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Abstract

Memory management system performance is of increasing impor-
tance in today’s managed languages. Two lingering sources of over-
head are the direct costs of memory allocations and write barriers.
This paper introduces allocation folding, an optimization technique
where the virtual machine automatically folds multiple memory al-
location operations in optimized code together into a single, larger
allocation group. An allocation group comprises multiple objects
and requires just a single bounds check in a bump-pointer style allo-
cation, rather than a check for each individual object. More impor-
tantly, all objects allocated in a single allocation group are guaran-
teed to be contiguous after allocation and thus exist in the same gen-
eration, which makes it possible to statically remove write barriers
for reference stores involving objects in the same allocation group.
Unlike object inlining, object fusing, and object colocation, alloca-
tion folding requires no special connectivity or ownership relation
between the objects in an allocation group. We present our analysis
algorithm to determine when it is safe to fold allocations together
and discuss our implementation in V8, an open-source, production
JavaScript virtual machine. We present performance results for the
Octane and Kraken benchmark suites and show that allocation fold-
ing is a strong performance improvement, even in the presence of
some heap fragmentation. Additionally, we use four hand-selected
benchmarks JPEGEncoder, NBody, Soft3D, and Textwriter where
allocation folding has a large impact.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors compilers, memory management (garbage
collection), optimization

General Terms Algorithms, Languages, Experimentation, Per-
formance, Measurement

Keywords Dynamic Optimization, Garbage Collection, Memory
Managment, Write barriers, JavaScript

1. Introduction

Applications that rely on automatic memory management are now
everywhere, from traditional consumer desktop applications to
large scale data analysis, high-performance web servers, financial
trading platforms, to ever-more demanding websites, and even bil-
lions of mobile phones and embedded devices. Reducing the costs
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of automatic memory management is of principal importance in
best utilizing computing resources across the entire spectrum.

Automatic memory management systems that rely on garbage
collection introduce some overhead in the application’s main exe-
cution path. While some garbage collection work can be made in-
cremental, parallel, or even concurrent, the actual cost of executing
allocation operations and write barriers still remains. This is even
more apparent in collectors that target low pause time and require
heavier write barriers.

This paper targets two of the most direct costs of garbage col-
lection overhead on the application: the cost of allocation bounds
checks and write barriers executed inline in application code. Our
optimization technique, allocation folding, automatically groups
multiple object allocations from multiple allocation sites in an op-
timized function into a single, larger allocation group. The alloca-
tion of an allocation group requires just a single bounds check in a
bump-pointer style allocator, rather than one check per object. Even
more importantly, our flow-sensitive compiler analysis that elimi-
nates write barriers is vastly improved by allocation folding since
a larger region of the optimized code can be proven not to require
write barriers.

Allocation folding relies on just one dynamic invariant:

Invariant 1. Between two allocations A1 and Az, if no other
operation that can move the object allocated at A1 occurs, then
space for the object allocated at Az could have been allocated at
A1 and then initialized at A, without ever having been observable
to the garbage collector.

Our optimization exploits this invariant to group multiple al-
locations in an optimized function into a single, larger allocation.
Individual objects can then be carved out of this larger region, with-
out the garbage collector ever observing an intermediate state.

Allocation folding can be considered an optimization local to an
optimized function. Unlike object inlining [5], object fusing [21],
or object colocation [11], the objects that are put into an alloca-
tion group need not have any specific ownership or connectivity
relationship. In fact, once the objects in a group are allocated and
initialized, the garbage collector may reclaim, move, or promote
them independently of each other. No static analysis is required,
and the flow-sensitive analysis is local to an optimized function.
Our technique ensures that allocation folding requires no special
support from the garbage collector or the deoptimizer and does not
interfere with other compiler optimizations. We implemented allo-
cation folding in V8 [8], a high-performance open source virtual
machine for JavaScript. Our implementation of allocation folding
is part of the production V8 code base and is enabled by default
since Chrome M30.

The rest of this paper is structured as follows. Section 2 de-
scribes the parts of the V8 JavaScript engine relevant to allocation
folding, which includes the flow-sensitive analysis required for al-
location folding and relevant details about the garbage collector and
write barriers. Section 3 describes the allocation folding algorithm



and shows how allocation folding vastly widens the scope of write
barrier elimination. Section 4 presents experimental results for al-
location folding across a range of benchmarks which include the
Octane [7] and Kraken [13] suites. Section 5 discusses related work
followed by a conclusion in Section 6.

2. The V8 Engine

V8 [8] is an industrial-strength compile-only JavaScript virtual ma-
chine consisting of a quick, one-pass compiler that generates ma-
chine code that simulates an expression stack and a more aggres-
sive optimizing compiler based on a static single assignment (SSA)
intermediate representation (IR) called Crankshaft, which is trig-
gered when a function becomes hot. V8 uses runtime type pro-
filing and hidden classes [9] to create efficient representations for
JavaScript objects. Crankshaft relies on type feedback gathered at
runtime to perform aggressive speculative optimizations that tar-
get efficient property access, inlining of hot methods, and reduc-
ing arithmetic to primitives. Dynamic checks inserted into opti-
mized code detect when speculation no longer holds, invalidat-
ing the optimization code. Deoptimization then transfers execution
back to unoptimized code'. Such speculation is necessary to op-
timize for common cases that appear in JavaScript programs but
that can nevertheless be violated by JavaScript’s extremely liberal
allowance for mutation. For example, unlike most statically-typed
object-oriented languages, JavaScript allows adding and removing
properties from objects by name, installing getters and setters (even
for previously existing properties), and mutation of an object’s pro-
totype chain at essentially any point during execution. After adapt-
ing to JavaScript’s vagaries, Crankshaft performs a suite of com-
mon classical compiler optimizations, including constant folding,
strength reduction, dead code elimination, loop invariant code mo-
tion, type check elimination, load/store elimination, range analysis,
bounds check removal and hoisting, and global value numbering. It
uses a linear-scan SSA-based register allocator similar to that de-
scribed by Wimmer [20].

