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1 Technical Details for the DLPE Method 

The DLPE method depends on fast, robust and accurate segmentations of various chest tissues. Supplementary 
Sections 1.1-1.4 describe the technical details, model performance and the model analysis of these segmentation 
models. 

1.1 CT data normalization  

Our CT datasets are collected from 5 different hospitals. Thus, the imaging parameters and the ground truth 
annotations vary greatly among different centers.  

Our previous study [1] gave an effective normalization procedure that cast any chest CT into a machine-agnostic 
standard embedding space, which significantly improved the robustness and accuracy when segmenting COVID-
19 lesions. In this study, we follow the key idea of our previous normalization procedure, while making the 
procedure more intuitive.  

1.1.1 CT dataset quality control (QC) 

Dataset of good quality is an essential prerequisite for developing state-of-the-art machine learning models. Thus, 
it is crucial to delete cases with wrong ground truth annotations, impaired CT data or CT data with extreme noise. 
In general, we use 3D visualizations, 2D visualizations as well as statistical methods to ensure that the CT data 
and the ground truth annotations are of good quality. 

QC for the CT data: we use the following steps to check whether a CT data is of good quality. 

Step 1): use the state-of-the-art model in our previous study [1] to get the lung segmentation. 

Step 2): 3D visualize the lung segmentation by stereolithography (STL). Check whether the segmentation looks 
natural (explained in Supplementary Section 1.2.9). If there exist obvious defects, mark the CT data quality as 
“risky”. 

Step 3): “smoothness” analysis of the lung segmentation. Let 𝑏 to be the number of boundary voxels of the lung 
mask, and 𝑣 be the number of lung voxels, then “smoothness” is defined as '

(.*

+
, and in our previous datasets [1], 

the smoothness of the lungs of 201 CT scans lay between [17.11, 23.03]. If the smoothness is not between 
[17.11, 23.03], we mark the CT data quality as “risky”. Otherwise, we say that the CT data is of good quality. 

Step 4): For “risky” CT scan (about 5%), slice by slice check the data, to see whether the failure of the lung 
segmentation is caused by our model or caused by the bad quality of the CT. 

QC for the ground truth of the heart, airways and blood vessels: we compare their volumes to the lungs and 
visualize the ground truth annotations in 2D and 3D to check whether they are correct. We use the following steps 
to analyze the qualities of ground truth annotations. 

Step 1): get 3D visualizations of the annotations as well as the lung mask by STL. Check whether the ground 
truths are in natural shapes and positions. For airways and blood vessels, they should look like trees with affine 
self-similarities. The heart should be placed in the bottom middle and close to the lungs. The root of the blood 
vessel mask should be located inside the heart. The COVID-19 lesions should mostly appear in the lower 
respiratory regions where the airway and blood vessel diameters are small. If there exist problems in the relative 
locations or morphologies, we will discard the ground truth annotation (about 5%), otherwise move to step 2). 

Step 2): get 2D visualizations of the annotations. For each ground truth annotation, we get the mass center of the 
mask located at (x8, 	y8, 	z8). Merge the CT image with the annotation from the x-y plane at z-axis at	z8. Discard 
the annotation (about 5%) if it is not reasonable, otherwise to step 3).  

Step 3): check the volume ratios compared to the lungs, as the volume ratios vary in small intervals. “Airways 
ratio” equals the volume of airways divided by the volume of the lung. Similar logic holds for the “heart ratio” 
and “blood vessel ratio”. If the ratio is in the reasonable interval (presented in Supplementary Table 1), we say 
that the annotation is of good quality, otherwise we merge the CT and the annotation, then slice-by-slice check 
the annotation (about 2%). 

Supplementary Table 1 Reasonable volume ratios of lung tissues to the lungs. The ratio interval is formed by the [minimum 
ratio, maximum ratio] on a high-quality dataset containing 86 CT scans. This dataset contains CT scans from three centers and 
the annotations were slice-by-slice checked. 



 Airways ratio Blood vessel ratio Heart ratio 

Reasonable ratio interval [0.0046, 0.0246] [0.0431, 0.1081] [0.1040, 0.2603] 

The average of ratio 0.010796 0.064115 0.167070 

The standard deviation of ratio 0.003572 0.017156 0.048748 

1  Reasonable volume ratios 

1.1.2 Spatial normalization 

During the spatial normalization, we simultaneously normalize the voxel resolution and the data dimension. Each 
voxel of the standard space corresponds to a volume of AAB

CDE
× AAB

CDE
× 1.00	mmA  and the standard space 𝒮 ∈

ℝCDE×CDE×CDE , which means 𝒮  represents a volume of 334 × 334 × 512	mmA . 𝒮  has the resolution of high 
resolution CT (this means spatial normalization will not lose information in most cases), and 𝒮 is big enough to 
completely accommodate almost all human lungs.  

There are three steps to spatially normalize a chest CT scan. First, we establish a zero array representing a volume 
of 334 × 334 × 512	mmA, which has the same spatial resolution with the CT scan to be normalized. For example, 
the spatial resolution of a CT is 1 × 1 × 2	mmA, then the zero array should have shape 334 × 334 × 256. Second, 
we align the center of the zero array with the CT scan. Finally, we use Lanczos interpolation to rescale the padded 
array into ℝCDE×CDE×CDE.  

 
Supplementary Fig. 1 Illustration of spatial normalization. (a) shows the original un-normalized CT data. (b) is the array of 
zeros and has the same resolution with (a). (d) presents the tensor after the spatial normalization, which contains the translation 
((a)&(b)→(c)) and resizing ((c)→(d)). (e) gives an illustration of the Lanczos interpolation, which is the reshape algorithm. 

