFI_VARI ABLE_TIME_BASED_AUTHENTICATED_WRITE_ACESS
being set, but the payload does NOT pass the validation check carried out
by the firmware.

EFI_NOT_FOUND The variable trying to be updated or deleted was not found.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.2. Variable Services 223

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.2.4 QueryVariablelnfo()

Summary
Returns information about the EFI variables.

Prototype

typedef

EFI_STATUS

QueryVariableInfo (
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 “MaximumVariableSize
s

Attributes
Attributes bitmask to specify the type of variables on which to return information. Refer to the GetVariable()
function description. The EFI_VARIABLE_APPEND_WRITE attribute, if set in the attributes bitmask, will be
ignored.

Maximum VariableStorageSize
On output the maximum size of the storage space available for the EFI variables associated with the attributes
specified.

RemainingVariableStorageSize
Returns the remaining size of the storage space available for EFI variables associated with the attributes specified.

Maximum VariableSize
Returns the maximum size of an individual EFI variable associated with the attributes specified.

Description

The Query VariableInfo() function allows a caller to obtain the information about the maximum size of the storage space
available for the EFI variables, the remaining size of the storage space available for the EFI variables and the maximum
size of each individual EFI variable, associated with the attributes specified.

The MaximumVariableSize value will reflect the overhead associated with the saving of a single EFI variable with the
exception of the overhead associated with the length of the string name of the EFI variable.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize information may
change immediately after the call based on other runtime activities including asynchronous error events. Also, these
values associated with different attributes are not additive in nature.

If a caller to QueryVariableInfo() specifies a combination of both unsupported and invalid attributes,
EFI_UNSUPPORTED should be returned.

After the system has transitioned into runtime (after ExitBootServices() is called), an implementation may not be able
to accurately return information about the Boot Services variable store. In such cases, EFI_INVALID_PARAMETER
should be returned.

Status Codes Returned

EFI_SUCCESS Valid answer returned.
EFI INVALID PARAMETER An invalid combination of attribute bits was supplied

continues on next page

8.2. Variable Services 224

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 8.7 — continued from previous page

EFI_UNSUPPORTED
The attribute is not supported on this platform, and the

MaximumVariableStorageSize,
RemainingVariableStorageSize,
MaximumVariableSize are undefined.

8.2.5 Using the EFI_VARIABLE_AUTHENTICATION_3 descriptor

When the attribute EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS is set, the payload buffer (passed
into SetVariable() as “Data”) shall be constructed as follows:

// NOTE: “||” indicates concatenation.
/I NOTE: “[]” indicates an optional element.

// Example: EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE
EFL_VARIABLE_AUTHENTICATION_3 || EFL_TIME || [NewCert] || SigningCert || Data

/l Example: EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE FI_VARIABLE_AUTHENTICATION_3 ||
EFI_VARIABLE_AUTHENTICATION_3_NONCE || [NewCert] || SigningCert || Data

In this example, NewCert and SigningCert are both instances of WIN_CERTIFICATE_UEFI_GUID. The presence of
NewCert is indicated by the EFI_VARIABLE_AUTHENTICATION_3.Flags field (see Definition in SetVariable()). If
provided — and assuming the payload passes all integrity and security verifications — this cert will be set as the new
authority for the underlying variable, even if the variable is being newly created.

The NewCert element must have a CertType of EFI_CERT_TYPE_PKCS7_GUID, and the CertData must be a DER-
encoded SignedData structure per PKCS#7 version 1.5 (RFC 2315), which shall be supported both with and without a
DER-encoded ContentInfo structure per PKCS#7 version 1.5. When creating the SignedData structure, the following
steps shall be followed:

1. Create a WIN_CERTIFICATE_UEFI_GUID structure where CertType is set to
EFI_CERT _TYPE_PKCS7_GUID.

2. Use the x509 cert being added as the new authority to sign its own tbsCertificate data.
3. Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) with the signed content as follows:
a - SignedData.version shall be set to 1.
b - SignedData.digestAlgorithms shall contain the digest algorithm used when preparing the signature.
¢ - SignedData.contentInfo.contentType shall be set to id-data.
d - SignedData.contentInfo.content shall be the tbsCertificate data that was signed for the new x509 cert.
e - SignedData.certificates shall contain, at a minimum, the signer’s DER-encoded X.509 certificate.
f - SignedData.crls is optional.
g - SignedData.signerInfos shall be constructed as:

* SignerInfo.version shall be set to 1.

8.2. Variable Services 225

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

« SignerInfo.issuerAndSerial shall be present and as in the signer’s certificate.
« SignerInfo.authenticatedAttributes shall not be present.
 SignerInfo.digestEncryptionAlgorithm shall be set to the algorithm used to sign the data.
* SignerInfo.encryptedDigest shall be present.
* SignerInfo.unauthenticatedAttributes shall not be present.

4. Set the CertData field to the DER-encoded PKCS#7 SignedData value.

A caller to SetVariable() attempting to create, update, or delete a variable with the
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS set shall perform the following steps to create
the SignedData structure for SigningCert:

1. Create an EFI_VARIABLE_AUTHENTICATION_3 Primary Descriptor with the following values:
a - Version shall be set appropriate to theversion of metadata headers being used (currently 1).

b - Type should be set based on caller specifications (see EFI_VARIABLE_AUTHENTICATION_3 descriptor
under SetVariable()).

¢ - MetadataSize can be ignored for now, and will be updated when constructing the final payload.
d - Flags shall be set based on caller specifications.
2. A Secondary Descriptor may need to be created based on the Type.

a - For EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE type,this will be an instance of
EFI_TIME set to thecurrent time.

b - For EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE type, this will be an instance of
EFI_VARIABLE_AUTHENTICATION_3_NONCE updated with NonceSize set based on caller specifications
(must not be zero), and Nonce (informal structure member) set to:

» All zeros to request that the platform create a random nonce.
 Caller specified value for a pre-generated nonce.
3. Hash a serialization of the payload. Serialization shall contain the following elements in this order:
a - VariableName, VendorGuid, Attributes, and theSecondary Descriptor if it exists for this Type.
b - Variable’s new value (ie. the Data parameter’s new variable content).

c - If this is an update to or deletion of a variable with type EFI_VARIABLE_AUTHENTICATION_3_NONCE,
serialize the current nonce. The current nonce is the one currently associated with this variable, not the one in
the Secondary Descriptor. Serialize only the nonce buffer contents, not the size or any additional data. If this is
an attempt to create a new variable (ie. there is no current nonce), skip this step.

d - If the authority cert for this variable is being updated and the EFI_VARIABLE_AUTHENTICATION_3.Flags
field indicates the presence of a NewCert structure, serialize the entire NewCert structure (described at the be-
ginning of this section).

4. Sign the resulting digest.

5. Create a WIN_CERTIFICATE_UEFI_GUID structure where CertType is set to
EFI_CERT_TYPE_PKCS7_GUID.

6. Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) following the steps described for
NewCert (step 3), above, with the following exception:

a - SignedData.contentInfo.content shall beabsent (the content is provided in the Data parameterto the SetVari-
able() call)

8.2. Variable Services 226

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Construct the final payload for SetVariable() according to the descriptions for “payload buffer” at the beginning
of this section.

Update the EFI_VARIABLE_AUTHENTICATION_3.MetadataSize field to include all parts of the final payload
except “Data”.

Firmware that implements the SetVariable() services and supports the EFI_VARIABLE_ENHANCED _AUTHENTI-
CATED_ACCESS attribute shall do the following in response to being called:

1.

Read the EFI_VARIABLE_AUTHENTICATION_3 descriptor to determine what type of authentication isbeing
performed and how to parse the rest of the payload.

Verify that SigningCert.CertType EFI_CERT_TYPE_PKCS7_GUID.

a - If EFI_VARIABLE_AUTHENTICATION_3.Flags field indicates presence of a NewCert, verify that-
NewCert.CertType is EFI_CERT_TYPE_PKCS7_GUID.

b - If either fails, return EFI_INVALID PARAMETER.

If the variable already exists, verify that the incoming type matches the existing type.

Verify that any EFI_TIME structures have Padl, Nanosecond, TimeZone, Daylight, and Pad2 fields set to zero.
If EFI_VARIABLE_AUTHENTICATION_3_NONCE_TYPE:

a - Verify that NonceSize is greater than zero.If zero, return EFI_INVALID_PARAMETER.

b - If incoming nonce is all zeros, confirm that platform supports generating random nonce. If unsupported,
return EFI_UNSUPPORTED.

c - If nonce is specified and variable already exists, verify that incoming nonce does not match existing nonce.
If identical, return EFI_INVALID PARAMETER.

If EFI_VARIABLE_AUTHENTICATION_3_TIMESTAMP_TYPE and variable already exists, verify that new
timestamp is chronologically greater than current timestamp.

. Verify the payload signature by:

a - Parsing entire payload according to descriptors.

b - Using descriptor contents (and, if necessary, metadata from existing variable) to construct the serialization
described previously in this section (step 3 of the SetVariable() instructions).

¢ - Compute the digest and compare with the result of applying the SigningCert’s public key to the signature.

. If the variable already exists, verify that the SigningCert authority is the same as the authority already associated

with the variable.
If NewCert is provided, verify the NewCert signature by:
a - Parsing entire payload according todescriptors.

b - Compute a digest of the tbsCertificate of x509 certificate in NewCert and compare with the result of applying
NewCert’s public key to the signature.

¢ - If this fails, return EFI_SECURITY_VIOLATION.

8.2. Variable Services 227

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.2.6 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor

When the attribute EFI_VARIABLE _TIME_BASED_AUTHENTICATED _WRITE_ACCESS is set, then the Data
buffer shall begin with an instance of a complete (and serialized).

EFI_VARIABLE_AUTHENTICATION_2 descriptor. The descriptor shall be followed by the new variable value and
DataSize shall reflect the combined size of the descriptor and the new variable value. The authentication descriptor is
not part of the variable data and is not returned by subsequent calls to GetVariable().

A caller that invokes the SetVariable() service with the EFI_VARIABLE_TIME_BASED_AUTHENTICATED
_WRITE_ACCESS attribute set shall do the following prior to invoking the service:

1. Create a descriptor

Create an EFI_VARIABLE_AUTHENTICATION_2 descriptor where:
» TimeStamp is set to the current time.

NOTE: In certain environments a reliable time source may not be available. In this case, an implementation
may still add values to an authenticated variable since the EFI_VARIABLE_APPEND_WRITE attribute, when
set, disables timestamp verification (see below). In these instances, the special time value where every
component of the EFI_TIME struct including the Day and Month is set to 0 shall be used.

* Authlnfo.CertType is set to EFI_CERT_TYPE_PKCS7_GUID.

. Hash the serialization of the values of the VariableName, VendorGuid and Attributes parameters of the SetVari-
able() call and the TimeStamp component of the EFI_VARIABLE_AUTHENTICATION_2 descriptor followed
by the variable’s new value (i.e. the Data parameter’s new variable content). That is, digest = hash (Variable-
Name, VendorGuid, Attributes, TimeStamp, DataNew_variable_content). The NULL character terminating the
VariableName value shall not be included in the hash computation.

. Sign the resulting digest using a selected signature scheme (e.g. PKCS #1 v1.5)

. Construct a DER-encoded SignedData structure per PKCS#7 version 1.5 (RFC 2315), which shall be supported
both with and without a DER-encoded ContentInfo structure per PKCS#7 version 1.5, with the signed content
as follows:

a - SignedData.version shall be set to 1

b - SignedData.digestAlgorithms shall contain the digest algorithm used when preparing the signature. Digest
algorithms of SHA-256, SHA-384, SHA-512 are accepted.

¢ - SignedData.contentInfo.contentType shall be set to id-data

d - SignedData.contentInfo.content shall be absent (the content is provided in the Data parameter to the SetVari-
able() call)

e - SignedData.certificates shall contain, at a minimum, the signer’s DER-encoded X.509 certificate.
f - SignedData.crls is optional.

g - SignedData.signerInfos shall be constructed as:

— SignerInfo.version shall be set to 1

— SignerInfo.issuerAndSerial shall be present and as in the signer’s -certificate — Signer-
Info.authenticated Attributes shall not be present.

8.2. Variable Services 228

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

— SignerInfo.digestEncryptionAlgorithm shall be set to the algorithm used to sign the data.
— SiginerInfo.encryptedDigest shall be present

— SignerInfo.unauthenticated Attributes shall not be present.

Set AuthInfo.CertData to the DER-encoded PKCS #7 SignedData value.

Construct Data parameter: Construct the SetVariable()’s Data parameter by concatenating the com-
plete, serialized EFI_VARIABLE_AUTHENTICATION_2 descriptor with the new value of the variable
(DataNew_variable_content).

Firmware that implements the SetVariable() service and supports the EFI_VARIABLE_TIME_BASED _AUTHEN-
TICATED_WRITE_ACCESS attribute shall do the following in response to being called:

1.

Verify that the correct AuthInfo.CertType (EFI_CERT_TYPE_PKCS7_GUID) has been used and that theAu-
thInfo.CertData value parses correctly as a PKCS #7SignedData value

Verify that Pad1l, Nanosecond, TimeZone, Daylight and Pad2 components of the TimeStamp value are set to
zero. Unless the EFI_VARIABLE_APPEND_WRITE attribute is set, verify that the TimeStamp value is later
than the current timestamp value associated with the variable.

If the variable SetupMode==1, and the variable is a secure boot policy variable, then the firmware implementation
shall consider the checks in the following steps 4 and 5 to have passed, and proceed with updating the variable
value as outlined below.

Verify the signature by:
— extracting the EFI_VARIABLE_AUTHENTICATION_2 descriptor from the Data buffer;

— using the descriptor contents and other parameters to (a) construct the input to the digest algorithm; (b)
computing the digest; and (c) comparing the digest with the result of applying the signer’s public key to the
signature.

If the variable is the global PK variable or the global KEK variable, verify that the signature has been made with
the current Platform Key.

e If the variable is the “db”, “dbt”, “dbr”, or “dbx” variable mentioned in step 3, verify that the signer’s
certificate chains to a certificate in the Key Exchange Key database (or that the signature was made with
the current Platform Key).

* If the variable is the “OsRecoveryOrder” or “OsRecovery####” variable mentioned in step 3, verify that
the signer’s certificate chains to a certificate in the “dbr” database or the Key Exchange Key database, or
that the signature was made with the current Platform Key.

» Otherwise, if the variable is none of the above, it shall be designated a Private Authenticated Variable. If the
Private Authenticated Variable does not exist, then the CN of the signing certificate’s Subject and the hash of
the tbsCertificate of the top-level issuer certificate (or the signing certificate itself if no other certificates are
present or the certificate chain is of length 1) in SignedData.certificates is registered for use in subsequent
verifications of this variable. Implementations may store just a single hash of these two elements to reduce
storage requirements. If the Private Authenticated variable previously existed, that the signer’s certificate
chains to the information previously associated with the variable. Observe that because no revocation list
exists for them, if any member of the certificate chain is compromised, the only method to revoke trust in
a certificate for a Private Authenticated Variable is to delete the variable, re-issue all certificate authorities
in the chain, and re-create the variable using the new certificate chain. As such, the remaining benefits
may be strong identification of the originator, or compliance with some certificate authority policy. Further
note that the PKCS7 bundle for the authenticated variable update must contain the signing certificate chain,
through and including the full certificate of the desired trust anchor. The trust anchor might be a mid-level
certificate or root, though many roots may be unsuitable trust anchors due to the number of CAs they issue
for different purposes. Some tools require non-default parameters to include the trust anchor certificate.

8.2. Variable Services 229

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The driver shall update the value of the variable only if all of these checks pass. If any of the checks fails, firmware
must return EFI_SECURITY_VIOLATION.

The firmware shall perform an append to an existing variable value only if the EFI_VARIABLE_APPEND_WRITE
attribute is set.

For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID (i.e. where the data buffer is formatted as
EFI_SIGNATURE_LIST), the driver shall not perform an append of EFI_SIGNATURE_DATA values that are already
part of the existing variable value.

NOTE: This situation is not considered an error, and shall in itself not cause a status code other than EFI_SUCCESS
to be returned or the timestamp associated with the variable not to be updated.

The firmware shall associate the new timestamp with the updated value (in the case when the
EFI_VARIABLE_APPEND_WRITE attribute is set, this only applies if the new TimeStamp value is later than
the current timestamp associated with the variable).

If the variable did not previously exist, and is not one of the variables listed in step 3 above, then firmware shall associate
the signer’s public key with the variable for future verification purposes.

8.2.7 Hardware Error Record Persistence

This section defines how Hardware Error Record Persistence is to be implemented. By implementing support for Hard-
ware Error Record Persistence, the platform enables the OS to utilize the EFI Variable Services to save hardware error
records so they are persistent and remain available across OS sessions until they are explicitly cleared or overwritten
by their creator.

8.2.7.1 Hardware Error Record Non-Volatile Store

A platform which implements support hardware error record persistence is required to guarantee some amount of NVR
is available to the OS for saving hardware error records. The platform communicates the amount of space allocated for
error records via the QueryVariableInfo routine as described in Appendix P.

8.2.7.2 Hardware Error Record Variables

This section defines a set of Hardware Error Record variables that have architecturally defined meanings. In addition
to the defined data content, each such variable has an architecturally defined attribute that indicates when the data
variable may be accessed. The variables with an attribute of HR are stored in the portion of NVR allocated for er-
ror records. NV, BS and RT have the meanings defined in section 3.2. All hardware error record variables use the
EFI_HARDWARE_ERROR_VARIABLE VendorGuid:

#define EFI_HARDWARE_ERROR_VARIABLE\
{0x414E6BDD,0xE47B,0x47cc, {0xB2,0x44,0xBB,0x61,0x02,0x0C, 0xF5,0x16}}

Table 8.8: Hardware Error Record Persistence Variables

Variable Name Attribute Description
HwErrRec#### NV, BS, RT, HR A hardware error record. ###i# is a printed hex value. No Ox or h is
included in the hex value

The HwErrRec#### variable contains a hardware error record. Each HwErrRec#### variable is the name “HwErrRec”
appended with a unique 4-digit hexadecimal number. For example, HwErrRec0001, HwErrRec0002, HwErrRecF31A,
etc. The HR attribute indicates that this variable is to be stored in the portion of NVR allocated for error records.

8.2. Variable Services 230

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.2.7.3 Common Platform Error Record Format

Error record variables persisted using this interface are encoded in the Common Platform Error Record format, which
is described in appendix N of the UEFI Specification. Because error records persisted using this interface conform to
this standardized format, the error information may be used by entities other than the OS.

8.3 Time Services

This section contains function definitions for time-related functions that are typically needed by operating systems at
runtime to access underlying hardware that manages time information and services. The purpose of these interfaces is
to provide operating system writers with an abstraction for hardware time devices, thereby relieving the need to access
legacy hardware devices directly. There is also a stalling function for use in the preboot environment. Time Services
Functions lists the time services functions described in this section:

Table 8.9: Time Services Functions

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities
of the platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time

8.3.1 GetTime()

Summary
Returns the current time and date information, and the time-keeping capabilities of the hardware platform.

Prototype

typedef
EFI_STATUS
GetTime (
OUT EFI_TIME “Time,
OUT EFI_TIME_CAPABILITIES “Capabilities OPTIONAL
s

Parameters

Time
A pointer to storage to receive a snapshot of the current time. Type EFI_TIME is defined in “Related Definitions.”

Capabilities
An optional pointer to a buffer to receive the real time clock device’s capabilities. Type
EFI_TIME_CAPABILITIES is defined in “Related Definitions.”