V8 implements a generational garbage collector and employs
write barriers to record references from the old generation to the
young generation. Write barriers are partially generated inline in
compiled code by both compilers. They consist of efficient inline
flag checks and more expensive shared code that may record the
field which is being written. For V8’s garbage collector the write
barriers also maintain the incremental marking invariant and record
references to objects that will be relocated. Crankshaft can stati-
cally elide write barriers in some cases, e.g. if the object value be-
ing written is guaranteed to be immortal and will not be relocated,
or if the object field being written resides in an object known to be
in the young generation. The analysis for such elimination is given
in Section 2.3.1.

2.1 Crankshaft IR

Crankshaft uses an SSA sparse-dataflow intermediate representa-
tion which is built directly from the JavaScript abstract syntax tree
(AST). All important optimizations are performed on this IR. In-
structions define values rather than virtual registers, which allows
an instruction use to refer directly to the instruction definition, mak-
ing move instructions unnecessary and improving pattern match-
ing. Instructions are organized into basic blocks which are them-
selves organized into a control flow graph with branches and gotos,
and PHI instructions merge values at control flow join points. SSA
form guarantees that every instruction I, is defined exactly once.

V8 might be considered the most direct descendant of the Smalltalk —
Self — HotSpot lineage of virtual machines that pioneered these tech-
niques.

Instruction Dep | Chg
I, = PARAMETER[K]
I, = CONSTANT[K]
I, = ARITH(I, I)

I, = LOAD[field](object) U

I, = STORE[field|(object,value) v
I, = ALLOC[space](size) A A
I, = INNER[offset, size|(alloc)

I, = CALL(I...) * *
I, = PHI(I...)

Table 1: Simplified Crankshaft IR Instructions.

Every definition must dominate its uses, except for the inputs to
PHI instructions.

Table 1 shows a simplified set of Crankshaft instructions that
will be used throughout this paper. Statically known parts of an
instruction, such as the field involved in a LOAD or STORE, or the
value of a constant, are enclosed in square brackets []. The inputs
to an instruction are given in parentheses () and must be references
to dominating instructions. The table also lists the effects changed
and depended on for each instruction. Effects will be discussed in
Section 2.2.2. We elide the discussion of the more than 100 real
Crankshaft instructions which are not relevant to this paper.

2.2 Global Value Numbering

The analysis required to detect opportunities for allocation folding
is implemented as part of the existing flow-sensitive global value
numbering (GVN) algorithm in Crankshaft. Global value number-
ing eliminates redundant computations when it is possible to do
so without affecting the semantics of the overall program. Extend-
ing GVN to handle impure operations gives the necessary flow-
sensitivity for identifying candidates for allocation folding.

2.2.1 GYVN for Pure Operations

GVN traditionally targets pure computations in the program such
as arithmetic on primitives, math functions, and accesses to im-
mutable data. Because such operations always compute the same
result and neither produce nor are affected by side-effects, it is safe
to hoist such computations out of loops or reuse the result from a
previous occurrence of the same operation on the same inputs.

For each basic block in the method, the value numbering
algorithm visits the instructions in control flow order, putting
pure instructions into a value numbering table. In our simplified
Crankshaft instruction set depicted in Table 1, we consider all arith-
metic instructions ARITH(I;, I;) to be pure instructions. Two in-
structions are value-equivalent if they are the same operation (e.g.
both ADD or both SUB) and the inputs are identical SSA values. If
a value-equivalent instruction already exists in the table, then the
second instruction is redundant. The second instruction is removed,
and all of its uses are updated to reference the first instruction.

Crankshaft uses the dominator tree of the control flow graph
to extend local value numbering to the entire control flow graph.
The dominator tree captures the standard dominance relation for
basic blocks: a basic block D dominates basic block B if and only
if D appears on every path from the function entry to B. It is

2n JavaScript, all operations are untyped. Arithmetic on objects could re-
sult in calls to application-defined methods that have arbitrary side-effects.
In V8, a complex system of type profiling with inline caches, some static
type inference during compilation, and some speculative checks in opti-
mized code guard operations that have been assumed to apply only to prim-
itives.



straightforward to extend the dominator relation on basic blocks to
instructions, since instructions are ordered inside of basic blocks.

GVN applies local value numbering to each basic block in dom-
inator tree order, starting at the function entry. Instead of start-
ing with an empty value numbering table at the beginning of each
block, the value numbering table from a dominating block D is
copied and used as the starting table when processing each of its im-
mediately dominated children B. By the definition of dominance,
a block D dominating block B appears on every control flow path
from the start to B. Therefore any instruction /> in B which is
equivalent to /; in D is redundant and can be safely replaced by
I;. Since Crankshaft’s SSA form guarantees that every definition
must dominate its usages, the algorithm is guaranteed to find all
fully redundant computations®.

2.2.2 GYVN for Impure Operations

Crankshaft extends the GVN algorithm to handle some instructions
that can be affected by side-effects, but are nevertheless redundant
if no such side-effects can happen between redundant occurrences
of the same instruction. Extending GVN to impure instructions
by explicitly tracking side-effects is the key analysis needed for
allocation folding.

We illustrate the tracking of side-effects during GVN
with a simple form of redundant load elimination. A load
L, = LOAD[field](0;) can be replaced with a previous load of the
same field Ly = LOAD[field](0;) if L dominates L, and no inter-
vening operation could have modified the field of the object on any
path between L, and L.

For load elimination, we consider LOAD and STORE instructions
and an abstraction of the state in the heap. For the sake of illustra-
tion, in this section we will model all the state in the heap with a
single effect W, but for finer granularity, one could model multiple
non-overlapping heap abstractions with individual side-effects U¢,
e.g. one for each field £*. Stores change U and loads depend on
V. CALL instructions are conservatively considered to change all
possible side-effects, so we consider them to also change .