1  Illustration for the spatial normalization 

1.1.3 Signal normalization 

Hounsfield Units (HU) is used to measure the CT signal. However, HU uses water and air to linearly normalize 
the CT signals, and it is suboptimal for observing pulmonary parenchyma: in our dataset, the CT signals for 
healthy pulmonary parenchyma vary from -400 HU to -700 HU.  

In practice, different CT scanners may have default lung windows, and using the default lung window of each 
scanner can help alleviate the scanner biases. The lung window has two quantities: window level (WL) and 
window width (WW), and the signal normalization voxel-wisely transforms the original CT value 𝐼LMNON#PQ  of the 
spatial normalized 𝒮 according to: 

𝐼#LM8PQNRST =
𝐼LMNON#PQ − WL

WW , (1) 

In other words, the signal normalization linear changes the data based on the default lung window of each scanner, 
which can help alleviate the scanner signal biases. 



1.1.4 CT scans with contrast agents 

A small number of CT scans (148 CT scans) were collected after the injection of the contrast agents. The CT 
scans with contrast agents are usually from patients with pulmonary embolism, and these contrast agents are to 
identify arteries and veins. But CT scans in order to observe the pulmonary parenchyma do not need contrast 
agents. Thus, the CT scans with contrast agents contain systematic biases from CT scans that DLPE aimed to 
enhance, e.g., CT scans for pneumonia patients. 

We use CT scans with contrast agents as a special test set to evaluate the robustness of DLPE method. If DLPE 
methods can run normally on these biased datasets, it implies that our methods may be suitable for even wider 
scenarios. 

1.2 The 2.5D segmentation algorithm 

The 2.5D segmentation algorithm (or “the 2.5D model”) is an accurate, fast, and robust framework for 3D 
segmentation tasks. Based on the 2.5D model, we achieve human-level segmentations for airways, lungs, heart, 
blood vessels and various COVID-19 lesions. For the segmentations of airways and blood vessels, we customize 
the 2.5D model with special loss functions and training protocol, which are described in details in Supplementary 
Section 1.3 and Supplementary Section 1.4. 

We train different 2.5D models for segmenting different tissues, because different human tissues vary greatly in 
the morphologies and usually need special loss functions and training protocols. 

1.2.1 Intuitions of the 2.5D model 

Nearly all human tissues can be identified with several 2D images. For example, when segmenting airways from 
a CT slice, experienced radiologists only need information from the previous slice, current slice and posterior 
slice. And most lesions and organs can be identified by a single CT slice, like COVID-19 lesions, pulmonary 
nodules, etc. Thus, when segmenting on a 2D CT slice, it is not necessary to input all the 3D data, instead, the 2D 
slice and its adjacent slices contain enough information, from which experienced radiologists annotated the ground 
truths. 

The idea of the 2.5D model is to simplify the 3D segmentation task into 2D segmentation tasks from different 
views, and then fuses these 2D segmentations into the final 3D segmentation. It is true that simplifying the 3D 
task into 2D may lose some information, but the information loss should be neglectable: because the 3D ground 
truth is formed by stacking 2D ground truths, and the fusion of 2D segmentations from different views utilizes 
some 3D information. 

1.2.2 The architecture of the 2.5D model 

The 2.5D model contains three 2D segmentation models, and these three models are responsible for the 2D 
segmentations from x-y (transverse), y-z (coronal) and x-z (sagittal) planes, respectively. In this study, we use the 
2D U-net for 2D segmentations, which performed best in our previous studies for both lung segmentations and 
COVID-19 lesion segmentations [1]. 

The inputs of the 2D models with shape ℝ(YZ[)×CDE×CDE, which is formed by stacking m number of adjacent 2D 
CT slices and n number of guidance channels (see Supplementary Section 1.4). Each 2D model outputs the 
segmentation probability mask in ℝCDE×CDE. 



 
Supplementary Fig. 2. The architecture of the 2.5D segmentation algorithm. The 2.5D model contains three 2D U-net models, 
for x-y (transverse), y-z (coronal) and x-z (sagittal) planes, respectively. The input of each 2.5D model is several adjacent CT 
slices and 0 to 2 number of guidance channels (e.g., high recall mask, high precision mask). The output of each 2.5D model is 
the segmentation probability mask in ℝ𝟓𝟏𝟐×𝟓𝟏𝟐 . We stack the predictions from different views and merge them together to get 
the final 3D segmentation. Because the semantics we want to segment vary greatly in the morphology, we train separate 2.5D 
models for segmenting lungs, heart, airways, blood vessels, COVID-19 lesions visible under the lung window and COVID-19 
lesions after DLPE enhanced. And for different semantics, we customize hyper-parameters, loss functions and the training 
protocols. 

2  The architecture of the 2.5D model 

Here we give the mathematical formulation of the 2.5D model. The inputs of the 2.5D models is the normalized 
machine-agnostic tensor with shape ℝCDE×CDE×CDE. The 2.5D model contains three 2D U-Nets, which are denoted 
as 𝑓ab for segmenting x-y planes, 𝑓bc for segmenting y-z planes, and 𝑓ac for segmenting x-z planes. The input for 
𝑓ab  is 𝒫ab , the input for 𝑓bc  is 𝒫bc , and the input for 𝑓ac  is 𝒫ac . 𝒫ab , 𝒫bc  and 𝒫ac  have the same shape and 
dimensions, which is ℝ(YZ[)×CDE×CDE , which is formed by stacking m number of adjacent CT slices and n 
numbers of guidance channels. All 2D models are binary prediction models, and the outputs of the 2D models are 
the probability map in shape ℝCDE×CDE, which indicates the probabilities of the pixels to be positive semantic. By 
stacking the probability maps, each 2D model outputs a 3D probability mask shaped ℝCDE×CDE×CDE. We denote 
the probability mask generated by 𝑓ab as pfab , and similarly we have pfbc and pfac. We then use a combination 
function 𝑔 to fuse these three probability masks into the final binary mask. The final 3D binary mask can be 
presented as: 

pf = 𝑔(pfab, pfbc, pfac). (2) 

