نبذة عني
- Data scientist with over 10 years of experience in active statistical modeling, machine…
الإسهامات
-
You're presenting statistics that challenge existing beliefs. How can you maintain credibility?
Sur les données historiques, j'applique les techniques de la statistique inférentielle avec des tests d'hypothèse statistique. Cette statistique mathématique est robuste alors elle appuie la solidité des hypothèses. Sur les prédictions futures, il faut éviter des erreurs comme le data leakage, l'overfitting et l'underfitting. Estimer scientifiquement les erreurs sur les estimations par exemple via le conformal machine learning est important. Il faut réaliser des campagnes de backtesting extensif pour s'assurer de la robustesse des hypothèses dans le passé. N'oubliez pas l'utilisation d'un échantillonnage correct.
-
Que faire si votre projet d’ingénierie des données se heurte à la résistance des parties prenantes ?
Dans ces quatre vidéos que j'ai filmées au cours de la dernière année, j'ai pris soin d'expliquer en détail les différentes notions abordées et d'offrir un diagnostic clair du problème: Tactiques efficaces pour résoudre les problèmes d'IA en entreprises (vidéos 1&2) * https://www.youtube.com/watch?v=4bFrHXjHzjc ** https://www.youtube.com/watch?v=AvEJ3IXUJZo *** 4 Témoignages!: https://www.youtube.com/watch?v=MdQMisv_6hY **** Tactiques efficaces pour vaincre les résistances au changement IA: inertie au changement: Vidéo 4: https://www.youtube.com/watch?v=m5gLD3x3t8s
-
What is the most efficient way to clean data for business intelligence?
Well, you see, cleaning data for business intelligence is a lot like preparing "brick" (a traditional Tunisian dish). First, you need to gather all your ingredients, just like collecting your raw data. Then comes the fun part - cracking the eggs (buy it from Aziza) and separating the yolks from the whites, which is akin to filtering out the noise and irrelevant data points. Next, you carefully fold in the ingredients, much like merging and formatting your datasets to ensure consistency. And just when you think you're done, you have to delicately fry the brick in oil until it's crispy and golden, just as you refine and transform your data until it's ready for analysis. And please finally, don't forget the Harissa:Specially Harissa Arbi.
النشاط
-
Avec l'IA générative et les agents intelligents, on peut passer à des décisions autonomes (un tout autre niveau d'analyse): Analyse descriptive…
Avec l'IA générative et les agents intelligents, on peut passer à des décisions autonomes (un tout autre niveau d'analyse): Analyse descriptive…
تمت المشاركة من قبل Ahmed Rebai
-
ISO/IEC 42001 focuses on the management of Artificial Intelligence systems, emphasising ethical use, transparency, and accountability in AI…
ISO/IEC 42001 focuses on the management of Artificial Intelligence systems, emphasising ethical use, transparency, and accountability in AI…
تم النشر من قبل Ahmed Rebai
الخبرة
التعليم
-
-
laboratoire de physique subatomique Clérmont Ferrand
Estimation of the lifetime of Lambdab particle=|udb> with LHCb
https://fr.slideshare.net/ahmed_rebai/lambdab-particle-lifetime-measurement -
-
الأنشطة والجمعيات:Encadrement de plusieurs étudiants (taupins) pendant leurs projets du travail d'initiative personnelle encadré (TIPE).
-
-
-
-
التراخيص والشهادات
-
Advanced SQL Bootcamp
Udemy: Online Courses
-
Data Engineer with Google Dataflow and Apache Beam (python SDK)
Udemy: Online Courses
-
Interactive Python Dashboards with Plotly and Dash
Udemy: Online Courses
-
Quantitative Trading Like a Pro: Essential Python Course (Python for Traders and Investors)
Udemy
تم الإصدار في معرف الشهادة https://www.udemy.com/certificate/UC-f49e24d8-b3ef-454b-9172-92ac2352e856/ -
Google Cloud Professional Data Engineer: Get Certified 2022
Udemy: Online Courses
المنشورات
-
RFQ Cooler SHIRaC for SPIRAL 2: Cooling of very high intensity beam
Arxiv to be submitted to Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
The experimental study of Spiral-2 High Intensity Radiofrequency Cooler prototype is presented.