While previously only pure instructions were allowed to be
added to the value numbering table, now we also allow instruc-
tions that depend on side-effects to be added to the table, and
each entry in the value numbering table also records the ef-
fects on which the instruction depends. When processing a load
L; = LOAD[field](0;), it is inserted into the table and marked
as depending on effect ¥. A later load L, = LOAD[field](0;)
might be encountered. Such a load is redundant if the value
numbering table contains Li. When an instruction that changes
a side-effect is encountered, any entry in the value numbering
table that depends on that effect is invalidated. Thus any store
S: = STORE[field](D;, Vj) causes all instructions in the table that
depend on ¥ to be removed, so that subsequent loads cannot reuse
values from before the store.

We would like to use the idea above to perform global value
numbering for instructions that can be affected by side-effects
across the entire control flow graph. Unfortunately, it is not enough
just to rely on the effects we encounter as we walk down the domi-
nator tree, as we did in the previous algorithm. The dominator tree
only guarantees that a dominator block appears on every path from
the start to its dominated block, but other blocks can appear be-
tween the dominator and the dominated block. To correctly account
for side-effects, we must process the effects on all paths from a
dominator block to its children blocks.

3 By induction on the structure of instructions.

4The actual load elimination algorithm in Crankshaft models several non-
overlapping heap memory abstractions and also performs a limited alias
analysis.

To perform this analysis efficiently, we first perform a linear
pass over the control flow graph, computing an unordered set of
effects that are produced by each block. Loops require extra care.
Assuming a reducible flow graph, each loop has a unique header
block which is the only block from which the loop can be entered.
A loop header block is marked specially and contains the union of
effects for all blocks in the loop. When traversing the dominator
tree, if the child node is a loop header, then all instructions in
the value numbering table that depend on the loop effects are first
invalidated.

Armed with the pre-computed effect summaries for each block,
the GVN algorithm can process the effects on all paths between
a dominator and its children by first starting at the child block
and walking the control flow edges backward, invalidating entries
in the value numbering table that depend on the summary effects
from each block, until the dominator block is reached. Such a walk
is worst-case O(E), since the dominator block may be the start
block and the child block may be the end block, leading to an
overall worst-case of O(E * IN), where E is the number of edges
and N is the number of blocks. In practice, most dominator-child
relationships have zero non-dominating paths, so this step is usually
a no-op. Our implementation also employs several tricks to avoid
the worst-case complexity, such as memoizing some path traversals
and terminating early when the value numbering table no longer
contains impure instructions, but the details are not relevant to the
scope of this paper.

2.2.3 Side-Effect Dominators

Each effect e induces a global flow-sensitive relation on instructions
that depend on € and instructions that change €. We call this relation
e-dominance.

Definition 1. For a given effect ¢, instruction D e-dominates in-
struction I if and only if D occurs on every path from the function
entry to I, and no path from D to I contains another instruction
D’ # D that changes e.

Given this new definition, it is easy to restate load elimination.

Predicate 1. A load L, = LOAD[field;](0:) can be replaced with
L; = LOAD[field;](0;) if Ly W-dominates Lo.

We can also define an e-dominator.

Definition 2. For a given effect €, instruction D is the e-dominator
of instruction I if and only if D e-dominates I and D changes e.

It follows immediately from the definition of e-dominance that
an instruction can have at most one e-dominator.

GVN for impure values computes both e-dominance and the
unique e-dominator during its traversal of the instructions. It
provides the e-dominator as an API to the rest of the compiler.
Crankshaft uses it for both allocation folding and for write barrier
elimination, both of which are detailed in the following sections.

2.3 Write Barriers

V8 employs a generational garbage collector, using a semi-space
strategy for frequent minor collections of the young generation,
and a mark-and-sweep collector with incremental marking for ma-
jor collections of the old generation. Write barriers emitted inline
in compiled code track inter-generational pointers and maintain the
marking invariant between incremental phases. Every store into an
object on the garbage collected heap may require a write barrier,
unless the compiler can prove the barrier to be redundant. This sec-
tion details the tasks a write barrier must perform and some of the
implementation details to understand the runtime overhead intro-
duced by write barriers, and then explores conditions under which it
is permissible to statically eliminate write barriers (Section 2.3.1).



Write barriers in V8 perform three main tasks to ensure correct
behavior of the garbage collector while mutators are accessing
objects on the garbage collected heap.

¢ Track Inter-generational Pointers: References stored into the
old generation pointing to an object in the young generation are
recorded in a store buffer. The store buffer becomes part of the
root-set for minor collections, allowing the garbage collector to
perform a minor collection without considering the entire heap.
Every mutation of an object in the old generation potentially
introduces an old-to-young reference.

Maintain Marking Invariant: During the marking phase of
a major collection, a standard marking scheme gives each ob-
ject one of three colors: white for objects not yet seen by the
garbage collector, gray for objects seen but not yet scanned by
the garbage collector, and black for objects fully scanned by the
garbage collector. The marking invariant is that black objects
cannot reference white objects. To reduce the pause time of ma-
jor collections, V8 interleaves the marking phase with mutator
execution and performs stepwise incremental marking until the
transitive closure of all reachable objects has been found. The
write barrier must maintain the marking invariant for objects
in the old generation, since every mutation of an object in the
old generation could potentially introduce a black-to-white ref-
erence. Newly allocated objects are guaranteed to be white and
hence cannot break the marking invariant.