In this study, we have three different types of combination function 𝑔. The first type is to get the final binary 
segmentation mask, and in this case 𝑔 is defined as pfab + pfbc + pfac > 2. This decision is based on our previous 
study [1], in which we tried many 𝑔 to merge probability masks into binary prediction, including learnable weights, 
using adjacent probabilities to determine the semantic of the central voxel, multiplications then take the threshold, 
etc. We found that simply summing up and taking the threshold performed best, and learnable weights are likely 
to cause overfitting (Supplementary Fig. 3). The second type is to get the high recall mask, and the third type is 
to get the high precision mask. The second and the third types will be discussed in details in Algorithm 4 in the 
Supplementary Section 1.4. 



 
Supplementary Fig. 3. In general, we find that a learnable 𝒈 is likely to cause strong overfitting, while simply summing up 
and taking the threshold can get a robust and satisfactory segmentation. In the above figure, 𝒈 is defined as 𝐩l𝐱𝐲 + 𝐩l𝐲𝐳 +
𝐩l𝐱𝐳 > 𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝, and the figure shows how the F1-score (equals to dice in binary segmentation) of COVID-19 lesions 
(visible under the lung window) changes with the threshold. The best threshold on the training set is 2.96, while the best 
threshold for the test set is 2.00. Thus, if we let the threshold be learnable, it is likely to result in overfitting. What is interesting 
is that the best threshold exactly equals 2, and changing the threshold from 2 to 2.8 changes less of the F1-score. We observe 
very similar behaviors on the lung segmentations and the heart segmentations. Thus, we use 𝐩l𝐱𝐲 + 𝐩l𝐲𝐳 + 𝐩l𝐱𝐳 > 𝟐 for the 
final binary segmentation. 

3  Learnable combination functions tend to overfitting 

1.2.3 Performance evaluation metrics 

The 2.5D models are segmentation models, and the dice score, recall, precision are commonly used metrics for 
the model evaluations. These metrics are defined as follows. 

The dice score, or dice, or dice similarity coefficient, is defined as: 

Dice:=
2|𝑌 ∩ 𝑌�|
|𝑌| + |𝑌�| ,

(3) 

Here 𝑌 and 𝑌� are two sets, i.e., 𝑌 is the ground truth binary mask for the positive semantic and 𝑌� is the predicted 
binary mask for the positive semantic. In binary classification, dice equals to the harmonic average of precision 
and recall (the F1-score):  

Dice =
2

1
recall +

1
precision

(4) 

All dice scores in this study are calculated at a scan-level. 

In order to analyze the lesions segmented by the 2.5D models, we quantify the radiomics and use the Pearson 
Correlation Coefficient (PCC), the mean absolute error (MAE) and the root mean square error (RMSE).  

PCC =
𝑐𝑜𝑣(𝑍, 𝑍�)
𝜎�𝜎��

, (5) 

where 𝑍 is a variable, like a radiomic, and 𝑍�  is another variable, like the SGRQ score. 𝑐𝑜𝑣(𝑍, 𝑍′) gives the 
covariance between 𝑍 and 𝑍′. 𝜎�, 𝜎�� are the standard deviation of 𝑍 and 𝑍′, respectively.  

MAE =
1
𝑛
� |𝑦N − 𝑦N�|

#

N�D
, (6) 

RMSE = �
1
𝑛
� (𝑦N − 𝑦N�)E

#

N�D
, (7) 

where 𝑦N is the target feature for the 𝑖-th patient, like the PaO2/FiO2 ratio, and 𝑦N� is the predicted value. 

In addition, we present a new metric focusing on the segmentations of tiny airways and blood vessels (region 
discovery dice, see Algorithm 3). 



1.2.4 Important setups for the 2.5D models 

In our previous study [1], we found that the 2.5D model is not sensitive to the learning rate, batch size and the 
optimizer when segmenting COVID-19 lesions and the lungs. Thus, for all 2.5D models in this study, we fix the 
batch size to 64, learning rate to 10�B and use the Adam optimizer. However, our previous study [1] found that 
the 2.5D models are usually sensitive to the following setups, which are shown in the Supplementary Table 2: 

Supplementary Table 2 The setups that have significant influences on the model performance. The first row is the setups for 
the 2.5D model, and the other rows give the candidate setups. Columns from left to right: the loss function for the 2D U-net 
(feature enhanced loss only applicable for segmentations of airways and blood vessels); the adjacent CT slices, 0 means that 
the CT slice needs to be segmented, −𝑘 means the previous 𝑘 CT slice and +𝑘 means the posterior 𝑘 CT slice; the training 
protocol is explained in Supplementary Section 2.5; the “initial features” means the number of convolutional kernels for the 
first layer of the U-net. The highlighted candidates are the defaulted setups, which were the best setups when segmenting the 
COVID-19 lesions in our previous study [1]. 

