
Illinois CCG TAC 2015 Event Nugget, Entity Discovery and Linking, and
Slot Filler Validation Systems

Mark Sammons and Haoruo Peng and Yangqiu Song and Shyam Upadhyay
and Chen-Tse Tsai and Pavankumar Reddy and Subhro Roy and Dan Roth

Department of Computer Science, University of Illinois, Urbana-Champaign.
{hpeng7,yqsong,upadhya3,ctsai12,mssammon,muddire2,sroy9,danr}

@illinois.edu

Abstract

This paper describes University of Illi-
nois’s Cognitive Computation Group
(UI-CCG)’s submissions for three TAC
tracks: Event Nugget Detection/Co-
reference; Entity Discovery and Linking
(EDL); and Slot Filler Validation (SFV).

The Event Nugget Detection and Co-
reference system employs a supervised
model for event nugget detection with rich
lexical and semantic features while we ex-
periment with both supervised and unsu-
pervised event co-reference methods. We
also utilize ACE2005 data as an additional
source and use several domain adaptation
techniques to improve our system’s perfor-
mance.

The Entity Discovery and Linking sys-
tem focuses on solving the Spanish sub-
task. The system uses Google Transla-
tion to translate Spanish documents into
English and then apply Illinois Wikifier to
identify entity mentions and disambiguate
them to Wikipedia entries. It outperforms
other participants on both linking and clus-
teringevaluations.

The Illinois SFV system treats the task as
an entailment problem, seeking to identify
for each individual query whether or not
the proposed answer is valid based on the
information contained in the query doc-
ument. The system builds on those of
previous years, and uses a machine learn-
ing component to try to extract cues from
unmarked relations in the context of the
query relation.

The three systems described here were devel-
oped as separate systems.

1 Event Nugget Detection and
Co-reference

In this section, we describe our submission to the
TAC KBP event task. Our team participated in
the TAC KBP Event Nugget (EN) track. It in-
cludes three sub-tasks: event nugget detection,
event co-reference based on gold and predicted
event nuggets. Our system uses a supervised
model for event nugget detection with rich lexi-
cal and semantic features. For event co-reference
model, we experiment with both supervised and
unsupervised methods. For supervised models, we
train a classifier to model the similarity between
each event nugget pair while we also ESA rep-
resentations (Gabrilovich and Markovitch, 2007;
Song and Roth, 2015) to compute this similarity
in an unsupervised fashion.

We show each module of our system in the
following sub-sections and discuss several tech-
niques that we employ.

1.1 Event Nugget Detection
We use a stage wise classification approach to ex-
tract all events (Ahn, 2006; Chen and Ng, 2012).
We first train a 34-class classifier (33 event sub-
types and one non-event class) to detect event
nuggets and classify them into different types. We
apply it on each token. Features for this supervised
classifier includes lexical features, features from
parser, Named Entity Recognition (NER), Seman-
tic Role Labelling (SRL), entity co-reference and
WordNet, and other semantic features from Ex-
plicit Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2005; Gabrilovich and Markovitch,
2007) and Brown Clusters (Brown et al., 1992).
We then apply a classifer using the same set of
rich features on each detected event nuggets to
get REALIS information (ACTUAL, GENERIC or
OTHER).
Features They can be summarized in the follow-
ing categories:



1. Lexical features: context (part-of-speech tag
and lemma) of a candidate token in a window
size of 5 and 20, plus their conjunctions.

2. Seed features: we use 140 seeds for event
triggers following a previous work (Bronstein
et al., 2015). We consider whether a candi-
date token is a seed or not (also its type if
it matches) and conjunction of the matched
seed and context seeds (also their types).

3. Parse Tree features: path from a candidate to-
ken to root, number of its right/left siblings
and their categories, and paths connecting a
candidate token with other seeds or named
entities.

4. NER features: named entities and their types
within a window size of 20 of a candidate to-
ken.

5. SRL features: whether a candidate token is
VerbSRL/NomSRL predicate and its role, its
conjunction with SRL relation names and the
conjunction of the SRL relation name and the
NER types in the context.