Related Definitions

//**

//EFI_TIME

//**

// This represents the current time information

(continues on next page)

8.3. Time Services 231

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

typedef struct {

UINT16 Year; // 1900 - 9999
UINTS8 Month; // 1 - 12
UINTS8 Day; // 1 - 31
UINTS8 Hour; // 0 - 23
UINTS8 Minute; // 0 - 59
UINTS8 Second; // 0 - 59
UINT8 Padl;
UINT32 Nanosecond; // ® - 999,999,999
INT16 TimeZone; // -1440 to 1440 or 2047
UINTS8 Daylight;
UINTS8 Pad2;
} EFI_TIME;

// Bit Definitions for EFI_TIME.Daylight. See below.
//***
#define EFI_TIME_ADJUST_DAYLIGHT 0x01

#define EFI_TIME_IN_DAYLIGHT 0x02

//***

//******* e dededede e e SRR
// Value Definition for EFI_TIME.TimeZone. See below.

//***

#define EFI_UNSPECIFIED_TIMEZONE OxOQ7FF

(continued from previous page)

Year, Month, Day
The current local date.

Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction of a second in the device. The format of the time
is hh:mm:ss.nnnnnnnnn. A battery backed real time clock device maintains the date and time.

TimeZone

The time’s offset in minutes from UTC. If the value is EFI_UNSPECIFIED_TIMEZONE, then the time is inter-
preted as a local time. The TimeZone is the number of minutes that the local time is relative to UTC. To calculate
the TimeZone value, follow this equation: Localtime = UTC - TimeZone.

To further illustrate this, an example is given below:
PST (Pacific Standard Time is 12PM) = UTC (8PM) - 8 hours (480 minutes)

In this case, the value for Timezone would be 480 if referencing PST.

Daylight

A bitmask containing the daylight savings time information for the time.

The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time is affected by daylight savings time or not. This
value does not indicate that the time has been adjusted for daylight savings time. It indicates only that it should
be adjusted when the EFI_TIME enters daylight savings time.

If EFI_TIME_IN_DAYLIGHT is set, the time has been adjusted for daylight savings time.
All other bits must be zero.

When entering daylight saving time, if the time is affected, but hasn’t been adjusted (DST = 1), use the new
calculation:

1. The date/time should be increased by the appropriate amount.

8.3. Time Services 232

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

2. The TimeZone should be decreased by the appropriate amount (EX: +480 changes to +420 when moving
from PST to PDT).

3. The Daylight value changes to 3.

When exiting daylight saving time, if the time is affected and has been adjusted (DST = 3), use the new calculation:
1. The date/time should be decreased by the appropriate amount.
2. The TimeZone should be increased by the appropriate amount.

3. The Daylight value changes to 1.

/ / K e R R R i R R R R R R R R R R R e o e e e e e e e
// EFI_TIME_CAPABILITIES

/ / Fededededede e dedehdedefde e hddefddfde e fddefdhfdehddhddehddehdedehddefdedhddn
// This provides the capabilities of the

// real time clock device as exposed through the EFI

interfaces.

typedef struct {
UINT32 Resolution;
UINT32 Accuracy;
BOOLEAN SetsToZero;

} EFI_TIME_CAPABILITIES;

Resolution
Provides the reporting resolution of the real-time clock device in counts per second. For a normal PC-AT CMOS
RTC device, this value would be 1 Hz, or 1, to indicate that the device only reports the time to the resolution of
1 second.

Accuracy
Provides the timekeeping accuracy of the real-time clock in an error rate of 1E-6 parts per million. For a clock
with an accuracy of 50 parts per million, the value in this field would be 50,000,000.

SetsToZero
A TRUE indicates that a time set operation clears the device’s time below the Resolution reporting level. A

FALSE indicates that the state below the Resolution level of the device is not cleared when the time is set.
Normal PC-AT CMOS RTC devices set this value to FALSE.

Description

The GetTime() function returns a time that was valid sometime during the call to the function. While the returned
EFI_TIME structure contains TimeZone and Daylight savings time information, the actual clock does not maintain
these values. The current time zone and daylight saving time information returned by GetTime() are the values that
were last set via SetTime().

The GetTime() function should take approximately the same amount of time to read the time each time it is called. All
reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to the device
before calling GetTime().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.
EFI_INVALID_PARAMETER Time is NULL.
EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

continues on next page

8.3. Time Services 233

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 8.10 — continued from previous page

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.3.2 SetTime()

Summary
Sets the current local time and date information.

Prototype

typedef
EFI_STATUS
SetTime (
IN EFI_TIME *Time
s

Parameters

Time
A pointer to the current time. Type EFI_TIME is defined in the GetTime() function description. Full error
checking is performed on the different fields of the EFI_TIME structure (refer to the EFI_TIME definition in the
GetTime() function description for full details), and EFI_INVALID_PARAMETER is returned if any field is out
of range.

Description

The SetTime() function sets the real time clock device to the supplied time, and records the current time zone and
daylight savings time information. The SetTime() function is not allowed to loop based on the current time. For
example, if the device does not support a hardware reset for the sub-resolution time, the code is not to implement the
feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to the device
before calling SetTime().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The

platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.3. Time Services 234

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.3.3 GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

Prototype

typedef
EFI_STATUS
GetWakeupTime (

OUT BOOLEAN *Enabled,
OUT BOOLEAN *“Pending,
OUT EFI_TIME
);
Parameters
Enabled
Indicates if the alarm is currently enabled or disabled.
Pending
Indicates if the alarm signal is pending and requires acknowledgement.
Time
The current alarm setting. Type EFI_TIME is defined in the GetTime() function description.
Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of the alarm clock
device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to the device

before calling GetWakeupTime().
Status Codes Returned

EFI_SUCCESS
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_INVALID_PARAMETER
EFI_DEVICE_ERROR
EFI_UNSUPPORTED

The alarm settings were returned.

Enabled is NULL.

Pending is NULL.

Time is NULL.

The wakeup time could not be retrieved due to a hardware error.

This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.3. Time Services

235

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.3.4 SetWakeupTime()

Summary
Sets the system wakeup alarm clock time.

Prototype

typedef
EFI_STATUS
SetWakeupTime (
IN BOOLEAN Enable,
IN EFI_TIME *Time OPTIONAL
s

Parameters

Enable
Enable or disable the wakeup alarm.

Time
If Enable is TRUE, the time to set the wakeup alarm for. Type EFI_TIME is defined in the GetTime() function
description. If Enable is FALSE, then this parameter is optional, and may be NULL.

Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the alarm fires, the alarm
signal is latched until it is acknowledged by calling SetWakeupTime() to disable the alarm. If the alarm fires before
the system is put into a sleeping or off state, since the alarm signal is latched the system will immediately wake up. If
the alarm fires while the system is off and there is insufficient power to power on the system, the system is powered on
when power is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm for the desired wakeup
time. The operating system still controls the wakeup event as it normally would through the ACPI Power Management
register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize access to the device
before calling SetWakeupTime().

Status Codes Returned

EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If Enable is
FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The

platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.3. Time Services 236

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.4 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally used by an operating
system at runtime. If an operating system chooses to make EFI runtime service calls in a virtual addressing mode
instead of the flat physical mode, then the operating system must use the services in this section to switch the EFI
runtime services from flat physical addressing to virtual addressing. Virtual Memory Functions lists the virtual memory
service functions described in this section. The system firmware must follow the processor-specific rules outlined in
IA-32 Platforms through AArch64 Platforms in the layout of the EFI memory map to enable the OS to make the required
virtual mappings.

Table 8.14: Virtual Memory Functions

Name Type Description

SetVir- Runtime Used by an OS loader to convert from physical addressing to virtual addressing.
tualAd-

dressMap

Convert- Runtime Used by EFI components to convert internal pointers when switching to virtual addressing.
Pointer

8.4.1 SetVirtualAddressMap()

Summary
Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

typedef
EFI_STATUS
SetVirtualAddressMap (
IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI_MEMORY_DESCRIPTOR *VirtualMap
s

Parameters

MemoryMapSize
The size in bytes of VirtualMap.

DescriptorSize
The size in bytes of an entry in the VirtualMap.

DescriptorVersion
The version of the structure entries in VirtualMap.

VirtualMap
An array of memory descriptors which contain new virtual address mapping information for all runtime ranges.
Type EFI_MEMORY_DESCRIPTOR is defined in the EFI_BOOT_SERVICES.GetMemoryMap() function de-
scription.

8.4. Virtual Memory Services 237

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Description

The SetVirtualAddressMap() function is used by the OS loader. The function can only be called at
runtime, and is called by the owner of the system’s memory map: i.e., the component which called
EFI_BOOT _SERVICES.ExitBootServices(). All events of type EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
must be signaled before SetVirtualAddressMap() returns.

This call changes the addresses of the runtime components of the EFI firmware to the new virtual addresses supplied
in the VirtualMap. The supplied VirtualMap must provide a new virtual address for every entry in the memory map at
ExitBootServices() that is marked as being needed for runtime usage. All of the virtual address fields in the VirtualMap
must be aligned on 4 KiB boundaries.

The call to SetVirtual AddressMap() must be done with the physical mappings. On successful return from this function,
the system must then make any future calls with the newly assigned virtual mappings. All address space mappings must
be done in accordance to the cacheability flags as specified in the original address map.

When this function is called, all events that were registered to be signaled on an address map change are notified.
Each component that is notified must update any internal pointers for their new addresses. This can be done with the
ConvertPointer() function. Once all events have been notified, the EFI firmware reapplies image “fix-up” information
to virtually relocate all runtime images to their new addresses. In addition, all of the fields of the EFI Runtime Services
Table except SetVirtualAddressMap and ConvertPointer must be converted from physical pointers to virtual pointers
using the ConvertPointer() service. The SetVirtualAddressMap() and ConvertPointer() services are only callable in
physical mode, so they do not need to be converted from physical pointers to virtual pointers. Several fields of the EFI
System Table must be converted from physical pointers to virtual pointers using the ConvertPointer() service. These
fields include FirmwareVendor, RuntimeServices, and ConfigurationTable. Because contents of both the EFI Runtime
Services Table and the EFI System Table are modified by this service, the 32-bit CRC for the EFI Runtime Services
Table and the EFI System Table must be recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode, calls to this function
return EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in virtual
address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory map that re-
quires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found in the memory
map.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The

platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.4.2 ConvertPointer()

Summary
Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

typedef
EFI_STATUS

(continues on next page)

8.4. Virtual Memory Services 238

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)
ConvertPointer (
IN UINTN DebugDisposition,
IN VOID **Address
D

Parameters

DebugDisposition
Supplies type information for the pointer being converted. See ‘“Related Definitions.”

Address
A pointer to a pointer that is to be fixed to be the value needed for the new virtual address mappings being applied.

Related Definitions

/ / R R o Sk S T ik L i i i S S S e S Sk Ak S S L S T S e S T o L T R Sk T S SR
// EFI_OPTIONAL_PTR

/ / Feddede el dedefddefdedefddefddfdedfddfddfdededdddde e dde e ddefddefddfddn
#define EFI_OPTIONAL_PTR 0x00000001

Description

The ConvertPointer() function is used by an EFI component during the SetVirtualAddressMap() operation. Convert-
Pointer() must be called using physical address pointers during the execution of SetVirtualAddressMap().

The ConvertPointer() function updates the current pointer pointed to by Address to be the proper value for the new
address map. Only runtime components need to perform this operation. The EFI_BOOT_SERVICES.CreateEvent()
function is used to create an event that is to be notified when the address map is changing. All pointers the component
has allocated or assigned must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in pointers that are
embedded in any runtime image.

Status Codes Returned

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part of the current
memory map. This is normally fatal.

EFI_INVALID_PARAMETER Address is NULL.

EFI_INVALID PARAMETER *Address is NULL and DebugDisposition does not have the
EFI_OPTIONAL_PTR bit set.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The

platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.4. Virtual Memory Services 239

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.5 Miscellaneous Runtime Services

This section contains the remaining function definitions for runtime services not defined elsewhere but which are
required to complete the definition of the EFI environment. The Table, below, lists the Miscellaneous Runtime Services

Miscellaneous Runtime Services

Table 8.17: Miscellaneous Runtime Services

Name Type Description

GetNextHigh- Runtime Returns the next high 32 bits of the platform’s monotonic counter.
Monotonic-

Count

ResetSystem Runtime Resets the entire platform.

UpdateCapsule ~ Runtime Pass capsules to the firmware. The firmware may process the capsules im-

mediately or return a value to be passed into Reset System that will cause the
capsule to be processed by the firmware as part of the reset process.
QueryCapsule- Runtime Returns if the capsule can be supported via UpdateCapsule()
Capabilities

8.5.1 Reset System

This section describes the reset system runtime service and its associated data structures.

8.5.1.1 ResetSystem()

Summary

Resets the entire platform. If the platform supports See ref: EFI_RESET _NOTIFICATION_PROTOCOL, then prior to
completing the reset of the platform, all of the pending notifications must be called.

Prototype

typedef

VOID

(EFIAPI *EFI_RESET_SYSTEM) (

IN EFI_RESET_TYPE ResetType,

IN EFI_STATUS ResetStatus,

IN UINTN DataSize,

IN VOID “ResetData OPTIONAL
DE

Parameters

ResetType
The type of reset to perform. Type EFI_RESET_TYPE is defined in “Related Definitions” below.

ResetStatus
The status code for the reset. If the system reset is part of a normal operation, the status code would be
EFI_SUCCESS. If the system reset is due to some type of failure the most appropriate EFI Status code would be
used.

DataSize
The size, in bytes, of ResetData.

8.5. Miscellaneous Runtime Services 240

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

ResetData
For a ResetType of EfiResetCold, EfiResetWarm, or EfiResetShutdown the data buffer starts with a Null-
terminated string, optionally followed by additional binary data. The string is a description that the caller may
use to further indicate the reason for the system reset. For a ResetType of EfiResetPlatformSpecific the data
buffer also starts with a Null-terminated string that is followed by an EFI_GUID that describes the specific type
of reset to perform.

Related Definitions

/7 % e s e e e e e e g e e e e e S e e d e e e de e e s e de e de e s e e
// EFI_RESET_TYPE
/ / B R o S e b e R b R e o S e e R R R R o e e S R S
typedef enum {

EfiResetCold,

EfiResetWarm,

EfiResetShutdown

EfiResetPlatformSpecific
} EFI_RESET_TYPE;

Description
The ResetSystem() function resets the entire platform, including all processors and devices, and reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets all circuitry within the
system to its initial state. This type of reset is asynchronous to system operation and operates without regard to cycle
boundaries. EfiResetCold is tantamount to a system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization. The processors are set
to their initial state, and pending cycles are not corrupted. If the system does not support this reset type, then an
EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a power state equivalent to the
ACPI G2/S5 or G3 states. If the system does not support this reset type, then when the system is rebooted, it should
exhibit the EfiResetCold attributes.

Calling this interface with ResetType of EfiResetPlatformSpecific causes a system-wide reset. The exact type of the
reset is defined by the EFI_GUID that follows the Null-terminated Unicode string passed into ResetData. If the platform
does not recognize the EFI_GUID in ResetData the platform must pick a supported reset type to perform.The platform
may optionally log the parameters from any non-normal reset that occurs.

The ResetSystem() function does not return.

8.5.2 Get Next High Monotonic Count

This section describes the GetNextHighMonotonicCount runtime service and its associated data structures.

8.5.2.1 GetNextHighMonotonicCount()

Summary
Returns the next high 32 bits of the platform’s monotonic counter.

Prototype

typedef
EFI_STATUS

(continues on next page)

8.5. Miscellaneous Runtime Services 241

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

GetNextHighMonotonicCount (
OUT UINT32 *HighCount
);

Parameters

HighCount
Pointer to returned value.

Description
The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the low 32 bits. Dur-
ing boot service time the low 32-bit value is volatile: it is reset to zero on every system reset and is increased by
1 on every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile and is increased by 1 whenever
the system resets, whenever GetNextHighMonotonicCount() is called, or whenever the low 32-bit count (returned by
GetNextMonoticCount()) overflows.

The EFI_BOOT_SERVICES.GetNextMonotonic Count() function is only available at boot services time. If the operat-
ing system wishes to extend the platform monotonic counter to runtime, it may do so by utilizing GetNextHighMono-
tonicCount(). To do this, before calling EFI_BOOT _SERVICES.ExitBootServices() the operating system would call
GetNextMonotonicCount() to obtain the current platform monotonic count. The operating system would then provide
an interface that returns the next count by:

* Adding 1 to the last count.

* Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount(). This will increase the high
32 bits of the platform’s nonvolatile portion of the monotonic count by 1.

This function may only be called at Runtime.

Status Codes Returned

EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER HighCount is NULL.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The

platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.5.3 Update Capsule

This runtime function allows a caller to pass information to the firmware. Update Capsule is commonly used to update
the firmware FLASH or for an operating system to have information persist across a system reset.

8.5. Miscellaneous Runtime Services 242

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.5.3.1 UpdateCapsule()

Summary

Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended consumption,
the firmware may process the capsule immediately. If the payload should persist across a system reset, the reset value
returned from EFI_QueryCapsuleCapabilities must be passed into Reset System and will cause the capsule to be pro-
cessed by the firmware as part of the reset process.

Prototype

typedef
EFI_STATUS
UpdateCapsule (
IN EFI_CAPSULE_HEADER “*CapsuleHeaderArray,
IN UINTN CapsuleCount,
IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
D

Parameters

CapsuleHeaderArray
Virtual pointer to an array of virtual pointers to the capsules being passed into update capsule. Each capsules
is assumed to stored in contiguous virtual memory. The capsules in the CapsuleHeaderArray must be the same
capsules as the ScatterGatherList. The CapsuleHeaderArray must have the capsules in the same order as the
ScatterGatherList.

CapsuleCount
Number of pointers to EFI_CAPSULE_HEADER in CapsuleHeaderArray.

ScatterGatherList
Physical pointer to a set of EFI._ CAPSULE_BLOCK_DESCRIPTOR that describes the location in physical
memory of a set of capsules. See “Related Definitions” for an explanation of how more than one capsule is passed
via this interface. The capsules in the ScatterGatherList must be in the same order as the CapsuleHeaderArray.
This parameter is only referenced if the capsules are defined to persist across system reset.

Related Definitions

typedef struct {
UINT64 Length;
union {
EFI_PHYSICAL_ADDRESS DataBlock;
EFI_PHYSICAL_ADDRESS ContinuationPointer;
}Union;
} EFI_CAPSULE_BLOCK_DESCRIPTOR;

Length
Length in bytes of the data pointed to by DataBlock/ContinuationPointer.

DataBlock
Physical address of the data block. This member of the union is used if Length is not equal to zero.

ContinuationPointer
Physical address of another block of EFI_CAPSULE_BLOCK_DESCRIPTOR structures. This member of the
union is used if Length is equal to zero. If ContinuationPointer is zero this entry represents the end of the list.

This data structure defines the ScatterGatherList list the OS passes to the firmware. ScatterGatherList represents an
array of structures and is terminated with a structure member whose Length is O and DataBlock physical address is
0. If Length is 0 and DataBlock physical address is not 0, the specified physical address is known as a “continuation

8.5. Miscellaneous Runtime Services 243

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

pointer” and it points to a further list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures. A continuation pointer
is used to allow the scatter gather list to be contained in physical memory that is not contiguous. It also is used to allow
more than a single capsule to be passed at one time.

typedef struct {

EFI_GUID CapsuleGuid;
UINT32 HeaderSize;
UINT32 Flags;

UINT32 CapsuleImageSize;

} EFI_CAPSULE_HEADER;

CapsuleGuid
A GUID that defines the contents of a capsule.