Loss function Adjacent slices Training protocol Initial features 

Dice loss (0, ) Fluctuate 8 

Cross-entropy loss (−1, 0, +1) Direct converge 16 

Feature enhanced loss (−5,−2, 0,+2, +5	)  32 

 (−8, −5,−2, 0,+2, +5	, +8)   

2  Important setups for the 2.5D model 

1.2.5 Training protocols for the 2.5D model 

For some tasks, the 2.5D model has a high risk of sticking to the local minimum. Thus, we present the fluctuate 
training protocol in order to help the model converge to better solutions. Fluctuate training protocol changes the 
global class-balance weights of the loss function, which changes the relative penalties between false predictions 
of classes, thus drags the model out of the local minimum. By comparison, the “direct converge” training protocol 
follows the traditional training procedures: train the model until the loss is converged or the model starts to over-
fitting. The fluctuating training protocol needs 3-5 times longer training time, thus, if there is no significant 
improvement, we will use the direct converge training protocol. 

 
Algorithm 1: Direct converge training protocol 
Inputs: initial model, dataset, loss function 
Output: trained model 
       1. training set, validation set, test set = dataset_manager(dataset) 
       2. converged = False 
       3. while not converged: 
       4.        model_trainer(initial model)                                                  # Here train the initial model for an epoch 
       5.        if loss on validation set start to increase: 
       6.                converged = True 
       7.        if loss on training set is not decrease: 
       8.                converged = True 
       9. return initial model 

1  Direct converge training protocol 
Algorithm 2: Fluctuate training protocol 
Inputs: initial model, dataset, loss function 
Output: trained model 
       1. training set, validation set, test set = dataset_manager(dataset) 
       2. sub-optimal model = Direct converge training protocol(initial model, dataset, loss function) 
       3. while recall < 𝟐 precision:                                                             # Calculated on the validation set 
       4.        false negative penalty = 𝟏. 𝟎𝟓 false negative penalty              # Change the loss function to give more penalties 
       5.        model_trainer(sub-optimal model)                                          # Here train the model for an epoch 
       6. while precision < 𝟐 recall:                                                             # Calculated on the validation set 



       7.        false positive penalty = 𝟏. 𝟎𝟓 false positive penalty                # Change the loss function to give more penalties 
       8.        model_trainer(sub-optimal model)                                          # Here train the model for an epoch 
       9. reset the loss function to the original one                                       # The original is class-balanced 
      10. trained model = Direct converge training protocol(sub-optimal model, dataset, loss function) 
      11. return trained model 

2  Fluctuate training protocol 

1.2.6 Workflow for seeking optimal setups for the 2.5D models 

There are six 3D segmentation tasks in our study: the segmentations for the heart, lungs, airways, blood vessels, 
COVID-19 lesions visible under the lung window, and COVID-19 lesions after DLPE enhanced. All of them use 
the 2.5D segmentation algorithm, but they have different optimal hyper-parameters, and apply different loss-
functions and training protocols. 

In order to seek optimal setups for these 2.5D models, we randomly select 200 CT scans for the segmentation 
problems of lungs, the heart, airways, blood vessels and COVID-19 lesions visible under the lung window. And 
use all the 173 CT scans from the COVID-19 survivors. 

For the lesions discovered by DLPE method, we use a human-in-the-loop annotation approach. Initially, we do 
not have the pixel-level ground truth and only have the region of interest level ground truth. This makes the dice 
score inappropriate to evaluate the performance of the model. Thus, we use the radiologists’ rating to evaluate the 
performance of the model.  

Supplementary Table 3 The datasets and the performance metrics for seeking the best loss function, training protocol and 
hyper-parameters. For sub-visual lesions detected by DLPE method, we use a human-in-the-loop annotation approach. Thus, 
initially there is no pixel-level ground truth and radiologists directly rate models with different setups.  

Target semantic Performance measurement Dataset size Cross-validation 

Lungs Dice 200 5-fold 

Heart Dice 200 5-fold 

Airways Dice 200 5-fold 

Blood vessels Dice 200 5-fold 

COVID-19 Lesions (lung window) Dice 200 5-fold 

COVID-19 Lesions (DLPE enhanced) Radiologists’ rating 173 10-fold 

3  Datasets and metrics for seeking optimal setups 
We use a greedy approach to approximate the optimal setups. There are four setups to be determined, i.e., the loss 
function, adjacent slices, training protocol and initial features. The greedy approach splits the problem into four 
sub-problems: for each of the four setups, finding the best setup among its candidates while the other three are 
fixed to the default value (highlighted in Supplementary Table 1). Combining the output of the four sub-problems, 
we get the final setups. Thus, for each 2.5D model, we need to evaluate at most 12 setups. 

In general, refining these setups do improve the dice performance compared to the default setup for the 2.5D 
model, and the improvement is usually around 0.1 of dice score. The 2.5D method is quite stable and robust, and 
the workflow is able to find good setups for the 2.5D models to get satisfactory segmentations.  

1.2.7 The optimal setups for the 2.5D models 

We train eight 2.5D models for the six 3D segmentation tasks. All the eight 2.5D models use the batch size of 64, 
learning rate of 10�B and use the Adam optimizer. The setups and other details for the eight 2.5D models are 
presented in Supplementary Table 4.  
Supplementary Table 4 The setups for the eight 2.5D models in our study. The models are named by their segmentation 
target. In the “Loss function” column, “Dice” means that the 2D U-net uses the Dice loss, and the same logic holds for other 
loss function names. Guidance channel is not a hyper-parameter and is only applicable for the second-stage model of the two-
stage segmentation protocol, thus, other 2.5D models are “NA (not applicable)”. 