6. Coref features: co-referred entities with the
candidate token, and their conjunction with
both the candidate token and named entities
in the context.

7. ESA features: top 50 ESA concepts for each
candidate token.

8. Brown cluster features: brown cluster vector
of prefix length 4, 6, 10 and 20.

9. Wordnet features: hypernym, hyponym, en-
tailment words and derived words of both the
candidate token and its context, and also the
wordnet relations between the candidate to-
ken and seed words.

10. Other features: whether a candidate token is
in Framenet/Propbank or is a deverbal noun.

Learning Model We choose Support Vector Ma-
chine (SVM) to train both event nugget detection
classifier and realis classifier. We use L2 loss and
set C as 0.1 after tuning on a development set. We
use Illinois NLP packages for NER1, SRL2, and

1http://cogcomp.cs.illinois.edu/page/
software_view/NETagger

2http://cogcomp.cs.illinois.edu/page/
software_view/SRL

Entity Co-reference3.
Domain Adaptation Apart from the KBP train-
ing data, we use ACE2005 as an additional source
of our training data. The ACE event taxonomy is
similar to that of the KBP task. To enable the do-
main adaptation from ACE to KBP, we employ the
following techniques.

1. We view event triggers in ACE annotations as
event nuggets in the KBP task.

2. We apply a deterministic rule to convert
ACE realis information to KBP formulation.
Specifically, we combine “Genericity.Past”
and “Tense.Past” in ACE to be “Actual” in
KBP. We also use“Genericity.Generic” di-
rectly as ”Generic” and “Tense.Unspecified”
(and sometimes also ”Tense.Future”) as
”Others”.

3. As ACE and KBP have different data dis-
tributions based on event types, we use re-
sampling in ACE to match the event nugget
type distribution in KBP. There is also no-
table mismatch of the density of events be-
tween ACE and KBP. On average, each sen-
tence contains 0.34 events in ACE, while in
KBP, the statistics is 0.82, which is signifi-
cantly larger. Thus, we also use subsampling
to get a subset of the negative training exam-
ples in ACE to have a similar positive and
negative training example ratio in KBP.

Results We have two development datasets, one
from ACE2005 dataset while the other is from
KBP data. On ACE2005, we select 40 documents
from newswire articles for testing and the rest for
training. We only use this ACE development set to
evaluate our performance on ACE. For KBP data,
we also select 30 documents (20% of the available
data) as the developmemt set. These selected doc-
uments contain genres of both news articles and
discussion forums. We use this KBP development
set to test performance on models trained on KBP
data and ACE-KBP combined data using domain
adaptation techniques. Results on the two devel-
opment sets are shown in Table 1. The overall
score on the KBP development set shows that it
is best to train on ACE-KBP combined data with-
out doing resampling and subsampling techniques.
However, the sampling technique improves recall

3http://cogcomp.cs.illinois.edu/page/
software_view/Coref



on detection, which may have a bigger impact on
test data.

For the KBP event nugget detection task, we
submit the following three runs.

1. Trial One: Models trained on all KBP data

2. Trial Two: Models trained on all ACE-KBP
combined data without doing resampling and
subsampling.

3. Trial Three: Models trained on all ACE-KBP
combined data with doing resampling and
subsampling.

Results are shown in Table 2. The overall score
on the KBP test set shows that it is best to train on
ACE-KBP combined data with doing resampling
and subsampling techniques.

Table 1: Event Nugget Detection Results on De-
velopment Sets.