HeaderSize
The size of the capsule header. This may be larger than the size of the EFI_CAPSULE_HEADER since Cap-
suleGuid may imply extended header entries.

Flags
The Flags[15:0] bits are defined by CapsuleGuid. Flags[31:16] are defined by this specification.

CapsuleImageSize
Size in bytes of the capsule (including capsule header).

#define CAPSULE_FLAGS_PERSIST_ACROSS_RESET 0x00010000
#define CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE 0x00020000
#define CAPSULE_FLAGS_INITIATE_RESET 0x00040000

NOTE: A capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag must have CAP-
SULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that encounters a capsule
which has the CAPSULE_FLAGS_INITIATE_RESET Flag set in its header will initiate a reset of the platform which
is compatible with the passed-in capsule request and will not return back to the caller.

typedef struct {
UINT32 CapsuleArrayNumber;
VOID* CapsulePtr[1];
} EFI_CAPSULE_TABLE;

CapsuleArrayNumber
The number of entries in the array of capsules.

CapsulePtr
A pointer to an array of capsules that contain the same CapsuleGuid value. Each CapsulePtr points to an instance
of an EFI_CAPSULE_HEADER, with the capsule data concatenated on its end.

Description

The UpdateCapsule() function allows the operating system to pass information to firmware. The UpdateCapsule()
function supports passing capsules in operating system virtual memory back to firmware. Each capsule is contained in
a contiguous virtual memory range in the operating system, but both a virtual and physical mapping for the capsules
are passed to the firmware.

If a capsule has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET Flag set in its header, the firmware will process
the capsules after system reset. The caller must ensure to reset the system using the required reset value obtained from
QueryCapsuleCapabilities. If this flag is not set, the firmware will process the capsules immediately.

A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag must have CAP-
SULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that processes a capsule that
has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag set in its header will coalesce the contents of

8.5. Miscellaneous Runtime Services 244

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

the capsule from the ScatterGatherList into a contiguous buffer and must then place a pointer to this coalesced
capsule in the EFI System Table after the system has been reset. Agents searching for this capsule will look in the
EFI_CONFIGURATION_TABLE and search for the capsule’s GUID and associated pointer to retrieve the data after
the reset.

Flag Firmware Behavior

Table 8.19: Flag Firmware Behavior

Flags Firmware Behavior
No Specification defined flags Firmware attempts to immediately processes or launch the
capsule. If capsule is not recognized, can expect an error.
CAPSULE_FLAGS_PERSIST_ACROSS_RESET Firmware will attempt to process or launch the capsule
across areset. If capsule is not recognized, can expect an er-
ror. If the processing requires a reset which is unsupported
by the platform, expect an error.
Firmware will coalesce the capsule from the ScatterGath-
erList into a contiguous buffer and place a pointer to the co-
alesced capsule in the EFI System Table. Platform recogni-
tion of the capsule type is not required. If the action requires
a reset which is unsupported by the platform, expect an er-
TOT.
Firmware will attempt to process or launch the capsule
across a reset. The firmware will initiate a reset which is
compatible with the passed-in capsule request and will not
return back to the caller. If the capsule is not recognized,
can expect an error. If the processing requires a reset which
is unsupported by the platform, expect an error.
The firmware will initiate a reset which is compatible with
the passed-in capsule request and not return back to the
CAPSULE_FLAGS_PERSIST_ACROSS_RESET . .
caller. Upon resetting, the firmware will coalesce the cap-
+ CAPSULE_FLAGS_INITIATE_RESET sule from the ScatterGatherList into a contiguous buffer and
+ CAP- place a pointer to the coalesced capsule in the EFI System
SULE_FLAGS_POPULATE_SYSTEM_TABLE Table. Platform recognition of the capsule type is not re-
quired. If the action requires a reset which is unsupported
by the platform, expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET
+ CAP-
SULE_FLAGS_POPULATE_SYSTEM_TABLE

CAPSULE_FLAGS_PERSIST_ACROSS_RESET
+ CAPSULE_FLAGS_INITIATE RESET

The EFI System Table entry must use the GUID from the CapsuleGuid field of the EFI_CAPSULE_HEADER. The
EFI System Table entry must point to an array of capsules that contain the same CapsuleGuid value. The array must
be prefixed by a UINT32 that represents the size of the array of capsules.

The set of capsules is pointed to by ScatterGatherList and CapsuleHeaderArray so the firmware will know both the
physical and virtual addresses of the operating system allocated buffers. The scatter-gather list supports the situation
where the virtual address range of a capsule is contiguous, but the physical addresses are not.

On architectures where the processor’s view of main memory is incoherent with the caches when the memory manage-
ment unit is disabled, callers to UpdateCapsule() must perform cache maintenance to main memory on each Scatter-
GatherList element before calling UpdateCapsule(). This requirement only applies after the OS has called ExitBoot-
Services().

If any of the capsules that are passed into this function encounter an error, the entire set of capsules will not be processed
and the error encountered will be returned to the caller.

Status Codes Returned

8.5. Miscellaneous Runtime Services 245

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_SUCCESS Valid capsule was passed. If CAP-
SULE_FLAGS_PERSIST_ACROSS_RESET is not set, the capsule
has been successfully processed by the firmware.

EFI_INVALID_PARAMETER CapsuleSize, or an incompatible set of flags were set in the capsule header.
EFI_INVALID PARAMETER CapsuleCount is 0

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.
EFI_UNSUPPORTED The capsule type is not supported on this platform.
EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error indicates the

capsule is compatible with this platform but is not capable of being submit-
ted or processed in runtime. The caller may resubmit the capsule prior to
ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices() has not been previously called then this error in-
dicates the capsule is compatible with this platform but there are insufficient
resources to process.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.5.3.2 Capsule Definition

A capsule is simply a contiguous set of data that starts with an EFI_CAPSULE_HEADER. The CapsuleGuid field in
the header defines the format of the capsule.

The capsule contents are designed to be communicated from an OS-present environment to the system firmware. To
allow capsules to persist across system reset, a level of indirection is required for the description of a capsule, since the
OS primarily uses virtual memory and the firmware at boot time uses physical memory. This level of abstraction is ac-
complished via the EFI_CAPSULE_BLOCK_DESCRIPTOR. The EFI_CAPSULE_BLOCK_DESCRIPTOR allows
the OS to allocatecontiguous virtual address space and describe this address space to the firmware as a discontinuous
set of physical address ranges. The firmware is passed both physical and virtual addresses and pointers to describe the
capsule so the firmware can process the capsule immediately or defer processing of the capsule until after a system
reset.

In most instruction sets and OS architecture, allocation of physical memory is possible only on a “page” granularity
(which can range for 4 KiB to at least 1 MiB). The EFI_CAPSULE_BLOCK_DESCRIPTOR must have the following
properties to ensure the safe and well defined transition of the data:

* Each new capsule must start on a new page of memory.
» All pages except for the last must be completely filled by the capsule.

— It is legal to pad the header to make it consume an entire page of data to enable the passing of page aligned
data structures via a capsule. The last page must have at least one byte of capsule in it.

* Pages must be naturally aligned
* Pages may not overlap on another
» Firmware may never make an assumption about the page sizes the operating system is using.

Multiple capsules can be concatenated together and passed via a single call to UpdateCapsule().The physical address
description of capsules are concatenated by converting the terminating EFI_CAPSULE_BLOCK_DESCRIPTOR entry
of the 1st capsule into a continuation pointer by making it point to the EFI_CAPSULE_BLOCK_DESCRIPTOR that
represents the start of the 2nd capsule. There is only a single terminating EFI CAPSULE_BLOCK_DESCRIPTOR
entry and it is at the end of the last capsule in the chain.

The following algorithm must be used to find multiple capsules in a single scatter gather list:

8.5. Miscellaneous Runtime Services 246

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

* Look at the capsule header to determine the size of the capsule
— The first Capsule header is always pointed to by the first EFI_CAPSULE_BLOCK_DESCRIPTOR entry
» Walk the EFI._ CAPSULE_BLOCK_DESCRIPTOR list keeping a running count of the size each entry represents.

* If the EFI_CAPSULE_BLOCK_DESCRIPTOR entry is a continuation pointer and the running current capsule
size count is greater than or equal to the size of the current capsule this is the start of the next capsule.

* Make the new capsules the current capsule and repeat the algorithm.

Figure, below, shows a Scatter-Gather list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures that de-
scribes two capsules. The left side of the figure shows OS view of the capsules as two separate contiguous
virtual memory buffers. The center of the figure shows the layout of the data in system memory. The
right hand side of the figure shows the ScatterGatherList list passed into the firmware. Since there are two
capsules two independent EFI_CAPSULE_BLOCK_DESCRIPTOR lists exist that were joined together
via a continuation pointer in the first list.

System Memory
OS view of Capsules

\ FW view of Capsules
. -
Capsule A header
PageN 4 Capsule Block Descriptor
ScatterGather
- = ¢
Page N+1 { Capsule Body pag:x/
Page N+2 j | E—
t) [
Capsule B header
PageM | h v Page ¥
= NULL
' Capsule Body 4
Page M+1 4
\ | ',)\

Fig. 8.1: Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures

8.5.3.3 EFI_MEMORY_RANGE_CAPSULE_GUID

This capsule structure definition provides a means by which a third-party component (e.g. OS) can describe to firmware
regions in memory should be left untouched across the next reset.

Support for this capsule is optional. For platforms that support this capsule, they must
advertise EFI_ MEMORY_RANGE_CAPSULE in the EFI Configuration table using the
EFI_MEMORY_RANGE_CAPSULE_GUID as the GUID in the GUID/pointer pair.

// {ODE9FOEC-88B6-428F-977A-258F1DOE5SE72}
#define EFI_MEMORY_RANGE_CAPSULE_GUID \
{ 0xde9f0ec, 0x88b6, 0x428f, \
{ 0x97, Ox7a, Ox25, O0x8f, Oxld, Oxe, Ox5e, O0x72 } }

A memory range descriptor.

8.5. Miscellaneous Runtime Services 247

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

typedef struct
EFI_PHYSICAL_ADDRESS Address;
UINT64 Length;
} EFI_MEMORY_RANGE;

Address
Physical address of memory location being described.

Length
Length in bytes.

The capsule descriptor that describes the memory ranges a platform firmware should leave untouched.

typedef struct {

EFI_CAPSULE_HEADER Header;

UINT32 OsRequestedMemoryType;
UINT64 NumberOfMemoryRanges;
EFI_MEMORY_RANGE MemoryRanges[];

} EFI_MEMORY_RANGE_CAPSULE;

Header

Header.CapsuleGuid = EFI._ MEMORY_RANGE_CAPSULE_GUID
Header.Flags = CAPSULE_FLAGS_PERSIST_ACROSS_RESET

OsRequestedMemoryType

Must be in the 0x80000000-0xFFFFFFFF range

When UEFI Firmware processes the capsule, contents described in MemoryRanges[] will show up as
OsRequestedMemoryType values in the EFI Memory Map.

NumberofMemoryRanges
Number of MemoryRanges[] entries. Must be a value of 1 or greater.

MemoryRanges|]
An array of memory ranges. Equivalent to MemoryRanges[NumberOfMemoryRanges].

For a platform that intends to support the EFI_MEMORY_RANGE_CAPSULE, it must ad-
vertise ~EFI_MEMORY_RANGE_CAPSULE_RESULT in the EFI Configuration table using the
EFI_MEMORY_RANGE_CAPSULE_GUID as the GUID in the GUID/pointer pair.

typedef struct {
UINT64 FirmwareMemoryRequirement ;
UINT64 NumberOfMemoryRanges;

} EFI_MEMORY_RANGE_CAPSULE_RESULT

FirmwareMemoryRequirement
The maximum amount of memory in bytes that the UEFI firmware requires to initialize.

NumberofMemoryRanges
Wil be 0 if no EFI_MEMORY_RANGE_CAPSULE has been processed. If a
EFI_MEMORY_RANGE_CAPSULE was processed, this number will be identical to the
EFI_MEMORY_RANGE_CAPSULE.NumberOfMemoryRanges value.

8.5. Miscellaneous Runtime Services 248

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.5.3.4 QueryCapsuleCapabilities()

Summary
Returns if the capsule can be supported via UpdateCapsule().

Prototype

typedef

EFI_STATUS

QueryCapsuleCapabilities (
IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
IN UINTN CapsuleCount,
OUT UINT64 *MaximumCapsuleSize,
OUT EFI_RESET_TYPE *ResetType
s

CapsuleHeaderArray
Virtual pointer to an array of virtual pointers to the capsules being passed into update capsule. The capsules are
assumed to stored in contiguous virtual memory.

CapsuleCount™*
Number of pointers to EFI_CAPSULE_HEADER in CapsuleHeaderArray.

MaximumCapsuleSize
On output the maximum size in bytes that UpdateCapsule() can support as an argument to UpdateCapsule() via
CapsuleHeaderArray and ScatterGatherList. Undefined on input.

ResetType
Returns the type of reset required for the capsule update. Undefined on input.

Description

The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or capsules can be updated via
UpdateCapsule(). The Flags values in the capsule header and size of the entire capsule is checked.

If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be constructed
where CapsulelmageSize is equal to HeaderSize that is equal to sizeof (EFI_CAPSULE_HEADER). To deter-
mine reset requirements, CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the
EFI_CAPSULE_HEADER.

Status Codes Returned

EFI_SUCCESS Valid answer returned.

EFI_INVALID PARAMETER MaximumCapsuleSize is NULL.

EFI_UNSUPPORTED The capsule type is not supported on this platform, and MaximumCapsule-
Size and ResetType are undefined.

EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error indicates the

capsule is compatible with this platform but is not capable of being submit-
ted or processed in runtime. The caller may resubmit the capsule prior to
ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices() has not been previously called then this error in-
dicates the capsule is compatible with this platform but there are insufficient
resources to process.

EFI_UNSUPPORTED This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.5. Miscellaneous Runtime Services 249

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.5.4 Exchanging information between the OS and Firmware

The firmware and an Operating System may exchange information through the OsIndicationsSupported and the OSIndi-
cations variables as follows:

* The OsIndications variable returns a UINT64 bitmask owned by the OS and is used to indicate which features
the OS wants firmware to enable or which actions the OS wants the firmware to take. The OS will supply this
data with a SetVariable() call.

» The OsiIndicationsSupported variable returns a UINT64 bitmask owned by the firmware and indicates which of
the OS indication features and actions that the firmware supports. This variable is recreated by firmware every
boot, and cannot be modified by the OS.

The EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set in the OsIndicationsSupported vari-
able by the firmware, if the firmware supports OS requests to stop at a firmware user interface. The
EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set by the OS in the Osindications variable, if the OS
desires for the firmware to stop at a firmware user interface on the next boot. Once the firmware consumes this bit
in the OsIndications variable and stops at the firmware user interface, the firmware should clear the bit from the
Oslindications variable in order to acknowledge to the OS that the information was consumed and, more importantly,
to prevent the firmware user interface from showing again on subsequent boots.

The EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION bit can be set in the OSIndicationsSupported variable
by the firmware, if the firmware supports timestamp based revocation and the “ dbt * uthorized timestamp database
variable.

The EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit is set in OsIndicationsSupported variable if plat-
form supports processing of Firmware Management Protocol update capsule as defined in Dependency Expression
Instruction Set. If set in OsIndications variable, the EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit
has no function and is cleared on the next reboot.

The EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in OsIndicationsSupported variable
is set if platform supports processing of file capsules per Delivery of Capsules via file on Mass Storage Device.

When submitting capsule via the Mass Storage Device method of Delivery of Capsules via file on Mass Storage Device,
the bit EFI_OS_INDICATIONS_FILE _CAPSULE_DELIVERY_SUPPORTED in OslIndications variable must be set
by submitter to trigger processing of submitted capsule on next reboot. This bit will be cleared from OslIndications by
system firmware in all cases during processing following reboot.

The EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED bit is set in OslndicationsSupported vari-
able if platform supports reporting of deferred capsule processing by creation of result variable as defined in UEF]
variable reporting on the Success or any Errors encountered in processing of capsules after restart. This bit has no
function if set in OsIndications.

The EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in the OsIndicationsSupported variable if the plat-
form supports both the ability for an OS to indicate that OS-defined recovery should commence upon reboot, as well as
support for the short-form File Path Media Device Path (See Load Option Processing). If this bit is set in OsIndications,
the platform firmware must bypass processing of the BootOrder variable during boot, and skip directly to OS-defined
recovery (OS-Defined Boot Option Recovery) followed by Platform-defined recovery (Platform-Defined Boot Option
Recovery). System firmware must clear this bit in OsIndications when it starts OS-defined recovery.

The EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in the OsIndicationsSupported variable
if the platform supports both the ability for an OS to indicate that Platform-defined recovery should commence upon
reboot, as well as support for the short-form File Path Media Device Path (Load Option Processing). If this bit is
set in OsiIndications, the platform firmware must bypass processing of the BootOrder variable during boot, and skip
directly to Platform-Defined Boot Option Recovery . System firmware must clear this bit in OslIndications when it starts
Platform-defined recovery.

In all cases, if either of EFI_OS_INDICATIONS_START_OS_RECOVERY or
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set in OslndicationsSupported, both must be

8.5. Miscellaneous Runtime Services 250

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

set and supported.

The EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH bit is set in the OsIndications variable by submitter
to trigger collecting current configuration and reporting the refreshed data to EFI System Configuration Table on next
boot. If not set, platform will not collect current configuration but report the cached configuration data to EFI System
Configuration Table. The configuration data shall be installed to EFI System Configuration Table using the format of
EFI_JSON_CAPSULE_CONFIG_DATA defined in Defined JSON Capsule Data Structure. This bit will be cleared
from OsiIndications by system firmware once the refreshed data is reported.

If set in the OsIndicationsSupported variable, the EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH bit
has no function and is cleared on the next reboot.

Related Definitions

#define EFI_OS_INDICATIONS_BOOT_TO_FW_UI 0x000000000000000 1
#define EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION \ 0x0000000000000002
#define EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED 0x0000000000000004
#define EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED \ 0x0000000000000008
#define EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED 0x0000000000000010
#define EFI_OS_INDICATIONS_START_OS_RECOVERY 0x0000000000000020
#define EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY \ 0x0000000000000040
#define EFI_OS_INDICATIONS_JSON_CONFIG_DATA_REFRESH \ 0x0000000000000080

8.5.5 Delivery of Capsules via file on Mass Storage Device

As an alternative to the UpdateCapsule() runtime API, capsules of any type supported by platform may also be delivered
to firmware via a file within the EFI system partition on the mass storage device targeted for boot. Capsules staged using
this method are processed on the next system restart. This method is only available when booting from mass storage
devices which are formatted with GPT (Section 5) and contain an EFI System Partition in the device image. System
firmware will search for capsule when EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in
OslIndications is set as described in Exchanging information between the OS and Firmware.

The directory \EFI\UpdateCapsule (letter case ignored) within the active EFI System Partition is defined for delivery
of capsule to firmware. The binary structure of a capsule file on mass storage device is identical to the contents of cap-
sule delivered via the EFI RunTime API except that fragmentation using EFI_CAPSULE_BLOCK_DESCRIPTOR
is not supported and the single capsule must be stored in contiguous bytes within the file starting with
EFI_CAPSULE_HEADER. The size of the file must equal EFI_CAPSULE_HEADER. CapsulelmageSize or error
will be generated and the capsule ignored. Only a single capsule with a single EFI_CAPSULE_HEADER may be
submitted within a file but more than one file each containing a capsule may be submitted during a single restart.

