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Supplemental Materials and Methods 

A. Experiment setup 

A.1 Downstream task details 

We used four different types of datasets for molecular property prediction, 

drug metabolism prediction, compound-protein binding prediction and anti-

viral activity prediction tasks. 

 

 Datasets of Molecular Property Prediction 

Datasets. MoleculeNet1 is a popular benchmark for molecular property 

prediction. Here, we used 8 classification datasets (BBBP, Tox21, ClinTox, 

HIV, BACE, SIDER, MUV and ToxCast) and 5 regression datasets (FreeSolv, 

ESOL, Lipophilicity, QM7 and QM9) from MoleculeNet to evaluate our 

ImageMol. All details for datasets are provided in Table S1. In these eight 

classification datasets, Tox21, ClinTox, SIDER, MUV and ToxCast are 

complex multiple binary classification tasks, which have 12, 2, 27, 17, 617 

tasks and 7,831, 1,478, 1,427, 93,087 and 8,575 samples, respectively. The 

three remaining classification datasets (BBBP, HIV, and BACE) are single 

binary classification tasks with 2,039, 41,127, 1,513 samples respectively. In 

these five regression datasets, QM9 is a multiple binary classification 

dataset, which has 3 binary classification tasks with 133,885 samples. The 

four remaining datasets (FreeSolv, ESOL, Lipophilicity and QM7) are single 
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binary classification tasks with 642, 1,128, 4,200 and 21,786 samples, 

respectively. The details of 8 molecular classification datasets are described 

as follows: 

� BBBP (Blood-Brain Barrier Penetration) dataset includes binary-

classification records of barrier permeability properties between blood 

and brain of more than 2,000 compounds. 

� Tox21 (Toxicology in the 21st Century) is a dataset of compound 

toxicity, including qualitative toxicity measurements for 8k compounds 

on 12 different targets. 

� HIV (Human Immunodeficiency Virus) dataset contains more than 

40,000 records of whether the compound inhibits HIV replication for 

binary classification between active and inactive. 

� ClinTox (Clinical trial Toxicity) dataset includes 1,491 drug compounds 

with known chemical structures for the binary classification between 

clinical trial toxicity (or absence of toxicity) and FDA approval status. 

� BACE (BetA-seCretasE) dataset contains compounds that can be 

inhibitors of human 𝛽-secretase 1 (BACE-1). 

� SIDER (Side Effect Resource) is a database of marketed drugs and 

adverse drug reactions (ADR). The version of the SIDER dataset in 

DeepChem classifies drug side effects into 27 system organ classes 

according to MedDRA's classification of 1,427 approved drugs. 

� MUV (Maximum Unbiased Validation) group is a benchmark dataset 
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selected from PubChem BioAssay by applying a refined nearest 

neighbor analysis. The MUV dataset contains 17 challenging tasks of 

approximately 90,000 compounds, designed specifically to validate 

virtual screening techniques. 

� ToxCast (Toxicity foreCaster) is an extended data collection of the 

same program as Tox21, providing toxicology data for large compound 

libraries based on in vitro high-throughput screening. The processed 

collection includes qualitative results of over 600 experiments on 8k 

compounds. 

The details of 5 molecular regression datasets are described as follows: 

� FreeSolv (Free Solvation) dataset is a collection of experimental and 

calculated hydration free energies and their experimental values for 

small molecules in water. 

� ESOL (Estimated SOLubility) dataset is a regression dataset 

containing structures and water solubility data of compounds. 

� Lipophilicity dataset collected from the ChEMBL database provides 

experimental results for 4200 compounds with respect to the 

octanol/water distribution coefficient (logD at pH 7.4), which is an 

important feature of drug molecules affecting membrane permeability 

and solubility. 

� QM7 (Quantum Machine 7) is a subset of GDB-13 (a database of 

nearly 1 billion stable and synthesizable organic molecules) that 
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records the calculated atomization energies of stable and synthesizable 

organic molecules, such as HOMO/LUMO, atomization energies, etc. It 

contains various molecular structures (such as triple bonds, cycles, 

amides and epoxy resins) and up to 7 heavy atoms C, N, O, and S. 

� QM9 (Quantum Machine 9) is a comprehensive dataset providing 

geometric, energetic, electronic, and thermodynamic properties for a 

subset of the GDB-17 database, including 134,000 stable organic 

molecules and up to 9 heavy atoms. 

 

Comparison method. For a comprehensive comparison, we selected several 

different types of popular methods, which are the fingerprint-based method 

(AttentiveFP2), the sequence-based methods (TF_Robust3 and X-MOL4), the 

graph-based methods (GraphConv5, Weave6, SchNet7, MPNN8, DMPNN9, 

MGCN10, Hu et al.11, N-GRAM12, MolCLR13 , GCC14, GPT-GNN15, Grover16, 

MGSSL17, 3D InfoMax18, G-Motif16, GraphLoG19, GraphCL20, GraphMVP21 

and MPG22) and the molecular image-based method (Chemception23). These 

recently proposed methods show competitive results and superior 

performance on molecular property prediction task. Therefore, we selected 

these representative methods for comparison. In fingerprint-based methods, 

AttentiveFP uses an attention mechanism to extract molecular fingerprints for 

interpretable property prediction. In the sequence-based methods, TF_Robust 

is a deep neural network-based multitasking model; X-MOL is a transformer-
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based model, which is pre-trained on 1.1 billion molecules. In the graph-based 

methods, Hu et al., N-GRAM12, MolCLR, GCC, GPT-GNN, GROVER, 

MGSSL, 3D InfoMax, G-Motif, GraphLoG, GraphCL, GraphMVP and MPG are 

graph representation learning methods based on self-supervised learning. 

Within molecular image-based method, Chemception23 has a well-designed 

CNN architecture focused on molecular property prediction. To quantitatively 

compare the advantages and disadvantages of ImageMol and these methods, 

ROC-AUC score is calculated as the evaluation metric. 

Experimental setting. Due to the differences in data split between 

different methods, for fair comparison, we used multiple different data split 

ways to comprehensively evaluate our ImageMol. Currently, the scaffold split 

17, 18, 21 and random scaffold split12, 16, 22 are the mainstream and popular 

splitting methods, which is a challenging and realistic evaluation setting 

because molecular substructures do not overlap between training and test 

sets. Therefore, we evaluated the performance of ImageMol on both split 

methods, which split dataset to 8/10 training set, 1/10 validation set and 1/10 

test set. To filter the effect of pretraining data differences on the results, we 

also re-pretrained MPG (called MPG-10M), GROVER (called GROVER-10M) 

on the 10 million molecules used by ImageMol and fine-tuned on the MPP 

task. In addition, in order to compare with Chemception23, we use exactly the 

same experimental configuration as Chemception, which uses stratified split 

to divide 4/6 training set, 1/6 validation set  and 1/6 test set. In order to 



8 
 

compare fairly with X-MOL4, we reproduced the results of X-MOL under 

scaffold split, which has the same experimental setup as ImageMol. The final 

AUC performance was reported by calculating the mean and standard 

deviation of the experimental results from 3 independent runs with different 

random seeds. The details of hyperparameter optimization for training MPG-

10M, GROVER-10M and X-MOL can be found in Table S31(a)-(c). 

 

Datasets of Drug Metabolism Prediction 

Datasets. In drug discovery, Cytochrome P450 inhibitors and noninhibitors 

classification is important for predicting the tendency of molecules to cause 

significant drug interactions by inhibiting CYP and to determine which 

subtypes are affected. In this task, we use PubChem Data Set I (Training 

Set) and PubChem Data Set II (Validation Set) from24 to evaluate the 

performance of the proposed ImageMol on human cytochrome P450 (CYP) 

inhibition. PubChem Data Sets I and II are two-category datasets and both of 

them include CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 isoforms 

(Table S2). In addition, we also combine the five separate tasks (1A2, 2C9, 

2C19, 2D6, and 3A4) of PubChem Data Set I into a multi-labeled 

classification problem to evaluate the performance of ImageMol in multi-

labeled scenarios. 