Model name Loss function Adjacent slices Guidance channel Training protocol Initial features 

Lung Dice (−1, 0,+1) NA Direct converge 16 

Heart Dice (−1, 0,+1) NA Direct converge 16 



Airway-first-stage Feature enhanced (−5, −2, 0,+2,+5	) NA Fluctuate 32 

Airway-second-stage Feature enhanced (−1, 0,+1) High recall, high precision Fluctuate 16 

Blood vessel-first-stage Feature enhanced (−1, 0,+1) NA Fluctuate 16 

Blood vessel-second-stage Feature enhanced (−1, 0,+1) High recall, high precision Fluctuate 16 

COVID-19-visible Cross-entropy (−5, −2, 0,+2,+5	) NA Direct converge 32 

COVID-19-DLPE Cross-entropy (−1, 0,+1) NA Direct converge 16 

4  Optimal setups for the 2.5D models 

1.2.8 The visual interpretation methods for the 2.5D models 

The visual interpretation helps the understanding of the models and guides the algorithm design. Grad-Cam [21] 
and its variants are widely used techniques for the visualizations of convolutional neural networks (CNN). The 
intuition of Grad-Cam is that the locations in the feature maps reflect the locations of the information sources: the 
pixel at the center of the feature map is influenced more by center parts of the inputs, while pixels at the upper 
parts of the feature maps are influenced more by the upper parts of the inputs, etc. Using this property, Grad-Cam 
is able to visualize the discriminative regions for the outputs.  

Different layers reflect different features, and it is very flexible to get the visual interpretations based on Grad-
Cam, especially for segmentation models. Vinogradova et al [22] applied Grad-Cam on the bottleneck layers of 
the 2D U-net for visualizing discriminative regions. On the other hand, applying Grad-Cam on the last 
convolutional layer of the 2D U-net reflects the feature importance map. In the 2D U-net, the last convolutional 
feature maps have the same width and height with the outputs. Each pixel of the last convolutional feature maps 
has already gathered features for the final output, and the U-net only needs to apply a simple 1 × 1 convolution 
on the last convolutional feature maps to output the final predictions. Thus, if a pixel in the last feature maps 
strongly affects the final predictions, it implies that this pixel gathers important features. Similar ideas have been 
used by Kristoffer et al [43] for the feature importance map. 

Here we present the mathematical definitions for the discriminative regions and the feature importance map. The 
2.5D model merges 2D predictions from three views, i.e., the x-y plane, the y-z plane and the x-z plane. For 
simplicity, the visual interpretation focuses on the predictions from the x-y planes. The 2D segmentation model 
for x-y planes outputs the semantic map with shape ℝE×CDE×CDE, which is before softmax. The first channel is for 
the negative semantic, denoted as 𝑃#; the second channel is for the positive semantic (like the COVID-19 lesions), 
denoted as 𝑃$. After softmax, we have the probability map for positive semantic, which with is shaped 512 × 512 
and is denoted as 𝑃. The stack of feature maps for a convolutional layer is denoted as 𝐴. The number of feature 
maps for 𝐴 equals the number of the convolutional kernels, and the 𝑘-th feature map is denoted as 𝐴 .  

Segmentation is a dense prediction task, thus the 2D segmentation task is split into 512 × 512 numbers of smaller 
classification tasks. For each classification task, we can use the Grad-Cam method to calculate discriminative 
regions and the feature importance map. Similar with [21], the 𝑃𝑖𝑥𝑒𝑙_𝐻𝑒𝑎𝑡_𝑀𝑎𝑝 for the pixel at row 𝑖 column 𝑗 
is defined as follows: 

𝑃𝑖𝑥𝑒𝑙_𝐻𝑒𝑎𝑡_𝑀𝑎𝑝 ≝ 𝑅𝑒𝐿𝑈(�𝛼N° 
 

𝐴 ) (8) 

Where 𝑅𝑒𝐿𝑈(∙) means replace negative values in the input tensor with zero, and 𝛼N°   is a real number given by: 

𝛼N°  = sum(
𝜕(𝑃N°

$ − 𝑃N°#)
𝜕𝐴  ) (9) 

Here the sum(∙) function means summing up all elements of the input tensor.  

Because we aim to visualize how the model predicts the positive semantic, we define the final heatmap to be the 
weighted superposition of all 𝑃𝑖𝑥𝑒𝑙_𝐻𝑒𝑎𝑡_𝑀𝑎𝑝 according to the probability 𝑃N° . The final heatmap is given as 
follows: 
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And we have: 
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𝜕𝐴  ) ≝ 𝛽  (12) 

Here the exp(∙) function means getting the exponent for every element of the input tensor. With equation (12), 
the final heatmap can be easily calculated by: 

𝐹𝑖𝑛𝑎𝑙_𝐻𝑒𝑎𝑡_𝑀𝑎𝑝 = 𝑅𝑒𝐿𝑈(�𝛽 
 

𝐴 ) (13) 

As explained previously, if 𝐴  is the feature maps of the bottleneck layer, then the heatmap shows the 
discriminative regions; if 𝐴 is the stack of feature maps of the last convolutional layer, then the heatmap gives the 
feature importance map. In Supplementary Section 1.4.5, we will use these visual interpretation methods to 
analyze our models. 

1.2.9 A simple method to evaluate the segmentations of 2.5D models 

The 2.5D model is not fed any 3D structure information during training and the fusion of different views. During 
the training and the fusing of different views, the 2.5D model only receives information from 2D cross-sections, 
and has no information about the 3D long-range correlations of the human tissues. For example, during training, 
the model receives no information about the 3D visualization of the lung mask, which has 4-7 parallel grooves 
caused by the ribs. Similarly, the model does not know that the 3D visualizations of the blood vessels and airways 
are tree-like structures with affine self-similarity. The model also does not know that the heart, airways and blood 
vessels only have one 3D connective component. 