Pointers into Evacuation Candidates: To reduce fragmenta-
tion of certain regions of the heap, the garbage collector might
mark fragmented pages as evacuation candidates before the
marking phase starts. Objects on these pages will be relocated
onto other, less fragmented pages, freeing the evacuated pages.
The marking phase records all references pointing into these
evacuation candidates in a buffer so that references can be up-
dated once the target object has been relocated. As before, ob-
jects in the young generation are fully scanned during a major
collection and their references don’t need to be recorded ex-
plicitly. Every mutation of an object in the old generation po-
tentially introduces a reference pointing to an evacuation candi-
date.

| store:

2 mov [$obj+field], $val

3 barrier:

4 and $val, 0xff£f00000

5 test_b [$val+PAGE_FLAGS], VALUES_INTERESTING
6 jz skip

7 mov $val, 0xf££f00000

8 and $val, $obj

9 test_b [$val+PAGE_FLAGS], FIELDS_INTERESTING
0 jz skip

11 call RecordWriteStub($obj, field)

12 skip:

13

Listing 1: Inlined write barrier assembly on IA32

The above three tasks require an efficient yet compact imple-
mentation of the write barrier code. This is achieved by splitting
the write barrier into two parts: one that is emitted inline with the
compiled code, and out-of-line code stubs. The assembly code in
Listing 1 shows the instructions being emitted inline for an IA32
processor. After performing the store to the field (Line 2), the write
barrier first checks whether the referenced object $val is situated
on a page where values are considered interesting (Lines 4 to 6).
It then checks whether the receiver object $obj is situated on a
page whose fields are considered interesting (Lines 7 to 10). These

checks perform bit mask tests of the page flags for the pages® on
which the respective objects are situated. The code stubs recording
the store are only called in case both checks succeed (Line 11). The
write barrier can be removed if the compiler can statically deter-
mine that at least one of the checks will always fail.

During execution the garbage collector may change the page
flags VALUES_INTERESTING and FIELDS_INTERESTING which are
continuously checked by write barriers.

2.3.1 Write Barrier Elimination

Under some conditions it is possible to statically remove write
barriers. Stores whose receiver object is guaranteed to be newly
allocated in the young generation never need to be recorded. Such
stores cannot introduce old-to-young references, they cannot break
the marking invariant as newly allocated objects are white, and
finally their fields will be updated automatically in case they point
into evacuation candidates.

Using the GVN algorithm which handles side-effecting instruc-
tions, we introduce a new effect A, which tracks the last instruc-
tion that could trigger a garbage collection. We say that allocations,
meaning instructions of the form I; = ALLOC[s] (K1), both change
and depend on A. We consider all CALL instructions to have uncon-
trollable effects, so they implicitly also change A, as with U.

With A, it is easy for Crankshaft to analyze store instructions
and remove write barriers to objects guaranteed to be newly allo-
cated in the young generation:

Predicate 2. S; = STORE[field](0s, V1) does not require a write
barrier if 01 has the form 0 = ALLOC[young|(I:) and 0; A-
dominates S;.

This approach to write barrier elimination is limited in that it can
only remove write barriers for the most recently allocated young
space object. As we will see in the next section, allocation folding
enlarges the scope for write barrier elimination.

3. Allocation Folding

Allocation folding groups multiple allocations together into a sin-
gle chunk of memory when it is safe to do so without being observ-
able to the garbage collector. In terms of Crankshaft IR instructions,
this means replacing some ALLOC instructions with INNER instruc-
tions. ALLOC allocates a contiguous chunk of memory of a given
size, performing a garbage collection if necessary. INNER computes
the effective address of a sub-region within a previously allocated
chunk of memory and has no side-effects. According to Invariant
1, we can fold two allocations together if there is no intervening
operation that can move the first allocated object. We can use that
dynamic invariant to formulate the allocation folding opportunities
on Crankshaft IR:

Predicate 3. Allocations Ay = ALLOC[s](K1) and
A, = ALLOC[s]|(K2) are candidates for allocation folding if
Ay is the A-dominator of As.

When candidates are identified, allocation folding is a simple
local transformation of the code. If allocation A; = ALLOC[s] (K1)
is the A-dominator of allocation A, = ALLOC[s](Kz), then a single
instruction Anew = ALLOC[s](K1 + K2) can be inserted immediately
before A, and A; can be replaced with A; = INNER[#0, K1](Anew)
and A, can be replaced with A; = INNER[K1, Ko](Anew)-

Figure 1 presents an example control flow graph before alloca-
tion folding has been performed. The dominator tree is shown in
light gray and is marked with the effects for each block. Blocks

5 All pages in the collected heap are aligned at megabyte boundaries, hence
computing the page header from an arbitrary object reference is a single
bitmask.



[B0]

I1 = PARAMETER[O]

I2 = PARAMETER[1]

I3 = CONSTANT[#16]

I4 = ALLOC[young](I3)
I4 |[I5 = STORE[a](I4, ...)

14 IF I2 -> Bl, B2

[BI] Ea
I4 |I6 = CONSTANT[#8] 14[I10 = CONSTANT[ "name" ]
I4 |I7 = ALLOC[young](I6) I4|I11 = STORE[b](I4, I10)
17 |18 = STORE[w](I7, -...) 14 GOTO -> B3
17 |I9 = STORE[b](I4, I7) ]

17 GOTO -> B3

I12 = CONSTANT[#12]

I13 = ALLOC[young](I12)
I13|(I14 = STORE[z](I13, ...)
I13|I15 = STORE[c](I4, I13)
I13 RET I4

Figure 1: Example CFG before allocation folding.

[B0]

I1 = PARAMETER[0]

I2 = PARAMETER[1]

N1 = CONSTANT[#36]

N2 = ALLOC[young](N1l)
N2[I5 = STORE[a](N2, ...)

N2 IF I2 -> Bl, B2
4 ]
[B1] [B2]
N2|N4 = INNER[#16, #8](N2) N2[I10 = CONSTANT[ "name"]
N2|I8 = STORE[w] (N4, ...) N2|I11 = STORE[b] (N2, I10)
N2[I9 = STORE[b] (N2, N4) N2 GOTO -> B3

N2 GOTO -> B3

N2[N5 = INNER[#24, #12](N2)
N2|I14 = STORE[z] (N5, ...)
N2[I15 = STORE[c] (N2, N5)
RET N2

Figure 2: Example CFG after allocation folding.