The handling of beam’s intensity going up to 1 μA is the mainly adding of this work. The development of the design, the vacuum system and the RF system is outlined. The experimental results in terms of transmission, geometrical emittance, longitudinal spread energy and purity
of cooled beams will be discussed. The reduction of the longitudinal spread energy degradation, induced by the…The experimental study of Spiral-2 High Intensity Radiofrequency Cooler prototype is presented.
The handling of beam’s intensity going up to 1 μA is the mainly adding of this work. The development of the design, the vacuum system and the RF system is outlined. The experimental results in terms of transmission, geometrical emittance, longitudinal spread energy and purity
of cooled beams will be discussed. The reduction of the longitudinal spread energy degradation, induced by the derivative of the RF voltage at the RFQ exit, in adding a miniature RFQ Cooler will be studied via numerical simulations. The coupling between the RFQ Cooler and the high resolution separator by an electrostatic triplet will be examined. -
Some recent results of the Codalema Experiment
Societe Francaise d'Astronomie et d'Astrophysique (SF2A) 2011
Codalema is one of the experiments devoted to the detection of ultra high energy cosmic rays by the radio method. The main objective is to study the features of the radio signal induced by the
development in the atmosphere of extensive air showers (EAS) generated by cosmic rays in the energy range of 10^16-10^18 eV. After a brief presentation of the detector features, the main results obtained are reported
(emission mechanism, lateral distribution of the electric ?eld, energy calibration,…Codalema is one of the experiments devoted to the detection of ultra high energy cosmic rays by the radio method. The main objective is to study the features of the radio signal induced by the
development in the atmosphere of extensive air showers (EAS) generated by cosmic rays in the energy range of 10^16-10^18 eV. After a brief presentation of the detector features, the main results obtained are reported
(emission mechanism, lateral distribution of the electric ?eld, energy calibration, etc.). The ?rst studies of
the radio wave front curvature are discussed as new preliminary results. -
Some possible interpretations from data of the CODALEMA experiment
Proceeding of the ARENA2012 conference, Erlangen, Germany To be published in AIP (American Institute of Physics)
The purpose of the CODALEMA experiment, installed at the Nan\c{c}ay Radio Observatory (France), is to study the radio-detection of ultra-high energy cosmic rays in the energy range of 10 PeV-EeV. Distributed over an area of 0.25 km^2, the original device uses in coincidence an array of particle detectors and an array of short antennas, with a centralized acquisition. A new analysis of the observable in energy for radio is presented from this system, taking into account the geomagnetic effect…
The purpose of the CODALEMA experiment, installed at the Nan\c{c}ay Radio Observatory (France), is to study the radio-detection of ultra-high energy cosmic rays in the energy range of 10 PeV-EeV. Distributed over an area of 0.25 km^2, the original device uses in coincidence an array of particle detectors and an array of short antennas, with a centralized acquisition. A new analysis of the observable in energy for radio is presented from this system, taking into account the geomagnetic effect. Since 2011, a new array of radio-detectors, consisting of 60 stand-alone and self-triggered stations, is being deployed over an area of 1.5 km^2 around the initial configuration. This new development leads to specific constraints to be discussed in term of recognition of cosmic rays and in term of analysis of wave-front.
For the presentation please try this link https://indico.cern.ch/getFile.py/access?contribId=53&sessionId=7&resId=0&materialId=slides&confId=159364 (You can find my name at page 14)مؤلفون آخرون -
Correlations in energy in cosmic ray air showers radio-detected by CODALEMA
Preprint submitted to Elsevier
A study of the response in energy of the radio-detection method of air showers initiated by ultra-high-energy cosmic rays is presented. Data analysis of the CODALEMA experiment shows that a strong correlation can be demonstrated between the primary energy of the cosmic ray and the electric field amplitude estimated at the heart of the radio signal. Its sensitivity to the characteristics of shower suggests that energy resolution of less than 20% can be achieved. It suggests also that, not only…
A study of the response in energy of the radio-detection method of air showers initiated by ultra-high-energy cosmic rays is presented. Data analysis of the CODALEMA experiment shows that a strong correlation can be demonstrated between the primary energy of the cosmic ray and the electric field amplitude estimated at the heart of the radio signal. Its sensitivity to the characteristics of shower suggests that energy resolution of less than 20% can be achieved. It suggests also that, not only the Lorentz force, but also another contribution proportional to all charged particles generated in the development of the shower, could play a significant role in the amplitude of the electric field peak measured by the antennas (as coherence or the charge excess).