Comparison method. We compared the proposed ImageMol with three 

latest molecular image-based methods (Chemception23, ADMET-CNN25 and 
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QSAR-CNN26) with ROC-AUC metric to confirm the superiority of our method 

on molecular images and other molecular fingerprinting-based methods 

(MACCS-based and FP4-based methods24) with accuracy and ROC-AUC 

metrics to validate that our method can learn more information from molecular 

images than molecular fingerprints. We also compare ImageMol with 

sequence-based methods (RNN_LR, TRFM_LR, RNN_MLP, TRFM_MLP, 

RNN_RF, TRFM_RF27 and CHEM-BERT28) and graph-based methods 

(MolCLRGIN, MolCLRGCN13 and GROVER16) with more evaluation metrics 

(Accuracy, ROC-AUC, AUPR, F1, precision, recall, kappa) to verify the 

advantages of ImageMol. In molecular image-based methods, ADMET-CNN 

successfully established a molecular 2-D image-based CNN model and 

achieved good prediction performances on predicting the ADMET properties 

(including CYP1A2 inhibitory potency, P-gp inhibitory activity, etc.); QSAR-

CNN applied transfer learning and data augmentation to train molecular 

image-based DenseNet12129 model for developing quantitative structure-

activity relationships (QSARs) to predict compound rate constants toward OH 

radicals. In molecular fingerprinting-based methods, two types of methods are 

used in the comparison, which includes traditional machine learning methods 

(SVM, C4.5 DT, 𝑘-NN and NB) and ensemble learning methods (CC-I, CC-II, 

etc.) respectively. In sequence-based methods, SMILES transformer27 used 

RNN (Recurrent Neural Network)30 and TRFM (TRansForMer)31 to extract 

molecular representations and use LR (Logistic Regression)32, MLP (Multi-
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Layer Perception)33 and RF (Random Forest)34 as classifiers for downstream 

tasks. CHEM-BERT applied a pre-training task of BERT35 on 9 million 

unlabeled molecules SMILES selected from ZINC36 database. In graph-based 

methods, GROVER is a self-supervised message passing transformer, which 

is pre-trained on 10 million unlabelled molecules with node-level, edge-level 

and graph-level tasks. MolCLR developed GIN (Graph Isomorphism 

Network)37 or GCN (Graph Convolutional Network)5 encoders to learn 

differentiable representations on large unlabeled data (~10 million unique 

molecules) with three molecule graph augmentations (atom masking, bond 

deletion, and subgraph removal). 

Experimental setting. For fairness, we keep the experimental settings 

consistent with these methods. When compared with fingerprinting-based and 

image-based methods, we first use 5-fold cross-validation on PubChem Data 

Set I to evaluate our performance, and then used the model trained in 

PubChem Data Set I to evaluate our performance on the external validation 

set PubChem Data Set II. When compared with sequence-based and graph-

based methods, we used PubChem Data Set I to evaluate the performance of 

ImageMol with balanced scaffold split16, which split the dataset to 80% 

training set, 10% validation set and 10% test set. Compared to scaffold split 

and random scaffold split, balanced scaffold split is a more scientific way to 

split data, which considers balancing sizes of scaffolds in train set, validation 

set and test set, rather than just putting the smallest in test set. The multi-
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labeled learning is a more challenging setting, so we considered combining 

these five independent tasks (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and 

CYP3A4) in PubChem Data Set I into one multi-labeled data for evaluation 

with balanced scaffold split. For reproduced methods, details of 

hyperparameter optimization can be find in Table S31. 

 

Datasets of Compound-Protein Binding Prediction 

Datasets. The top 10 G protein coupled receptors (GPCRs) datasets with 

the largest number of reported ligands (Table S3) from ChEMBL database 

(https://www.ebi.ac.uk/chembl/) and 10 KinomeScan datasets (Table S4) are 

used to predict drug-protein binding affinity (both regression task and 

classification task). In drug-kinase binding activity task, we used 10 common 

biochemical kinase profiling assays from KinomeScan data 

(https://lincs.hms.harvard.edu/kinomescan/). KinomeScan reports the 

"percent of control" of molecules binding to each kinase, where the control is 

DMSO and a 100% result means no inhibition of kinase binding to ligand in 

the presence of the compound, and a low percentage result means strong 

inhibition. Therefore, we use control as the criterion of activity, control=100% 

is inactive (non-inhibitor) and control<100% is active (inhibitor). 

Comparison method and experimental setting. As in the setting of drug 

metabolism prediction under balanced scaffold split, we maintained the same 

setting in drug-protein binding. 
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Datasets of Anti-Viral Activity Prediction 

Datasets. Anti-viral activities prediction is vital for the development of new 

drugs to treat COVID-19. We used anti-SARS-CoV-2 activities prediction as 

our task to prioritize compounds when screening in vitro. The experimental 

datasets are obtained from the COVID-19 portal38 in the National Center for 

Advancing Translational Sciences (NCATS), which include 13 assays such 

as Spike-ACE2 protein-protein interaction (AlphaLISA), Spike-ACE2 protein-

protein interaction (TruHit Counterscreen), ACE2 enzymatic activity, etc. 

These 13 assays represent five distinct categories: viral entry, viral 

replication, live virus infectivity, counterscreen and in vitro infectivity. Due to 

the extreme imbalance in these original datasets, the proportion of positive 

samples in the total samples ranges from 0.7% to 7.3%, so we filter out 

those samples without AC50 to generate our datasets and set AC50 greater 

than 10 and less than 10 as non-inhibitors and inhibitors, respectively. The 

overview of the processed datasets is summarized in Table S18. Each 

dataset contains binary-classification records of whether to inhibit SARS-

CoV-2 activity. In addition, for a fair comparison with other method, we also 

used 11 existing SARS-CoV-2 datasets in REDIAL-202038 to train some 

models of anti-SARS-CoV-2 activities, and its statistical information is shown 

in Table S27.  

Comparison method. We chose two representative methods for 
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experimental comparison, Jure’GNN11 and REDIAL-202038. Jure’GNN is a 

pre-training method based on graph and graph neural network (GNN), which 

used molecular graph as the input data of the GNN and introduced a series of 

pre-training strategies to train the GNN to obtain better molecular embedding. 

REDIAL-2020 is a suite of computational models based on manual features, 

which extracts a total of 22 features of three different types (19 fingerprints-

based, 1 pharmacophore-based and 2 physicochemical descriptors-based) to 

train the machine learning model from scikit-learn package. In this task, we 

used a total of 6 evaluation metrics, namely accuracy, sensitivity, precision, 

ROC-AUC, AUPR and F1. In addition, like the drug metabolism prediction 

task, we also evaluated the performance of ImageMol under balanced 

scaffold split and compared ImageMol with more sequence-based (RNN_LR, 

TRFM_LR, RNN_MLP, TRFM_MLP, RNN_RF, TRFM_RF and CHEM-BERT) 

and graph-based methods (MolCLRGIN, MolCLRGCN and GROVER).  

Experimental setting. In order to compare our ImageMol with Jure’s GNN, 

we reproduced Jure's GNN by using the public source code they provided to 

extract molecular features and added a fully connected layer for fine-tuning on 

downstream tasks. We uniformly split these datasets into 80% training set and 

20% test set, and report the AUC and AUPR results on test set. We also 

compared our method with REDIAL-2020. To compare fairly with REDIAL-

2020, we use the same experimental configuration as REDIAL-202038. Note 

that REDIAL-2020 provides a new data preprocessing method and divides the 
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training set, validation set and test set, so we directly use these divided 

datasets to perform our evaluation process (Table S27). For the experimental 

results, we use the model that achieves the best performance on the 

validation set to evaluate the results of the test set. Finally, accuracy, F1, 

sensitivity, precision and ROC-AUC metrics are reported in the experiment. 

Under balanced scaffold split, the details of experimental setting are the same 

as for drug metabolism prediction task. 

