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Supplementary Information 

1. Notes on the real data preparation 

We focus on both common (MAF ≥ 1%) variants and rare (MAF < 0.01, MAC ≥	10) genetic variants 
imputed at high resolution based on the reference panels from TOPMed using the Michigan Imputation 
Server39. Five knockoff variants were generated for each variant. We additionally adjusted the learner for 
sex and 10 leading principal components as covariates. For task A, the validation AUC for Lasso-MK is 
0.734, for stabilized HiDe-MK is 0.73, and for DeepPINK-MK with ReLU activation function is 0.709; For 
task B, the validation AUC for Lasso-MK is 0.731, for stabilized HiDe-MK is 0.7337. The reported AUC 
values reflect prediction accuracy of genetic variants, sex, and PCs, based on a 5-fold cross-validation. We 
report results based on target FDRs 0.05, 0.10 and 0.20. Each identified genetic variant is then assigned to 
either a gene or an intergenic region. If the variant is within a gene, we report the gene’s name and if it is 
in an intergenic region, we report the upstream and downstream genes. 

Identity-by-descent was run to determine the relatedness between all individuals using PLINKv1.9 53. We 
filtered for duplicates and kept the copy from the SNP array with the highest genome coverage and removed 
first degree relatives keeping AD relatives over controls; and when both had a concordant diagnosis, we 
kept the younger case or older control. On the subset of remaining individuals, we computed genetic 
principal components to account for population stratification54.  

Prior to ancestry determination, SNPs were filtered based on genotyping rate (< 0.95), MAF < 0.01 and 
Hardy-Weinberg equilibrium (HWE) in controls (p < 10-6). By applying an ancestry percentage cut-off > 
0.75, the samples were stratified into five super populations such as South-Asians, East-Asians, Americans, 
Africans and Europeans, and an Admixed group composed of individuals not passing cut-off in any single 
ancestry. To avoid spurious associations as the most individuals were Europeans, we restricted our analysis 
to European ancestry individuals. Then, we did an individual-level ancestry determination for each cohort 
included in our analysis with SNPWeights v2.155 using reference populations from the 1000 Genomes 
Consortium56. For further genetic quality control and imputation, we used the gnomAD database57 to filter 
out SNPs that met one of the following criteria: (i) located in low complexity region, (ii) located within 
common structural variants (MAF > 0.01), (iii) multiallelic SNPs with MAF > 0.01 for at least two alternate 
alleles, (iv) located within a common Ins/Del (insertion/deletion), (v) having any flag different than PASS 
in gnomAD. Individuals with more than 0.05 genotype missingness were excluded. Imputation was 
performed on the Michigan imputation server using the TOPMed reference panel39,58. Per cohort, only 
variants with sufficient imputation quality (r2 > 0.3) were included in the analysis.  

2. Model configurations 

We search for optimal hyper-parameters of HiDe-MK through a randomized search with a 5-fold cross 
validation. In our search space for simulation data, we have 200 sets of hyper-parameters with epoch 
number set to 200. We do this for every replicate of 500 replicates and for both dichotomous and 
quantitative traits. For L-1 norm values of DeepPINK and stabilized HiDe-MK, we used the default lambda 
path same as the way it is generated in GLMNET library of R. We used batch size 1024, a learning rate 
0.001, the number of filters 8, and the kernel size for the 1st layer of locally connected layer is set to 6 and 
for the 2nd layer of locally connected layer is set to 25. FIs are extracted with running on the whole data and 
for every epoch and every set of hyper-parameters. Then, we apply knockoff statistics and measure FDR 
and Power. For SVM and SVR learners, we used the LiblineaR, an R package for the predicative linear 
models (https://cran.r-project.org/web/packages/LiblineaR/index.html) for support vector classification 



and regression with linear kernels. We used the default parameter to set the tolerance criterion for SVM 
and SVR optimization which is 0.01. We used the primal objective function with L2-loss support vector 
regression. When a primal solution is found, we extract feature importance scores. For SVM, this package 
uses a linear kernel same as the one in SVMlight which is a C++ implementation of SVM, embedded into 
this R library. This linear SVM has a parameter cost Q which is the cost of constraints violation in SVM 
objective function. We adjust this parameter to be in the range Q = {1000, 500, 100, 10, 1, 0.1, 0.01, 0.05, 
0.001}. This parameter rules the trade-off between the regularization and correct classification. For Ridge 
regression and Lasso regression, we used the R package GLMNET. The tuning parameter 𝜆 was tuned by 
the default lambda path and a five-fold cross-validation.  