The file name of the capsule shall be chosen by submitter using 8-bit ASCII characters appropriate to the file system
of the EFI system partition (System Partition). After examination and processing of a file placed in this directory the
file will (if possible) be deleted by firmware. The deletion is performed in case of successful processing and also in the
case of error but failure to successfully delete is not itself a reportable error.

More than one capsule file each containing a single capsule image may be stored in the specified directory. In case
of multiple files, the system firmware shall process files in alphabetical order using sort based on CHAR16 numerical
value of file name characters, compared left to right. Lower case letter characters will be converted to upper case before
compare. When comparing file names of unequal length, the space character shall be used to pad shorter file names.
In case of file name containing one or more period characters (.), the right-most period, and the text to the right of the
right-most period in the file name, will be removed before compare. In case of any file names with identical text after
excluding any text after the right-most period, the order of processing shall be determined by sorting of any text found
to right of the right-most period in file name string.

If a capsule processing is terminated by error any remaining additional capsule files will be processed normally.

8.5. Miscellaneous Runtime Services 251

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

The directory \EFI\UpdateCapsule is checked for capsules only within the EFI system partition on the device spec-
ified in the active boot option determine by reference to BootNext variable or BootOrder variable processing. The
active Boot Variable is the variable with highest priority BootNext or within BootOrder that refers to a device found to
be present. Boot variables in BootOrder but referring to devices not present are ignored when determining active boot
variable.

The device to be checked for \EFI\UpdateCapsule is identified by reference to FilePathList field within the selected
active Boot#### variable. The system firmware is not required to check mass storage devices that do not contain boot
target that is highest priority for boot nor to check a second EFI system partition not the target of the active boot variable.

In all cases that a capsule is identified for processing the system is restarted after capsule processing is completed. In
case where BootNext variable was set, this variable is cleared when capsule processing is performed without actual
boot of the variable indicated.

8.5.6 UEFI variable reporting on the Success or any Errors encountered in process-
ing of capsules after restart

In cases where the processing of capsules is (1) delivered by call to UpdateCapsule() API but deferred to next restart,
or (2) when capsules are delivered via mass storage device, a UEFI variable is created by firmware to indicate to
capsule provider the status of the capsule processing. In the case were multiple capsules are delivered in calls to
UpdateCapsule(), or multiple files on disk as described in Delivery of Capsules via file on Mass Storage Device, or when
a capsule contains multiple payloads as described in Dependency Expression Instruction Set, a separate result variable
will be created for each capsule payload processed. The firmware will over-write result variables when calculated
variable name already exists. However, to avoid unnecessarily consuming system variable store the result variable
should be deleted by capsule provider after result status is examined.

UEFI variable reports will not be used when the entirety of capsule processing occurs within the call to UpdateCapsule()
function.

The reporting variable attributes will be EFI_VARIABLE_NON_VOLATILE +
EFI_VARIABLE_BOOTSERVICE_ACCESS + EFI_VARIABLE_RUNTIME_ACCESS.

The Vendor GUID of the reporting variable will be EFI_CAPSULE_REPORT_GUID. The name of the reporting
variable will be CapsuleNNNN where NNNN is 4-digit hex number chosen by the firmware. The values of NNNN will
be incremented by firmware starting at Capsule0000 and continuing up to the platform-defined maximum.

The platform will publish the platform maximum in a read-only variable named EFI_CAPSULE_REPORT_GUID:
CapsuleMax. The contents of CapsuleMax will be the string “CapsuleNNNN” where NNNN is the highest value used
by platform before rolling over to Capsule0000.The platform will also publish the name of the last variable created in
EFI_CAPSULE_REPORT_GUID: CapsuleLast.

When creating a new result variable, any previous variable with the same name will be overwritten. In case where
variable storage is limited system firmware may optionally delete oldest report variables to create free space. If sufficient
variable space cannot be freed the variable is not created.

Table 8.22: Variables Using EFI_CAPSULE_REPORT_GUID

Variable Name Attributes Internal Format

Capsule0000, Capsule0001, ... NV, BS,RT EFI_CAP SULE_RESULT_VARIABLE
up to max

CapsuleMax BS, RT, Read-Only CHAR16[11] (no zero terminator)
CapsuleLast NV, BS, RT, Read-Only CHAR16[11] (no zero terminator)

8.5. Miscellaneous Runtime Services 252

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

8.5.6.1 EFI_CAPSULE_REPORT_GUID

// {39B68C46-F7FB-441B-B6EC-16BOF69821F3}
#define EFI_CAPSULE_REPORT_GUID \
{ 0x39b68c46, Oxf7fb, 0x441b, \
{0xb6, Oxec, 0x16, Oxb®, O0xf6, 0x98, 0x21, Oxf3 }};

8.5.6.1.1 Structure of the Capsule Processing ResultVariable

The Capsule Processing Result Variable contents always begin with the EFI_CAPSULE_RESULT_VARIABLE_HEADER
structure. The value of CapsuleGuid determines any additional data that may follow within the instance of the Result
Variable contents. For some values of CapsuleGuid no additional data may be defined.

As noted below, VariableTotalSize is the size of complete result variable including the entire header and any additional
data required for particular CapsuleGuid types.

typedef struct {
UINT32 VariableTotalSize;
UINT32 Reserved; //for alignment
EFI_GUID CapsuleGuid;
EFI_TIME CapsuleProcessed;
EFI_STATUS CapsuleStatus;

} EFI_CAPSULE_RESULT_VARIABLE_HEADER;

VariableTotalSize
Size in bytes of the variable including any data beyond header as specified by CapsuleGuid.

CapsuleGuid
Guid from EFI_CAPSULE_HEADER

CapsuleProcessed
Timestamp using system time when processing completed.

CapsuleStatus
Result of the capsule processing. Exact interpretation of any error code may depend upon type of capsule pro-
cessed.

8.5.6.1.2 Additional Structure When CapsuleGuid is EFI_FIRMWARE_MANAGEMENT CAPSULE
_ID_GUID

The capsule Processing Result Variable contents always begin with EFI_CAPSULE_RESULT_VARIABLE_HEADER.
When CapsuleGuid is EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID, the header is followed by addi-
tional data as defined by EFI_CAPSULE_RESULT_VARIABLE_FMP.

typedef struct {
UINT16 Version;
UINTS8 PayloadIndex;
UINTS8 UpdateImageIndex;
EFI_GUID UpdateImageTypeld;

(continues on next page)

8.5. Miscellaneous Runtime Services 253

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

// CHAR16 CapsuleFileName [];
// CHAR16 CapsuleTarget [];
} EFI_CAPSULE_RESULT_VARIABLE_FMP;

Version
The version of this structure, currently 0x00000001.

PayloadIndex
The index, starting from zero, of the payload within the FMP capsule which was processed to generate this report.

UpdateImageIndex
The Updatelmagelndex from EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER (after un-
signed conversion from UINTS to UINT16).

UpdateImageTypeld
The UpdatelmageTypeld Guid from EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER.

CapsuleFileName
In case of capsule loaded from disk, the zero-terminated array containing file name of capsule that was processed.
In case of capsule submitted directly to UpdateCapsule() there is no file name, and this field is required to contain
a single 16-bit zero character which is included in VariableTotalSize.

CapsuleTarget
This field will contain a zero-terminated CHARI16 string containing the text representation of the device path
of device publishing Firmware Management Protocol (if present). In case where device path is not present and
the target is not otherwise known to firmware, or when payload was blocked by policy, or skipped, this field is
required to contain a single 16-bit zero character which is included in VariableTotalSize.

8.5.6.1.3 Additional Structure When CapsuleGuid is EFI_JSON_CAPSULE_ID_GUID

The Capsule Processing Result Variable contents always begin with EFI_CAPSULE_RESULT_VARIABLE_HEADER.
When CapsuleGuid is EFI_JSON_CAPSULE_ID_GUID, the header is followed by additional data as defined by
EFI_CAPSULE_RESULT_VARIABLE_JSON.

typedef struct {
UINT32 Version;
UINT32 Capsuleld;
UINT32 Resplength;
UINT8 Respl[];
} EFI_CAPSULE_RESULT_VARIABLE_JSON;

Version
The version of this structure, currently 0x00000001.

Capsuleld

The unique identifier of the capsule whose processing result is recorded in this variable.
0x00000000 - OxEFFFFFFF - Implementation Reserved
0xF0000000 - OxFFFFFFFF - Specification Reserved
#define REDFISH_DEFINED_JSON_SCHEMA 0xF000000
The JSON payload shall conform to a Redfish-defined JSON schema, see DMTF-Redfish Specification.

RespLength
The length of Resp in bytes.

8.5. Miscellaneous Runtime Services 254

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Resp

Variable length buffer containing the replied JSON payload to the caller who delivered JSON capsule to system.
The definition of the JSON schema used in the replied payload is beyond the scope of this specification.

Table 8.23: Status Codes Returned in CapsuleStatus

EFI_SUCCESS
EFI_INVALID_PARAMETER
EFI_DEVICE_ERROR
EFI_ACCESS_DENIED
EFI_LOAD_ERROR
EFI_UNSUPPORTED
EFI_OUT_OF_RESOURCES
EFI_NOT_READY

EFI_ABORTED
EFI_UNSUPPORTED

Valid capsule was passed and the capsule has been successfully processed
by the firmware.

Invalid capsule size, or an incompatible set of flags were set in the capsule
header. In the case of a capsule file, the file size was not valid or an error
was detected in the internal structure of the file.

The capsule update was started, but failed due to a device error.

Image within capsule was not loaded because the platform policy prohibits
the image from being loaded.

For capsule with included driver, no driver with correct format for the plat-
form was found.

The capsule type is not supported on this platform. Or the capsule internal
structures were not recognized as valid by the platform.

There were insufficient resources to process the capsule.

Capsule payload blocked by platform policy.

Capsule payload was skipped.

This call is not supported by this platform at the time the call is made. The
platform should describe this runtime service as unsupported at runtime via
an EFI_RT_PROPERTIES_TABLE configuration table.

8.5. Miscellaneous Runtime Services 255

CHAPTER
NINE

PROTOCOLS - EFI LOADED IMAGE

This section defines EFI_LOADED_IMAGE_PROTOCOL and the EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL.
Respectively, these protocols describe an Image that has been loaded into memory and specifies the device path used
when a PE/COFF image was loaded through the EFI Boot Service Loadlmage(). These descriptions include the source

from which the image was loaded, the current location of the image in memory, the type of memory allocated for the
image, and the parameters passed to the image when it was invoked.

9.1 EFI Loaded Image Protocol

9.1.1 EFI_LOADED_IMAGE_PROTOCOL

Summary
Can be used on any image handle to obtain information about the loaded image.

GUID

#define EFI_LOADED_IMAGE_PROTOCOL_GUID \
{0x5B1B31A1,0x9562,0x11d2,\
{0x8E, 0x3F, 0x00, 0xA0,0xC9,0x69,0x72,0x3B}}

Revision Number

[#define EFI_LOADED_IMAGE_PROTOCOL_REVISION 0x1000]

Protocol Interface Structure

typedef struct {

UINT32 Revision;
EFI_HANDLE ParentHandle;
EFI_System_Table *SystemTable;

// Source location of the image

EFI_HANDLE DeviceHandle;
EFI_DEVICE_PATH_PROTOCOL *FilePath;
VOID *Reserved;

// Image’s load options
UINT32 LoadOptionsSize;
VOID *LoadOptions;

(continues on next page)

256

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

// Location where image was loaded

VOID *ImageBase;
UINT64 ImageSize;
EFI_MEMORY_TYPE ImageCodeType;
EFI_MEMORY_TYPE ImageDataType;
EFI_IMAGE_UNLOAD Unload;

} EFI_LOADED_IMAGE_PROTOCOL;

Parameters

Revision
Defines the revision of the EFI_LOADED_IMAGE_PROTOCOL structure. All future revisions will be back-
ward compatible to the current revision.

ParentHandle
Parent image’s image handle. NULL if the image is loaded directly from the firmware’s boot manager. Type
EFI_HANDLE is defined in Services — Boot Services.

SystemTable
The image’s EFI system table pointer. Type EFI_SYSTEM_TABLE defined in EFI System Table.

DeviceHandle
The device handle that the EFI Image was loaded from. Type EFI_HANDLE is defined in Services — Boot
Services.

FilePath
A pointer to the file path portion specific to DeviceHandle that the EFI Image was loaded from.
EFI_DEVICE_PATH_PROTOCOL is defined in EFI Device Path Protocol .

Reserved
Reserved. DO NOT USE.

LoadOptionsSize
The size in bytes of LoadOptions.

LoadOptions
A pointer to the image’s binary load options. See the OptionalData parameter in the Load Options section of the
Boot Manager chapter for information on the source of the LoadOptions data.

ImageBase
The base address at which the image was loaded.

ImageSize
The size in bytes of the loaded image.

ImageCodeType
The memory type that the code sections were loaded as. Type EFI_ MEMORY_TYPE is defined in Services —
Boot Services.

ImageDataType
The memory type that the data sections were loaded as. Type EFI_MEMORY_TYPE is defined in in Services —
Boot Services.

Unload
Function that unloads the image - see Section 9.1.2.

Description

Each loaded image has an image handle that supports EFI_LOADED_IMAGE_PROTOCOL. When an image is started,
it is passed the image handle for itself. The image can use the handle to obtain its relevant image data stored in the

9.1. EFIl Loaded Image Protocol 257

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

EFI_LOADED_IMAGE_PROTOCOL structure, such as its load options.

9.1.2 EFI_LOADED_IMAGE_PROTOCOL.Unload()

Summary
Unloads an image from memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_UNLOAD) (
IN EFI_HANDLE ImageHandle,
D

Parameters

ImageHandle
The handle to the image to unload. Type EFI_HANDLE Driver Model Boot Services

Description

The Unload() function is a callback that a driver registers to do cleanup when the UnloadImage boot service function
is called.

Status Codes Returned
EFI_SUCCESS The image was unloaded.
EFI_INVALID PARAMETER The ImageHandle was not valid.

9.2 EFl Loaded Image Device Path Protocol

9.2.1 EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

Summary

When installed, the Loaded Image Device Path Protocol specifies the device path that was used when a PE/COFF image
was loaded through the EFI Boot Service LoadImage().

GUID

#define EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID \
{0xbc62157e,0x3e33,0x4fec,\
{0x99,0x20,0x2d,0x3b,0x36,0xd7,0x50,0xdf}}

Description

The Loaded Image Device Path Protocol uses the same protocol interface structure as the Device Path Protocol defined
in Chapter 9. The only difference between the Device Path Protocol and the Loaded Image Device Path Protocol is the
protocol GUID value.

The Loaded Image Device Path Protocol must be installed onto the image handle of a PE/COFF image loaded through
the EFI Boot Service LoadImage(). A copy of the device path specified by the DevicePath parameter to the EFI Boot
Service Loadlmage() is made before it is installed onto the image handle. It is legal to call LoadIlmage() for a buffer in

9.2. EFIl Loaded Image Device Path Protocol 258

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

memory with a NULL DevicePath parameter. In this case, the Loaded Image Device Path Protocol is installed with a
NULL interface pointer.

9.2. EFIl Loaded Image Device Path Protocol 259

CHAPTER
TEN

PROTOCOLS - DEVICE PATH PROTOCOL

This section contains the definition of the device path protocol and the information needed to construct and manage
device paths in the UEFI environment. A device path is constructed and used by the firmware to convey the location
of important devices, such as the boot device and console, consistent with the software-visible topology of the system.

10.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a Device Path is to allow
an application, such as an OS loader, to determine the physical device that the interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted around a name space
that is written in ASL (ACPI Source Language). Given that EFI does not replace ACPI and defers to ACPI when ever
possible, it would seem logical to utilize the ACPI name space in EFI. However, the ACPI name space was designed
for usage at operating system runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines
its own name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key structures in the Device
Path defines the linkage back to the ACPI name space. The Device Path also is used to fill in the gaps where ACPI
defers to buses with standard enumeration algorithms. The Device Path is able to relate information about which device
is being used on buses with standard enumeration mechanisms. The Device Path is also used to define the location on
a medium where a file should be, or where it was loaded from. A special case of the Device Path can also be used to
support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which devices the platform
firmware was using as boot devices. This allows the operating system to maintain a view of the system that is consistent
with the platform firmware. An example of this is a “headless” system that is using a network connection as the boot
device and console. In such a case, the firmware will convey to the operating system the network adapter and network
protocol information being used as the console and boot device in the device path for these devices.

10.2 EFI Device Path Protocol

This section provides a detailed description of EFI_DEVICE_PATH_PROTOCOL.
Summary

Can be used on any device handle to obtain generic path/location information concerning the physical device or logical
device. If the handle does not logically map to a physical device, the handle may not necessarily support the device
path protocol. The device path describes the location of the device the handle is for. The size of the Device Path can
be determined from the structures that make up the Device Path.

GUID

260

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

#define EFI_DEVICE_PATH_PROTOCOL_GUID \
{0x09576e91,0x6d3f,0x11d2,\
{0x8e,0x39,0x00,0xad,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure

[s s s e el s de e e e el i e il i dei o e i o deot e
// EFI_DEVICE_PATH_PROTOCOL
/% e e e e e s el e e e e e e e dede e g de e s e e s e e de e de e e dede e s de e s e e e e
typedef struct _EFI_DEVICE_PATH_PROTOCOL {

UINTS8 Type;

UINTS8 SubType;

UINTS8 Length[2];

} EFI_DEVICE_PATH_PROTOCOL;

Description

The executing UEFI Image may use the device path to match its own device drivers to the particular device. Note
that the executing UEFI OS loader and UEFI application images must access all physical devices via Boot Services
device handles until EFI_BOOT _SERVICES.ExitBootServices() is successfully called. A UEFI driver may access only
a physical device for which it provides functionality.

10.3 Device Path Nodes

There are six major types of Device Path nodes:

» Hardware Device Path. This Device Path defines how a device is attached to the resource domain of a system,
where resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system.

* ACPI Device Path. This Device Path is used to describe devices whose enumeration is not described in an
industry-standard fashion. These devices must be described using ACPI AML in the ACPI name space; this
Device Path is a linkage to the ACPI name space.

* Messaging Device Path. This Device Path is used to describe the connection of devices outside the resource
domain of the system. This Device Path can describe physical messaging information such as a SCSI ID, or
abstract information such as networking protocol IP addresses.

¢ Media Device Path. This Device Path is used to describe the portion of a medium that is being abstracted by a
boot service. For example, a Media Device Path could define which partition on a hard drive was being used.

* BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy operating systems; it is
based on the BIOS Boot Specification Version 1.01. See References for details on obtaining this specification.

* End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to indicate the end of
the Device Path instance or Device Path structure.

10.3. Device Path Nodes 261

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.1 Generic Device Path Structures

A Device Path is a variable-length binary structure that is made up of variable-length generic Device Path nodes.
Generic Device Path Node Structure defines the structure of a variable-length generic Device Path node and the lengths
of its components. The table (below) defines the type and sub-type values corresponding to the Device Paths described
in Device Path Nodes; all other type and sub-type values are Reserved.

Table 10.1: Generic Device Path Node Structure

Mnemonic Byte Byte Description
Offset Length
Type 0 1

Type 0x01 - Hardware Device Path

Type 0x02 - ACPI Device Path

Type 0x03 - Messaging Device Path

Type 0x04 - Media Device Path

Type 0x05 - BIOS Boot Specification Device Path
Type 0x7F - End of Hardware Device Path

Sub-Type 1 1 Sub-Type - Varies by Type. (See table below)
Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.
Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define

type of data. Size of data is included in Length.