 

A.2 Selection of K in K-means 

In the clustering pseudo-label classification task, we determined the 𝐾 values 

to be 100, 1000, and 10000, respectively. In order to determine the value of 𝐾 

in K-Means method, we first use different 𝐾 values, ranging from 1 to 14000, 

to cluster the dataset and to calculate the sum of squared distances. Then, we 

use the 𝐾 value as the x-axis and sum of squared distances as the y-axis to 

draw a curve. Finally, a knee point detection algorithm 39 is used to find the 

knee point of this curve. As shown in Figure S28, the dotted line indicates the 

𝐾 value corresponding to the "elbow" point. Obviously, the larger the 𝐾 value, 

the more difficult it is for ImageMol to perform the clustering pseudo-label 

classification task. Therefore, we select two 𝐾 values (𝐾 =100 and 1000) on 

the left side of the "elbow" point and one 𝐾 value (k=10,000) on the right side 

of the "elbow" point. 
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A.3 Hyperparameters of pre-training and finetuning 

The hyperparameters of the pre-training and fine-tuning process are shown in 

Table S30. In the pre-training task, our model is pre-trained by SGD optimizer 

with learning rate 0.01, weight decay 10-5, momentum 0.9 and batch size 256 

for approximately 6 days on the Amazon server of the instance p3.16xlarge 

with 8 Tesla V100 GPU (32G). In downstream task, the pre-trained model is 

fine-tuned using SGD optimizer with batch size [8, 16, 32, 64, 128], learning 

rate from 5e-4 to 0.5, weight decay 10-5, momentum 0.9 and epoch from 10 to 

60 on Ubuntu 18.04.1 with Intel(R) Xeon(R) Platinum 8259CL CPU @ 

2.50GHz and Tesla T4 (16GB). 

 

B. Supplementary Methods 

B.1 Molecular image and fingerprint generation 

In this study, we use image as molecular representation. Before molecular 

image generation, we first removed molecules that cannot be resolved by 

RDKit (https://github.com/rdkit/rdkit) and contains disconnected ions or 

fragments. We then removed salts, isotopes and stereochemical information 

from the SMILES sequences and the remaining molecules were further 

standardized by charge neuralization. Finally, we only kept drug-like 

molecules with logp (lipid-water partition coefficient) between -5 and 7, 

molecular weight between 12 and 600, and number of heavy atoms between 
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3 and 50 and transformed them to canonical SMILES. During molecular 

image generation, we used RDKIT's MolsToGridImage method to convert 

SMILES into standard and unique image. The MolsToGridImage method 

keeps the aromaticity of all bonds and atoms. 2D coordinates of each atom as 

orientation information are added, while none of the rotatable bonds are 

flipped. Unlike molecular graph, molecular image is composed of a pile of 

pixels rather than vertices and edges. In detail, we first filter out molecules 

without SMILES information in the original dataset. Second, we transform the 

SMILES sequences to molecular images using RDKit and set the image size 

to 224 × 224. Finally, these molecular images with the same size will be used 

as the initial dataset of our method. Considering that molecular fingerprints 

are easy to obtain and can express some priori knowledge of molecules, we 

chose MACCS keys to assist our pre-training process to make our model 

learn molecule-related priori knowledge. The MACCS keys are one of the 

commonly used structural molecular fingerprint 40, which contain 166 keys 

related to molecular structure. In our work, we used RDKit to generate a 

distinct 166-D molecular fingerprint for each molecule. 

 

B.2 Pre-task details in pre-training 

This section will describe the pre-training details of ImageMol with five pre-

tasks. The overall data flow of the ImageMol framework during training is 

shown in Figure S30. In general, the original input images 𝑋 is processed into 
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three different datasets. Augmented images 𝑋!"# is obtained by using data 

augmentation on 𝑋, including RandomHorizontalFlip(), 

RandomGrayscale(p=0.2) and RandomRotation(degrees=360) in torchvision. 

Shuffled images 𝑋$%# is obtained by performing a jigsaw puzzle on 𝑋!"#. The 

puzzle rule uses "permutations 100" in 41. Masked images 𝑋&!'( is obtained 

by adding the mask matrix in 𝑋!"#, and the values in the matrix are filled with 

the mean value. The examples about masked images are shown is Figure 

S29. Then, randomly select a batch of data from these three datasets and 

input them into ResNet18 without classification layer to extract 512-D latent 

features 𝑧!"#, 𝑧)%#, 𝑧&!'(. Finally, these latent features are input into the sub-

network for each task for further processing.  

    Figures S1-S5 show the architecture of each pre-training strategy. In 

multi-granularity chemical clusters classification (MG3C) task (Figure S1), 

chemical fingerprints are first extracted from SMILES and input into 

unsupervised KMEANS with different K values to produce clusters with 

different structure granularity. Then, these clusters are treated as pseudo-

labels of molecular images. Finally, the molecular encoder and structural 

classifier are jointly used to predict the labels of molecular images and 

optimizing the loss between pseudo-labels and predicted labels in pre-

training. The structural classifier is a multi-task learner that receives 512-

dimensional features as input and then forward-propagates to 3 fully 

connected layers with different numbers of neurons (100, 1000 and 10000) for 
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classifying different clustering granularity. 

In molecular rationality discrimination (MRD) task (Figure S2), we first 

disrupt the molecular structure to construct an irrational molecular image, 

which uses a 3x3 grid to decompose the molecular image into 9 patches and 

randomly shuffle them to form an irrational image. The original images are 

viewed as rational molecular images. Then, these rational and irrational 

molecules will be input to the molecular encoder to extract 512-D features. 

Finally, these features are forward propagated to rationality classifier for 

rationality judgment. The rationality classifier is a simple MLP structure that 

takes 512-dimensional feature as input and directly outputs 2-dimensional 

results (rational or irrational). 

In jigsaw puzzle prediction (JPP) task (Figure S3), similar to MRD, we first 

decompose the molecular image into 9 patches and label the original 

permutations (1, 2, 3, 4, 5, 6, 7, 8, 9). Then, we randomly shuffle the permutation 

and re-stitch into new images like (7, 1, 6, 2, 0, 5, 4, 3, 8) or (7, 8, 5, 6, 3, 2, 0, 1, 4). 

In particular, we randomly select from 100 defined permutations, which can be 

obtained from permutations_100.npy 

(https://github.com/fmcarlucci/JigenDG/blob/master/permutations_100.npy). 

Finally, the Molecular encoder is used to extract features of rearranged 

images and subsequently input into the jigsaw classifier for predicting the 

permutation (100 classification). The Jigsaw classifier is a simple MLP, which 

consists of a 512-dimensional input layer and a 100-dimensional output layer. 
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In MASK-based contrastive learning (MCL) task (Figure S4), we randomly 

mask a 16 × 16 region in the molecular image, which is filled using the mean 

of the image (some masked examples in Figure S29). Subsequently, image 

pairs (original image, masked image) are fed into the molecular encoder to 

extract features and maximize the similarity. Here, the Euclidean distance is 

used to constrain the similarity between two features, and we should minimize 

the Euclidean distance to ensure greater similarity. 

In molecular image reconstruction (MIR) task (Figure S5), we build our 

GAN model based on context encoders 42. The detail of GAN model is 

described in Figure S5. In generator, firstly, the latent features 𝑧!"# are 

forward to a single hidden layer MLP model, which accepts 512-d input and 

obtains a 128-d output. Subsequently, four ConvTranspose2D layer with 

BatchNorm2D and ReLU are used. In ConvTranspose2D, the numbers 

represent input channels, output channels, kernel size and stride respectively. 

Finally, a ConvTranspose2D layer with Tanh activation function is used to 

generate 64 × 64 images. In discriminator, 𝑋!"# is first preprocessed to resize 

to 64 × 64. Then resized 𝑋!"# and 𝑋*+, are input to a Conv2d with 

LeakyReLU and three Conv2d with BatchNorm2D and LeakyReLU (negative 

slope is 0.2). In Conv2d, the numbers have the same meaning as 

ConvTranspose2D. Finally, a Conv2d is used to discriminate the real or fake 

of input images. 
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C. Supplementary Results and Discussion 

C.1 Results on the pre-training 

As shown in Figure S31, it shows the details of the loss change of 

ImageMol during pre-training. We did not show the training details of the 

Image reconstruction task because the loss is adversarial. In general, the loss 

of ImageMol in the remaining four pre-tasks is a decreasing trend and 

gradually converges, which shows that our ImageMol can learn different 

information about molecular images in these pre-tasks. 

