nature machine intelligence

Article

https://doi.org/10.1038/s42256-022-00545-w

A multi-use deep learning method for CITEseq and single-cell RNA-seq data integration with cell surface protein prediction and imputation

In the format provided by the authors and unedited

Supplementary Information

A multi-use deep learning method for CITE-seq and single-cell RNA-seq data

integration with cell surface protein prediction and imputation

Justin Lakkis^{*}, Amelia Schroeder, Kenong Su, Michelle Lee, Alexander C. Bashore, Muredach P. Reilly,

Mingyao Li*

*Correspondence:

Justin Lakkis (jlakks@gmail.com)

Mingyao Li (mingyao@pennmedicine.upenn.edu)

Supplementary Table 1. Datasets analyzed in this paper.

Data	Data Source	Number of	Number of	Number of
		Cells	Genes	proteins
MALT	10x Genomics	8,412	33,538	17
	https://www.10xgenomics.com/re			
	sources/datasets/10-k-cells-from-			
	a-malt-tumor-gene-expression-			
	and-cell-surface-protein-3-			
	standard-3-0-0			
PBMC	Hao et al. (2021)	161,764	20,729	224
	nttps://atlas.frednutch.org/data/n			
	ygc/multimodal/ppmc_multimoda			
Monocyte	Generated ourselves. Data will be	27 112	22.060	202
wonocyte	nublicly available after the namer	57,112	22,000	205
	is accented for publication			
H1N1	Kotliarov et al. (2020)	53 201	32 738	87
		55,201	52,750	07
	https://nih.figshare.com/articles/			
	dataset/CITE-seg protein-			
	mRNA single cell data from hig			
	h and low vaccine responders t			
	o_reproduce_Figs_4-			
	6_and_associated_Extended_Data			
	Figs/11349761?file=20706645			
COVID	Stephenson et al. (2021)	647,366	24,737	192
(Haniffa)				
	https://www.ebi.ac.uk/arrayexpre			
	ss/experiments/E-MTAB-10026			
COVID	Chan Zuckerberg Initiative Single-	240,627	33,567	192
(Sanger)	Cell COVID-19 Consortia (2020)			
	https://souid10.cog.congor.oc.uk/s			
	ubmissions/release2/vento_nbmc			
	nrocessed b5ad			
	_processed.ilsau	1	1	

Supplementary Note 1: Early stopping

Let ES_{max} denote the patience parameter for early stopping and LR_{max} denote the patience parameter for learning rate decay. Let *count* be a counter which indicates the number of epochs that have elapsed since the validation loss decreased from its running minimum *bestloss*. After completing an epoch and computing the validation loss val_{loss} , check if $val_{loss} * 1.005 < best_{loss}$. If so, set*count* = 0 and update: $best_{loss} \leftarrow val_{loss}$. Otherwise, increment *count* by 1. If (*count* + 1) *modulus* LR_{max} is equal to 0, decay the learning rate lr by a factor d. That is, make the update $lr \leftarrow lr \times d$. If *count* equals ES_{max} , then end training as the validation loss has failed to decrease below its running minimum for ES_{max} consecutive epochs.

Supplementary Note 2: Software packages

We used used totalVI via the scvi-tools package (<u>https://scvi-tools.org</u>). We specifically used version 0.10.0 of scvi-tools and version 4.1.0 of Seurat (<u>https://satijalab.org/seurat</u>). The sciPENN package can be found online on github (<u>https://github.com/jlakkis/sciPENN</u>).

All analyses can be reproduced using this repository (<u>https://github.com/jlakkis/sciPENN_codes</u>). All packages, including sciPENN, can be installed following the instructions in that repository.