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte offset zero of the Device
Path. The next Device Path node starts at the end of the previous Device Path node. Therefore all nodes are byte-packed
data structures that may appear on any byte boundary. All code references to device path notes must assume all fields
are unaligned. Since every Device Path node contains a length field in a known place, it is possible to traverse Device
Path nodes that are of an unknown type. There is no limit to the number, type, or sequence of nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two sub-types (Device
Path End Structure):

* End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device Path instance and
denotes the start of another. This is only required when an environment variable represents multiple devices.
An example of this would be the ConsoleOut environment variable that consists of both a VGA console and
serial output console. This variable would describe a console output stream that is sent to both VGA and serial
concurrently and thus has a Device Path that contains two complete Device Paths.

* End Entire Device Path (sub-type OxFF). This type of node terminates an entire Device Path. Software searches
for this sub-type to find the end of a Device Path. All Device Paths must end with this sub-type.

Table 10.2: Device Path End Structure

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type Ox7F - End of Hardware Device Path
Sub-Type 1 1 Sub-Type OxFF - End Entire Device Path, or Sub-Type 0x01 - End
This Instance of a Device Path and start a new Device Path
Length 2 2 Length of this structure in bytes. Length is 4 bytes.

10.3. Device Path Nodes 262

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.2 Hardware Device Path

This Device Path defines how a device is attached to the resource domain of a system, where resource domain is simply
the shared memory, memory mapped I/O, and I/O space of the system. It is possible to have multiple levels of Hardware
Device Path such as a PCCARD device that was attached to a PCCARD PCI controller.

10.3.2.1 PCI Device Path

The Device Path for PCI defines the path to the PCI configuration space address for a PCI device. There is one PCI
Device Path entry for each device and function number that defines the path from the root PCI bus to the device. Because
the PCI bus number of a device may potentially change, a flat encoding of single PCI Device Path entry cannot be used.
An example of this is when a PCI device is behind a bridge, and one of the following events occurs:

* OS performs a Plug and Play configuration of the PCI bus.
* A hot plug of a PCI device is performed.
* The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies the PCI root bus.
The programming of root PCI bridges is not defined by any PCI specification and this is why an ACPI Device Path
entry is required.

Table 10.3: PCI Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 1 - Hardware Device Path
Sub-Type 1 1 Sub-Type 1 - PCI

Length 2 2 Length of this structure is 6 bytes
Function 4 1 PCI Function Number

Device 5 1 PCI Device Number

10.3.2.2 PCCARD Device Path

Pccard Device Path
Table 10.4: PCCARD Device Path
Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 1 - Hardware Device Path
Sub-Type 1 1 Sub-Type 2 - PCCARD
Length 2 2 Length of this structure in bytes. Length is 5 bytes.
Function Number 4 1 Function Number (0 = First Function)

10.3. Device Path Nodes 263

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.2.3 Memory Mapped Device Path

Table 10.5: Memory Mapped Device Path

Mnemonic

Type
Sub-Type
Length
Memory Type

Start Address
End Address

Byte
Offset
0

1
2
4

o]

Byte
Length
1

1
2
4

o]

Description

Type 1 - Hardware Device Path.

Sub-Type 3 - Memory Mapped.

Length of this structure in bytes. Length is 24 bytes.
EFI_MEMORY_TYPE. Type EFI. MEMORY_TYPE is
defined in the EFI_BOOT_SERVICES.AllocatePages()
function description.

Starting Memory Address.

Ending Memory Address.

10.3.2.4 Vendor Device Path

The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must allocate a Vendor GUID
for a Device Path. The Vendor GUID can then be used to define the contents on the n bytes that follow in the Vendor

Device Path node.

Table 10.6: Vendor-Defined Device Path

Mnemonic

Type

Sub-Type

Length
Vendor_GUID
Vendor Defined Data

Byte
Offset

Byte
Length
1

1

2

16

n

Description

Type 1 - Hardware Device Path.

Sub-Type 4 - Vendor.

Length of this structure in bytes. Length is 20 + n bytes.
Vendor-assigned GUID that defines the data that follows.
Vendor-defined variable size data.

10.3.2.5 Controller Device Path

Table 10.7: Controller Device Path

Mnemonic Byte Offset
Type 0

Sub-Type 1

Length 2
Controller Num- 4

ber

Byte Length

1

1
2
4

Description

Type 1 - Hardware Device Path.

Sub-Type 5 - Controller.

Length of this structure in bytes. Length is 8 bytes.
Controller number.

10.3. Device Path Nodes

264

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.2.6 BMC Device Path

The Device Path for a Baseboard Management Controller (BMC) host interface.

Table 10.8: BMC Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 1 - Hardware Device Path.
Sub-Type 1 1 Sub Type 6 - BMC
Length 2 2 Length of this structure in bytes. Length is 13 bytes.
Interface Type 4 1 The Baseboard Management Controller (BMC) host interface type:

0x00: Unknown 0x01: KCS: Keyboard Controller Style 0x02:
SMIC: Server Management Interface Chip 0x03: BT: Block Transfer

Base Address 5 8 Base address (either memory-mapped or 1/O) of the BMC. If the le
ast-significant bit of the field is a 1, the address is in I/O space; oth-
erwise, the address is memory-mapped. Refer to the IPMI Interface
Specification for usage details.

10.3.3 ACPI Device Path

This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID and its corresponding
unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and _UID device identification objects that are
associated with a device. The ACPI Device Path contains values that must match exactly the ACPI name space that is
provided by the platform firmware to the operating system. Refer to the ACPI specification for a complete description
of the _HID, _CID, and _UID device identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name space. If only _HID
is present, the _HID must be used to describe any device that will be enumerated by the ACPI driver. The _CID, if
present, contains information that is important for the OS to attach generic driver (e.g., PCI Bus Driver), while the
_HID contains information important for the OS to attach device-specific driver. The ACPI bus driver only enumerates
a device when no standard bus enumerator exists for a device.

The _UID object provides the OS with a serial number-style ID for a device that does not change across reboots. The
object is optional, but is required when a system contains two devices that report the same _HID. The _UID only needs
to be unique among all device objects with the same _ HID value. If no _UID exists in the APCI name space for a _HID
the value of zero must be stored in the _UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device Path. An _HID
(along with _CID if present) is required to represent a PCI root bridge, since the PCI specification does not define the
programming model for a PCI root bridge. There are two subtypes of the ACPI Device Path: a simple subtype that
only includes the _HID and _UID fields, and an extended subtype that includes the _HID, _CID, and _UID fields.

The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values. The Expanded ACPI
Device Path node supports both numeric and string values for the _HID, _UID, and _CID values. As a result, the ACPI
Device Path node is smaller and should be used if possible to reduce the size of device paths that may potentially be
stored in nonvolatile storage. If a string value is required for the _HID field, or a string value is required for the _UID
field, or a _CID field is required, then the Expanded ACPI Device Path node must be used. If a string field of the
Expanded ACPI Device Path node is present, then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node are stored as a 32-bit
compressed EISA-type IDs. The following macro can be used to compute these EISA-type IDs from a Plug and Play
Hardware ID. The Plug and Play Hardware IDs used to compute the _HID and _CID fields in the EFI device path nodes
must match the Plug and Play Hardware IDs used to build the matching entries in the ACPI tables. The compressed
EISA-type IDs produced by this macro differ from the compressed EISA-type IDs stored in ACPI tables. As a result,

10.3. Device Path Nodes 265

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

the compressed EISA-type IDs from the ACPI Device Path nodes cannot be directly compared to the compressed
EISA-type IDs from the ACPI table.

#define EFI_PNP_ID(ID) (UINT32)(((ID) << 16) | 0x41DG®)
#define EISA_PNP_ID(ID) EFI_PNP_ID(ID)

Table 10.9: ACPI Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 2 - ACPI Device Path.
Sub-Type 1 1 Sub-Type 1 ACPI Device Path.
Length 2 2 Length of this structure in bytes. Length is 12 bytes.
_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit compressed

EISA-type ID. This value must match the corresponding _HID in
the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the same
_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space. Only the 32-bit numeric value type of
_UID is supported; thus strings must not be used for the _UID in the
ACPI name space.

Table 10.10: Expanded ACPI Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 2 - ACPI Device Path.

Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.

Length 2 2 Length of this structure in bytes. Minimum length is 19 bytes. The
actual size will depend on the size of the _HIDSTR, _UIDSTR, and
_CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit compressed
EISA-type ID. This value must match the corresponding _HID in
the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the same

_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match at least one of
the compatible device IDs returned by the corresponding _CID in
the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII string.
This value must match the corresponding _HID in the ACPI name
space. If the length of this string not including the null-terminator is
0, then the _HID field is used. If the length of this null-terminated
string is greater than 0, then this field supersedes the _HID field.

continues on next page

10.3. Device Path Nodes 266

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.10 — continued from previous page

_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the same
_HID. This value must also match the corresponding _UID/_HID
pair in the ACPI name space. This value is stored as a null-
terminated ASCII string. If the length of this string not including
the null-terminator is 0, then the _UID field is used. If the length
of this null-terminated string is greater than 0, then this field super-
sedes the _UID field. The Byte Offset of this field can be computed
by adding 16 to the size of the _HIDSTR field.

_CIDSTR Varies >=1 Device’s compatible PnP hardware ID stored as a null-terminated
ASCII string. This value must match at least one of the compatible
device IDs returned by the corresponding _CID in the ACPI name
space. If the length of this string not including the null-terminator is
0, then the _CID field is used. If the length of this null-terminated
string is greater than 0, then this field supersedes the _CID field. The
Byte Offset of this field can be computed by adding 16 to the sum of
the sizes of the HIDSTR and _UIDSTR fields.

10.3.3.1 ACPI _ADR Device Path

The _ADR device path is used to contain video output device attributes to support the Graphics Output Protocol. The
device path can contain multiple _ADR entries if multiple video output devices are displaying the same output.

Table 10.11: ACPI _ADR Deyvice Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 2 - ACPI Device Path

Sub-Type 1 1 Sub-Type3 _ADR Device Path

Length 2 2 Length of this structure in bytes. Minimum length is 8.

_ADR 4 4 _ADR value. For video output devices the value of this field comes
from Table B-2 ACPI 3.0 specification. At least one _ADR value is
required

Additional _ADR 8 N This device path may optionally contain more than one _ADR entry.

10.3.3.2 NVDIMM Device Path

This device path describes an NVDIMM device using the ACPI 6.0 specification defined NFIT Device Handle as the
identifier.

Table 10.12: NVDIMM Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 2 - ACPI Device Path

Sub-Type 1 1 Sub-type 4 - NVDIMM Device

Length 2 2 8 - Single NFIT Device Handle is supported.

NFIT Device Han- 4 4 NFIT Device Handle - Unique physical identifier. See ACPI De-

dle fined Devices and Device Specific Objects section, NVDIMM De-
vices sub-chapter for the specific definition of the fields utilized for
this handle.

continues on next page

10.3. Device Path Nodes 267

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.12 — continued from previous page

10.3.4 Messaging Device Path

This Device Path is used to describe the connection of devices outside the resource domain of the system. This Device
Path can describe physical messaging information like SCSI ID, or abstract information like networking protocol IP
addresses.

10.3.4.1 ATAPI Device Path

Table 10.13: ATAPI Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 1 - ATAPI
Length 2 2 Length of this structure in bytes. Length is 8 bytes.
PrimarySecondary 4 1 Set to zero for primary or one for secondary
SlaveMaster 5 1 Set to zero for master or one for slave mode
Logical Unit Num- 6 2 Logical Unit Number
ber
10.3.4.2 SCSI Device Path
Table 10.14: SCSI Device Path
Mnemonic Byte Byte Description

Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 2 - SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.
Target ID 4 2 Target ID on the SCSI bus (PUN)

Logical Unit Num- 6 2 Logical Unit Number (LUN)

ber

10.3.4.3 Fibre Channel Device Path

Table 10.15: Fibre Channel Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 3 - Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.
Reserved 4 4 Reserved

World Wide Name 8 8 Fibre Channel World Wide Name

continues on next page

10.3. Device Path Nodes 268

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.15 — continued from previous page

Logical Unit Num- 16 8 Fibre Channel Logical Unit Number
ber

Table 10.16: Fibre Channel Ex Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 21 - Fibre Channel Ex

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Name 8 8 8 byte array containing Fibre Channel End Device Port Name (a.k.a.,
World Wide Name)

Logical Unit Num- 16 8 8 byte array containing Fibre Channel Logical Unit Number

ber

The Fibre Channel Ex device path clarifies the definition of the Logical Unit Number field to conform with the T-10
SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the device path must conform with
a logical unit number returned by a SCSI REPORT LUNS command.

When the Fibre Channel Ex Device Path is used with the Extended SCSI Pass Thru Protocol the UINT64 LUN ar-
gument must be converted to the eight byte array Logical Unit Number field in the device path by treating the eight
byte array as an EFI UINT64.For example a Logical Unit Number array of { 0,1,2,3,4,5,6,7 } becomes a UINT64 of
0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN visible to a user, it should be done in conformance
with SAM-4. SAM-4 requires a LUN to be displayed in hexadecimal format with byte O first (i.e., on the left) and byte
7 last (i.e., on the right) regardless of the internal representation of the LUN. UEFI defines all data structures a “little
endian” and SCSI defines all data structures as “big endian” .Fibre Channel Ex Device Path Example shows an example
device path for a Fibre Channel controller on a typical UEFI platform. This Fibre Channel Controller is connected to
the port O of the root hub, and its interface number is 0. The Fibre Channel Host Controller is a PCI device whose PCI
device number 0x1F and PCI function 0x00. So, the whole device path for this Fibre Channel Controller consists an
ACPI Device Path Node, a PCI Device Path Node, a Fibre Channel Device Path Node and a Device Path End Structure.
The _HID and _UID must match the ACPI table description of the PCI Root Bridge. The Fibre Channel WWN and
LUN were picked to show byte order and they are not typical real world values. The shorthand notation for this device
path is:

PciRoot(0)/PCI(31,0)/FibreEx(0x0001020304050607, 0x0001020304050607)

Table 10.17: Fibre Channel Ex Device Path Example

Byte Off- Byte Data Description

set Length

0 1 0x02 Generic Device Path Header - Type ACPI Device Path

1 1 0x01 Sub type - ACPI Device Path

2 2 0x0C Length - 0xOC bytes

4 4 0x41D0, _HID PNPOAO3 - 0x41DO0 represents the compressed string ‘PNP’ and is
0x0A03 encoded in the low order bytes. The compression method is described in the

ACPI Specification.

8 4 0x0000 _UID

12 1 0x01 Generic Device Path Header - Type Hardware Device Path

13 1 0x01 Sub type - PCI

continues on next page

10.3. Device Path Nodes 269

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.17 — continued from previous page

14 2 0x06 Length - 0x06 bytes

16 1 0x0 PCI Function

17 1 Ox1F PCI Device

18 1 0x03 Generic Device Path Header - Type Message Device Path

19 1 0x15 Sub type - Fibre Channel Ex

20 2 0x14 Length - 20 bytes

21 1 0x00 8 byte array containing Fibre Channel End Device Port Name (a.k.a., World
Wide Name)

22 1 0x01

23 1 0x02

24 1 0x03

25 1 0x04

26 1 0x05

27 1 0x06

28 1 0x07

29 1 0x00 8 byte array containing Fibre Channel Logical Unit Number

30 1 0x01

31 1 0x02

32 1 0x03

33 1 0x04

34 1 0x05

35 1 0x06

36 1 0x07

37 1 0x7F Generic Device Path Header - Type End of Hardware Device Path

38 1 OxFF Sub type - End of Entire Device Path

39 2 0x04 Length - 0x04 bytes

10.3.4.4 1394 Device Path

Table 10.18: 1394 Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 4 - 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.
Reserved 4 4 Reserved

GUID ! 8 8 1394 Global Unique ID (GUID) !

Note: ! The usage of the term GUID is per the 1394 specification. This is not the same as the EFI_GUID type defined
in the EFI Specification.

10.3. Device Path Nodes 270

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.5 USB Device Paths

Table 10.19: USB Device Paths

Mnemonic

Type
Sub-Type
Length

USB Parent Port

Number
Interface

Byte Description
Length

1

1
2
1

Type 3 - Messaging Device Path

Sub-Type 5 - USB

Length of this structure in bytes. Length is 6 bytes.
USB Parent Port Number

USB Interface Number

10.3.4.5.1 USB Device Path Example

USB Device Path Example shows an example device path for a USB controller on a desktop platform. This USB
Controller is connected to the port 0 of the root hub, and its interface number is 0. The USB Host Controller is a
PCI device whose PCI device number Ox1F and PCI function 0x02. So, the whole device path for this USB Controller
consists an ACPI Device Path Node, a PCI Device Path Node, a USB Device Path Node and a Device Path End Structure.
The _HID and _UID must match the ACPI table description of the PCI Root Bridge. The shorthand notation for this

device path is:

PciRoot(0)/PCI(31,2)/USB(0,0).

Table 10.20: USB Device Path Examples

Byte Off-
set

0x00
0x01
0x02
0x04

0x08
0x0C
0x0D
0x0E
0x10
0x11
0x12
0x13
0x14
0x16
0x17
0x18
0x19
Ox1A

Byte
length
0x01
0x01
0x02
0x04

0x04
0x01
0x01
0x02
0x01
0x01
0x01
0x01
0x02
0x01
0x01
0x01
0x01
0x02

Data

0x02
0x01
0x0C
0x41DO0,
0x0A03

0x0000
0x01
0x01
0x06
0x02
Ox1F
0x03
0x05
0x06
0x00
0x00
0x7F
OxFF
0x04

Description

Generic Device Path Header - Type ACPI Device Path

Sub type - ACPI Device Path

Length - 0x0C bytes

_HID PNPOAO3 - 0x41DO0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in the
ACPI Specification.

_UID

Generic Device Path Header - Type Hardware Device Path

Sub type - PCI

Length - 0x06 bytes

PCI Function

PCI Device

Generic Device Path Header - Type Message Device Path

Sub type - USB

Length - 0x06 bytes

Parent Hub Port Number

Controller Interface Number

Generic Device Path Header - Type End of Hardware Device Path

Sub type - End of Entire Device Path

Length - 0x04 bytes

Another example is a USB Controller (interface number 0) that is connected to port 3 of a USB Hub Controller (interface
number 0), and this USB Hub Controller is connected to the port 1 of the root hub. The shorthand notation for this

device path is:

10.3. Device Path Nodes

271

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

[PciRoot(@)/PCIGl ,2) /USB(1,0) /USB(3,0) .

See table (below) showing the device path for this USB Controller.

Table 10.21: Another USB Device Path Example

Byte Off- Byte Data Description

set length

0x00 0x01 0x02 Generic Device Path Header - Type ACPI Device Path

0x01 0x01 0x01 Sub type - ACPI Device Path

0x02 0x02 0x0C Length - 0x0C bytes

0x04 0x04 0x41DO, _HID PNPOAO3 - 0x41DO0 represents the compressed string ‘PNP’ and is

0x0A03 encoded in the low order bytes. The compression method is described in the

ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header - Type Hardware Device Path

0x0D 0x01 0x01 Sub type - PCI

0xOE 0x02 0x06 Length - 0x06 bytes

0x10 0x01 0x02 PCI Function

Ox11 0x01 Ox1F PCI Device

0x12 0x01 0x03 Generic Device Path Header - Type Message Device Path

0x13 0x01 0x05 Sub type - USB

0x14 0x02 0x06 Length - 0x06 bytes

0x16 0x01 0x01 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0x03 Generic Device Path Header - Type Message Device Path

0x19 0x01 0x05 Sub type - USB

Ox1A 0x02 0x06 Length - 0x06 bytes

0x1C 0x01 0x03 Parent Hub Port Number

0x1D 0x01 0x00 Controller Interface Number

Ox1E 0x01 0x7F Generic Device Path Header - Type End of Hardware Device Path

Ox1F 0x01 O0xFF Sub type - End of Entire Device Path

0x20 0x02 0x04 Length - 0x04 bytes

10.3.4.6 SATA Device Path

Table 10.22: SATA Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 18 - SATA

Length 2 2 Length of this structure in bytes. Length is 10 bytes.