Precision Recall micro-F1
ACE-dev (trained on ACE)

Detection 76.53 71.64 74.00
Type 71.22 66.59 68.83

Realis 75.24 70.41 72.74
Type+Realis 69.99 65.43 67.63

KBP-dev (trained on KBP)
Detection 72.50 50.73 59.69

Type 51.46 36.01 42.37
Realis 44.11 30.87 36.32

Type+Realis 33.89 23.72 27.91
KBP-dev (trained on ACE-KBP w/o sampling)

Detection 74.80 49.89 59.86
Type 54.25 36.18 43.41

Realis 48.30 32.21 38.65
Type+Realis 36.82 24.56 29.47
KBP-dev (trained on ACE-KBP w sampling)
Detection 74.08 51.28 60.60

Type 52.86 36.59 43.24
Realis 45.48 31.48 37.21

Type+Realis 35.68 24.70 29.19

1.2 Event Co-reference

We employ a event-pair model for event co-
reference, which is similar to the mention-pair
co-reference model (Denis and Baldridge, 2007;
Bengtson and Roth, 2008) in entity coreference.
We model the similarity between event nugget

Table 2: Event Nugget Detection Results on the
KBP Test Set.

Precision Recall micro-F1
Trial One

Detection 84.49 43.44 57.38
Type 70.32 36.16 47.76

Realis 58.87 30.27 39.98
Type+Realis 50.16 25.79 34.07

Trial Two
Detection 83.52 45.03 58.51

Type 69.29 37.36 48.54
Realis 58.56 31.57 41.03

Type+Realis 49.45 26.66 34.64
Trial Three

Detection 82.22 46.99 59.80
Type 67.95 38.83 49.42

Realis 58.94 33.68 42.87
Type+Realis 49.88 28.50 36.28

pairs either by a supervised model or in an unsu-
pervied fashion. We then employ a greedy clus-
tering method to put every event nugget into co-
reference chains. We first make a decision on each
event nugget pair (whether they are linked or not)
and then put all linked event nuggets into the same
event co-reference chain. We now discuss the de-
tails of our system.
Supervised Method - Features They can be put
into the folliwing categories:

1. Event Nugget Features: all features for event
nugget detection (defined in Section 1.1)
and their conjuntions between two events
nuggets.

2. Event Argument Features: we get event ar-
guments directly through SRL. We first ex-
tract the sentence containing an event nugget,
and then use SRL to extract SRL arguments
(specfically A1 and A2). We treat them as
event arguments. Though the event argu-
ments we get are not precise, they are suf-
ficient for event co-reference (as later sup-
ported by our results). We apply all event
nugget detection features on the arguments
(defined in Section 1.1) and their conjuntions
between arguments of two events nuggets.

3. Event Entity Features: we get event entities
directly through entity co-reference. We run
entity co-reference on the whole document.



Then, similar to the construction of event ar-
gument features, we extract sentences con-
taining event nuggets, and then use entity
mentions (as annotated by co-reference) in
these sentences as event entities. We apply all
event nugget detection features on the entities
(defined in Section 1.1) and their conjuntions
between entities of two events nuggets.

4. Pair-wise Features: distance, ESA similar-
ities of two events nuggets and number of
co-referent entity mentions of two events
nuggets.

Supervised Method - Learning Model We train
our supervised event-pair model using SVM. We
choose L2 loss and set C as 1 after tuning on a de-
velopment set. We use Illinois NLP packages for
SRL and Entity Co-reference (the same pakcages
explained in Section 1.1).
Supervised Method - Domain Adaptation Simi-
lar to event nugget detection, we use ACE2005 as
an additional source of our training data. To en-
able the domain adaptation from ACE to KBP, we
employ the following techniques.

1. As ACE has gold entity co-reference annota-
tions, we use them during training on ACE
data. However, we use Illinois Entity Co-
reference package to get co-reference anno-
tations on KBP data.

2. There is a notable mismatch of the length of
event co-reference chains between ACE and
KBP. On average, each event co-reference
chain contains 1.30 events in ACE, while in
KBP, the statistics is 1.75, which is much
larger. We use subsampling to get a subset
of the negative training event nugget pairs in
ACE to have a similar positive and negative
training example ratio in KBP.

Unsupervised Method We find that we can ac-
tually model the similarity between event nugget
pairs in an unsupervised fashion. We first get the
ESA vector representation for the event nugget,
event arguments and entity mentions within the
same sentence of the nugget. We then use simple
concatenation of these vectors to represent each
event nugget. We can then directly model the sim-
ilarity of two events as the cosine similarity be-
tween their ESA representations.
Results We evaluate on the KBP development set
explained in Section 1.1 as well as the final KBP

test set. For the KBP event nugget co-reference
task, we submit the following three runs.

