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Solution descriptions from Kaggle teams 
 
1st Place - Jiayang Gao (also called "Nullrecurrent" model) 
My final submission is a simple ensemble of 4 models, each starts with an auto-encoder pretrained GNN 
architecture, followed by LSTM, GRU or Wavenet layers. My model takes in two kinds of features, (1) 
1D features with length n (the length of the mRNA sequence), representing features at each location of 
the sequence; (2) 2D features with size n^2, representing "distance" or "relationship" concepts between 
each pair. The strongest 1D features are the distance to the closest paired position, as well as the distance 
to the closest unpaired position - reactivity increases as the distance to the closest paired position becomes 
larger. The strongest 2D feature is the distance between each pair in the primary pairing based graph - this 
allows the model to capture the "neighbors" caused by pairing. One major difficulty of this problem is 
generalizing the model to different sequence lengths, and I use a semi-supervised approach to make my 
model more generalizable. In particular, I randomly generate sequences of different length, calculate their 
BPP matrix and pairing structure using the Arnie library, pseudo label their targets, and train them 
together with the original train dataset. This semi-supervised learning approach is particularly useful in 
this problem, for which sample size is small and labeled data is expensive to obtain. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620 
 
 
2nd Place - Kazuki ** 2 (also called "Kazuki2" model) 
The mRNA sequence is not just a linear series of data, but also constitutes a loop by pairing between 
specific bases. Therefore, we thought of constructing LSTM/GRU and GNN independently, and 
integrating the prediction results with XGBoost. The base pair probabilities (bpps) are calculated by 
prediction, and the calculation results differ depending on the algorithm used. Therefore, we used several 
algorithms in Arnie to predict base pairs, and used these algorithms as data augmentation and input 
multiple bpps simultaneously to improve the performance. We prepared 38 LSTM/GRU-based and 49 
GNN-based bpps by changing the types of bpps and their architectures, and integrated them with 
XGBoost to help improve the stability of prediction. Also, since the sequences in the test set tended to be 
longer than those in the training data, we confirmed in preliminary experiments that the model trained by 
shortening the sequences in the training data (107 to 88) was applicable to sequences of the original 
length (107). 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709 
 
3rd Place - Striderl 
My solution is an ensemble of various models of different structures and different training techniques. I 
added various LSTM/GRU/wavenet layers at the end of the AE pretrained GNN structure, in which 2 x 
128 units of LSTM or GRU layers work the best for me. Besides the common features used by other 
teams like structure adjacency matrix and neighbor adjacency matrix, I used RNAComposer to generate 
3D structures for each sample in the competition, and used predicted 3D distance to form the distance 
matrix. I used Arnie to predict other possible base pairs as data augmentation. Besides, another 
augmentation I used was to reverse the sequence and targets. The two augmentations quadruple the size 
of the original data. I also used pseudo labeling technique to iteratively improve my best single model. 
 
4th Place - FromTheWheel & Dyed & StoneShop 
The 4th place solution is a blend of 4 different models, in which the RNN layers were varied 
(LSTM+LSTM, LSTM+GRU, GRU+LSTM and GRU+GRU). We represent the RNA sequences as 
graphs where each base corresponds to a node. The network then learns a representation for each of these 
graphs and passes this representation through bi-directional RNN layers to obtain a sequence of predicted 
targets. Both the edge and node features were derived from the given sequence and provided Base Pairing 
Probability (BPP) matrix. One-hot-encoded bases (A, G, C, or U), one-hot-encoded positional feature (the 
remainder of the base index divided by 3), one-hot-encoded loop types, loop type probabilities (CapR) 



and BPP sum and number of zero's were beneficial node features. The distances (manhattan) between 
bases, normalized by sequence length and whether there is a base-pairing indicated in the structure were 
used as edge features. All these features were also inferred for newly generated BPP matrices, generated 
with 6 libraries available within the ARNIE software package. The new information derived from the 
CONTRAfold library was the most useful for this task, followed by RNAsoft, RNAstructure and Vienna. 
We also tried to use 3D angle information (binned and then categorically encoded) extracted with 
AMIGOS: this boosted our simple LSTM architecture used to fast check the feature importance but 
deteriorated the performance of our final model.  
 
5th Place - tito 
My solution is a simple ensemble of GNN-based model and GRU/LSTM-based model.  The features are 
not significantly different from those used by the other teams.  I focused mainly on augmentation.  (1) I 
used eternafold, vienna, nupack, contrafold and rnasoft to extract structure and loop_type. These backend 
engines are used to extract additional bpps too.  Especially eternafold and contrafold worked well.  (2) In 
this competition, the sequence length of the test data was longer than that of the training data, so we 
added a dummy sequence to the training data.  (3) I added reversed sequence to training data.  I think 
augmentation was important in this competition. 
 