HBA Port Number 4 2 The HBA port number that facilitates the connection to
the device or a port multiplier. The value OxFFFF is re-
served.

Port Multiplier Port Number 6 2 The Port multiplier port number that facilitates the con-

nection to the device. Must be set to OxFFFF if the device
is directly connected to the HBA.
Logical Unit Number 8 2 Logical Unit Number.

10.3. Device Path Nodes 272

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.7 USB Device Paths (WWID)

This device path describes a USB device using its serial number.

Specifications, such as the USB Mass Storage class, bulk-only transport subclass, require that some portion of the suffix
of the device’s serial number be unique with respect to the vendor and product id for the device. So, in order to avoid
confusion and overlap of WWID’s, the interface’s class, subclass, and protocol are included.

Table 10.23: USB WWID Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 16- USB WWID

Length 2 2 Length of this structure in bytes. Length is 10+
4 2 USB interface number

e Interface Number

6 2 USB vendor id of the device
* Device Vendor Id
8 2 USB product id of the device
* Device Product Id
10 n Last 64-or-fewer UTF-16 characters of the USB serial
 Serial Number number. The length of the string is determined by the
Length field less the offset of the Serial Number field
(10)

Devices that do not have a serial number string must use the USB Device Path (type 5) as described in USB Device
Path Example.

Including the interface as part of this node allows distinction for multi-interface devices, e.g., an HID interface and a
Mass Storage interface on the same device, or two Mass Storage interfaces.

Load Option Processing defines special rules for processing the USB WWID Device Path. These special rules enable
a device location to change and still have the system boot from the device.

10.3.4.8 Device Logical Unit

For some classes of devices, such as USB Mass Storage, it is necessary to specify the Logical Unit Number (LUN),
since a single device may have multiple logical units. In order to boot from one of these logical units of the device, the
Device Logical Unit device node is appended to the device path. The EFI path node subtype is defined, as in the Table
below.

Table 10.24: Device Logical Unit

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 17 - Device Logical unit
Length 2 2 Length of this structure in bytes. Length is 5
LUN 4 1 Logical Unit Number for the interface

10.3. Device Path Nodes 273

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Load Option Processing defines special rules for processing the USB Class Device Path. These special rules enable a
device location to change and still have the system recognize the device.

Globally Defined Variables defines how the Conln , ConOut , and ErrOut variables are processed and contains special
rules for processing the USB Class device path. These special rules allow all USB keyboards to be specified as valid
input devices.

Table 10.25: USB Class Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path.

Sub-Type 1 1 Sub-Type 15 - USB Class.

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of OxFFFF will match any
Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of OxFFFF will match any
Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of OxFF will match
any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of OxFF will
match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of OxFF will

match any protocol code.

10.3.4.9 1, O Device Path

Table 10.26: I, O Device Path

Mnemonic Byte Byte Description

Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 6 - 120 Random Block Storage Class
Length 2 2 Length of this structure in bytes. Length is 8 bytes.
TID 4 4 Target ID (TID) for a device

10.3.4.10 MAC Address Device Path

Table 10.27: MAC Address Device Path

Mnemonic Byte Byte Description

Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 11 - MAC Address for a network interface
Length 2 2 Length of this structure in bytes. Length is 37 bytes.
MAC Address 4 32 The MAC address for a network interface padded with Os
IfType 36 1 Network interface type(i.e., 802.3, FDDI). See RFC 3232

10.3. Device Path Nodes 274

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.11 IPv4 Device Path

Previous versions of the specification only defined a 19 byte IPv4 device path. To access fields at off-set 19 or greater,
the size of the device path must be checked first.

Table 10.28: IPv4 Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 12 - IPv4
Length 2 2 Length of this structure in bytes. Length is 27 bytes.
Local IP Address 4 4 The local IPv4 address
Remote IP Address 8 4 The remote IPv4 address
Local Port 12 2 The local port number
Remote Port 14 2 The remote port number
Protocol 16 2 The network protocol(i.e., UDP, TCP). See RFC 3232
StaticIPAddress 18 1
0x00 - The Source IP Address was assigned though DHCP
0x01 - The Source IP Address is statically bound
G atewayIPAddress 19 4 The Gateway IP Address
Subnet Mask 23 4 Subnet mask

10.3.4.12 IPv6 Device Path

Table 10.29: IPv6 Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 13 - IPv6
Length 2 2 Length of this structure in bytes. Length is 60 bytes.
Local IP Address 4 16 The local IPv6 address
Remote IP Address 20 16 The remote IPv6 address
Local Port 36 2 The local port number
Remote Port 38 2 The remote port number
Protocol 40 2 The network protocol (i.e., UDP, TCP). See RFC 3232
[PAddressOrigin 42 1
0x00 - The Local IP Address was manually configured.
0x01 - The Local IP Address is assigned through IPv6 stateless
auto -configuration.
0x02 - The Local IP Address is assigned through IPv6stateful
configuration.
PrefixLength 43 1 The Prefix Length
GatewayIPAddress 44 16 The Gateway IP Address

10.3. Device Path Nodes

275

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.13 2. VLAN device path node

Table 10.30: VLAN device path node

Mnemonic

Type
Sub-Type
Length
Vlanid

Byte
Offset
0

1
2
4

Byte
Length

1

1
2
2

Description

Type 3 - Messaging Device Path
Sub-Type 20 - Vlan (802.1q)
Length of this device node
VLAN identifier (0-4094)

10.3.4.14 InfiniBand Device Path

Table 10.31: InfiniBand Device Path

Mnemonic

Type

Sub-Type
Length
Resource Flags

PORT GID
I0C GUID/Service ID

Target Port ID
Device ID

Byte
Offset
0

1
2
4

24

32
40

Byte
Length

1

1
2
4

Description

Type 3 - Messaging Device Path
Sub-Type 9 - InfiniBand
Length of this structure in bytes. Length is 48 bytes.

Flags to help identify/manage InfiniBand device path
elements:

¢ Bit 0: IOC/Service (0b = IOC, 1b = Service)
¢ Bit 1: Extend Boot Environment

* Bit 2: Console Protocol

* Bit 3: Storage Protocol

* Bit 4: Network Protocol

All other bits are reserved.

128-bit Global Identifier for remote fabric port

64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)
64-bit persistent ID of remote IOC port

64-bit persistent ID of remote device

Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not the same as
the EF1_GUID type defined in this EFI Specification.

10.3. Device Path Nodes

276

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.15 UART Device Path

Table 10.32: UART Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 14 — UART
Length 2 2 Length of this structure in bytes. Length is 19 bytes.
Reserved 4 4 Reserved
Baud Rate 8 8 The baud rate setting for the UART style device. A value of 0 means
that the device’s default baud rate will be used.
Data Bits 16 1 The number of data bits for the UART style device. A value of 0
means that the device’s default number of data bits will be used.
Parity 17 1
The parity setting for the UART style device.
Parity 0x00 - Default Parity
Parity 0x01 - No Parity
Parity 0x02 - Even Parity
Parity 0x03 - Odd Parity
Parity 0x04 - Mark Parity
Parity 0x05 - Space Parity
Stop Bits 18 1

The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits

Stop Bits 0x01 - 1 Stop Bit

Stop Bits 0x02 - 1.5 Stop Bits

Stop Bits 0x03 - 2 Stop Bits

10.3.4.16 Vendor-Defined Messaging Device Path

Table 10.33: Vendor-Defined Messaging Device Path

Mnemonic Byte Byte Description

Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 10 - Vendor
Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.
Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows
Vendor Defined Data 20 n Vendor-defined variable size data

The following GUIDs are used with a Vendor-Defined Messaging Device Path to describe the transport protocol for
use with PC-ANSI, VT-100, VT-100+, and VT-UTF8 terminals. Device paths can be constructed with this node as the
last node in the device path. The rest of the device path describes the physical device that is being used to transmit and
receive data. The PC-ANSI, VT-100, VT-100+, and VT-UTF8 GUIDs define the format of the data that is being sent
though the physical device. Additional GUIDs can be generated to describe additional transport protocols.

10.3. Device Path Nodes 277

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

#define EFI_PC_ANSI_GUID\
{0xe0c14753,0xf9%e,0x11d2, {0x9a,0x0c,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define EFI_VT_100_GUID\
{0xdfa66065,0xb419,0x11d3, {0x9a, 0x2d, 0x00, 0x90,0x27,0x3f,0xcl,0x4d}}

#define EFI_VT_100_PLUS_GUID\
{0x7baec70b,0x57e0,0x4c76,{0x8e,0x87,0x2f,0x9%,0x28,0x08,0x83,0x43}}

#define EFI_VT_UTF8_GUID\
{0xad15a0d6,0x8bec,0x4act, {0xad,0x73,0xd0,0x1d,0xe7,0x7e,0x2d,0x88}}

10.3.4.17 UART Flow Control Messaging Path

The UART messaging device path defined in the EFI 1.02 specification does not contain a provision for flow control.
Therefore, a new device path node is needed to declare flow control characteristics. It is a vendor-defined messaging
node which may be appended to the UART node in a device path. It has the following definition:

#define DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL \
{0x37499a9d,0x542f,0x4c89, {0xa0,0x26,0x35,0xda,0x14,0x20,0x94,0xed}}

Table 10.34: UART Flow Control Messaging Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub-Type 10 - Vendor
Length 2 2 Length of this structure in bytes. Length is 24 bytes.
Vendor GUID 4 16 DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL
Flow_Control_M: 20 4

Bitmap of supported flow control types.
* Bit 0 set indicates hardware flow control.
* Bit 1 set indicates Xon/Xoff flow control.
* All other bits are reserved and are clear.

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to the following:

[PciRoot(@) /Pci (0x1£,0) /ACPT (PNPO501,0) /UART(115200,N,8, 1) /UartFlowCtrl (2) /DebugPort ()]

Note: If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent to leaving
the flow control node out of the device path completely.

10.3. Device Path Nodes 278

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.18 Serial Attached SCSI (SAS) Device Path

This section defines the device node for Serial Attached SCSI (SAS) devices.

Table 10.35: SAS Messaging Device Path Structure

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type -3 Messaging
Sub Type 1 1 10 (Vendor)
Length 2 2 Length of this Structure.
Vendor GUID 4 16 d487dd b4-008b-11d9-af dc-001083ffcadd
Reserved 20 4 Reserved for future use.
SAS Address 24 8 SAS Address for Serial Attached SCSI Target.
Logical Unit Number 32 8 SAS Logical Unit Number.
SAS/SATA device and Topology 40 2 More Information about the device and its interconnect
Info
Relative Target Port 42 2 Relative Target Port (RTP)
Summary

The device node represented by the structure in the table above shall be appended after the Hardware Device Path node
in the device path.

There are two cases for boot devices connected with SAS HBA’s. Each of the cases is described below with an example
of the expected Device Path for these.

* SAS Device anywhere in an SAS domain accessed through SSP Protocol.

[PciRoot (0)/PCI(1,0)/Sas(0x31000004CF13F6BD, 0)]

The first 64-bit number represents the SAS address of the target SAS device.
The second number is the boot LUN of the target SAS device.
The third number is the Relative Target Port (RTP)

* SATA Device connected directly to a HBA port.

[PciRoot (0)/PCI(1,0)/Sas(0x31000004CF13F6BD)]

The first number represents either a real SAS address reserved by the HBA for above connections, or a fake but unique
SAS address generated by the HBA to represent the SATA device.

10.3.4.18.1 Device and Topology Information

First Byte (At offset 40 into the structure):

Bits 0:3:

Value 0x0 -> No Additional Information about device topology.

Value 0x1 -> More Information about device topology valid in this byte.

Value 0x2 -> More Information about device topology valid in this and next 1 byte.
Values 0x3 thru OxF -> Reserved.

Bits 4:5: Device Type (Valid only if the More Information field above is non-zero)

10.3. Device Path Nodes 279

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Value 0x0 -> SAS Internal Device

Value 0x1 -> SATA Internal Device

Value 0x2 -> SAS External Device

Value 0x3 -> SATA External Device

Bits 6:7: Topology / Interconnect (Valid only if the More Information field above is non-zero)
Value 0x0 -> Direct Connect (Connected directly with the HBA Port/Phy)

Value 0x1 -> Expander Connect (Connected thru/via one or more Expanders)

Value 0x2 and 0x3 > Reserved

10.3.4.18.2 Device and Topology Information

Second Byte (At offset 41 into the structure). Valid only if bits 0-3 of More Information in Byte 40 have a value of 2:
Bits 0-7: Internal Drive/Bay Id (Only applicable if Internal Drive is indicated in Device Type)
Value 0x0 thru OxFF -> Drive 1 thru Drive 256

10.3.4.18.3 Relative Target Port

At offset 42 into the structure:

This two-byte field shall contain the “Relative Target Port” of the target SAS port. Relative Target Port can be obtained
by performing an INQUIRY command to VPD page 0x83 in the target. Implementation of RTP is mandatory for SAS
targets as defined in Section 10.2.10 of sas1r07 specification (or later).

NOTE: If a LUN is seen thru multiple RTPs in a given target, then the UEFI driver shall create separate device path
instances for both paths. RTP in the device path shall distinguish these two device path instantiations.

NOTE: Changing the values of the SAS/SATA device topology information or the RTP fields of the device path will
make UEFI think this is a different device.

10.3.4.18.4 Examples Of Correct Device Path Display Format

Case 1: When Additional Information is not Valid or Not Present (Bits 0:3 of Byte 40 have a value of 0)

[PciRoot(@) /PCI(1,0)/SAS(0x31000004CF13F6BD, 0) J

Case 2: When Additional Information is Valid and present (Bits 0:3 of Byte 40 have a value of 1 or 2)

* If Bits 4-5 of Byte 40 (Device and Topology information) indicate an SAS device (Internal or External) i.e., has
values 0x0 or 0x2, then the following format shall be used.

[PciRoot (0)/PCI(1,0)/SAS(0x31000004CF13F6BD, 0, SAS)]

* If Bits 4-5 of Byte 40 (Device and Topology information) indicate a SATA device (Internal or External) i.e., has
a value of Ox1 or 0x3, then the following format shall be used.

[ACPI (PnP) /PCI(1,0)/SAS(0x31000004CF13F6BD, SATA)]

10.3. Device Path Nodes 280

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.19 Serial Attached SCSI (SAS) Extended Device Path

This section defines the extended device node for Serial Attached SCSI (SAS) devices. In this device path the SAS
Address and LUN are now defined as arrays to remove the need to endian swap the values.

Table 10.36: SAS Extended Messaging Device Path Structure

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type -3 Messaging
Sub Type 1 1 Sub-type 22 SAS Ex
Length 2 2 Length of this Structure. 32 bytes
SAS Address 4 8 8-byte array of the SAS Address for Serial Attached
SCSI Target Port.
Logical Unit Number 20 8 8-byte array of the SAS Logical Unit Number.
SAS/SATA device and Topology 28 2 More Information about the device and its interconnect
Info
Relative Target Port 30 2 Relative Target Port (RTP)

The SAS Ex device path clarifies the definition of the Logical Unit Number field to conform with the T-10 SCSI
Architecture Model 4 specification. The 8 byte Logical Unit Number field in the device path must conform with a
logical unit number returned by a SCSI REPORT LUNS command.

When the SAS Device Path Ex is used with the Extended SCSI Pass Thru Protocol, the UINT64 LUN must be converted
to the eight byte array Logical Unit Number field in the device path by treating the eight byte array as an EFI UINT64.
For example, a Logical Unit Number array of { 0,1,2,3,4,5,6,7 } becomes a UINT64 of 0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN (8 byte array) visible to a user, it should be done
in conformance with SAM-4. SAM-4 requires a LUN to be displayed in hexadecimal format with byte O first (i.e., on
the left) and byte 7 last (i.e., on the right) regardless of the internal representation of the LUN. UEFI defines all data
structures a “little endian” and SCSI defines all data structures as “big endian”.

10.3.4.20 iSCSI Device Path

Table 10.37: iSCSI Device Path Node (Base Information)

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 19 - (iSCSI)

Length 2 2 Length of this structure in bytes. Length is (18 + n) bytes

Protocol 4 2 Network Protocol (0 = TCP, 1+ = reserved)

Options 6 2 iSCSI Login Options

Logical Unit Num- 8 8 8 byte array containing the iSCSI Logical Unit Number

ber

Target Portal group 16 2 iSCSI Target Portal group tag the initiator intends to establish a ses-
tag sion with.

iSCSI Target Name 18 n iSCSI NodeTarget Name. The length of the name is determined by

subtracting the offset of this field from Length.

10.3. Device Path Nodes 281

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.20.1 iSCSI Login Options

The iSCSI Device Node Options describe the iSCSI login options for the key values:
Bits 0:1:

0 = No Header Digest

2 = Header Digest Using CRC32C
Bits 2-3:

0 = No Data Digest

2 = Data Digest Using CRC32C
Bits 4-9:

Reserved for future use

Bits 10-11:

0 = AuthMethod_CHAP

2 = AuthMethod_None

Bit 12:

0=CHAP_BI

1 =CHAP_UNI

For each specific login key, none, some or all of the defined values may be configured. If none of the options are
defined for a specific key, the iSCSI driver shall propose “None” as the value. If more than one option is configured for
a specific key, all the configured values will be proposed (ordering of the values is implementation dependent).

¢ Portal Group Tag: defines the iSCSI portal group the initiator intends to establish Session with.

* Logical Unit Number: defines the 8 byte SCSI LUN. The Logical Unit Number field must conform to the T-10
SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the device path must conform
with a logical unit number returned by a SCSI REPORT LUNS command.

¢ iSCSI Target Name: defines the iSCSI Target Name for the iSCSI Node. The size of the iSCSI Target Name can
be up to a maximum of 223 bytes.

10.3.4.20.2 Device Path Examples

Some examples for the Device Path for the case the boot device connected to iSCSI bootable controller:

» With IPv4 configuration:

PciRoot (0)/Pci(19]0)/Mac(001320F5FA77,0x01)/
IPv4(192.168.0.100,TCP,Static,192.168.0.1)/ iSCSI(ign.1991-
05.com.microsoft:iscsitarget-iscsidisk-target,0x1,0x0,None,None,None, TCP)/
HD(1,GPT, 15E39A00-1DD2-1000-8D7F-00A0C92408FC,0x22,0x2710000)

10.3. Device Path Nodes 282

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.38: IPv4 configuration

Byte
Offset
0x00
0x01
0x02
0x04

0x08
0x0C

0x0D
0x0E
0x10
0x11

0x12
0x13

0x14

Byte Data Description
Length
1 0x02 Generic Device Path Header - Type ACPI Device Path
1 0x01 Sub type - ACPI Device Path
2 0x0C Length - 0x0C bytes
4 _HID PNPOAO3 - 0x41D0 represents the compressed
0x41DO0, string ‘PNP’ and is encoded in the low order bytes. The
0x0A03 compression method is described in the ACPI Specifica-
tion.
4 0x0000 _UID
1 0x01 Generic Device Path Header - Type Hardware Device
Path
1 0x01 Sub type - PCI
2 0x06 Length - 0x06 bytes
1 0x0 PCI Function
1 0x19 PCI Device
1 0x03 Generic Device Path Header - Messaging Device Path
1 0x0B Sub type - MAC Address Device path
2 0x25 Length - 0x25

continues on next page

10.3. Device Path Nodes 283

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.38 — continued from previous page

0x16 32

0x36
0x37
0x38
0x39
0x3b
0x3F
0x43
0x45
0x47
0x49
0x4A
0x4E
0x52
0x53
0x54
0x56
0x58

NS T N T N R S L S VS T \S R SN SN NS T

0x00, 0x13, 0x20, OxF5,
OxFA, 0x77,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

0x01

0x03

0x0c

0x1B

0xCO0, 0xA8, 0x00, 0x01
0xCO0, 0xA8, 0x00, 0x64
0x0000

0x0CBC

0x6

1

0x03
0x13
0x49
0x00
0x800

MAC address for a network interface padded with zeros

Network Interface Type - other

Generic Device Path Header - Messaging Device Path
Sub type - IPv4

Length - 27

Local IPv4 address - 192.168.0.1

Remote [Pv4 address - 192.168.0.100

Local Port Number - 0

Remote Port Number - 3260

Network Protocol. See RFC 3232. TCP

Static IP Address

Gateway IP Address

Subnet mask

Generic Device Path Header - Messaging Device Path
Sub type - iISCSI

Length - 0x49

Network Protocol

iSCSI Login Options - AuthMethod_None

continues on next page

10.3. Device Path Nodes

284

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.38 — continued from previous page

0x5A 8
0x62 2
0x64 55
0x64 55 (cont.)
(cont.)