1. Trial One: Models trained on KBP data

2. Trial Two: Models trained on ACE-KBP
combined data without doing subsampling.

3. Trial Three: Models trained on ACE-KBP
combined data with doing subsampling.

Results on the two development sets are shown
in Table 3 while results on the final test set is
shown in Table 4. In both tables, “AVG” stands
for CoNLL Average, which is the average score of
MUC, B3, CEAFe, CEAFm and BLANC. Though
the performance of the unsupervised method is
lower than supervised methods, it is competitive
considering its simplicity. On the KBP test set,
our best results rank 2nd in event co-reference task
based on gold events while rank 3rd based on pre-
dicted events.

2 Entity Discovery and Linking

In this section, we describe our submission to the
Tri-lingual Entity Discovery and Linking task. We
participated in the Spanish sub-task where the sys-
tem is required to identify named entity mentions
in the given Spanish documents and also disam-
biguate them to the entities in FreeBase. Our
translation based approach achieves the best link-
ing and clustering scores on the final evaluation
dataset. Figure 1 shows a schematic view of our
pipeline.

2.1 System Pipeline
Our system is based on Google Translation and
Illinois Wikifier (Ratinov et al., 2011; Cheng and
Roth, 2013) along with some heuristic algorithms
to align the English mentions back to the Spanish
documents. The details of the pipeline are as fol-
lows:

1. Translation We use Google Translation to
translate the Spanish documents in to En-
glish, which allows us to leverage the well-
developed English Wikifier to discover and
disambiguate entity mentions in the docu-
ments.

2. Wikification The Illinois Wikifier uses the
Illinois Named Entity Tagger (Ratinov and
Roth, 2009) to extract the named entity men-
tions in the documents and then try to link



Table 3: Event Nugget Coreference Results on the KBP Development Set.

MUC B3 CEAFe CEAFm BLANC AVG
Gold Event Nuggets

Trial One 67.39 74.55 59.97 60.51 67.37 65.96
Trial Two 66.48 75.75 60.99 63.25 70.37 67.37

Trial Three 69.08 76.54 61.49 63.77 71.10 68.40
Unsupervised 64.25 73.04 60.16 61.11 69.81 65.67

Predicted Event Nuggets
Trial One 43.66 53.86 44.57 46.41 34.51 44.60
Trial Two 39.61 48.97 50.48 47.63 39.61 49.04

Trial Three 47.73 58.73 48.96 50.48 40.43 49.19
Unsupervised 38.63 52.03 43.78 45.90 32.64 42.60

Table 4: Event Nugget Coreference Results on the KBP Test Set.

MUC B3 CEAFe CEAFm BLANC AVG
Gold Event Nuggets

Trial One 52.23 72.80 64.47 57.53 50.68 59.54
Trial Two 52.82 69.91 61.78 54.46 48.38 57.47

Trial Three 63.78 83.75 75.81 74.08 73.99 74.28
Predicted Event Nuggets

Trial One 52.41 67.88 59.55 61.01 55.07 59.18
Trial Two 52.78 68.31 60.48 61.60 55.90 59.81

Trial Three 53.29 68.80 60.78 61.86 56.92 60.33

each mention to a title in English Wikipedia.
In addition, we try to modify the titles of the
PERSON mention after wikification, since a
shorter mention may have higher ambiguity.
For example, if “Chris” and “Chris Kyle” are
two mentions in a document, the entity which
“Chris Kyle” links to is more likely to be the
correct one since “Chris” is very ambiguous
to Wikifier. Under the assumption that these
two mentions refer to the same person, we
modify the title of “Chris” to “Chris Kyle”’s
title.