For the real data analysis, we trained stabilized HiDe-MK up to 300 epochs which lasts about 15h with 
GPU applied to the imputed data. The batch size is set to 512 which we found is sufficient for fast training 
without getting out of memory error. The number of filters was 8. The kernel size for the 1st layer of locally 
connected layer is set to 6 and for the 2nd layer of locally connected layer, for our simulation studies, it is 
set to 5, and for real data analysis, we adjust this parameter in the range {200, 250, ..., 1000}. The number 
of neurons in the dense layer was set to 50. With this setup, the final size of stabilized HiDe-MK or the total 
number of weight parameters with kernel size 500 in the second locally connected layer was 172,930. We 
only used 200 values of a L-1 norm regularizer for the first locally connected layer. The proposed method 
is independent of the choice of optimal epoch number. The activation function was ‘ELU’ for every layer 
except the first and the last layer. For the decision layer, we used Sigmoid activation function for 
dichotomous trait and linear activation function for the continuous trait in simulation studies and real data 
analysis. To do experiments, we used Sherlock high-performance computing (HPC) device at Stanford 
University. The configurations for cluster of remote machines were GPU: Nvidia GeForce RTX 2080 Ti 
11GB; and CPU: Intel Xeon(R) Silver 4116 2.10GHz; 128GB of RAM (8 cores), with OS: Ubuntu16.04.3 
LTS.  

  



3. Additional figures and experiments 

Figure S1. Architecture of HiDe-MK for real data analysis. The framework is applied to a data with 
11,662 genetic variants with five sets of knockoffs; every knockoff cohort has the same size as the original 
cohort. The covariates with 11 features are fed to the neural network right before the last layer. The genotype 
data is presented to the network as the first input data with size 11662	 × 	6 where 6 is number of original 
and knockoff features. The term “?” is referred to the batch size, and in our experiments, we set it to 512. 
In the next layer, each 6 neurons, i.e., one original feature and its 5 knockoffs are grouped together. The 
shape of matrix changes from 11662	 × 	6 to 11662	 × 	1. Next, every 500 neurons are grouped and are 
further mapped to 8 channels. Doing so, the shape of data changes from 11662	 × 	1 to 24	 × 	8. Then a 
dropout layer with 0.10 dropout rate is applied and the two-dimensional data is then flattened from the size 
24	 × 	8 to 192	 × 	1. These 192 neurons are passed to a dense layer with 50 neurons. The 11 covariates 
are then concatenated to these 50 neurons. Note that the activation function for covariate layer is linear. 
The last layer with one neuron is the decision layer. This whole process is repeated for the whole samples 
of data till the total number of epochs are completed.  

 
  



Figure S2. The behavior of different activation functions applied to both dichotomous and continuous 
traits. Activation functions ELU, ReLU, Swish, and GeLU equipped with stabilized HiDe-MK are applied 
to SKAT data with dichotomous and continuous traits, validated over 200 replicates. The search space for 
hyper-parameter tuning is the same as what we have done earlier with ELU activation function. We used 
100 different combination of hyper-parameters and 200 epoch numbers.  

 
  



Figure S3. Empirical FDR and power reported for different learning methods at different target FDR values 
applied to simulation studies, both dichotomous and continuous traits. All methods are equipped with single 
knockoff.  

 
Figure S4. Results of FDR control for dichotomous and quantitative traits without minor allele count 
filtering.  

 



Figure S5. Manhattan plot for a deepPINK with ReLU activation function and with multiple 
knockoffs. Each dot point represents a genetic variant. The dashed horizontal lines indicate target FDRs 
0.05, 0.10 and 0.20. DeepPINK-MK suffers from dying ReLU problem and hence the learning convergence 
is very slow, and the validation AUC is poor (0.73 for the stabilized HiDe-MK with ELU versus 0.709 for 
deepPINK-MK). Because of this, only 19 genetic variants, associated with 7 genes could be identified by 
this method, only in chromosome numbers 2 and 19.  

 
Figure S6. Manhattan plots for a marginal test. Each dot point represents a genetic variant. The dashed 
horizontal line indicates the conventional threshold value 5e-8.  