مؤلفون آخرون -
Ill-posed formulation of the emission source localization in the radio-detection experiments of extensive air showers
Submitted Astroparticle Physics
Reconstruction of the curvatures of radio wavefronts of air showers initiated by ultra high energy cosmic rays is discussed based on minimization algorithms commonly used. We emphasize the importance of the convergence process induced by the minimization of a non-linear least squares function that affects the results in terms of degeneration of the solutions and bias. We derive a simple method to obtain a satisfactory estimate of the location of the main point of emission source, which…
Reconstruction of the curvatures of radio wavefronts of air showers initiated by ultra high energy cosmic rays is discussed based on minimization algorithms commonly used. We emphasize the importance of the convergence process induced by the minimization of a non-linear least squares function that affects the results in terms of degeneration of the solutions and bias. We derive a simple method to obtain a satisfactory estimate of the location of the main point of emission source, which mitigates the problems previously encountered.
مؤلفون آخرونعرض المنشور -
Estimation de rayon de courbure des gerbes atmosphériques par la méthode de radiodétection avec CODALEMA
Journees Jeunes Chercheurs 2010, IN2P3
La détection des transitoires radio associés aux grandes gerbes atmosphériques constitue une
méthode nouvelle de mesure des rayons cosmiques d’ultra haute énergie (UHECR). Aprés une
bréve description de l’expérience de radiodétection CODALEMA, une méthode de calcul des
rayons de courbure des fronts d’onde radio est présentée. Les performances de cette méthode
d’estimation appliquée à des données simulées et à des données collectées par CODALEMA sont
discutées.
(The detection…La détection des transitoires radio associés aux grandes gerbes atmosphériques constitue une
méthode nouvelle de mesure des rayons cosmiques d’ultra haute énergie (UHECR). Aprés une
bréve description de l’expérience de radiodétection CODALEMA, une méthode de calcul des
rayons de courbure des fronts d’onde radio est présentée. Les performances de cette méthode
d’estimation appliquée à des données simulées et à des données collectées par CODALEMA sont
discutées.
(The detection of radio transients associated with air showers is a new method for measuring cos-
mic rays of very high energies (UHECR). After a brief description of the experience CODALEMA,
a method for calculating the radii of curvature of the fronts of radio waves is presented. The
performances of this method applied to simulated data and on data collected by the CODALEMA
setup are discussed.)
Mots clés : gerbes atmosphériques, antennes, radiodétection, rayons de courbures.
La présentation se trouve sur le lien suivant https://indico.in2p3.fr/contributionDisplay.py?contribId=44&sessionId=3&confId=4003
For slides, try this link https://indico.in2p3.fr/contributionDisplay.py?contribId=44&sessionId=3&confId=4003
الدورات التعليمية
-
Big Data avec Apache Spark : Initiation
alphorm 803145305
المشروعات
-
Crypto IA (Crypto Trading AI)
-
A solution enabling cryptocurrency trading learning, manual market position-taking using a fictitious portfolio of €100k.
Users can analyze the performance of these positions through a dashboard equipped with various indicators and charts.
The platform also facilitates the development and testing of AI-powered bots/algorithms that autonomously take positions in the cryptocurrency market.
Frontend: React, Redux
Backend/API: Django, JWT
Database: PostgreSQL
AI Bot Models: ARIMA,…A solution enabling cryptocurrency trading learning, manual market position-taking using a fictitious portfolio of €100k.