3. Spanish Mention Discovering Google
Translation does not provide word/phrase
alignments of the source and target lan-
guages. This poses a challenge of mapping
the English mentions back to the Spanish
documents. We use the following algorithm
to align mentions:

• Given a mention in English, we pro-
duce possible Spanish translations by
the English mention surface, the Google
translated English string, the Spanish
Wikipedia title (through the language

link in Wikipedia if the mention is
linked to an English Wikipedia title),
and all the strings which are redirected
to the Spanish title.

• For each n-grams of the Spanish doc-
ument, we calculate the edit distance
to the possible Spanish translations ob-
tained in the previous step and then re-
turn the first n-gram which has not been
mapped to any English text and has the
lowest edit distance at most 1.

For example, if the English mention is
“USA”, by the first step of the algorithm,
we generate the following lowercased Span-
ish translations: “usa” (the English surface
form), “ee.uu” (the translation of “usa”), “es-
tados unidos” (the Spanish Wikipedia title),
“ee.uu.”, “eeuu”, “e.u.a.”, “estadounidense”,
“ee. uu.”, “ee uu”, “unión americana”,
“eua”, “estadounidenses”, and “united states
of america” (strings redirected to the Span-
ish Wikipedia title). We then match all the
above possible translations with n-grams in
the Spanish document by the second step. We



Figure 1: System Pipeline for EDL Task

can see that Wikipedia provides many useful
information at this stage.

4. FreeBase ID Mapping In principle, the map-
ping between Wikipedia titles to the corre-
sponding FreeBase MIDs is deterministic.
However, due to the difference of versions
used in the Wikifier and the FreeBase, we
could not find the corresponding FreeBase
MIDs for some Wikipedia titles. We apply
the following two-step approach to find the
FreeBase MID. First, we directly query the
FreeBase MID of a given Wikipedia title us-
ing FreeBase’s MQL API. If the query fails to
find a FreeBase entry, we query the FreeBase
search API by the Wikipedia title and use the
first returned FreeBase entity as the answer.

5. Mention Filtering Since only five types of
name entities are of the interest this year, we
train a binary classifier based on the FreeBase
types to remove the mentions which do not
belong to these five types. When construct-
ing training examples, we use the gold an-
notations of the English and Spanish train-
ing documents as positive examples, whereas
the negative examples are generated from our
system predictions which do not overlap with
any gold mentions.

6. Named Entity Typing The Illinois Named
Entity Recognizer only covers three entity
types. We train a 5-class classifier based on
the FreeBase types to classify each mention
into one of the five entity types. For the NIL
mentions, since we could not obtain Free-
Base types for them, we simply use the types
provided by the Named Entity Recognizer.

7. Entity Clustering As the number of NIL
mentions are fewer in this year’s documents,
we simply cluster all mentions in a docu-
ment by the Jaccard similarity of the surface
strings.

Approach Precision Recall F1
Development documents

Stanford NER 69.4 68.4 68.9
FreeLing NER 72.2 71.5 71.8
Illinois CCG 81.4 76.6 79.0

Evaluation documents
Stanford NER 61.6 61.9 61.8
FreeLing NER 58.7 65.0 61.7
Illinois CCG 73.6 70.9 72.2

Table 5: A comparison of mention extraction per-
formance. We compare two off-the-shelf Spanish
NER packages with our system. We only evaluate
the mention spans since the entity types used in
these two NERs are different from our task. Note
that the results of our system is after the third step
of the pipeline (Spanish Mention Discovering).

Measure Prec. Recall F1
Development documents

mention spans 85.5 79.6 82.4
mention spans+type 79.8 74.3 76.9
mention spans+link 78.5 73.1 75.5
mention CEAF 81.6 76.1 78.8

Evaluation documents
mention spans 80.1 77.2 78.7
mention spans+type 76.1 73.4 74.7
mention spans+link 72.5 69.9 71.2
mention CEAF 75.0 72.3 73.7

Table 6: Performance of UI CCG Spanish entity
linking system on the development documents and
the final evaluation documents. We got the first
place on linking (mention spans+link) and cluster-
ing (mention CEAF) on the evaluation documents.