Thus, if the 3D segmentation by the 2.5D model shows natural 3D structures, it is likely that the segmentation is 
of good quality. Supplementary Fig. 4 gives illustrations about the “natural structure” for the lungs, airways, blood 
vessels and the heart. 

 
Supplementary Fig. 4 The human-comparable segmentation results of the 2.5D models on a normal Chest. (a) The lung mask 
should see clear parallel grooves (caused by the rib) on the surface. (b) The surface of the heart mask should be relatively 
smooth. (c, d) Blood vessels and airways are tubes with tree-like structures. 

4  Illustrations for the 3D morphologies of the segmentations 

1.2.10 Region discovery dice to evaluate the robustness of the 2.5D models 

In our previous study [1], the 2.5D model was proved to have excellent robustness as it can accurately segment 
COVID-19 lesions and lung masks for chest CT scans from different countries. In this study, we focus on the 
robustness of the airways and the blood vessels. 



We use the region discovery dice (RDD) to measure the robustness. Two reasons lead to the RDD. First is that 
the dice score cannot quality the segmentation performance for tiny structures. As discussed in Supplementary 
Section 1.3.3, if a model neglects the smallest 50% airway cross-sections, it can still reach a dice score of 0.9659 
in our datasets. 

The second reason is that the annotation styles for the blood vessels on CT scans with contrast agents are quite 
different. As explained earlier, we will evaluate the robustness of the 2.5D model on the CT scans with contrast 
agents. We observe that the annotations of the blood vessels near the heart are quite conservative and rough. This 
is because for the CT scans with contrast agents, radiologists aim to separate arteries and veins, and near or inside 
the heart the arteries and veins are very close to each other. Thus, the ground truths for these CT scans near the 
heart may overlook ambiguous regions even if they are clear blood vessels, and the traditional dice score (equation 
(3)) is suboptimal here.  

The “region discovery dice (RDD)” is very similar with the dice score: dice score treat all voxels as equal while 
RDD treat all connected components as equal. In the dice score, we calculate each voxel to see whether the voxel 
is predicted correctly. In RDD, we calculate each connective component in x-y planes (as radiologists annotated 
on x-y planes), and see whether the prediction and the ground truth have overlap. The vale of RDD is between 0 
and 1. When dice score is 0, RDD is always 0, and when dice score is 1, RDD is always 1. RDD is defined as 
follows: 

 
Algorithm 3: Region discovery dice 
Inputs: predicted 3D binary mask (𝐘′), ground truth 3D binary mask (𝐘)  
# 𝒀′ and 𝒀 are binary arrays both with shape [512, 512, 512] 
Output: Region discovery dice 
       1. num_connected_regions_Y = 	𝟎                                                             # Calculated on the x-y planes 
       2. num_connected_regions_Y’ = 	𝟎                                                            # Calculated on the x-y planes 
       # num_connected_regions_Y + num_connected_regions_Y’ is similar with |𝒀| + |𝒀�| in equation (𝟑) 
       3. num_overlap_region_count = 	𝟎                                                             # Calculated on the x-y planes 
       # num_overlap_region_count is similar with 𝟐|𝒀∩ 𝒀�| in equation (𝟑) 
       4. for z in range(𝟎,𝟓𝟏𝟐):  
       5.        list_ connected_regions_Y = get_connected_component(Y[:, :, z])  
       6.        list_ connected_regions_Y’ = get_connected_component(Y’[:, :, z]) 
       7.        num_connected_regions_Y += len(list_ connected_regions_Y) 
       8.        num_connected_regions_Y’ += len(list_ connected_regions_Y’) 
       9.        for connected_region in list_ connected_regions_Y: 
       10.                for connected_region’ in list_ connected_regions_Y’: 
       11.                          if connected_region ∩ connected_regions’ is not None: 
       12.                                    num_overlap_region_count += 	𝟏 
       13.                                    break 
       14.        for connected_region’ in list_ connected_regions_Y’: 
       15.                for connected_region in list_ connected_regions_Y: 
       16.                          if connected_region’ ∩ connected_regions is not None: 
       17.                                    num_overlap_region_count += 	𝟏 
       18.                                    break 
       19. return num_overlap_region_count / (num_connected_regions_Y + num_connected_regions_Y’) 
        # Same logic with equation (𝟑) 

3  Region discovery dice 

1.3 The feature-enhanced loss 

In the main text, we analyzed the relationship between the area 𝐴 (the area of the connected component on x-y 
planes, which is an integer) and the frequency 𝑓, and found that the 𝑓-𝐴 relationship follows the power law 
function, which is 𝑓~𝐴�À: 

For blood vessels, we analyzed 1594446 regions and find 𝛾 = 1.92: 



ln(𝑓) = −1.92	ln(𝐴) + 17.1, 𝑟 = 0.9944 (14) 

For airways, we analyzed 420667 regions and find 𝛾 = 1.75: 

ln(𝑓) = −1.75	ln(𝐴) + 15.0, 𝑟 = 0.9961 (15) 

For airways, the average region area is 73.70 pixels, while the median region area is 21 pixels. For blood vessels, 
the average region area is 81.06 pixels, while the median region area is 19 pixels. The significant difference in 
the average and the median implies that most regions are small regions but the total volume of small regions are 
neglectable. This is caused by the properties of the power-law function. 

1.3.1 Small airways and blood vessels are neglectable in the volume 

The total volumes for airways and blood vessels within cross-section area range [𝐴Ã8PQQ, 𝐴QPMOS] is given by: 

𝒗𝒐𝒙𝒆𝒍_𝒗𝒐𝒍𝒖𝒎𝒆 � 𝒇(𝑨)
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𝑨𝒔𝒎𝒂𝒍𝒍
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Here the 𝑣𝑜𝑥𝑒𝑙_𝑣𝑜𝑙𝑢𝑚𝑒  equals to AAB
CDE

× AAB
CDE

× 1.00	mmA , which is the normalized spatial resolution. For 
simplicity, we change the summation Σ into integral, as the resolution is quite high and the interval of Σ is very 
small. 𝑓(𝐴) is the count of how many regions have 𝐴 pixels. We define “small region” as the regions with the 
area less than 𝑎. 