BO, B1, and B3 each contain an allocation instruction, therefore
each is marked as changing A. The A-dominator is shown to the
left of each instruction, outside the basic block. Note that some
instructions, such as I12 and I13 do not have a A-dominator. In
Figure 1, we can see that some, but not all, write barriers can be
eliminated through local analysis. Write barriers associated with
stores I8, I11, and I14 can be eliminated, since we can see that
their A-dominator is the receiver of the store, and that receiver is
an allocation in the young generation. However, write barriers as-
sociated with stores I9 and I15 cannot be eliminated because their
A-dominator does not match the receiver object of the store.
Figure 2 shows the control flow graph from Figure 1 after
allocation folding has been performed. Some instructions have
been removed, and new instructions N, have been inserted. The
allocations in blocks BO, B1, and B3 have been folded into one
larger allocation® in BO and are replaced by INNER instructions
that carve out individual objects from the allocation group. We
can see that removing these allocations removes the A from these

6 Note that allocation 113 has no A-dominator until allocation I7 has been
folded into I4. In general, allocation folding can be applied again whenever
it introduces a new A-dominator for an allocation that previously did not
have one due to merges in the control flow.

blocks because INNER instructions do not change A. By replacing
ALLOC instructions with INNER instructions the number of program
points at which garbage collection can happen is reduced. This
then increases the opportunities for local write barrier elimination.
The opportunities are evident in the changes to the A-dominators
for each instruction. After allocation folding, the single, larger
allocation A-dominates all the stores. All stores in the example are
now into objects allocated from the same allocation group, which
is allocated in the young generation. Since we know that stores
into objects in the young generation cannot introduce old-to-young
references, all write barriers in this example can be removed.

In this example we can see how allocation folding can give rise
to memory fragmentation. If at runtime the code follows the path
BO — B2 — B3, then the space reserved for the inner allocation
at N4 will have been allocated but not be used because we do not
overlap the space reserved for the folded allocations. A straightfor-
ward approach to avoiding this source of memory fragmentation is
to only fold allocations in the same basic block. We compare al-
location folding with and without the basic block restriction and
study the overhead of fragmentation by measuring the amount of
each allocation group that is actually used, or the allocation group
utilization, in Section 4.

Memory fragmentation gives rise to uninitialized memory re-
gions between objects in the heap. This requires the garbage col-
lector to be capable of handling a non-iterable heap. As a conse-
quence a mark-and-sweep garbage collector must store the mark
bits outside objects.

3.1 Allocation Folding in Crankshaft

We present the pseudo-code of the allocation folding algorithm in
Crankshaft in Listing 2. We perform allocation folding as part of
GVN, after performing aggressive inlining, so that the maximum
number of folding opportunities are available.

HAllocate::HandleSideEffectDominator (dominator):

1

2 if !dominator—>IsAllocate():

3 return;

4 if AllocationFoldingBasicBlockMode () &&
5 this—>BlockID() != dominator—>BlockID():
6 return;

7 dominator_size = dominator—>Size();

8§ size = this—>Size();

9 if !dominator_size—>IsConstant() ||

10 !size—>IsConstant ():

1 return;

12 new_size = dominator_size + size;

13 if this—>DoubleAligned():

14 if !dominator—>DoubleAligned ():

15 dominator—>SetDoubleAligned(true);
16 if IsDoubleAligned(dominator_size):

17 dominator_size += DoubleSize()/2;

18 new_size += DoubleSize ()/2;

19 if new_size > MaxAllocationFoldingSize():
20 return;

21 new_size_instruction =
22 HConstant :: CreateAndInsertBefore (
23 new_size, dominator);

24 dominator—>UpdateSize(new_size_instruction);
25 inner_allocated_object_instruction =

26 HInnerAllocatedObject ::New(

27 dominator, dominator_size);

28 this—>DeleteAndReplaceWith(

29 inner_allocated_object_instruction);

Listing 2: Allocation folding algorithm

A given allocation instruction can only be folded into its A-
dominator if that A-dominator is itself an allocation instruction
(Line 2). If the basic block restriction is enabled (Line 3), then
only allocations in the same basic block will be folded (Line 4).
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Figure 3: Improvement in percent of all configurations over the baseline on the Octane suite running on X64.
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Figure 4: Improvement in percent of all configurations over the
baseline on the Kraken suite running on X64.

The allocation size must be a constant’ (Line 9 and Line 10). The
size of the the new dominator allocation instruction is the sum of
the sizes of the given allocation instruction and its A-dominator
(Line 12). If the given allocation instruction requires double align-
ment (Line 10) the A-dominator must be aligned as well and the
extra space accounted for if necessary (Line 17 and Line 18). If the
new allocation would be larger than a maximum size (a constant
determined based on the size of the young generation) then the al-
gorithm will not do the folding (Line 19). If all criteria are satis-
fied, the algorithm increases the size of the A-dominator allocation
instruction (Line 24) and creates a new inner-allocate (INNER) in-
struction which refers to the end of the previous allocation group
(Line 25). All uses of the previous instruction are replaced with
uses of the new inner-allocate instruction (Line 28).

7 Folding non-constant size allocations is possible in principle, but the gritty
details means a lot of graph rewriting, since the computed sizes also need
to be hoisted.
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Figure 5: Improvement in percent of all configurations over the
baseline on hand-selected benchmarks running on X64.

4. Experiments

We ran V8 revision r18926 on an X64 server machine with an Intel
Core 15-2400 quad-core 3.10GHz CPU and 80GB of main memory
running Linux. We performed the same experiments on IA32 and
ARM, but found that the performance results were in such close
agreement with X64 that we gained no new insights. We therefore
chose to omit redundant data for space reasons.