2.2 Results

In the following results, “development doc-
uments” refers to all the Spanish training
documents this year. We observe the performance
on these documents to guide the development of
algorithms. All the training of Wikifier ranking
model, entity type classifier, and the filtering



classifier are done on the English documents of
this and last year’s EDL tasks. The final held-out
evaluation documents are referred to “evaluation
documents” in all the results.

Comparing Mention Extraction Mention extrac-
tion is a very important step since it is usually the
first step of a pipeline thus sets the ceiling of the
final performance. An immediate baseline of men-
tion extraction is by applying a Spanish Named
Entity Recognizer (NER). In Table 5, we compare
our system with two off-the-shelf NERs: Stan-
ford4 and FreeLing5. For our system, we evalu-
ate the results after the third step of the pipeline
(Spanish Mention Discovery), so no mention fil-
tering is applied. It is basically mapping the re-
sults of English NER (used by Wikifier) on the
translated documents back to the Spanish docu-
ments by the algorithm described in the third step
of Section 2.1. Note that in this evaluation, we ex-
clude the author mentions within XML tags since
these mentions can be easily extracted by regular
expressions and we only input plain text (without
XML tags) to the two NERs. In addition, only
mention spans are evaluated as the entity types
output by NERs are different from the types used
in the shared task.

We can see that the proposed UI CCG system
outperforms both NERs significantly on both
development and evaluation documents. From
some error analysis we see that Spanish NERs
perform poorly if the text is in bad format, for
example, some paragraphs are all uppercased or
all lowercased from the discussion forum. On the
other hand, Google Translation tries to format the
text better, therefore makes the text easier for the
English NER.

End-to-end Evaluation The overall performance
of our system is summarized in Table 6. We can
see that the performance of Wikifier is around 90
(the ratio between mention spans+link to mention
spans), which indicates the mentions are not hard
in this year’s documents. For the final evaluation,
our system performs the best among all the partici-
pants in terms of the linking performance (mention
spans+link) and clustering performance (mention
CEAF).

4http://nlp.stanford.edu/software/
CRF-NER.shtml

5http://nlp.lsi.upc.edu/freeling/
index.php

3 Slot Filler Validation

The Illinois SFV system considers each query in-
dependently, and does not use any information
provided about the source Slot Filler system that
produced the query.

3.1 The 2015 SFV Task

The 2015 TAC SFV task is significantly different
from the previous years as the queries are gener-
ated from a Cold Start Knowledge Base Popula-
tion task rather than a Slot Filler task. This adds
a number of explicit inverse relations to the pre-
vious Slot Filler/SFV task, as well as a new en-
tity type (Geopolitical Entity, or GPE). The cor-
pus of source documents is much smaller (50, 000
documents), and much more skewed towards fo-
rum documents (about 80%). It is also very much
larger than 2013 and 2014 data: 1.2M Slot Filler
System outputs compared to 50K each in 2013
and 2014. This larger scale adds significant com-
plications, making a straightforward reliance on
more sophisticated NLP tools problematic. In ad-
dition, queries were split into one- and two-hop
queries, with the two-hop queries being treated as
a single step (i.e. if the second hop is correctly
extracted but based on an incorrect first hop ex-
traction, it is judged incorrect).

3.2 Rule-Based System

The 2015 Illinois SFV system was based on the
system from the TAC 2014 SFV track (Sammons
et al., 2014). In order to manage the much
larger corpus, the system processed the query doc-
uments with lighter-weight NLP tools (Illinois
POS tagger (Roth and Zelenko, 1998), Shallow
Parser (Punyakanok and Roth, 2001; Punyakanok
and Roth, 2005), Named Entity Recognizer (Rati-
nov and Roth, 2009), and Illinois Temporal Ex-
pression Extractor (Zhao et al., 2012)).