 
 

Figure S7. Impact of different kernel size values on measured FDR, power, and the total number of 
weight parameters. The effectiveness of the locally connected layers in the architecture of HiDe-MK 
depends on the proper choice of the kernel size, i.e., the number of neurons that should be grouped. To 
empirically validate its importance on HiDe-MK performance, we ran it on a dichotomous trait with 
different kernel size values and measured the average FDR, power, and the size of network over 50 runs. 
The search space for hyperparameters of HiDe-MK is same as we discussed in Results section and DNN 
configurations in Methods section. The learner with kernel size 25 has superior power while FDR is under 
control and the number of weight parameters are much less than when it is compared to the small kernel 
size 5.  

 



Table S1. Empirical power at target FDR 0.2 based on 500 replicates and standard deviation of the power 
estimation for different learners.  

 Dichotomous trait Continuous trait 

 Power Standard 
deviation 

Power Standard 
deviation 

Lasso 0.6795 0.0127 0.6725 0.0149 

Ridge 0.4999 0.0152 0.5145 0.0183 

DeepPINK 0.3994 0.0184 0.4340 0.0199 

SVM 0.6819 0.0152 0.6708 0.0169 

Stabilized HiDe-
MK 

0.8392 0.0089 0.7839 0.0072 

 

Table S2. List of identified genes for both Lasso-MK and stabilized HiDe-MK at target FDR 0.10 for 
the confirmatory stage analysis of existing AD risk variants.  

 Identified Genes 

Lasso-MK 

BIN1, CYP27C1, CD2AP, NYAP1, CLU, AL512631.1, APOE, 
AC011481.3, APOC1, SHARPIN, MS4A4A, CR1, MEF2C-AS1, 
TREM2, TREML2, ABCA7, CLNK, HLA-DRB1, HLA-DQA1, CASS4, 
USP6NL, ECHDC3, RNU6-560P, LINC02695, TSPOAP1, ABCA7  

Stabilized HiDe-MK 

BIN1, CYP27C1, CD2AP, TOMM40, CLU, APOE, AC011481.3, 
APOC1, SHARPIN, MS4A4A, CR1, ABCA7, KAT8, CLPTM1, ADGRF, 
TREM2, TREML2, MS4A4E, NECTIN2, AC011481.2, CASTOR3, 
RNF111, SLTM, EPHA1, CASS4, USP6NL, ECHDC3 

 

Table S3. List of identified genes for both Lasso-MK and stabilized HiDe-MK at target FDR 0.10 for 
the functionally informed analysis of pQTLs.  

 Identified Genes 

Lasso-MK BIN1, AC110926.1, AC245884.2, APOE, CR1, MS4A6A, PILRA, 
PLCG2, SPI1 

Stabilized HiDe-MK 
AC110926.1, AC011481.3, APOC1, APOE, BIN1, CUX1, KCNN4, 

MCM6, MUC12, NCR2, PILRA, PLAUR, PRH1, SIGLEC18P, TRIM56, 
TREM1, TREML2 

 
  



Table S4. The commonly used activation functions in the layers of DNN. the underlying structure of 
data can be learned through linear or nonlinear activation functions.  

Activation function Mathematical equation 
ReLU Max[z,0] 

ELU 𝑓(𝑧) = 0
𝑧 𝑖𝑓	𝑧 > 0

𝑎(𝑒! − 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Sigmoid (1 + 𝑒"!)"# 
Tanh (𝑒! − 𝑒"!)(𝑒! + 𝑒"!)"# 
Linear Z 

 

4. Pseudo code for stabilized HiDe-MK 

In the following, we present the pseudo code for running the proposed stabilized HiDe-MK method in the 
simulation studies. Codes have been written in Python with Keras and TensorFlow using the libraries 
“Numpy”, “Pandas”, “SKlearn”, “csv”, “time”, “os” and “sys”. We used R program for the simulation data 
generation and knockoff inference to obtain q-values, FDR, and Power. We used R libraries “SKAT”, 
“knockoffs”, “KnockoffScreen” and “data.table”. We directly imported the functions 
“MK.threshold.byStat” “MK.statistics”, “MK.threshold” and “MK.q.byStat” from the KnockoffScreen 
software package to our R script.   

This whole package has been compiled to work with Python 3.6, Tensorflow 2.6, Keras 2.6, and R version 
3.6 on Windows 10 and Mac OS BigSur. We also successfully ran the package on Stanford supercomputer 
Sherlock remotely. We made the package publicly available at Github with the link: 
{https://github.com/Peyman-HK/De-randomized-HiDe-MK} which is licensed under General Public 
license 3.0 (GPL-3.0) with a descriptive manual for demo instructions, for running the code, explained in 
the Readme.MD file in Github. The user only needs to install necessary libraries and download the whole 
package and change the necessary directories to read the data.  