For our experiments we used the complete Octane 2.0 [7] and
Kraken 1.1 [13] suites, two standard JavaScript benchmarks which
are designed to test specific virtual machine subsystems. In both
cases we run each benchmark 20 times, each run in a separate vir-
tual machine in order to isolate their effects from each other and
report the average of these runs. We ran many other benchmarks
where we measured no observable impact from allocation fold-
ing, but found no benchmarks where allocation folding was a mea-
surable detriment to performance. However, we did find that for
four other benchmarks, allocation folding had significant improve-
ment: (1) a JPEGEncoder [16] written in JavaScript encoding an
image, (2) NBody [10] solving the classical N-body problem, (3) a



JavaScript software 3D renderer Soft3D [12], and (4) the JavaScript
benchmark Textwriter [1] originally designed to test string opera-
tion speed.

We use five configurations of V8 for our experiments: (1) base-
line generates optimized code without write barrier elimination or
allocation folding, (2) allocation folding (AF) is the baseline con-
figuration with allocation folding only, (3) write barrier elimination
(WBE) is the baseline configuration with write barrier elimination
only, (4) write barrier elimination and allocation folding on basic
blocks (WBE-AFBB), performs write barrier elimination and allo-
cation folding only on basic blocks, and (5) write barrier elimina-
tion and allocation folding (WBE-AF) is the previous configuration
without the basic block restriction.

The WBE-AF configuration is the one used in production code
and on average yields the biggest performance improvement. The
other configurations are used to investigate the independent impact
of the optimizations on the baseline performance without taking the
positive interplay of allocation folding and dominator-based write
barrier elimination into account.

4.1 Throughput

Figures 3-5 show relative throughout improvement for each of the
benchmarks on X64. Allocation folding has the most impact on
RayTrace, and here we measured a trend that is common to sev-
eral benchmarks. In RayTrace, we measured an improvement with
AF of more than 10% from saving bump-pointer allocation costs,
with WBE of more than 20% from doing only dominator-based
write barrier elimination, with WBE-AFBB of 23% from alloca-
tion folding at the basic block level, and with WBE-AF of more
than 70% from allocation folding without the basic block restric-
tion. WBE-AF improves EarleyBoyer by about 14%, Splay by
over 10%, and TypeScript by about 4%. DeltaBlue, PdfJS, and
Gameboy also improve by about 2-3%. The throughput improve-
ment is less than 1% for most of the Kraken benchmarks. Other
benchmarks had significant improvements with WBE-AF, such as
NBody (10%) and Soft3D (16%).

With many benchmarks we see the same trend where the im-
provement from allocation folding alone is measurable, even sig-
nificant, but the largest gains are from eliminating the cost of write
barriers, as seen in EarlyBoyer, RayTrace, Gameboy, NBody, and
Soft3D. Also notable is DeltaBlue, which only benefits from the
combined effects of allocation folding and write barrier elimina-
tion, and sees almost no benefit from either independently. We also
see that in several cases allocation folding on basic blocks gives
results as good as the complete dominator-based algorithm.

Tables 2-4 show the proportion of folded and non-folded allo-
cation sites in optimized code in our benchmarks.

4.2 Write Barrier Frequency

Tables 5, 6 and 7 show the static number of write barrier sites
compiled into the optimized code as well as the dynamic number
of write barriers executed.

There is a strong correlation between throughput improvement
and fewer executed write barriers due to folded allocations. For
example, in RayTrace, WBE eliminates about 38% of write bar-
riers for a 20% speedup, and WBE-AF eliminates about 96%
of write barriers resulting in a throughput improvement of 72%.
EarleyBoyer executes even fewer write barriers in comparison
to the baseline, with 98% eliminated and throughput improvement
by 14% using WBE-AF. In Soft3D allocation folding reduced the
number of executed write barriers by 86% for a speedup of 16% us-
ing WBE-AF. In NBody allocation folding removed the most write
barriers, about 99% in WBE-AF. The results are consistent across
the remaining benchmarks, with those that have the most write
barriers eliminated experiencing the largest gains in throughput.

AFBB AF
Benchmark Folded in % Folded in %
Box2D 21 35
CodeLoad 28 28
Crypto 33 42
DeltaBlue 37 47
EarleyBoyer 26 42
Gameboy 3 3
Mandreel 38 38
MandreelLatency 38 38
NavierStokes 18 18
PdfJS 29 31
RayTrace 11 65
RegExp 27 27
Richards 26 65
Splay 22 40
SplayLatency 22 40
Typescript 6 12
zlib 82 82

Table 2: Static proportion of folded allocation instructions in Oc-
tane.

AFBB AF
Benchmark | Folded in % Folded in %
ai 25 25
audio 37 38
imaging 0 0
json 0 0
stanford 23 24

Table 3: Static proportion of folded allocation instructions in
Kraken.

AFBB AF
Benchmark Folded in % Non-folded in %
JPEGEncoder 18 55
NBody 76 88
Soft3D 56 58
Textwriter 8 17

Table 4: Static proportion of folded allocation instructions in hand-
selected benchmarks.
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Figure 6: Allocation group utilization on X64.