The first stage of the Illinois rule-based SFV
system is the Argument Checker. After identi-
fying candidate subject and filler matches in the
source document close to the specified filler prove-
nance, the query is rejected if good matches for
the subject and filler are not found. For each can-
didate matching argument pair for the query sub-
ject and object, the system, applies a set of hand-
written rules appropriate for the query relation. If
no match is found, the query is rejected. For this
year’s task we used a union of the rules identified
as useful for the 2013 and 2014 SFV corpora. To



attempt to answer queries involving the new in-
verse relations, we copied rules from the corre-
sponding original relations and where they were
sensitive to the relative position of the arguments,
modified them accordingly.

The SFV system also identifies other enti-
ties/values in the neighborhood of the query match
that have the same types as the query arguments.
It then applies rules for the query relation and a set
of relations identified as “competing” with that re-
lation to identify relations that may hold for these
other entities. The resulting relation match infor-
mation is passed on to the system decision compo-
nent.

3.3 Machine Learning component
The final stage of the SFV system uses a machine
learning approach. Using all of the 2013 and half
of the 2014 SFV corpora as training data, we iden-
tified coarse features that could potentially im-
prove SFV performance. These included whether
or not competing relations were identified that
also covered query arguments, and which (if true)
might preclude the query relation. We tried several
different machine learning algorithms, and mainly
used Naive Bayes for its efficiency. One run uses
Linear SVM.

We developed four separate data sets: for the
2013 and 2014 SFV data, we split each into two
halves, ensuring there were no tuples in the first
half that appeared in the second half. We then used
one half of each year as a training/development
set, and the other half for testing. We conducted
some experiments where we trained on all 2013
data plus the 2014 training data, and evaluated on
the 2014 data. We used the models trained this
way for the SFV system machine learning compo-
nent when predicting labels for the 2015 data.

We used the preliminary assessment results pro-
vided by NIST to determine basic choices about
the final system configuration: whether or not to
try to filter queries using the new inverse relations,
and whether or not to try to change round 2 queries
based on round 1 predictions.

3.4 Results
Table 7 shows results on the training and develop-
ment data we used for this task. The results for
the basic SFV system (rule-based system without
learned component) are comparable to last year’s
system performance, and the learning component
gives a significant boost to performance. Results

for the rule-based system on the 2014 data are
slightly lower than last year, presumably because
the 2015 system does not use the Illinois Wiki-
fier (Cheng and Roth, 2013) in order to speed up
processing time. When the learning component is
added, performance approaches that of the 2014
system.

Table 8 shows results using the preliminary
assessments on several different system config-
urations for round one SFV queries, while Ta-
ble 9 shows the performance for round two SFV
queries. The results show that the SFV system
is too strict on round one queries, as the original
system performance is quite high. For round two
queries, the SFV system does better, even though
it is relying on the round one predictions to filter
round two queries that would otherwise have been
labeled as entailing.

System Configuration Precision Recall F1
Baseline 2013 test – always say ‘YES’ 0.300 1.000 0.462
Basic SFV System 2013 0.499 0.623 0.554
Learned System (Naive Bayes) 2013 0.487 0.753 0.591
Baseline 2014 test – always say ‘YES’ 0.295 1.000 0.455
Basic SFV System 2014 0.445 0.542 0.489
Learned System 2014 0.427 0.610 0.503

Table 7: Performance on 2013 and 2014 SFV
Test data For 2014 Test, learned model is trained
on all of 2013 and half of 2014.

System Configuration Precision Recall F1
Baseline – always say ‘YES’ 0.335 1.000 0.502
Basic SFV System 0.328 0.693 0.445
Learned System, Naive Bayes 0.335 0.607 0.401
Learned System, SVM 0.337 0.624 0.438

Table 8: Performance on preliminary Round
One assessed 2015 data

System Configuration Precision Recall F1
Baseline – always say ‘YES’ 0.251 1.000 0.401
Basic SFV System 0.420 0.260 0.323
Learned System, Naive Bayes 0.674 0.444 0.536
Learned System, SVM 0.606 0.396 0.479

Table 9: Performance on preliminary Round
Two assessed 2015 data

3.5 Discussion
While the system does relatively well on 2013 and
2014 data sets, performance on the 2015 data does
not improve over the original cold start systems.
This is in part because these systems are perform-
ing better on round one queries than on compara-
ble Slot Filler queries than in previous years.