 

C.2 Performance comparison with existing approaches 

Baselines. We compared ImageMol with a large number of baselines on 

multiple tasks (molecular property prediction, drug metabolism prediction and 

anti-SARS-CoV-2 activities prediction) and different experimental settings 

(stratified split, scaffold split, random scaffold split, balanced scaffold split). 

We compared ImageMol with four different types of models, which are 

fingerprint-based models (AttentiveFP 2, MACCS-based and FP4-based 

methods [including SVM, C4.5 DT, 𝑘-NN, NB, CC-I, CC-II, etc.] 24, REDIAL-

2020), sequence-based models (TF_Robust 3, RNN_LR, TRFM_LR, 

RNN_MLP, TRFM_MLP, RNN_RF, TRFM_RF 27 and CHEM-BERT 28), graph-

based models (GraphConv 5, Weave 6, SchNet 7, MPNN 8, DMPNN 9, MGCN 

10, Hu et al. 11, N-GRAM 12, MolCLR 13 , GCC 14, GPT-GNN 15, Grover 16, 

MGSSL 17, 3D InfoMax 18, G-Motif 16, GraphLoG 19, GraphCL 20, GraphMVP 21 
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and MPG 22) and image-based models (Chemception 23, ADMET-CNN 25 and 

QSAR-CNN 26), respectively. Results of most baselines were obtained from 

their original papers, except for these cases, such as: (1) under scaffold split, 

we reproduced the results of MolCLR (using GIN with the best performance) 

because it uses a different experimental setup (without considering chirality); 

(2) under balanced scaffold split, we reproduced the results of RNN_LR, 

TRFM_LR, RNN_MLP, TRFM_MLP, RNN_RF, TRFM_RF, CHEM-BERT, 

MolCLRGIN, MolCLRGCN and GROVER because they did not run on CYP450 

and SARS-CoV-2 datasets; (3) We reproduced Chemception, ADMET-CNN 

and QSAR-CNN results as they differ from our experimental setup (including 

dataset and split).  

 

Fingerprint-based models. We selected several state-of-the-art fingerprint-

based methods (AttentiveFP 2, traditional models and their ensemble models 

based on MACCS and FP4 24 and REDIAL-2020 38) on three finetuning tasks. 

ImageMol achieved better performance compared to AttentiveFP on all 

benchmark datasets (including classification and regression tasks) with an 

average improvement of 8.0% and a low average standard deviation of 0.6% 

in classification task (Table S6). The traditional machine learning models 

include SVM, C4.5 Decision Tree (DT), k-Nearest Neighbors (KNN) and Naive 

Bayes (NB) and the ensemble models includes five different combinations of 

SVM, C4.5 (DT), KNN, NB and three ensemble strategies (Mean, Maximum, 
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Multiply). We found that ImageMol can outperform these methods on almost 

all benchmarks (Figure 2.f and Table S9) with an improvement from 0.5% to 

3.7%, which shows the features extracted by ImageMol are richer than 

manual features. Compared with REDIAL-2020, ImageMol achieves state-of-

the-art performance on almost all evaluation metrics with average 

improvements of 4.0% (ACC), 5.8% (F1), 9.3% (SEN), 0.9% (PREC) and 

5.5% (AUC) (Table S20). 

 

Sequence-based models. Due to the simplicity and efficiency of the 

Simplified Molecular-Input Line-entry System (SMILES) sequence, it has 

become one of the most popular molecular representation 4, 43. We compared 

our ImageMol with several popular pre-training models (TF_Robust 3, 

RNN_LR, TRFM_LR, RNN_MLP, TRFM_MLP, RNN_RF, TRFM_RF 27, 

CHEM-BERT 28 and X-MOL 4) in benchmark datasets. The performance of 

our ImageMol can outperform the state-of-the-art sequence-based pre-

training models on molecular property prediction task with an absolute 

improvement in ROC-AUC ranging from 2.2% to 21.0% (Figure 2.d or Table 

S5 and Figure 2.e or Table S6), drug metabolism prediction task with an 

absolute improvement in ROC-AUC ranging from 1.1% to 4.7% on single task 

setting (Table S10) and 3.5% to 16.4% on multi-labeled setting (Table S11), 

drug-protein binding prediction task with an absolute improvement in RMSE 

ranging from 0.003 to 4.600 on efficiency regression prediction (Table S12) 
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and in ROC-AUC ranging from 0.9% to 56.4% on activity classification 

prediction (Table S13), and anti-SARS-CoV-2 activities prediction task with an 

average ROC-AUC improvement of 3.7% ranging from 1.4% to 11.2% (Table 

S21). Especially, ImageMol outperforms X-MOL with statistical significance 

below 0.05 on the SIDER and ToxCast datasets (Table S14(a)). These results 

show that molecular image-based representation has obvious advantages 

compared with sequence-based molecular representation because these 

models can only learn 1D sequence information but lacks 2D structural 

information. 

 

Graph-based models. Considering that molecules can be naturally 

represented as graphic structures, some graph-based methods 11, 16 have 

recently emerged to learn the 2D topological structure information of 

molecules. We compared our ImageMol with multiple graph-based pre-

training models, including GraphConv 5, Weave 6, SchNet 7, MPNN 8, DMPNN 

9, MGCN 10, Hu et al. (Jure’s GNN) 11, N-GRAM 12, MolCLR 13 , GCC 14, GPT-

GNN 15, Grover 16, MGSSL 17, 3D InfoMax 18, G-Motif 16, GraphLoG 19, 

GraphCL 20, GraphMVP 21 and MPG 22. The performance of ImageMol 

comprehensively exceeds the state-of-the-art graph-based pre-training 

models on molecular property prediction task (Figure 2.d or Table S5 and 

Figure 2.e or Table S6), drug metabolism prediction task with an absolute 

improvement in ROC-AUC ranging from 0.4% to 2.1% on single task setting 
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(Table S10) and 0.5% to 2.3% on multi-labeled setting (Table S11), drug-

protein binding prediction task with an absolute improvement in RMSE 

ranging from 0.004 to 0.179 on efficiency regression prediction (Table S12) 

and in ROC-AUC ranging from 6.0% to 38.9% on activity classification 

prediction (Table S13), and anti-SARS-CoV-2 activities prediction task with an 

average ROC-AUC improvement of 2.0% ranging from 0.1% to 12.8% (Table 

S21). It is worth noting that ImageMol achieves slightly worse performance 

than MPG and GROVER on the Lipophilicity dataset in Table S6. According to 

thermodynamic theory, Lipophilicity is associated with hydrogen bonds 44, 

whereas we do not explicitly encode hydrogen atoms and hydrogen bonds in 

ImageMol. Therefore, the performance of ImageMol in Lipophilicity will be 

improved by explicitly encoding hydrogen atoms and hydrogen bonds in 

molecular images. Considering the impact of pre-training data differences on 

the results, we show the performance of models (MolCLR, MPG-10M, 

GROVER-10M) with the same pretrained dataset as ImageMol. We found that 

ImageMol still achieves better performance compared to these methods 

(Table S5 and Table S6). Furthermore, the performance advantage of 

ImageMol is statistically significant on the BBBP, ClinTox, HIV, SIDER, Tox21 

and ToxCast datasets (Table S14). These results show the advantage of using 

molecular images as a representation. Although both molecular graph and 

image are based on 2D representation, they are significantly different in 

representation type. The molecular graph focuses on topological information 
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at the atomic level, while the molecular image focuses on the spatial structure 

information at the pixel level. In spatial structure, more rich information is 

included, such as the shape of molecules, the angle of chemical bonds, and 

the relative distance between atoms, etc.  