In the power-law relationship which is ln(𝑓) = −𝛾 ln(𝐴) + 𝑐 or 𝑓 = 𝑐Ô𝐴�À, 𝛾 = 2 is a watershed: 
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And for 1 < 𝛾 < 2 we have: 
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Note that in the 𝑓-𝐴 relationship, 𝛾 = 1.92	for blood vessels and 𝛾 = 1.75 for airways, which are smaller than 2. 
Then, equation (17) shows that, the total volumes for small airways and small blood vessels are neglectable 
compared to the total volumes of the large airways and large blood vessels. 

1.3.2 Most regions are small 

Despite that small regions constitute a neglectable volume, most regions are small regions. For 1 < 𝛾, we have: 
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Equation (19) means that the number of small regions is much larger than that of big regions when 𝜀 is small. 

On our datasets, the volume summation of the smallest 50% (regions with area that is less or equals to the median 
area) is only 6.60% of the total volume for airways, and is only 6.11% of the total volume for blood vessels. 

1.3.3 Dice loss and cross-entropy loss are sub-optimal for blood vessels and airways 

The above analysis indicates that the traditional voxel-wise loss and performance metrics like dice score may 
neglect small airways and blood vessels. Consider two segmentation models, model A and model B, where model 
B is the perfect model while model A is perfect for bigger airways but cannot detect any of the small airways with 
cross-section area that is less or equals to 21 pixels (this means the final segmentation of model A will neglect 
50% of small regions when viewing on the x-y plane).  

A good loss function should give Model B much less loss than model A. However, the cross-entropy loss and the 
dice loss for model A and model B are nearly the same. 

Take the dice loss as an example. Let G be the ground truth mask, and P be the prediction mask, then the dice loss 
is defined as: 



𝐷𝑖𝑐𝑒_𝐿𝑜𝑠𝑠 = 1 −
2|G ∩ P|
|G| + |P|

(20) 

The dice loss ranges from [0, 1]. For the model B, which is the perfect model, the dice loss is 0. The model A 
neglects all small airways with cross-section less than 21 pixels, and these small airways constitute 6.60% of the 
total volume for airways. Thus, if the precision for model A is perfect, the dice loss for the model A is: 

𝐷𝑖𝑐𝑒_𝐿𝑜𝑠𝑠(𝑀𝑜𝑑𝑒𝑙	𝐴) = 1 −
2 × 0.934
1 + 0.934 = 0.0341 (21) 

Dice loss of 0.0341 is extremely small, and by comparison, for airways, the dice losses between the human 
annotations of the same CT from different radiologists are usually around 0.05. This means that using the dice 
loss hampers the model to learn fine structures, as the model only needs to detect big airways or blood vessels. 
Similar logic holds for the cross-entropy loss.  

1.3.4 Voxel-wise weight balance  

We add a voxel-wise weight on the cross-entropy loss to balance the problem of neglecting small airways and 
small blood vessels. The weights change the penalties of the false positive and the false negative: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑙𝑜𝑠𝑠 = −𝑤"# × ln(𝑝) × 𝑝� − 𝑤"$ ln(1 − 𝑝) × (1 − 𝑝�) (22) 

where 𝑝 is the predicted probability that the voxel is positive, and 𝑝� is the ground truth probability that the voxel 
is positive. 𝑤"# regulates the false negative penalty, while 𝑤"$ regulates the false positive penalty. As the ground 
truth is binary, we need to define a 𝑤"# if the voxel is positive (𝑝� equals to one), and define a 𝑤"$ if the voxel is 
negative ((1 − 𝑝�) equals to one). 

1.3.5 𝒘𝒇𝒏 to balance each branching level 

We let the average 𝑤"# inside a region only depend on the region area, i.e., the average 𝑤"# inside a region with 
area 𝐴 is denoted as 𝑤"#(𝐴). The idea for 𝑤"# is to give equal focus for every branching level, because airways 
and blood vessels have self-affine similarities, which implies that each branching level contains a similar amount 
of information. As discussed in the main text, the cross-section area for airways and blood vessels at branching 
level 𝑙, roughly satisfies the relationship of 𝐴Q = 𝐴Ô𝛼Q, here 0 < 𝛼 < 1. Thus, the area between branching level 𝑖 
and 𝑖 + 1 should belong to [𝐴Ô𝛼NZD, 𝐴Ô𝛼N), and the summation of 𝑤"# for all voxels of branching level 𝑖 and 𝑖 +
1 is given by: 

Ø 𝑓𝑤"#(𝐴)𝐴
çèé¶

çèé¶×(
𝑑𝐴 (23) 

And we want equation (23) to be a constant for all branching level 𝑖. A simple solution is to let: 

𝑤"#(𝐴) = 𝑐D𝐴À�E (24) 

Where 𝑐D is a constant. Note that 𝑓 = 𝑐Ô𝐴�À, and then equation (23) reduced to: 
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Thus, 𝑤"#(𝐴) = 𝑐D𝐴À�E makes the penalties for each branching level to be −𝑐Ô𝑐Dln	(𝛼), which is a constant. The 
total penalty weights for positives and negatives should be class-balanced, thus, once 𝑤"#(𝐴) is determined, we 
can get the total summation of 𝑤"$: 

� 𝑤"#
PQQ	$LÃNºN+SÃ
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PQQ	#SOPºN+SÃ

(26) 

1.3.6 𝒘𝒇𝒏 and 𝒘𝒇𝒑 for the feature enhanced loss 

𝑤"#  determines the average 𝑤"#  for each cross-section region, we then specify the spatial distribution of 𝑤"# 
inside each region. We have two intuitive plans: Plan A is to let each voxel in the region have the same weight, 
i.e., each voxel has weight 𝑤"#; Plan B is to let each voxel have weight D

E
𝑤"# , and equally increase the weights 

for boundary voxels so that the average weight becomes 𝑤"#. 