6th Place - nyanp 
The data in this competition is very unique in two ways: 1) the sequence length is different between the 
training data and the private test data, and 2) the sequence has long-term dependencies via pairing. My 
NN model is constructed by stacking 1D SE-ResNet Layer and Graph Convolution Layer in order to 
make the model invariant to sequence length and to capture the long-term dependency. The Graph 
Convolution Layer is computed by a simple sum of products of the BPP matrix or adjacency matrix and 
the sequence feature vector. The best single model was ranked 42nd (0.35045) on the private leaderboard, 
while it was 513th (0.24371) on the public leaderboard. This indicates that my model is more robust to 
changes in sequence length compared to the other participants. Best ensemble achieved MSRMSE's of 
0.23069/0.34538 on the public/private leaderboard by combining 4 different architectures. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241 
https://www.kaggle.com/nyanpn/6th-place-cnn-gcn 
 
7th Place - One architecture 
Main features for my solution used were base pairing probability matrix, nucleotide sequence, structure, 
and loop type. Additionally, an inverse distance matrix (nucleotides at position i and j have distance |i-j| 
between them) was added to the base pairing probability matrix before inputting it as a bias for the self-
attention matrix. The conventional type of positional encoding as detailed in the original transformer or 
learnable positional encoding were not used; instead, position was encoded by the inverse distance matrix. 
Further, 5 secondary structure packages were used to generate pairing probability matrix, structure, and 
loop type at 37 and 50 C, resulting in 10 sets of features for each sequence. The architecture used was 
almost identical to bert aside from the 1D/2D convolution/deconvolution layers (without padding). The 
core module (ConvTransformerEncoder) was constructed as follows: (1) 1D convolution on the sequence 
of encodings and 2D convolution on the bpp feature map. (2) self-attention with bpp feature map as 
additive bias (3) position wise feedforward network. (4) 1D deconvolution on the sequence of encodings 
and 2D deconvolution on the bpp feature map. All available sequences were used to pretrain 
(unsupervised) models on randomly mutated or masked (with NULL token) sequence retrieval loss 
(basically just softmax to retrieve correct nucleotide/structure/loop). For convenience, two linear decoders 
were initialized before pretraining, one for sequence retrieval, and another for degradation predictions 
later on. The Ranger optimizer was used with a flat and anneal schedule. Some sequences were excluded 
during training on degradation targets based on signal to noise threshold (0.25, 0.5, or 1). My biggest 
discovery from this competition is that the vanilla positional encoding used in the original transformer 
paper does not generalize well to this task at least. It seems that the type of positional encoding used in 



most transformers does not adequately describe the concept of position, which is fine for NLP because I 
believe order and position of words are not as important as for RNA. The vanilla positional encoding is 
more of an absolute positional encoding, whereas the inverse distance basically encoders relative position 
in a very simple way that generalized better to longer sequences. Best ensemble achieved MSRMSE's of 
0.23056/0.34550 on the public/private leaderboard.  
 
8th Place - ishikei 
My solution is an ensemble of GRU/LSTM and GNN. Each model is AE pretrained with all data. For 
features, bpps was augmented with different temperature parameters (T=37, 50) using the ARNIE 
package (vienna, nupack, rnastructure, rnasoft, eternafold, contrafold). I also added the shannon entropy 
at each base position. Because all of the data in this competition are predicted values except for the 
sequence, I think it would have been effective to use an ensemble of bpps predictions from various 
algorithms. At high temperature: Since the secondary structure of RNA is temperature-dependent, I think 
it was effective to use bpps with T changed as input. At high pH: Alkaline hydrolysis of RNA can occur 
at any position in the sequence (probably) as well, so I think the prediction itself is difficult. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314 
 
9th Place - Keep going to be GM 
The big issue of this contest is that the train and test RNA sequence lengths are different, and the data 
contains noise. The RNA sequence length used for training was 107, and the final ranking was obtained 
for 130 sequences. Different models with fluent feature engineering to enhance the generalization of 
predictions. Because RNA can have both graph and sequence, traditional recurrent neural networks 
(LSTM, GRU), transformer and graph-neural networks were applied. For feature engineering, (A, G, C, 
or U) were represented by embedding layers. And, various (N, N) adjacency matrices called bpps, which 
are probabilities of being linked between nucleotides are calculated with various softwares, such as 
CONTRAFold, RNAFold. The statistical features such as ratio of (A, G, C, or U) in sequence are added.  
has are also included.I created the (N, N) matrix for fixed attention in various ways. Bpps was created 
using several packages. The distance matrix was augmented using gaussian. With these features, dozens 
of models were created by differing hyperparameters of sequential blocks and graph convolution layers. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845 
 
11th Place - Social Distancing Please 
Our solution is an ensemble of multiple models. There are mainly 2 types of models. The first type is a 
combination of 1D Convolution Layers, Graph Convolution Layers, and RNN Layers. The second type is 
a combination of WaveNet layers and RNN Layers. The most powerful features are the adjacency 
matrices constructed by the given structure sequence and the given base-pair probabilities. The adjacency 
matrices are used for the Graph Convolution Layers. Another useful trick we have used is to apply a 
lower training weight to the top 6 sequence position, it is because the sequence start is similar across the 
different sequences. We also used 2 different Linear Regression models to ensemble the predictions in 
different sequence positions that are seqpos[:6] and seqpos[6:].  
 
13th Place - The Machine 
The main idea behind our approach is generating bpp matrices from all the libraries included in Arnie, 
training a model from the output structures of each library and finally creating an ensemble of all the 
trained models. Although each library provides sub optimal bpp, their consensus provides a better 
solution. We also included several architectures in the ensemble and the best of them consisted of 1D 
convolution, static graph convolution and bi-directional LSTM layers. A static graph convolution layer 
processes each two connected nucleotides in the predicted secondary structure (zeros added when a 
nucleotide isn't connected). All our models were trained on all the data using self supervised learning then 
fine-tuned on the training data only using supervised learning. 
 