0x9B 1
0x9C 1
0x9D 2
0x9F 4
0xA3 8
0xAB 8
0xB3 16
0xC3 1

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

0x01

0x69, 0x71, Ox6E, 0x2E,
0x31, 0x39, 0x39, 0x31,
0x2D, 0x30, 0x35, O0x2E,
0x63, 0x6F, 0x6D, 0x2E,
0x6D, 0x69, 0x63, 0x72,
0x6F, 0x73, Ox6F, 0x66,
0x74,
0x3A, 0x69,
0x73, 0x69,
0x72, 0x67, 0x65,
0x2D, 0x69, 0x73,
0x73, 0x69, 0x64, 0x69,
0x73, 0x6B, 0x2D, 0x74,
0x61, 0x72, 0x67, 0x65,
0x74, 0x00

0x04

0x01

0x2A

0x1

0x22

0x2710000

0x73,
0x74,

0x63,
0x61,
0x74,
0x63,

0x00,
0x9A,
0xE3,
0x15,
0xD2,
0x1D,
0x00,
0x10,
0x8D,
0x7F,
0x00,
0xAOQ,
0xC9,
0x24, 0x08, xFC

0x02

iSCSI LUN

Target Portal group tag
iSCSI node name.

iSCSI node name (cont.)

Generic Device Path Header - Media Device Path
Sub type - Hard Drive

Length - 0x2a

Partition Number

Partition Start

Partition Size

Partition Signature

Partition Format - GPT

continues on next page

10.3. Device Path Nodes

285

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.38 — continued from previous page

0xC4
0xC5

0xC6
0xC7

0x02
0x7F

OxFF
0x04

Signature Type - GUID

Generic Device Path Header - Type End of Hardware
Device Path

Sub type - End of Entire Device Path

Length - 0x04 bytes

» With IPv6 configuration:

PciRoot (0x0) /Pci(0x1C,0x2) /Pci(0x0,0x0)/MAC(001517215593,0x0) /
IPv6(2001:4898:000A:1005:95A6:EE6C:BED3:4859, TCPDHCP,2001:4898:000A:1005:0215
:17FF:FE21:5593) /iSCSI(ign.1991-05.com.microsoft:iscsiipv6-ipv6test-
target,0x1,0x0,None, None,None, TCP) /HD(1,MBR, 0xA0021243,0x800,0x2EE000)

Table 10.39: IPv6 configuration

Byte
Offset
0x00
0x01
0x02
0x04

0x08
0x0C
0x0D
0xOE
0x10
0x11
0x12
0x13
0x14
0x16
0x17
0x18
0x19
Ox1A

Byte
Length

o=

D = = = = DN = = = = DD = = N

Data

0x02
0x01
0x0C

0x41D0, 0x0A03

0x0000

0x01
0x01
0x06
0x02
0x1C
0x01
0x01
0x06
0x00
0x00
0x03
0x0B
0x25

Description

Generic Device Path Header - Type ACPI Device Path

Sub type - ACPI Device Path

Length - 0x0C bytes

_HID PNPOAO3 - 0x41DO0 represents the compressed string ‘PNP’
and is encoded in the low order bytes. The compression method is
described in the ACPI Specification.

_UID

Generic Device Path Header - Type Hardware Device Path

Sub type - PCI

Length - 0x06 bytes

PCI Function

PCI Device

Generic Device Path Header - Type Hardware Device Path

Sub type - PCI

Length - 0x06 bytes

PCI Function

PCI Device

Generic Device Path Header - Messaging Device Path

Sub type - MAC Address Device path

Length - 0x25

continues on next page

10.3. Device Path Nodes

286

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.39 — continued from previous page
0x1C 32 MAC address for a network interface padded with zeros
0x00, 0x15,
0x17, 0x21,
0x55, 0x93,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

0x3C 1 0x01 Network Interface Type - other

0x3D 1 0x03 Generic Device Path Header - Messaging Device Path

0x3E 1 0x0C Sub type - IPv6

0x3F 2 0x3C Length - 0x3C

0x41 16 Local IPv6 address - 2001:4898 :000A:1005:0215 :17FF:FE21:5593
0x20, 0x01,

0x48, 0x98,

0x00, 0x0A,
0x10, 0x05,

0x02, 0x15,

0x17, OxFF, OxFE,
0x21, 0x55, 0x93

continues on next page

10.3. Device Path Nodes 287

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.39 - continued from previous page

0x51 16
0x20, 0x01,
0x48, 0x98,
0x00, 0x0A,
0x10, 0x05,
0x95, 0xAO6,
0xEE, 0x6C,
0xBE, 0xD3,
0x48, 0x59
0x61 2 0x0000
0x63 2 0x0CBC
0x65 2 0x6
0x66 1 1
0x67 1
0x68 16
0x78 1 0x03
0x79 1 0x13
0x7A 2 0x46
0x7C 2 0x00
0x7E 2 0x800
0x81 8
0x00
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00
0x89 2 0x01

Remote IPv6 address - 2001:4898 :000A:1005:95A6
:EE6C:BED3:4859

Local Port Number - 0

Remote Port Number - 3260

Network Protocol. See RFC 3232. TCP
IP Address Origin

The Prefix Length

The Gateway IP Address

Generic Device Path Header - Messaging Device Path
Sub type - iSCSI

Length - 0x46

Network Protocol

iSCSI Login Options - AuthMethod_None
iSCSI LUN

Target Portal group tag

continues on next page

10.3. Device Path Nodes

288

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.39 — continued from previous page

0x8B 52 iSCSI node name.
0x69, 0x71,

0x6E, 0x2E,
0x31, 0x39,
0x39, 0x31,
0x2D, 0x30,
0x35, 0x2E,
0x63, 0x6F,
0x6D, 0x2E,
0x6D, 0x69,
0x63, 0x72,
0x6F, 0x73,
0x6F, 0x66,
0x74, 0x3A,
0x69, 0x73,
0x63, 0x73,
0x69, 0x69,
0x70, 0x76,

0x8B 52 iSCSI node name (cont.)
(cont.) (cont.) 0x36, 0x2D,

0x69, 0x70,
0x76, 0x36,
0x74, 0x65,
0x73, 0x74,
0x2D, 0x74,
0x61, 0x72,
0x67, 0x65,
0x74, 0x00

0x04 Generic Device Path Header - Media Device Path
0x01 Sub type - Hard Drive

0x2A Length - 0x2a

0x1 Partition Number

0x800 Partition Start

0x2EE000 Partition Size

0xBF
0xCO
0xC1
0xC3
0xC7
0xCF

o0 00~ N = =

continues on next page

10.3. Device Path Nodes 289

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.39 - continued from previous page
0xDF 16 Partition Signature
0x43, 0x12,
0x02, 0xAO,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

O0xEF
0xFO
0xF1
0xF2
0xF3

0x01 Partition Format - MBR

0x01 Signature Type - 32bit signature

0x7F Generic Device Path Header - Type End of Hardware Device Path
OxFF Sub type - End of Entire Device Path

0x04 Length - 0x04 bytes

D = =

10.3.4.21 NVM Express namespace messaging device path node

Table 10.40: NVM Express Namespace Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 3 - Messaging Device Path
Sub-Type 1 1 Sub Type 23 - NVM Express Namespace
Length 2 2 Length of this structure in bytes. Length is 16 bytes.
Namespace Identi- 4 4 Namespace identifier (NSID). The values of 0 and OxXFFFFFFFF are
fier invalid.
IEEE Extended 8 8 This field contains the IEEE Extended Unique Identifier (EUI-64).
Unique Identifier Devices without an EUI-64 value must initialize this field with a
value of 0.

Refer to the latest NVM Express® Base Specification for descriptions of Namespace Identifier (NSID) and IEEE
Extended Unique Identifier (EUI-64): See “Links to UEFI-Related Documents” (http://www.nvmexpress.org/index)
under the heading “NVM Express® Specifications”.

© Note

When an application client displays or otherwise makes the EUI-64 identifiers visible to a user, the values should
be displayed in hexadecimal format with byte 7 first (i.e., on the left) and byte O last (i.e., on the right) regardless
of the internal representation of the EUI-64.

10.3. Device Path Nodes 290

http://www.nvmexpress.org/index

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.22 Uniform Resource Identifiers (URI) Device Path

Refer to RFC 3986 for details on the URI contents.

Table 10.41: URI Device Path

Mnemonic Byte Offset
Type 0
Sub-Type 1
Length 2
4

Byte Length

1
1

2
n

Description

Type 3 - Messaging Device Path

Sub Type 24 - Universal Resource Identifier (URI) De-
vice Path

Length of this structure in bytes. Length is 4 + n bytes.
Instance of the URI pursuant to RFC 3986. For an empty
URI, Length is 4 bytes.

10.3.4.23 UFS (Universal Flash Storage) device messaging devicepath node

Table 10.42: UFS Device Path

Mnemonic Byte Offset
Type 0
Sub-Type 1
Length 2
Target ID 4
LUN 5

Byte Length

— e DN R

Description

Type 3 - Messaging Device Path

Sub-Type 25 - UFS

Length of this structure in bytes. Length is 6 bytes.
Target ID on the UFS interface (PUN).

Logical Unit Number (LUN).

Refer to the UFS 2.0 specification for additional LUN descriptions: See “Links to UEFI-Related Documents” (http:

/luefi.org/uefi) under the heading “UFS 2.0 Specification”.

* PUN field : According to current available UFS 2.0 spec, the topology is one device per UFS port. A topology
to support multiple devices on a single interface is planned for future revision. So suggest to reserve/introduce
this field to support multiple devices per UFS port. This value should be 0 for current UFS2.0 spec compliance.

* LUN field : This field is used to specify up to 8§ normal LUNs(0-7) and 4 well-known LUNs(81h, DOh, BOh and
C4h). For those well-known LUNS, the BIT7 is set. See Figure 10.2 of UFS 2.0 spec for details.

10.3.4.24 SD (Secure Digital) Device Path

Table 10.43: SD Device Path

Mnemonic Byte Offset
Type 0
Sub-Type 1
Length 2
Slot Number 4

Byte Length
1

1
2
1

Description

Type 3 - Messaging Device Path

Sub-Type 26 - SD

Length of this structure in bytes. Length is 5 bytes.
Slot Number

10.3. Device Path Nodes

291

http://uefi.org/uefi
http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.25 EFI Bluetooth Device Path

Table 10.44: EFI Bluetooth Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 27 - Bluetooth

Length 2 2 Length of this structure in bytes. Length is 10 bytes.
Bluetooth 4 6 48-bit Bluetooth device address.

Device Address

10.3.4.26 Wireless Device Path

Table 10.45: Wi-Fi Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub Type 28 - Wi-Fi Device Path

Length 2 2 Length of this structure in bytes. Length is 36 bytes.
SSID 4 32 SSID in octet string

10.3.4.27 eMMC (Embedded Multi-Media Card) Device Path

Table 10.46: eMMC Deyvice Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 29 - eMMC

Length 2 2 Length of this structure in bytes. Length is 5 bytes.
Slot Number 4 1 Slot Number

10.3.4.28 EFI BluetoothLE Device Path

Table 10.47: EFI BluetoothLE Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 30 - BluetoothLE

Length 2 2 Length of this structure in bytes. Length is 11
bytes.

Bluetooth Device Address 4 6 48-bit Bluetooth device address

Address Type 10 1

0x00 - Public Device Address |
0x01 - Random Device Address

10.3. Device Path Nodes 292

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.29 DNS Device Path

Table 10.48: DNS Device Path

Mnemonic Byte Offset
Type 0
Sub-Type 1
Length 2
IsIPv6 4
5

Byte Length

1

1
2
1

Description

Type 3 - Messaging Device Path

Sub-Type 31 - DNS Device Path

Length of this structure in bytes. Length is 5 + n bytes.
0x00 - The DNS server address is IPv4 address. 0x01 -
The DNS server address is IPv6 address.

One or more instances of the DNS server address in
EFI_IP_ADDRESS.

10.3.4.30 NVDIMM Namespace path

This device path describes a bootable NVDIMM namespace that is defined by a namespace label. The presence of this
type of device path indicates that UEFI supports booting to the namespace including any address abstraction specified
by the namespace label. Refer to the NVDIMM Label Protocol section to retrieve relevant details about the namespace.

Table 10.49: NVDIMM Namespace Device Path

Mnemonic Byte Offset
Type 0
Sub-Type 1
Length 2
Uuid 4

Byte Length

1
1
2
16

Description

Type 3 - Messaging Device

Sub-type 32 - NVDIMM Namespace

20 - Single namespace UUID is supported.

Namespace unique label identifier UUID. See the Uuid
description in the NVDIMM Label Protocol - Label def-
initions section for details on this field.

10.3.4.31 REST Service Device Path

Table 10.50: REST Service Device Path

Mnemonic

Type
Sub-Type
Length

REST Service

Access Mode

Byte
Offset
0

1
2
4

Byte
Length
1

1
2
1

Description

Type 0x03 - Messaging Device Path

Sub-Type 33- REST Service Device Path

Length of this structure in bytes. Length is 6 bytes.
0x01 = Redfish REST Service - 0x02 = OData REST
Service

(0x01) In-Band REST Service, - (0x02) Out-of-band
REST Service.

Device path example of Out-of-band Redfish REST Service through NIC:

PciRoot (0x2) /Pci(0x2,0x0) /Pci(0x0,0x0) /MAC(FD19FA100672,0x0) /
IPv4(0.0.0.0,0x0,DHCP,0.0.0.0,0.0.0.0,0.0.0.0) /RestService(1,2)

10.3. Device Path Nodes

293

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.51: Vendor-Specific REST Service Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 0x03 - Messaging Device Path

Sub-Type 1 1 Sub-Type 33- REST Service Device Path

Length 2 2 Length of this structure in bytes. Length is 21 + n bytes.

REST Service 4 1 OxFF = Vendor specific REST Service

Access Mode 5 1 (0x01) In-Band REST Service, (0x02) Out-of-band
REST Service.

Vendor specific REST service GUID 6 16 GUID of vendor specific REST service.

Vendor defined data 22 n Vendor-defined data.

Device path example of In-band vendor-specific REST Service through BMC:

PciRoot (0x2) /Pci(0x2,0x0) /Pci(0x0,0x0)/BMC(O,0xf0000000) /RestService(0xff, 1,
00000000-0000-0000-0000000000000000,0,0)

10.3.4.32 NVMe over Fabric (NVMe-oF) Namespace Device Path

This device path describes a bootable NVMe-oF™ namespace that is defined by a unique Namespace and Subsystem
NQN identity.

Table 10.52: NVMe over Fabric (NVMe-oF) Namespace Device Path

Mnemonic Byte Byte Description
Offset Length

Type 00 1 Type 3 — Messaging Device Path

Sub-Type 01 1 Sub-Type 34 - NVMe-oF Namespace Device Path

Length 02 2 Length of this Structure in bytes. Length is 20+n bytes where n is the
length of the SubsystemNQN

NIDT 04 1 Namespace Identifier Type (NIDT), for globally unique type values defined
in the CNS 03h NIDT field (1h, 2h, or 3h) by the NVM Express® Base
Specification®.

NID 05 16 Namespace Identifier (NID), a globally unique val-ue defined in the

Namespace Identification De-scriptor list (CNS 03h) by the NVM Ex-
press® Base Specification in big endian format.
Subsystem- 21 n Unique identifier of an NVM subsystem stored as a null-terminated UTF-
NQN 8 string of n-bytes in compli-ance with the NVMe Qualified Name in the
NVM Express® Base Specification. Subsystem NQN is used for purposes
of identification and authentica-tion. Maximum length of 224 bytes.

Refer to the latest NVM Express® Base Specification for descriptions of Subsystem NQN and Namespace Identifier:
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “NVM Express® Specifications.””

10.3. Device Path Nodes 294

http://uefi.org/uefi

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.4.33 NVMe over Fabric (NVMe-oF) Namespace Device Path Example

Device path example of NVMe-oF connection to a NVM Subsystem with IPv4 configuration and NSUUID (RFC 4122)

as NID:

PciRoot(0)/Pci(19]0)/Mac(001320F5FA77,0x01) /IPv4(192.168.0.100,TCP,Static,192.168.0.1)/
NVMEOF (ngn. 1991-05.0rg.uefi:nvmeoftarget-nvmeofdisk-target,urn:uuid:4eff7£f8e-d353-4e9b-
—adec-deea8eab84d7)/

HD(1,GPT, 15E39A00-1DD2-1000-8D7F-00A0C92408FC,0x22,0x2710000)

Table 10.53: NVMe over Fabric (NVMe-oF) Namespace Device Path

Example
Byte Byte Data Description
Offset Length
0x00 1 0x02 Generic Device Path Header — Type ACPI Device Path
0x01 1 0x01 Sub-Type — ACPI Device Path
0x02 2 0x0C Length — 12 bytes
0x04 4 0x41D0, 0x0A03 _HID PNPOAO3 — 0x41DO0 represents the compressed string ‘PNP’
and is encoded in the low order bytes. The compression method is
described in the ACPI Specification.
0x08 4 0x0000 _UID
0x0C 1 0x01 Generic Device Path Header — Type Hardware Device Path
0x0D 1 0x01 Sub-Type — PCI
0xOE 2 0x06 Length — 6 bytes
0x10 1 0x00 PCI Function
0x11 1 0x19 PCI Device
0x12 1 0x03 Generic Device Path Header — Messaging Device Path
0x13 1 0x0B Sub-Type — MAC Address Device path
0x14 2 0x25 Length — 37 bytes
0x16 32 0x00, 0x13, 0x20, MAC address for a network interface padded with zeros
0xF5, OxFA, 0x77,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00
0x36 1 0x01 Network Interface Type - other
0x37 1 0x03 Generic Device Path Header — Messaging Device Path
0x38 1 0x0C Sub-Type — IPv4
0x39 2 0x1B Length — 27 bytes
0x3b 4 0xCO0, 0xA8, 0x00, Local IPv4 address —192.168.0.1
0x01
0x3F 4 0xCO, 0xA8, 0x00, Remote IPv4 address — 192.168.0.100
0x64
0x43 2 0x0000 Local Port Number — 0
0x45 2 0x0CBC Remote Port Number — 3260
0x47 2 0x06 Network Protocol. See RFC 3232. TCP
0x49 1 1 Static IP Address

continues on next page

10.3. Device Path Nodes 295

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.53 — continued from previous page

0x4A
0x4E
0x52
0x53
0x54
0x56

Gateway [P Address
Subnet mask

0x03
0x34
0x48
0x03

Generic Device Path Header — Messaging Device Path
Sub-Type 34 - NVMe-oF Device Path

Length — 72 bytes

Namespace Identifier Type (NIDT) — 03h — Namespace UUID

_—— N == A

0x57 6 0x4E, OxFF, 0x7F,
0x8E, 0xD3, 0x53,
0x4E, 0x9B, 0xA4,

0xEC, 0xDE, 0xEA,

Namespace Identifier (NID) - as per RFC 4122

0x67

0x9B
0x9C
0x9D
0x9F
0xA3
0xAB
0xB3

52

— 00 00 K~ DN = =

0x8E,
0xD7
0x6E,
0x2E,
0x39,
0x30,
0x6F,
0x2E,
0x66,
0x6E,
0x65,
0x74,
0x67,
0x2D,
0x6D,
0x66,
0x73,
0x74,
0x67,
0x00
0x04
0x01
0x2A
0x01
0x22

0xAB, 0x84,

0x71, Ox6E,
0x31, 0x39,
0x31, 0x2D,
0x35, Ox2E,
0x72, 0x67,
0x75, 0x65,
0x69, 0x3A,
0x76, 0x6D,
0x6F, 0x66,
0x61, 0x72,
0x65, 0x74,
0x6E, 0x76,
0x65, 0x6F,
0x64, 0x69,
0x6B, 0x2D,
0x61, 0x72,
0x65, 0x74,

0x2710000

0x00,

0x9A, OxE3,

SubsystemNQN

Generic Device Path Header — Media Device Path
Sub-Type — Hard Drive

Length — 42 bytes

Partition Number

Partition Start

Partition Size

Partition Signature

0x15, 0xD2, 0x1D,
0x00, 0x10, 0x8D,
0x7F, 0x00, 0xAO,
0xC9, 0x24, 0x08,

0xC3
0xC4
0xC5
0xC6
0xC7

N = =

0xFC
0x02
0x02
OxFF
OxFF
0x04

Partition Format — GPT

Signature Type — GUID

Generic Device Path Header — End of Hardware Device Path
Sub-Type — End of Entire Device Path

Length — 4 bytes

10.3. Device Path Nodes

296

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.5 Media Device Path

This Device Path is used to describe the portion of the medium that is being abstracted by a boot service. An example
of Media Device Path would be defining which partition on a hard drive was being used.