 

Image-based models. We selected several latest molecular image-based 

models as comparison methods, which are Chemception, ADMET-CNN and 

QSAR-CNN respectively. We find that our ImageMol has high performance 

and outperforms the state-of-the-art methods on HIV and Tox21 datasets with 

an ROC-AUC improvement ranging from 7.4% to 9.2% (Figure 2.b and Figure 

S9), CYP isoforms training sets (PubChem Data Set I) with an average ROC-

AUC improvement of 8.5% ranging from 6.3% to 10.3% (Figure S10) and 

CYP isoforms validation sets (PubChem Data Set II) with an average ROC-

AUC improvement of 11.2% ranging from 3.6% to 14.0% (Figure 2.c). It is 

worth noting that the advantage of ImageMol is statistically significant 

compared to all image-based methods (Table S15). Especially, we also 

observed a similar performance between ImageMol_NonPretrain and 

Chemception, which is 73.2% vs. 72.2% and 73.4% vs. 75.2% on the HIV and 

Tox21 datasets respectively (Figure S9). However, after pre-training on 10 

million molecular images, our ImageMol showed a significant improvement on 

the HIV (an increase of 8.2%) and Tox21 (an increase of 9.2%) with an 

average increase from -0.4% to 8.3%, which proves the effectiveness and 
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superiority of our pre-training strategies for molecular images. 

 

C.3 Supplementary Results on anti-SARS-CoV-2 targets 

The Table S19-S21 showed the experimental results of anti-SARS-CoV-2 

activities estimation task. In Table S19, we obtain the results of Jure's GNN by 

running its public source code (https://github.com/snap-stanford/pretrain-

gnns) on our SARS-CoV-2 dataset. In Table S20, REDIAL-2020 provided the 

dataset they used (https://doi.org/10.5281/zenodo.4606720), including training 

set, validation set and test set. Therefore, we run ImageMol under the same 

experimental settings as theirs. In Table S21, the results of sequence-based 

models (e.g. RNN_LR, TRFM_LR, RNN_MLP, TRFM_MLP, RNN_RF, 

TRFM_RF 27 and CHEM-BERT 28) and graph-based models (e.g. MolCLRGIN, 

MolCLRGCN 13 and GROVER 16) are obtained by running their public source 

code on these SARS-CoV-2 datasets with three different seeds. 

 

C.4 Results on the virtual screening anti-SARS-CoV-2 drugs 

Table S22 shows virtual screening results of approved drugs in DrugBank for 

3CL inhibitors. In particular, we performed virtual screening using the 3CL 

model with 83.7% ROC-AUC in Table S19. The predicted label and probability 

for each drug is in the columns pred_labels, non-inhibitor_probs, 

inhibitor_probs of Table S22. The distribution histogram of predicted 3CL 
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inhibitors is depicted in Figure S19. Additionally, to further validate the 

effectiveness of our approach, we also screened drugs for SARS-CoV-2 from 

approved drugs. We use HEK293's model for virtual screening because it 

models larger data volumes and has good performance. The screening 

results are shown in Table S24. The 15 of the top 20 drugs were verified by 

different literatures, demonstrating the great potential of ImageMol. We also 

tested the accuracy of the model on the external validation set (Table S25), 

which is provided by  and has 122 inhibitors of the SARS-CoV-2 (shown in 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-022-

04482-x/MediaObjects/41586_2022_4482_MOESM1_ESM.pdf). Since we 

focus on virtual screening of small molecule drugs, we took the intersection of 

these 122 inhibitors and drugs in DrugBank and finally got 70 small molecules 

for testing. Of these 70 drugs, we successfully predicted 42 potential drugs, 

demonstrating the potential of ImageMol as a novel drug discovery tool. 

 

C.5 Supplementary Discussion on Ablation Studies 

Impact of pre-training: The robustness of the model to hyperparameter is 

important because the initialization of different parameters can affect the 

performance of the model45. Here, we explore the impact of pre-training 

strategies on the hyperparameter tuning of ImageMol. As shown in Figure 

S25, ImageMol is more robust than ImageMol_NonPretrained, with an 

average performance standard deviation of 0.5% versus 8.9% on 
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classification task and 0.654 versus 1.68 on regression task. Therefore, pre-

training strategies improve the robustness of ImageMol to initialization 

parameters. In addition, the difference in performance between pre-training 

and no pre-training (ROC-AUC improvement ranging from 9.0% to 32.4% with 

an average improvement of 20.2% on classification task and RMSE 

improvement ranging from 0.482 to 1.472 with an average improvement of 

0.879 on regression task) also indicated that the pre-training process 

significantly improved the model performance. 

        Impact of pre-training data scale: To explore the impact of pre-training 

with different data scales, we first use 0 million (no pre-training), 0.2 million, 

0.6 million, 1 million, and 8 million drug-like compounds to pretrain ImageMol 

respectively and then evaluate their performance. We found that the average 

ROC-AUC performance increased from 1.2% to 10.2% as the pre-trained data 

size increases (Figure S26). Thus, ImageMol can be further improved as the 

more drug-like molecules can be pre-trained. 

        Impact of different pretext tasks: We investigated the impact of 

different pretext tasks using multi-granularity chemical clusters classification 

(MG3C), jigsaw puzzle prediction (JPP), and MASK-based contrastive 

learning (MCL) (cf. Methods), respectively. We found that each pretext task 

improves the mean AUC value of ImageMol from 0.7% to 4.9%: without pre-

text task (75.7%), JPP (78.8%), MG3C (80.6%) and MCL (76.4%) (Figure 

S27). The best performance was achieved by assembling all 3 pretext tasks 
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for pre-training (AUC = 85.9%, Figure S27). Thus, pre-training tasks of 

ImageMol are well compatible and jointly improve model performance. 

        Impact of data augmentation: We applied three data augmentation 

strategies in the pre-training and fine-tuning of ImageMol, including 

RandomHorizontalFlip, RandomGrayscale and RandomRotation. Table S29 

illustrates several examples of data augmentation visualizations. We 

observed that the data augmentation did not change the original structure of 

the molecules. Meanwhile, the similarity of the embedding vectors exceeds 

99%, indicating that ImageMol captures the invariance of data augmentation 

to improve the generalization of the model. We further conducted an ablation 

study. Table S28 shows that data augmentation can synergistically improve 

the performance of ImageMol. In detail, each data augmentation strategy 

improves ImageMol performance compared to without any data augmentation 

strategy. At the same time, the performance after using multiple data 

augmentation also exceeds the performance using a single data 

augmentation strategy, which shows the effectiveness of multiple data 

augmentation strategies. Altogether, the performance of ImageMol can be 

improved using data augmentation. 
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Supplementary Figures 
 

 

 

Figure S1: The architectural details of the Multi-Granularity Chemical Clusters 

Classification (MG3C) task. Firstly, the molecular fingerprints are extracted 

from SMILES and input into unsupervised multi-granularity clustering to 

produce clusters with different granularity. Then, these clusters are uniquely 

numbered as pseudo-labels of molecular images. Finally, the molecular 

encoder and structural classifier are jointly used to predict the labels of 

molecular images and optimizing the loss between pseudo-labels and 

predicted labels in pre-training. 
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Figure S2: The architectural details of the Molecular Rationality 

Discrimination (MRD) task. In order to construct an irrational molecular image, 

we first disrupt the molecular structure, which uses a 3x3 grid to decompose 

the molecular image into 9 patches and randomly shuffle them to form an 

irrational image. Then, these rational and irrational molecules will be input to 

the molecular encoder to extract visual features. Finally, these features are 

forward propagated to rationality classifier for rationality judgment. 
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Figure S3: The architectural details of the Jigsaw Puzzle Prediction (JPP) 

task. We first use a 3x3 grid to decompose the molecular image into 9 

patches and assign numbers from 1 to 9. Then, we use different permutations 

to reorganize the image. Finally, the reorganized images are fed into the 

molecular encoder and jigsaw classifier to predict the corresponding 

permutations. 
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Figure S4: The architectural details of the MASK-based Contrastive Learning 

(MCL) task. We first randomly mask a 16 × 16 area to obtain a masked 

image. Then a pair of images (original image and the masked image) are 

simultaneously fed into the molecular encoder to extract latent features. 