Error analysis indicates some shortcomings of
the Illinois SFV system rule sets. For example:



Query: Poland gpe:residents-of-country Stefan
Niesiolowski
Text: Stefan Niesiolowski, who is a deputy
Speaker of the Polish parliament, told a TV audi-
ence in June that same-sex families are abnormal
and described lesbian couples with children as a
”serious pathology.”

To capture this kind of example reliably, the
rule-based approach requires world knowledge
that people who hold positions in certain kinds
of national organizations are typically residents of
that country.

Other errors indicate that the rules are not spe-
cific enough, as they do not account for syntactic
structure:

Query: George Zimmerman per:spouse
Trayvon Martin
Text: Shellie Zimmerman, wife of George
Zimmerman, charged with murdering Trayvon
Martin, was arrested Tuesday on one count of
perjury, the Seminole County, Fla.

Here, the system matches the pattern “wife of
[SUBJECT]” and a good match for the query filler
is found close by, but would ideally have syntactic
constraints that would prevent the rule from firing
when the context does not support the inference.

Acknowledgments

This work was supported by the US Defense Ad-
vanced Research Projects Agency (DARPA) under
the DEFT and LORELEI programs. The views ex-
pressed are those of the authors and do not reflect
the official policy or position of the Department of
Defense or the U.S. Government.

References
David Ahn. 2006. The stages of event extraction. In

Workshop on Annotating and Reasoning About Time
and Events, pages 1–8.

E. Bengtson and D. Roth. 2008. Understanding the
value of features for coreference resolution. In Proc.
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 10.

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-based event trigger labeling:
How far can event descriptions get us? Volume 2:
Short Papers, page 372.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.

Class-Based n-gram Models of Natural Language.
Computational Linguistics, 18(4):467–479.

Chen Chen and Vincent Ng. 2012. Joint modeling for
chinese event extraction with rich linguistic features.
In COLING, pages 529–544.

X. Cheng and D. Roth. 2013. Relational inference
for wikification. In Proc. of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

P. Denis and J. Baldridge. 2007. Joint determination
of anaphoricity and coreference resolution using in-
teger programming. In Proceedings of the Annual
Meeting of the North American Association of Com-
putational Linguistics (NAACL).

Evgeniy Gabrilovich and Shaul Markovitch. 2005.
Feature generation for text categorization using
world knowledge. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1048–1053.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the International Joint Conference on Artificial In-
telligence (IJCAI).

V. Punyakanok and D. Roth. 2001. The use of clas-
sifiers in sequential inference. In Proc. of the Con-
ference on Neural Information Processing Systems
(NIPS), pages 995–1001. MIT Press.

V. Punyakanok and D. Roth. 2005. Inference with
classifiers: The phrase identification problem. Tech-
nical report.

L. Ratinov and D. Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proc. of the Conference on Computational Natural
Language Learning (CoNLL), 6.

L. Ratinov, D. Roth, D. Downey, and M. Anderson.
2011. Local and global algorithms for disambigua-
tion to wikipedia. In Proc. of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

D. Roth and D. Zelenko. 1998. Part of speech tag-
ging using a network of linear separators. In Coling-
Acl, The 17th International Conference on Compu-
tational Linguistics, pages 1136–1142.

M. Sammons, Y. Song, R. Wang, G. Kundu, C.-T. Tsai,
S. Upadhyay, S. Mayhew, D. Roth, and S. Ancha.
2014. Overview of ui-ccg systems for event argu-
ment extraction, entity discovery and linking, and
slot filler validation. In Proc. of the Text Analysis
Conference (TAC).

Y. Song and D. Roth. 2015. Unsupervised sparse vec-
tor densification for short text similarity. In Proc. of
the Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), 5.



R. Zhao, Q. Do, and D. Roth. 2012. A robust shallow
temporal reasoning system. In Proc. of the Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL)
Demo, 6.