10.3.5.1 Hard Drive

The Hard Drive Media Device Path is used to represent a partition on a hard drive. Each partition has at least Hard
Drive Device Path node, each describing an entry in a partition table. EFI supports MBR and GPT partitioning for-
mats. Partitions are numbered according to their entry in their respective partition table, starting with 1. Partitions are
addressed in EFI starting at LBA zero. A partition number of zero can be used to represent the raw hard drive or a raw
extended partition

The partition format is stored in the Device Path to allow new partition formats to be supported in the future. The Hard
Drive Device Path also contains a Disk Signature and a Disk Signature Type. The disk signature is maintained by the
OS and only used by EFI to partition Device Path nodes. The disk signature enables the OS to find disks even after
they have been physically moved in a system.

Load Option Processing defines special rules for processing the Hard Drive Media Device Path. These special rules
enable a disk’s location to change and still have the system boot from the disk.

Table 10.54: Hard Drive Media Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 4 — Media Device Path
Sub-Type 1 1 Sub-Type 1 — Hard Drive
Length 2 2 Length of this structure in bytes. Length is 42 bytes.
Partition Number 4 4 Describes the entry in a partition table, starting with entry 1. Parti-

tion number zero represents the entire device. Valid partition num-
bers for a MBR partition are [1, 4]. Valid partition numbers for a
GPT partition are [1, NumberOfPar titionEntries].

Partition Start 8 8 Starting LBA of the partition on the hard drive
Partition Size 16 8 Size of the partition in units of Logical Blocks
Partition Signature 24 16 Signature unique to this partition: If SignatureType is 0, this field

has to be initialized with 16 zeroes. If SignatureType is 1, the MBR
signature is stored in the first 4 bytes of this field. The other 12 bytes
are initialized with zeroes. If SignatureType is 2, this field contains
a 16 byte signature.

Partition Format 40 1 Partition Format: (Unused values reserved) 0x01 - PC-AT compati-
ble legacy MBR (Legacy MBR) . Partition Start and Partition Size
come from Parti tionStartingLBA and PartitionSizeInLBA for the
partition.0x02—GUID Partition Table

Signature Type 41 1 Type of Disk Signature: (Unused values reserved) 0x00 - No Disk
Signature. 0x01 - 32-bit signature from address 0x1b8 of the type
0x01 MBR. 0x02 - GUID signature.

10.3. Device Path Nodes 297

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.5.2 CD-ROM Media Device Path

The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM. The CD-ROM is
assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito” format. The Boot Entry number from
the Boot Catalog is how the “El Torito” specification defines the existence of bootable entities on a CD-ROM. In EFI
the bootable entity is an EFI System Partition that is pointed to by the Boot Entry.

Table 10.55: CD-ROM Media Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 4 - Media Device Path.

Sub-Type 1 1 Sub-Type 2 - CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The Ini-
tial/Default entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs
use Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sec-
tors.

10.3.5.3 Vendor-Defined Media Device Path

Table 10.56: Vendor-Defined Media Device Path

Mnemonic Byte Byte Description

Offset Length
Type 0 1 Type 4 - Media Device Path.
Sub-Type 1 1 Sub-Type 3 - Vendor.
Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.
Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows.
Vendor Defined Data 20 n Vendor-defined variable size data.

10.3.5.4 File Path Media Device Path

Table 10.57: File Path Media Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 4 - Media Device Path.
Sub-Type 1 1 Sub-Type 4 - File Path.
Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

continues on next page

10.3. Device Path Nodes 298

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Table 10.57 — continued from previous page

Path Name 4 N A NULL-terminated Path string including directory and
file names. The length of this string n can be determined
by subtracting 4 from the Length entry. A device path
may contain one or more of these nodes. Each node can
optionally add a *“" separator to the beginning and/or the
end of the Path Name string. The complete path to a
file can be found by logically concatenating all the Path
Name strings in the File Path Media Device Path nodes.
This is typically used to describe the directory path in
one node, and the filename in another node.

Rules for Path Name conversion:

* When concatenating two Path Names, ensure that the resulting string does not contain a double-separator “\”. If
it does, convert that double-separator to a single-separator.

* Inthe case where a Path Name which has no end separator is being concatenated to a Path Name with no beginning
separator, a separator will need to be inserted between the Path Names.

* Single file path nodes with no directory path data are presumed to have their files located in the root directory of
the device.

10.3.5.5 Media Protocol Device Path

The Media Protocol Device Path is used to denote the protocol that is being used in a device path at the location of the
path specified. Many protocols are inherent to the style of device path.

Table 10.58: Media Protocol Media Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 4 - Media Device Path.
Sub-Type 1 1 Sub-Type 5 - Media Protocol.
Length 2 2 Length of this structure in bytes. Length is 20 bytes.
Protocol GUID 4 16 The ID of the protocol.

10.3.5.6 PIWG Firmware File

This type is used by systems implementing the UEFI PI Specification to describe a firmware file. The exact format and
usage are defined in that specification.

Table 10.59: PIWG Firmware File Device Path

Mnemonic Byte Byte Description
Offset Length
Type 0 1 Type 4 - Media Device Path.
Sub-Type 1 1 Sub-Type 6 - PIWG Firmware File.
Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.
.. 4 n Contents are defined in the UEFI PI Specification.

10.3. Device Path Nodes 299

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.3.5.7 PIWG Firmware Volume

This type is used by systems implementing the UEFI PI Specification to describe a firmware volume. The exact format
and usage are defined in that specification.

Table 10.60: PIWG Firmware Volume Device Path

Mnemonic

Type
Sub-Type
Length

Byte
Offset
0

1
2
4

Byte

Length

1

1
2
n

Description

Type 4 - Media Device Path.

Sub-Type 7 - PIWG Firmware Volume.

Length of this structure in bytes. Length is 4 + n bytes.
Contents are defined in the UEFI PI Specification.

10.3.5.8 Relative Offset Range

This device path node specifies a range of offsets relative to the first byte available on the device. The starting offset is
the first byte of the range and the ending offset is the last byte of the range (not the last byte + 1).

Table 10.61: Relative Offset Range

Mnemonic Byte Offset

Type 0
Sub-Type 1
Length 2
Reserved 4
Starting Offset 8
Ending Offset 1

6

Byte Length

00BN ==

Description

Type 4 - Media Device Path

Sub-Type 8 - Relative Offset Range

Length of this structure in bytes.

Reserved for future use.

Offset of the first byte, relative to the parent device node.
Offset of the last byte, relative to the parent device node.

10.3.5.9 RAM Disk

Table 10.62: RAM Disk Device Path

Mnemonic

Type

Sub-Type
Length

Starting Address
Ending Address
Disk Type GUID

Disk Instance

Byte
Offset
0

1

2

4

12

20

36

Byte
Length

— 00 00 DN = =

Description

Type 4 - Media Device Path

Sub Type 9 - RAM Disk Device Path

Length of this structure in bytes. Length is 38 bytes.
Starting Memory Address.

Ending Memory Address.

GUID that defines the type of the RAM Disk. The GUID
can be any of the values defined below, or a vendor de-
fined GUID.

RAM Disk instance number, if supported. The default
value is zero.

The following GUIDs are used with a RAM Disk Device Path to describe the RAM Disk Type. Additional GUIDs can
be generated to describe additional RAM Disk Types. The Disk Type GUID values used in the RAM Disk device path
must match the corresponding values in the Address Range Type GUID of the ACPI NFIT table. Refer to the ACPI
specification for details.

This GUID defines a RAM Disk supporting a raw disk format in volatile memory:

10.3. Device Path Nodes

300

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

#define EFI_VIRTUAL_DISK_GUID \
{ 0x77AB535A,0x45FC,0x624B,\
{0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }}

This GUID defines a RAM Disk supporting an ISO image in volatile memory:

#define EFI_VIRTUAL_CD_GUID \
{ 0x3D5ABD30,0x4175,0x87CE,\
{0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }}

This GUID defines a RAM Disk supporting a raw disk format in persistent memory:

#define EFI_PERSISTENT_VIRTUAL_DISK_GUID \
{ 0x5CEA02C9,0x4D07,0x69D3,\
{0x26,0x9F,0x44,0x96,0xFB, OXE®, 0x96,0xF9 }}

This GUID defines a RAM Disk supporting an ISO image in persistent memory:

#define EFI_PERSISTENT_VIRTUAL_CD_GUID \
{ 0x08018188,0x42CD,0xBB48,\
{0x10,0x0F, 0x53,0x87,0xD5,0x3D,0xED,0x3D }}

10.3.6 BIOS Boot Specification Device Path

This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device Path is based on
the IPL and BCV table entry data structures defined in Appendix A of the BIOS Boot Specification. The BIOS Boot
Specification Device Path defines a complete Device Path and is not used with other Device Path entries. This Device
Path is only needed to enable platform firmware to select a legacy non-EFI OS as a boot option.

Table 10.63: BIOS Boot Specification Device Path

Mnemonic Byte Byte Description
Offset Length

Type 0 1 Type 5 - BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 - BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n A null-terminated ASCII string that describes the boot device to a

user. The size of this string n can be determined by subtracting 8
from the Length entry.

Example BIOS Boot Specification Device Types include:
* 00h = Reserved
¢ 01h = Floppy
e 02h = Hard Disk
* 03h = CD-ROM
* 04h = PCMCIA
05h =USB

10.3. Device Path Nodes 301

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

06h = Embedded network
07h..7Fh = Reserved

* 80h = BEV device

* 81h..FEh = Reserved

* FFh = Unknown

NOTE: When UEFI Secure Boot is enabled, attempts to boot non-UEFI OS shall fail; Firmware/OS Key Exchange:
Passing Public Keys .

10.4 Device Path Generation Rules

10.4.1 Housekeeping Rules

The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of Device Path node
with a sub-type of End the Entire Device Path. A NULL Device Path consists of a single End Device Path Node. A
Device Path that contains a NULL pointer and no Device Path structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types can be skipped when
parsing the Device Path since the length field can be used to find the next Device Path structure in the stream. Any
future additions to the Device Path structure types will always start with the current standard header. The size of a
Device Path can be determined by traversing the generic Device Path structures in each header and adding up the total
size of the Device Path. This size will include the four bytes of the End of Device Path structure.

Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will contain a complete
Device Path that is terminated by the Device Path End Structure. The Device Path End Structures that do not end the
Device Path contain a sub-type of End This Instance of the Device Path. The last Device Path End Structure contains
a sub-type of End Entire Device Path.

10.4.2 Rules with ACPI _HID and _UID

As described in the ACPI specification, ACPI supports several different kinds of device identification objects, including
_HID, _CID and _UID. The _UID device identification objects are optional in ACPI and only required if more than
one _HID exists with the same ID. The ACPI Device Path structure must contain a zero in the _UID field if the ACPI
name space does not implement _UID. The _UID field is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource Setting) then it should be
described by an ACPI Device Path structure. A _CRS implies that a device not mapped by any other standard. A _CRS
is used by ACPI to make a nonstandard device into a Plug and Play device. The configuration methods in the ACPI
name space allow the ACPI driver to configure the device in a standard fashion. The presence of a _CID determines
whether the ACPI Device Path node or the Expanded ACPI Device Path node should be used.

See Table below.

Table 10.64: ACPI_CRS to EFI Device Path Mapping

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNPOAO3, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number
0-3

Parallel Port ACPI Device Path: _HID PNP0401, UID LPT number 0-3

10.4. Device Path Generation Rules 302

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a PCI device usually
contained in a chipset that consumes a proprietary bus and produces a PCI bus. In typical desktop and mobile systems
there is only one root PCI bridge. On larger server systems there are typically multiple root PCI bridges. The operation
of root PCI bridges is not defined in any current PCI specification. A root PCI bridge should not be confused with a
PCI to PCI bridge that both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges
is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNPOAO3, This will be stored in the ACPI Device Path _HID field,
or in the Expanded ACPI Device Path _CID field to match the ACPI name space. The _UID in the ACPI Device Path
structure must match the _UID in the ACPI name space.

10.4.3 Rules with ACPI _ADR

If a device in the ACPI name space can be completely described by a _ADR object then it will map to an EFI ACPI,
Hardware, or Message Device Path structure. A _ADR method implies a bus with a standard enumeration algorithm.
If the ACPI device has a _ADR and a _CRS method, then it should also have a _HID method and follow the rules for
using _HID. See the table below as it relates the ACPI _ADR bus definition to the EFI Device Path:

Table 10.65: ACPI _ADR to EFI Device Path Mapping

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3
IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

SATA bus SATA Messaging Device Path

10.4.4 Hardware vs. Messaging Device Path Rules

Hardware Device Paths are used to define paths on buses that have a standard enumeration algorithm and that relate
directly to the coherency domain of the system. The coherency domain is defined as a global set of resources that is
visible to at least one processor in the system. In a typical system this would include the processor memory space, IO
space, and PCI configuration space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration algorithm, but are not
part of the global coherency domain of the system. SCSI and Fibre Channel are examples of this kind of bus. The
Messaging Device Path can also be used to describe virtual connections over network-style devices. An example would
be the TCP/IP address of an internet connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency resource domain of
the system. A Message Device Path is used if the bus consumes resources from the coherency domain and produces
resources out side the coherency domain of the system.

10.4. Device Path Generation Rules 303

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

10.4.5 Media Device Path Rules

The Media Device Path is used to define the location of information on a medium. Hard Drives are subdivided into
partitions by the MBR and a Media Device Path is used to define which partition is being used. A CD-ROM has boot
partitions that are defined by the “El Torito” specification, and the Media Device Path is used to point to these partitions.

A EFI_BLOCK_IO_PROTOCOL is produced for both raw devices and partitions on devices. This
allows the EFI_SIMPLE FILE SYSTEM_PROTOCOL protocol to not have to understand media for-
mats. The EFI_BLOCK_IO_PROTOCOL for a partition contains the same Device Path as the parent
EFI_ BLOCK_IO _PROTOCOL for the raw device with the addition of a Media Device Path that defines which
partition is being abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device Path is used to load
files and to represent what file an image was loaded from.

10.4.6 Other Rules

The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing the BIOS Boot Spec-
ification Device Path should only contain the required End Device Path structure and no other Device Path structures.
The BIOS Boot Specification Device Path is only used to allow the EFI boot menus to boot a legacy operating system
from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID to a Hardware,
Messaging, or Media Device Path. This extension is guaranteed to never conflict with future extensions of this speci-
fication.

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only permitted using a
Vendor GUID Device Path entry.

10.5 Device Path Utilities Protocol

This section describes the EFI_DEVICE_PATH_UTILITIES_PROTOCOL, which aids in creating and manipulating
device paths.

10.5.1 EFI_DEVICE_PATH_UTILITIES PROTOCOL

Summary
Creates and manipulates device paths and device nodes.

GUID

// {0379BE4E-D706-437d-B037-EDB82FB772A4}
#define EFI_DEVICE_PATH UTILITIES_PROTOCOL_GUID \
{0x379bede,0xd706,0x437d,\
{0xb0®,0x37,0xed, 0xb8,0x2f,0xb7,0x72,0xa4 }}

Protocol Interface Structure

typedef struct _EFI_DEVICE_PATH_UTILITIES_PROTOCOL {
EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE GetDevicePathSize;
EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;
EFTI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;

(continues on next page)

10.5. Device Path Utilities Protocol 304

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

(continued from previous page)

EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;
EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE AppendDevicePathInstance;
EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE GetNextDevicePathInstance;
EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE IsDevicePathMultiInstance;
EFI_DEVICE_PATH_UTILS_CREATE_NODE CreateDeviceNode;

} EFI_DEVICE_PATH_UTILITIES_PROTOCOL;

Parameters

GetDevicePathSize
Returns the size of the specified device path, in bytes.

DuplicateDevicePath
Duplicates a device path structure.

AppendDeviceNode
Appends the device node to the specified device path.

AppendDevicePath
Appends the device path to the specified device path.

AppendDevicePathInstance
Appends a device path instance to another device path.

GetNextDevicePathInstance
Retrieves the next device path instance from a device path data structure.

IsDevicePathMultilnstance
Returns TRUE if this is a multi-instance device path.

CreateDeviceNode
Allocates memory for a device node with the specified type and sub-type.

Description

The EFI_DEVICE_PATH_UTILITIES_PROTOCOL provides common utilities for creating a manipulating device

paths and device nodes.

10.5.2 EFI_DEVICE_PATH_UTILITIES PROTOCOL.GetDevicePathSize()

Summary
Returns the size of the device path, in bytes.

Prototype

typedef

UINTN

(EFIAPI *EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE) (
IN CONST EFI_DEVICE_PATH_PROTOCOL *“DevicePath
s

Parameters

DevicePath
Points to the start of the EFI device path.

Description

10.5. Device Path Utilities Protocol

305

Unified Extensible Firmware Interface (UEFI) Specification, Release 2.10 Errata A

This function returns the size of the specified device path, in bytes, including the end-of-path tag. If DevicePath is
NULL then zero is returned.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in EFI Device Path Protocol.

10.5.3 EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()

Summary
Create a duplicate of the specified path.
Prototype

typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *“EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH) (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath

)N

Parameters

DevicePath
Points to the source device path.

Description

This function creates a duplicate of the specified device path. The memor