In the following, we show four pseudo-codes for applying the stabilized HiDe-MK on simulation datasets 
from the data generation to the obtained FDR and Power.  

 
Pseudo-code 1 

# -- Generate original and knockoff features for simulation data --  
# -- Original data generation –- 
Input: Given parameters for data generation 
Output: The original matrix G and knockoff matrices GKs 
(Generate data (through SKAT R library) by the calibration coalescent model 

(COSI) with mimicking LD structure of European ancestry) 
# -- Initialize parameters –- 
let Num_samples = 10000, Num_features = 2000 
 
# Generate SNP sets with initialized parameters  
1- Through COSI model, and given sample and feature size, generate genotype 

data with their positions, which has the size 10000 × 2000.  
2- Obtain MAC - summation for each column of SNP.set.  
 



# Quality control 
3 Filter out ultra-rare variants with MAC > 10 
4- Remove columns with identical values to obtain the original matrix G.  
 
# -- Knockoff data generation through KnockoffScreen algorithm –-  
Input: Position for genetic variants, number of knockoffs, original data G  
Output: M knockoff data matrices GKs 
 
1- Extract the positions for variants (assuming that variants are on the 

same chromosome; if not, apply knockoff generation to each chromosome 
separately) 
2- Set number of knockoffs to M = 5 
3- Generate knockoff through the function create.MK(G, pos, M=5) 
 

 
Pseudo-code 2 

# Stabilized HiDe-MK algorithm to learn from data and obtain ensemble of 
gradients or feature importance scores (FIs) 
Input: Both original and knockoff datasets and the covariates data: X_G = 

[G, G_Ks] and covariates X_P, target vector Y, different combinations of 
hyper-parameters (Num_param) 
Output: a single FIs which is aggregation of all FIs 
 
For Param in Num_param 
     For Epoch in Num_epoch 
 
     1- Train HiDe-MK with current hyper-parameters through 5-fold CV 
     Trained_model = Train_HiDe([X_G_train, X_P_train], Y_train) 
     2- Validate HiDe-MK with current hyper-parameters through 5-fold CV 
     Y_predict_test = Trained_model([X_G_test, X_P_test], Y_test) 
     3- Calculate validation AUCs  
     Validation_Loss{Param,Epoch} = Loss_measure(Y_test, Y_predict_test) 
 
     END 
END 
 
4- Obtain the average of Loss values for every epoch and hyper-parameter 
Average_Loss = mean(Validation_Loss) 
5- Based on averaged losses, assign weights to every epoch and parameter 
W_all = Average_Loss / min(Average_Loss) 
 
# Obtain FIs on the whole data (G_All) for every epoch and hyper-parameter 
For   Batch in {G_All} 
 
      6- Calculate predicted values for the current batch 
      predicted_batch = NN_predict(Current_batch, Y_Batch) 
      7- Find FIs for each batch through the GradientTape function 
      FIs{Batch} = GradientTape(G_All(Batch), predicted_batch)    



         
END 
 
8- Stack FIs obtained for each batch to get the FIs for that epoch number 
 
9- Aggregate all FIs following and obtain a single weighted FIs:  

Aggregated_FI = {FI(epoch, param) × W(epoch,param)}/ sum(W_all) 
 

 
 
Pseudo-code 3 

# Knockoff Inference to obtain FDR and Power through FIs 
Input: Obtained FIs through learned HiDe-MK 
Output: Empirical FDR and Power at different levels of target FDR 
# (Through FIs, Kappa, Tau and then q-values are obtained, and then empirical 

FDR and Power are measured at different target FDR levels)  
 

let FDR_levels = {0.01, 0.02,…,0.20} 
 
1- Obtain Kappa and Tau through function MK.statistic with original FIs and 

knockoffs FIs. T_0 is the FIs for original features and T_K is the FIs for 
knockoffs. 
Kappa_Tau = MK.statistic(T_0,T_k,method='median') 
2- Obtain q-values through the function MK.q.byStat  
q_vals =MK.q.byStat(Kappa,Tau,M) 
 

# Apply knockoff filter for different FDR levels 
For values in FDR_levels:  

 
3- Select Features which have a q-value <= a target FDR 
4- Find empirical FDR and Power comparing candidates and true signals 

 
End 
 

 
 
 