Finally, we optimize the molecular encoder by maximizing the similarity 

among the latent feature pairs. 
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Figure S5: The architectural details of the Molecular Image Reconstruction 

(MIR) task. The generator is used to reconstruct latent features 𝑧!"# back into 

64 × 64 molecular images 𝑋*+,. The discriminator accepts the generated 

image 𝑋*+, and the real image 𝑋!"# and discriminates their real and fake. 
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Figure S6: Probability distributions of models in different random seeds on 

train, validation, and test sets with random scaffold split. Different colors 

represent probability distributions obtained by models with different random 

seeds. The first and second rows represent the BBBP and BACE datasets, 

respectively. The first to third columns represent the probability distributions of 

the training set, validation set, and test set, respectively. 
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Figure S7: The confusion matrix on 8 molecular property prediction datasets 

with scaffold split. Results are obtained from the best model in 3 runs. 
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Figure S8: The confusion matrix on 6 molecular property prediction datasets 

with random scaffold split. Results are obtained from the best model in 3 runs. 
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Figure S9: Receiver operating characteristic (ROC) curves of Chemception, 

ImageMol_NonPretrained and ImageMol on Tox21 and HIV datasets. 

Chemception is the method based on molecular image to predict the 

molecular property. ImageMol_NonPretrained is the ResNet18 trained from 

scratch without any pre-training. ImageMol is our pre-trained model based on 

10 million molecular images. The standard deviations of Chemception, 

ImageMol_NonPretrain and ImageMol are 0.012, 0.016 and 0.003 on HIV 

dataset and 0.007, 0.011 and 0.001 on Tox21 dataset by running 3 times with 

different random seeds. 
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Figure S10: Receiver operating characteristic (ROC) curves of ADMET-

CNN25, QSAR-CNN26 and ImageMol on five CYP450 isoforms training sets 

(PubChem Data Set I) with 5-fold cross-validation.  
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Figure S11: The ROC-AUC curve on 5 CYP450 datasets with balanced 

scaffold split. 1st AUC, 2nd AUC and 3rd AUC represent the results of the 

first, second and third random runs, respectively. Avg AUC means macro-

averaged AUC on three random runs. (f) represents the average AUC curve 

of 5 CYP450 datasets. 
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Figure S12: The confusion matrix on 5 CYP450 datasets with balanced 

scaffold split. Results are obtained from the best model in 3 runs. 
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Figure S13: The ROC-AUC curve on the multi-labeled CYP450 dataset. 1st 

AUC, 2nd AUC and 3rd AUC represent the results of the first, second and 

third random runs, respectively. Avg AUC means macro-averaged AUC on 

three random runs. 
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Figure S14: The confusion matrix on multi-labeled CYP450 datasets with 

balanced scaffold split. Results are obtained from the best model in 3 runs. 

 



44 
 

 

Figure S15: The ROC-AUC curve on the drug-protein binding activity 

datasets from KinomeScan. 1st AUC, 2nd AUC and 3rd AUC represent the 

results of the first, second and third random runs, respectively. Avg AUC 

means macro-averaged AUC on three random runs. 
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Figure S16: The confusion matrix on drug-protein binding activity datasets 

from KinomeScan with balanced scaffold split. Results are obtained from the 

best model in 3 runs. 
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Figure S17: The ROC-AUC curves on the 13 SARS-CoV-2 datasets with 

balanced split. 1st AUC, 2nd AUC and 3rd AUC represent the results of the 

first, second and third random runs, respectively. Avg AUC means macro-

averaged AUC on three random runs. The title is an abbreviation for dataset. 
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Figure S18: The confusion matrix on 13 SARS-CoV-2 datasets with balanced 

scaffold split. Results are obtained from the best model in 3 runs. 
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Figure S19: The distribution histogram of drugs that can be used as 3CL 

inhibitors. The x-axis represents the confidence that the drug is a 3CL 

inhibitor, and the y-axis represents the number of drugs within a certain 

confidence interval. The range of confidence is 0 to 1. The higher the 

confidence, the more likely the corresponding drug is to be a 3CL inhibitor.  
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Figure S20: t-SNE visualization of the representations learned by different 

models. Different colors indicate different clusters. Davies Bouldin (DB) index 

is defined as the average similarity measure of each cluster with its most 

similar cluster, where similarity is the ratio of within-cluster distances to 

between-cluster distances. The lower the DB index value, the better the 

clustering result. 
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Figure S21: The heat maps of attention to global structural information, which 
are highlighted by Gradient-weighted Class Activation Mapping (Grad-CAM) 46. 
The warmer color, the higher attention; the cooler color, the lower attention. 
Obviously, all meaningful structural regions are highlighted by ImageMol. 
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Figure S22: The heat maps of attention to local structural information, which 
are highlighted by Gradient-weighted Class Activation Mapping (Grad-CAM) 
46. The warmer color, the higher attention, and the cooler color, the lower 
attention. Obviously, ImageMol captures more local regions for inference. 
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Figure S23: Examples of similar molecular structures but different biological 

activities. Take 3CL protease inhibitors by utilizing the ImageMol (3CL) model 

as an example. The first and second rows in subfigures represent 3CL 

inhibitors and 3CL non-inhibitors, respectively. This may help discover key 

structures that inhibit the 3CL protease. 
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Figure S24: Quantitative information about the molecular structure area that 

is focused on by ImageMol. The coarse-grained hit rate represents the 

proportion of the molecular structure in each molecular image that was 

noticed by ImageMol, and fine-grained hit rate represents the proportion of the 

molecular structure area that was noticed by ImageMol to the total molecular 

structure area. 
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Figure S25: Ablation experiments with or without pretraining on molecular 

property prediction tasks. ImageMol_10M means pre-training on 10 million 

datasets, ImageMol_Non means no pre-training. The metrics of (a)-(f), (g)-(i) 

and (j) are ROC-AUC, RMSE and MAE, respectively. 
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Figure S26: The performance of ImageMol pre-trained under the data scale 

of 0M (no pre-training), 0.2M, 0.6M, 1M and 8M with random scaffold split on 

four property prediction datasets. “Mean” represents the average performance 

of ImageMol pre-trained with different data scales on four datasets. 

 

 

0
10
20
30
40
50
60
70
80
90

100

BBBP ClinTox HIV BACE Mean

0 M 0.2 M 0.6 M 1 M 8 M



56 
 

 

Figure S27: The ablation study of the pretext task in ImageMol, which uses 

ROC-AUC evaluation with random scaffold split on four property prediction 

datasets. “Mean” represents the average performance of ImageMol pre-

trained with different pre-task on four datasets. 
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Figure S28: The “elbow” point of two datasets with respect to the number of 

clusters. The x-axis represents the number of clusters, and the y-axis 

represents the sum of Euclidean distances between samples in the clusters. 

We find the "elbow", which is a value corresponding to the point of maximum 

curvature in an elbow curve, by using knee point detection algorithm 39. 
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Figure S29: Examples of masked images. The first column represents the 

original images, and the last three columns represent the masked images. 
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Figure S30: The data flow of the forward propagation of ImageMol framework 

in pre-training. Data augmentation techniques are first used to extract different 

augmentations of the original input images and further permutation and 

masking to obtain shuffled images and masked images, respectively. These 

images are then fed into ResNet18 to extract latent features. Finally, 

augmented images are used for five tasks. Shuffled images are used in four 

tasks. Masked images are used in MCL task. 
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Figure S31: Pre-training details for ImageMol. The x-axis and y-axis 

represent epoch number and loss value respectively. For simplicity, clustering 

pseudo-label classification task, jigsaw puzzle prediction task, molecular 

rationality discrimination task and MASK-based contrastive learning are 

simplified to pretext task1, pretext task2, pretext task3 and pretext task4 in 

this group of subfigures. 
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Supplementary Tables 

Table S1: Basic statistical information of benchmark datasets. Molecules 

represents the number of molecules. Binary prediction tasks represents the 

number of binary prediction task. Metric indicates a metric for evaluating 

model performance. Type indicates the task type of the dataset, including 

classification task and regression task. 