Static Dynamic
Benchmark Baseline AF WBE | WBE-AFBB WBE-AF Baseline AF WBE | WBE-AFBB WBE-AF
Box2D 3,166 3,103 2,446 2,449 2,188 41,083,162 41,083,425 25,453,150 25,432,225 20,811,285
Codeload 46,956 | 46,929 | 46,780 46,814 46,793 300,295 300,447 186,482 186,487 186,491
Crypto 720 717 353 257 237 1,690,104 1,692,164 494,311 329,287 312,298
DeltaBlue 518 516 307 209 187 472,408,298 472,408,568 329,751,772 251,689,699 197,782,399
EarleyBoyer 774 777 215 196 196 1,374,515,484 1,374,515,775 28,122,342 28,029,928 28,039,744
Gameboy 4,019 3,984 3,634 3,692 3,685 8,714,289 8,773,082 8,321,467 8,176,195 8,145,726
Mandreel 107 107 39 36 36 18,668 18,668 1,744 1,744 1,744
MandreelLatency 127 127 41 36 36 18,668 18,668 1,744 1,744 1,744
NavierStokes 218 216 111 109 109 27,887 27,887 26,039 26,039 26,039
PdfIS 4,983 5,186 4,165 4,173 4,091 215,806,576 216,156,555 38,048,742 39,857,551 38,115,351
RayTrace 998 998 621 614 238 1,188,216,950 1,188,216,565 741,557,641 741,554,567 54,467,024
RegExp 423 423 330 323 323 73,182,468 73,182,384 62,449,266 62,446,183 62,446,138
Richards 429 429 206 189 185 593,493,156 593,462,983 | 589,364,534 588,980,038 | 588,831,690
Splay 1,658 1,649 1,533 1,497 1,574 477,647,218 477,647,182 | 464,248,939 438,256,053 438,258,244
SplayLatency 1,641 1,678 1,519 1,503 1,515 477,646,746 477,646,841 464,241,636 438,255,521 438,256,651
Typescript 19,326 19,770 16,542 15,467 17,395 36,257,098 36,241,445 30,485,767 30,412,861 30,454,115
zlib 309 309 185 176 176 17,078 17,078 14,812 14,767 14,767
Table 5: Static and dynamic number of write barriers in optimized code in the Octane suite.
Static Dynamic
Benchmark | Baseline AF | WBE | WBE-AFBB WBE-AF Baseline AF WBE | WBE-AFBB | WBE-AF
ai 80 80 26 26 26 145,579 145,579 126,795 126,341 126,296
audio 261 261 78 70 63 125,518 126,034 55,694 33,364 30,990
imaging 40 40 2 2 2 1,967 1,967 51 51 51
json 40 40 2 2 2 1,910 1,910 51 51 51
stanford 773 | 766 489 455 441 1,780,963 1,766,298 847,108 730,193 717,309
Table 6: Static and dynamic number of write barriers in optimized code in the Kraken suite.
Static Dynamic
Benchmark Baseline AF | WBE | WBE-AFBB | WBE-AF Baseline AF WBE | WBE-AFBB WBE-AF
JPEGEncoder 178 178 96 94 92 5,979,914 6,001,312 5,775,179 5,786,586 5,766,983
NBody 528 | 527 314 33 33 41,969,426 43,652,671 27,032,795 10,399 10,300
Soft3D 490 | 490 276 206 206 | 298,331,060 | 344,663,928 155,663,705 43,997,228 | 42,900,118
Textwriter 665 670 351 333 332 111,465,619 114,906,407 93,684,228 90,337,194 | 90,710,264

Table 7: Static and dynamic number of write barriers in optimized code in the hand-selected benchmarks.

4.3 Allocation Group Utilization

Allocation instructions folded into a given dominator from different
branch successors may result in unused memory, which can be con-
sidered fragmentation. Figure 6 shows the percentage of memory
allocated for the allocation group that is actually used as live objects
by the program for the AF and WBE-AF configurations. Bench-
marks with 100% allocation group utilization are elided for con-
ciseness. Here we only consider memory dynamically allocated in
allocation groups by optimized code, and do not count the memory
allocated in normal allocations outside of allocation groups or in
unoptimized code. Therefore this should not be considered a mea-
surement of total heap fragmentation. Our measurements show that
most of the benchmarks utilize between 50% and 80% of the mem-
ory allocated in allocation groups, with the exception of RegExp us-
ing only 42%, and Box2D and NBody using more than 90%. Lower
memory utilization in the young generation results in more frequent
young generation collections. We investigate this effect in the next
section.

4.4 Garbage Collection Overhead

Intuitively, more frequent collections that result from higher mem-
ory fragmentation should lead to higher garbage collection over-
head, but is this effect real, and is it more significant than the bene-
fits from allocation folding? We studied this question by recording
a number of garbage collection statistics, including the number of

minor garbage collections, number of major garbage collections,
and garbage collection time in milliseconds of the baseline, WBE,
WBE-AFBB, AF, and WBE-AF configurations. We report the raw
numbers in Table 8, Table 9, and Table 10. These numbers show
that in most cases, there is almost no increase in garbage collection
overhead, even though many benchmarks see a small increase in
the number of minor collections. This is because the cost of scav-
enging is proportional to the size of live objects, so a small amount
of fragmentation, which is by definition not live, has little cost other
than cache effects and appears not to be measurable. However, in
some cases we see the total garbage collection time increase, for
example by 48 ms in Soft3D and by about 41 ms in PdfJS, with
the former due to more minor collections and the latter due to more
major collections. Even with the added garbage collection over-
head of 56 additional minor collections, allocation folding is still
an overall throughput improvement in Soft3D. The throughput of
PdfJS slightly degrades in the AF and WBE-AF configurations,
due to three additional major collections.

5. Related Work

Are write barriers really that expensive? This question was studied
extensively by Blackburn and Hosking in 2004 [3], and a followup
study in 2012 [22]. Their reported experimental results indicate av-
erage write barrier overheads in the range of 1-6% for the Java pro-
grams they study, for most of the write barrier types. At first glance,



Baseline, WBE, WBE-AFBB (no fragmentation) AF, WBE-AF (fragmentation)
Benchmark #Minor GCs | #Major GCs GC timeinms | #Minor GCs | #Major GCs | GC time in ms
Box2D 111 5 99.37 111 5 100.97
CodeLoad 14 5 137.45 14 5 136.22
Cyrpto 62 0 225 69 0 1.5
DeltaBlue 585 0 44.57 587 0 45.11
EarleyBoyer 856 0 770.58 856 0 763.82
Gameboy 37 18 112.99 37 19 116.51
Mandreel 106 6 12.84 106 6 1291
MandreelLatency 106 6 12.84 106 6 1291
NavierStokes 16 0 2.18 16 0 2.26
PdfJS 555 26 772.54 555 29 813.28
RayTrace 2599 0 18.5 2610 0 22.11
RegExp 959 0 20.49 956 0 18.91
Richards 63 0 0.56 63 0 0.56
Splay 311 194 416.69 313 194 419.1
SplayLatency 311 194 416.69 313 194 419.1
Typescript 51 6 44477 51 6 449.11
zlib 1 1 2.41 1 1 2.35

Table 8: Number of minor collections, major collections, and total garbage collection time in ms with and without allocation folding in the

Octane suite on X64.