Users can analyze the performance of these positions through a dashboard equipped with various indicators and charts.
The platform also facilitates the development and testing of AI-powered bots/algorithms that autonomously take positions in the cryptocurrency market.
Frontend: React, Redux
Backend/API: Django, JWT
Database: PostgreSQL
AI Bot Models: ARIMA, Prophet, LSTM
Data Preparation: Dask, Pandas, NumPy, Modin, Matplotlib, Plotly
CI/CD: Docker, GitLab, GCP (Google Cloud Platform)
Monitoring: Prometheus, Grafana -
Recommendation System for Retail Industry
-
Created an application for recommending retail items to store customers. Leveraged historical purchase data and employed "Collaborative Filtering" methodology, implementing various algorithms to suggest 5 items that would likely interest each customer.
Application Dashboard: Streamlit
Models: Singular Value Decomposition (SVD), Alternating Least Squares (ALS), Neural Collaborative Filtering (NCF)
Data Preparation: Dask, Pandas, NumPy, Modin, Matplotlib, Jupyter Notebook
ML…Created an application for recommending retail items to store customers. Leveraged historical purchase data and employed "Collaborative Filtering" methodology, implementing various algorithms to suggest 5 items that would likely interest each customer.
Application Dashboard: Streamlit
Models: Singular Value Decomposition (SVD), Alternating Least Squares (ALS), Neural Collaborative Filtering (NCF)
Data Preparation: Dask, Pandas, NumPy, Modin, Matplotlib, Jupyter Notebook
ML Libraries: SparkML, Keras, SciPy -
SLA - Network & Sys Admin Project
-
Managed multiple services (Back/Front/DB/WS) spread across different interconnected VMs on Azure. Faced daily demands from the educational team, focusing on securing and keeping services fully operational.
Tools: Grafana, Loki, Prometheus, AlertManager, Ansible, Blackbox, cAdvisor, Cachet (Status page -
The Cashierless Store (Inspired by Amazon Go)
-
Developed an application enabling users to scan products, view their prices, add them to their cart, and make payments for the items in their cart.
Mobile App: Kotlin
Backend/API: SpringBoot, Maven, Lombok, JWT
CI/CD: Travis, Docker, GitHub, AWS -
Train Itinerary - Voice Finder
-
Created an NLP application allowing users to request a railway itinerary by providing a departure station, an arrival station, and any intermediate stops. The application analyzes audio input, detects sentence intent, identifies stations, and returns the shortest path (Dijkstra's Algorithm) between the two stations, including any stops if applicable.
Application Dashboard: Streamlit
NLP Model: RoBERTa
Data Preparation: Pandas, NumPy
CI/CD: Docker, GitLab, GCP -
X-Ray Application for Pneumonia Detection
-
Developed an application to determine whether a patient has pneumonia based on a chest X-ray image (F1-Score: 97.5%).
Application Dashboard: Streamlit
Deep Learning Model: Convolutional Neural Network (CNN)
DL Libraries: Keras
Data Preparation: NumPy, Pandas, Matplotlib, Jupyter Notebook
CI/CD: Docker, GitLab, GCP
اللغات
-
arabe
إجادة اللغة الأم أو إجادة لغتين إجادة تامة
-
Français
إجادة اللغة الأم أو إجادة لغتين إجادة تامة
-
Anglais
إجادة تامة على المستوى المهني
-
Italien
مستوى إجادة أساسي
ملفات شخصية أخرى مشابهة
أعضاء آخرون يحملون اسم Ahmed Rebai في تونس
-
Ahmed Rebai
Professor at Centre of Biotechnology of Sfax
-
Ahmed REBAI
Data Science and Al Enthusiast | Competitive Programmer I Final Year Software Engineering Student at ENIS | Looking for end of studies internship in AI/ML!
-
Ahmed REBAI
Dirigeant de sociétés de commerce international
-
Ahmed Rebai
Software Engineer at Telnet
30 عضو آخر يحملون اسم Ahmed Rebai في تونس على LinkedIn
استعرض الأعضاء الآخرين الذين يحملون اسم Ahmed Rebai