Dataset Molecules Binary prediction 
tasks Metric Type 

BBBP 2039 1 

ROC-
AUC Classification 

Tox21 7831 12 

ClinTox 1478 2 

HIV 41127 1 

BACE 1513 1 

SIDER 1427 27 

MUV 93087 17 

ToxCast 8575 617 

FreeSolv 642 1 

RMSE 

Regression 

ESOL 1128 1 

Lipo 4200 1 

QM7 21786 1 
MAE 

QM9 133885 8 
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Table S2: The statistical information of drug metabolism datasets across 5 

main types of CYP450 metabolism enzymes. 

Datasets CYP 
isoforms 

Number of 
inhibitors 

Number of 
noninhibitors Total 

PubChem 
Data Set I 

1A2 5,663 6,436 12,099 

2C9 4,369 7,761 12,130 

2C19 5,322 6,563 11,885 

2D6 2,516 9,365 11,881 

3A4 4,637 6,899 11,536 

 

PubChem 
Data Set II 

1A2 1,752 1,052 2,804 

2C9 609 1,970 2,579 

2C19 719 1,972 2,691 

2D6 544 2,316 2,860 

3A4 2,070 4,955 7,025 
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Table S3: The statistical information of ligand-GPCR binding activity datasets 

across 10 main types of GPCRs with the largest number of reported ligands 

from the ChEMBL (https://www.ebi.ac.uk/chembl/) database. 

Dataset (Assay) Number of samples Type 

AA1R 3,408 

Regression 

5HT1A 3,568 

5HT2A 3,079 

AA2AR 3,866 

AA3R 3,306 

CNR2 3,079 

DRD2 5,771 

DRD3 3,945 

HRH3 3,206 

OPRM 2,977 
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Table S4: The statistical information of compound-kinase binding activity 

datasets across 10 main types of biochemical kinase from KinomeScan with 

percent of control. All datasets are classification tasks. We use control as the 

criterion of activity, control=100% is inactive (non-inhibitor) and control<100% 

is active (inhibitor). 

Dataset 
(Assay) 

Number of 
samples 

Number of positive samples 
(percentage) 

BTK 106 69 (61.6%) 

CDK4-
cyclinD3 80 59 (52.7%) 

EGFR 105 75 (67.0%) 

FGFR1 108 76 (67.9%) 

FGFR2 109 75 (67.0%) 

FGFR3 107 67 (59.8%) 

FGFR4 107 59 (52.7%) 

FLT3 110 79 (70.5%) 

KPCD3 109 68 (60.7%) 

MET 105 70 (62.5%) 
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Table S5: The ROC-AUC (%) performance of different methods on 

benchmark datasets with scaffold split. All results are reported as mean ± 

standard deviation. The yellow and blue backgrounds represent methods 

without and with pretraining, respectively. The light green background 

represents the results of our method. Rank represents the ranking of 

ImageMol in the comparison. (.pdf) 

 

Table S6: The ROC-AUC performance of different methods on benchmark 

datasets with random scaffold split. All results are reported as mean ± 

standard deviation. The yellow and blue backgrounds represent methods 

without and with pretraining, respectively. The light green background 

represents the results of our method. Rank represents the ranking of 

ImageMol in the comparison. (.pdf) 

 

Table S7: The comprehensive performance evaluation (including accuracy, 

AUC, AUPR, F1, precision, recall and kappa) of ImageMol on molecular 

property prediction task with scaffold split. (.pdf) 

 

Table S8: The comprehensive performance evaluation (including accuracy, 

AUC, AUPR, F1, precision, recall and kappa) of ImageMol on molecular 

property prediction task with random scaffold split. (.pdf) 
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Table S9: The accuracy and ROC-AUC value of five major CYP Isoforms 

from PubChem Data Set II. ImageMol_NonPretrained and ImageMol indicate 

that ImageMol is not pre-trained and ImageMol is pre-trained on 10M 

molecular images. "MACCS-" represents the method based on MACCS 

molecular fingerprint, "FP4-" represents the method based on FP4 molecular 

fingerprint. "CC-" represents combined algorithm (ensemble learning). For 

details on other methods, see 24. ImageMol_NonPretrained and ImageMol are 

fine-tuned on PubChem Data Set I and evaluated on PubChem Data Set II. 

The best and second best result for each dataset is bolded and underlined, 

respectively. The methods in blue background represent image-based 

methods. The “3 times” represents the mean ± standard deviation of 3 runs 

with different random seeds. (.pdf) 

 

Table S10: The performance of different methods on single task CYP450 

datasets with balanced scaffold split16. (.pdf) 

 

Table S11: The performance of different methods on multi-labeled CYP450 

datasets with balanced scaffold split. (.pdf) 

 

Table S12: The performance of different methods on the drug-protein binding 

efficiency datasets with balanced scaffold split. (.pdf) 
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Table S13: The performance of different methods on the drug-protein binding 

activity datasets from KinomeScan with balanced scaffold split. (.pdf) 

 

 

Table S14: Results of statistical significance tests between ImageMol and 

GROVER-10M, MPG-10M, X-MOL, MolCLRGIN on the 8 molecular property 

prediction datasets, where numbers represent the p-values (one-sided 

significance level) of the McNemar’s test between the models in the table 

(GROVER-10M, MPG-10M, X-MOL and MolCLRGIN) and ImageMol. The 

numbers in green background indicate statistically different models, using a 

significance threshold of 0.05. (.pdf) 

 

Table S15: Results of statistical significance tests between ImageMol and 

Image-based methods (Chemception, ADMET-CNN, QSAR-CNN) on five 

CYP450 isoforms training sets (PubChem Data Set I) and validation sets 

(PubChem Data Set II), where numbers represent the p-values (one-sided 

significance level) of the McNemar’s test. The numbers in green background 

indicate statistically different models, using a significance threshold of 0.05. 0 

indicates statistical significance less than E-100. (.pdf) 

 

Table S16: Results of statistical significance tests on the 5 CYP450 datasets 

with balanced scaffold split, where numbers represent the p-values (one-sided 
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significance level) of the McNemar’s test between the models in the table 

(CHEM-BERT, GROVER, MolCLRGIN, MolCLRGCN, RNN_LR, RNN_MLP, 

RNN_RF, TRFM_LR, TRFM_MLP and TRFM_RF) and ImageMol. The 

numbers in green background indicate statistically different models, using a 

significance threshold of 0.05. (.pdf) 

 

Table S17: Results of statistical significance tests on the 13 SARS-CoV-2 

datasets with balanced scaffold split, where numbers represent the p-values 

(one-sided significance level) of the McNemar’s test between the models in 

the table (CHEM-BERT, GROVER, MolCLRGIN and MolCLRGCN, RNN_LR, 

RNN_MLP, RNN_RF, TRFM_LR, TRFM_MLP and TRFM_RF) and 

ImageMol. The numbers in green background indicate statistically different 

models, using a significance threshold of 0.05. (.pdf) 
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Table S18: The overview of all binary classification tasks. These datasets are 
obtained from SARS-CoV-2 assays in NCATS OpenData. Abbreviation 
represents shorthand for dataset and target category represents the 
classification type of assay. The number of samples and the number of 
positive samples are calculated using only samples with AC50. 