Baseline, WBE, WBE-AFBB (no fragmentation) AF, WBE-AF (fragmentation)
Benchmark | Minor GCs | Major GCs GCtimeinms | Minor GCs | Major GCs | GC time in ms
ai 4 1 6.55 4 1 6.49
audio 42 6 18.37 43 6 18.31
imaging 2 4 6.45 2 4 6.33
json 21 2 4.16 21 2 4.26
stanford 45 4 16.96 45 4 16.97

Table 9: Number of minor collections, major collections, and total garbage collection time in ms with and without allocation folding in the

Kraken suite on X64.

Baseline, WBE, WBE-AFBB (no fragmentation) AF, WBE-AF (fragmentation)
Benchmark Minor GCs | Major GCs GCtimeinms | Minor GCs | Major GCs | GC time in ms
JPEGEncoder 18 1 17.89 18 1 17.51
NBody 597 0 0.31 620 0 0.31
Soft3D 437 0 57.44 493 0 105.67
TextWriter 2213 0 6.28 2230 0 10.13

Table 10: Number of minor collections, major collections, and total garbage collection time in ms with and without allocation folding in the

hand-selected benchmarks on X64.

the large speedups for some benchmarks yielded by our optimiza-
tion technique would seem to contradict their estimate of write bar-
rier overheads. However, a close reading of their data tables show
several important outliers, and we believe these outliers are exactly
the cases where our optimization technique works best. First, V8’s
garbage collector is incremental, requiring a heavier write barrier
than any of those studied in these two papers. V8’s write barrier is
closest to the “zone” barrier reported in their study, which, though
no attention was called to it in their discussion, shows between 10-
50% performance overhead for several DaCapo benchmarks. This
larger write barrier overhead is in closer agreement to the optimiza-
tion potential exploited in this paper using allocation folding. Sec-
ond, we believe that some of the applications in Octane are much
more allocation intensive than those in DaCapo, if only by virtue
of JavaScript’s numerical model leading to excessive amounts of
boxing double numbers in V8, which is extreme in the case in Ray-
Trace. Third, garbage collection designs with heavier write barrier
costs are becoming more important as language implementations
pursue reducing latency versus maximum throughput. We showed
allocation folding to be of particular benefit to V8, which has an
expensive write barrier to support incremental marking.

Previous optimizations related to allocation folding fall into two
categories: static analysis during compilation to reduce barriers and
techniques to combine object allocations.

Barth [2] discusses minimizing the expense of reference-
counted garbage collection through static analysis during compi-
lation and is suggestive of later write barrier elimination based on
static analysis [23]. Although eliding unnecessary reference-count
decrement on freshly allocated objects is specifically mentioned,
implementation details and empirical results are not presented as
the author considered the technique impractical for the time.

Nandivada and Detlefs [14] present a static analysis pass to min-
imize write barriers at compile time for a snapshot-at-the-beginning
style of garbage collector and document the empirical improvement
of generated code using their techniques. Their approach bears sim-
ilarities to ours as it exploits the property of freshly allocated ob-
jects always being colored white to remove write barriers. However,
it is unable to leverage this property for multiple objects allocated
in close proximity and the algorithm’s ability to remove write barri-
ers can actually diminish with objects allocated in clusters. Rogers
[17] studies the problem of read barriers in a concurrent collec-
tor and uses techniques similar to partial redundancy elimination
to hoist or sink potentially redundant parts of barriers. Pizlo et al.



[15] generate multiple copies of the code, with different versions
of read/write barriers specialized to different phases of collection,
but they do not describe the complete removal of barriers. Vechev
and Bacon [18] study conditions under which write barriers may
be redundant for concurrent collectors and study program traces.
Their work may prove to be complimentary in that allocation fold-
ing could present even more covering conditions than previously
known.

Automatic object inlining is well studied [4] [6] [5], however
it relies on parent-child relationships between objects to make
decisions to combine allocations. Object colocation [11] allocates
related objects together in the same space, but requires explicit
support from the garbage collector and is intended to reduce the
cost of collection rather than to improve the efficiency of compiled
code. Object and array fusing [21] uses colocation to improve the
efficiency of accessing one object through the field of another in
compiled code, but also requires explicit support from the garbage
collector. Object combining [19] is closest to allocation folding in
that it has fewer restrictions, but works best with patterns where an
indirection can be eliminated, and the opportunity for eliminating
write barriers was not recognized at the time.

6. Conclusion

In this paper we introduced allocation folding, a compiler optimiza-
tion where multiple memory allocation operations in optimized
code are folded together into a single, larger allocation group. Fold-
ing allocations together reduces the per-object allocation overhead
and widens the scope for write barrier removal. Unlike previous
work on object inlining, fusion, and colocation, allocation fold-
ing requires no particular connectivity or ownership relationship
among objects, only a control-flow relation within a single opti-
mized function. We presented a flow-sensitive analysis based on
GVN with side-effects that computes the necessary dominance in-
formation to determine allocation folding candidates.

We implemented allocation folding in V8, a high-performance
open-source JavaScript virtual machine and evaluated its effective-
ness across a variety of standard benchmarks. Our results demon-
strated that allocation folding can make a large improvement in
throughput for allocation and write-barrier intensive programs. We
measured the benefits of reducing bump-pointer operations and
write barriers both independently and together. We found that mem-
ory fragmentation arising from allocation folding has negligible
cost in most cases.
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