Dataset (Assay) Abbreviation Target 
Category 

Number 
of 

samples 

Number of 
positive 
samples 

(percentage) 
3C-like (3CL) 

enzymatic activity 3CL Viral 
replication 344 63 (18.3%) 

angiotensin 
converting enzyme 2 

(ACE2) enzymatic 
activity 

ACE2 Viral entry 508 92 (18.1%) 

human embryonic 
kidney 293 cell line 

toxicity 
HEK293 Counterscreen 4,392 1,753 (33.7%) 

Human fibroblast 
toxicity hCYTOX Counterscreen 4,912 1,724 (35.1%) 

middle east 
respiratory syndrome 

(MERS) 
Pseudotyped particle 

entry 

MERS-PPE In vitro 
infectivity 5,419 1,851 (34.2%) 

MERS Pseudotyped 
particle entry (Huh7 
tox counterscreen) 

MERS-
PPE_cs Counterscreen 5,606 1,884 (33.6%) 

SARS-CoV 
Pseudotyped particle 

entry 
CoV-PPE In vitro 

infectivity 6,496 2,145 (33.0%) 

SARS-CoV 
Pseudotyped particle 

entry (VeroE6 tox 
counterscreen) 

CoV-PPE_cs Counterscreen 6,651 2,191 (32.9%) 

SARS-CoV-2 
cytopathic effect 

(CPE) 
CPE Live virus 

infectivity 7,404 2,464 (33.3%) 

SARS-CoV-2 
cytopathic effect 

(host tox 
counterscreen) 

Cytotox Counterscreen 8,865 3,302 (37.3%) 

Spike-ACE2 protein-
protein interaction 

(AlphaLISA) 
AlphaLISA Viral entry 9,664 3,570 (36.9%) 

Spike-ACE2 protein-
protein interaction 

(TruHit 
Counterscreen) 

TruHit Counterscreen 10,477 4,027 (38.4%) 

transmembrane 
protease serine 2 

(TMPRSS2) 
enzymatic activity 

TMPRSS2 Viral entry 10,658 4,051 (38.0%) 
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Table S19: The experimental results of Jure’s GNN, 

ImageMol_NonPretrained and ImageMol for anti-SARS-CoV-2 activities 

estimation on several SARS-CoV-2 assay datasets from the National Center 

for Advancing Translational Sciences (NCATS) COVID-19 portal. The 

evaluation metrics include the AUC and AUPR. ImageMol_NonPretrained is 

the ResNet18 randomly initialized weights. ImageMol is our pre-trained model 

based on PubChem dataset. The best results are bolded and the second best 

results are underlined. The red value represents the number of performance 

improvement compared with ImageMol_NonPretrained.  

 AUC AUPR 

Dataset Jure’s 
GNN 

ImageMol
_NonPretr

ained 
ImageMol Jure’s 

GNN 

ImageMol
_NonPretr

ained 
ImageMol 

3CL 70.43 76.07 83.72+7.65 33.96 49.66 61.99+12.33 

ACE2 73.66 65.45 83.75+18.30 33.56 30.13 55.69+25.56 

HEK293 73.87 70.26 76.35+6.09 64.32 60.83 67.37+6.54 

hCYTOX 76.19 72.26 76.40+4.14 66.19 63.52 66.72+3.20 
MERS-

PPE 71.71 70.82 75.78+4.96 60.73 58.78 65.03+6.25 
MERS-
PPE_cs 71.19 72.81 75.41+2.60 57.39 60.96 66.25+5.29 

CPE 69.19 72.06 74.61+2.55 55.96 58.13 61.20+3.07 

cytotox 72.38 73.88 76.09+2.21 63.45 65.70 69.20+3.50 
CoV-
PPE 70.78 69.95 74.12+4.16 57.58 57.66 62.64+4.98 

CoV-
PPE_cs 70.45 71.60 74.51+2.91 55.62 58.31 63.44+5.13 

AlphaLIS
A 69.25 71.28 74.35+3.07 59.30 62.88 65.97+3.09 

TruHit 67.33 70.19 72.66+2.47 58.73 61.84 63.78+1.94 
TMPRSS

2 67.79 70.09 72.57+2.48 58.69 61.52 63.92+2.40 
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Table S20: The experimental results of REDIAL-2020, 

ImageMol_NonPretrained and ImageMol for anti-SARS-CoV-2 activities 

estimation. ACC, accuracy; F1, F1 score; SEN, sensitivity; PREC, precision; 

AUC, area under the receiver operating characteristic curve. ImageMol (3 

times) represents the mean ± standard deviation of the results of 3 runs with 

different random seeds. (.pdf) 

 

Table S21: The performance of different methods on 13 SARS-CoV-2 

datasets with balanced scaffold split16. (.pdf) 

 

Table S22: Screening results of approved drugs in DrugBank for 3CL 

inhibitors via ImageMol. (.pdf) 
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Table S23: Screening results from 16 known 3CL inhibitors.  

Index Drug name Structure Probability 
Evidence 

Citations 

1 GC376 

 

0.99692 47 

2 Punicalagin 

 

0.98766 48 

3 Atazanavir 

 

0.97574 48 

4 Compound 4 

 

0.95191 49 

5 Narlaprevir 

 

0.82554 50 
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6 Lopinavir 

 

0.81443 50 

7 ML188 

 

0.79253 51 

8 Nirmatrelvir 

 

0.73093 52 

9 Bafetinib 

 

0.68171 53 

10 Telaprevir 

 

0.62670 50 
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11 Glecaprevir 

 

0.14985 50 

12 Z-LVG-CHN2 

 

0.14434 54 

13 Boceprevir 

 

0.09992 55 

14 Saquinavir 

 

0.00398 50 

15 Masitinib 

 

0.00001 53 
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16 Ledipasvir 

 

0.00001 50 

 

Table S24: Screening results of approved drugs in DrugBank for SARS-CoV-

2. (.pdf) 

 

Table S25: Virtual screening of 70 validated anti-SARS-CoV-2 small molecule 

drugs. These drugs were validated in Calu-3 cells 56. (.pdf) 
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Table S26: Examples of using high attention value to control the highlighted 

area of GradCAM, which can better inform chemists. 
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Table S27: The statistical information of anti-SARS-CoV-2 activity datasets38. 

Sparsity refers to the proportion of blank areas in an image to the entire 

image. 

Datasets Number of 
actives 

Number of 
inactives 

Sparsity 
(%) 

3CL 81 3,330 94.93 

CPE 44 2,913 94.89 

ACE2 70 1,192 94.88 

Cytotox 193 2,764 94.86 

AlphaLISA 143 1,119 94.86 

TruHit 134 1,128 94.86 

CoV-PPE 43 881 94.91 

CoV-PPE_cs 247 1,085 94.91 

hCYTOX 81 1,306 94.87 

MERS-PPE 104 1,024 94.88 

MERS-PPE_cs 46 1,082 94.88 

 

 

Table S28: Ablation results of data augmentation on benchmark datasets with 

ROC-AUC metric and random scaffold split. All results are reported as mean 

± standard deviation. Bold font indicates best result. (.pdf) 
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Table S29: The several examples of data augmentation. The first column 

represents the original image, and the last three columns represent different 

data augmentation strategies, namely flip, grayscale and rotation. The 

similarity represents the cosine similarity between the augmented image and 

the original image in the embedding vector, which is obtained from the 

pretrained ImageMol. 

 

Original image Flip Grayscale Rotation 

 
 

Similarity: 0.999 
 

Similarity: 0.996 
 

Similarity: 0.9729 

 
 

Similarity: 0.996 
 

Similarity: 0.999 
 

Similarity: 0.992 

 
 

Similarity: 0.999 
 

Similarity: 0.999 
 

Similarity: 0.996 
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Table S30: Hyperparameters for pre-training and finetuning ImageMol. 

Hyperparameters Pre-training Fine-tuning 

Learning rate 0.01 5e-4~0.5 

Batch Size 256 8,16,32,64,128 

Weight Decay 1e-5 1e-5 

Max Epochs 15 10~60 

Learning Rate Decay Linear Linear 

Image Size 224×224×3 224×224×3 
Classification Layer 

Number 0 1, 2 

 

 

Table S31: Hyperparameter optimization for MPG, GROVER, X-MOL, MolCLR, 

CHEM-BERT, SMILES_Transformer, Chemception, ADMET-CNN and QSAR-

CNN. (.pdf) 
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