Similarly, we try two plans for the distribution of 𝑤"$. Denote the average 𝑤"$ for all negative voxels to be 𝑤"$, 
and in this study, we set 𝑤"$ to 1. Plan C is to let each negative voxel has the same 𝑤"$, i.e., 1; Plan D is to let 
each negative voxel has weight D

E
, while equally increase the weights for outer surface of the positive regions so 

that the average weight become 1.  

When using the “direct converge” training protocol and the airway segmentation datasets with 200 CT scans, we 
find that Plan D makes the model slip into local optimums, while using Plan B can significantly accelerates the 
training speed (Supplementary Table 5).  

Supplementary Table 5 Evaluation of the spatial distributions of 𝒘𝒇𝒏 and 𝒘𝒇𝒑. Plan A and Plan B are for 𝒘𝒇𝒏, while Plan C 
and Plan D are for 𝒘𝒇𝒑. We evaluate these plans on the airway segmentation datasets with 200 CT scans. The following table 
shows the convergence speed and the converged training loss (the average training loss for each sample of the 2D model for 
x-y planes). We find that Plan B + Plan C outperforms other combinations. 

 Plan A + Plan C Plan A + Plan D Plan B + Plan C Plan B + Plan D 

Epochs to converge 137 161 70 138 

Converged training loss 748.7 3228.2 577.4 2715.7 

5  Comparisons between the spatial distributions of the loss weights 
Thus, the spatial distribution for 𝑤"# follows Plan A, and the 𝑤"$ fixed to 1 for all negative voxels. We then have 
the final feature-enhanced loss, which is the equation (1) in the main text. Supplementary Fig. 5 gives direct 
impressions for 𝑤"# and 𝑤"$. 

 
Supplementary Fig. 5 Illustrations of the weights for the feature-enhanced loss. Left shows the distribution of 𝑤"#. For each 
region in the cross-section image, the average 𝑤"# for each region follows 𝑤"#(𝐴) = 𝑐D𝐴À�E, while for the boundary voxels, 
we distribute more penalty weights in order to improve the convergence speed during training. The constant 𝑐D is to ensure the 
total weights for positives and negatives are class balanced. Right shows the distribution of 𝑤"$. For every negative voxel, the 
𝑤"$ = 1. 

5  Illustrations for the feature-enhanced loss 

1.4 The two-stage segmentation protocol 

1.4.1 Intuitions of the two-stage segmentation protocol 

The segmentations of the airways and the blood vessels are large-scene-small-object problem. For example, the 
average airway volume is 41.7	cmA, which only constitutes 0.073% the total volume of the standard embedding 
space (334 × 334 × 512	mmA). For the large-scene-small-object problem, the spatial scales for the features of 
the background and the target vary greatly, thus the model has difficulties to simultaneously extract features for 
background and the target. In addition, the target is very small in the size, which means that its features may be 
influenced more by noise and thus difficult to be extracted by the model. This conforms to our experimental 
results: the 2.5D model with feature-enhanced loss achieves state-of-the-art performance, however, the 
segmentations for the tiny structures are not very natural: the segmented boundaries may zigzag, and are not 
smooth or continuous, and the dice performance for branching 𝑙𝑒𝑣𝑒𝑙 > 5 is 0.52 for tiny airways and 0.80 for 
tiny blood vessels. 

Recent works for the large-scene-small-object problems usually follow the idea of multiscale fusion and the 
coarse-to-fine approach. Multiscale fusion tries to combine the low-level and the high-level features, which is one 
of the most intrinsic reasons for the success of the U-net architecture: the low-level feature map will be 



concatenated to the high-level feature maps. However, the 2.5D model itself does not use the coarse-to-fine 
approach. 

The two-stage segmentation protocol is an instance of the coarse-to-fine approach. The first-stage is a coarse 
model, which outputs two coarse masks: a high recall mask and a high precision mask. The coarse masks narrow 
down the search space of the second-stage model by thousands of times. Thus, guided by these coarse masks, the 
second-stage model is able to output the human comparable segmentations. 

1.4.2 The calculation of the high recall mask and the high precision mask 

The high recall mask is gained by picking out a large number of voxels that are predicted with highest probabilities, 
while the high precision mask is gained by picking out a small number of voxels that are predicted with highest 
probabilities. The segmentations of the lungs and the heart are much easier, and we find that despite the volumes 
for airways and blood vessels of different people varies a lot, their relative volume ratio to the lungs and to the 
heart is stable. Supplementary Table 6 gives the relative ratios and their standard deviations, and the table shows 
that for airways, we should use the lung volume to get the high recall mask and the high precision mask, while 
for blood vessels we should use the heart volume. 

Supplementary Table 6 The relative volume ratio for airways and blood vessels to lungs and to the heart on our datasets. The 
first row shows the average of the relative volume ratio for these tissues. The second row shows the standard deviations of 
these ratios. The third row shows the second row dividing the first row. From the third row we know that the volume ratio of 
airways to lungs is more stable than the ratio to the heart, while the volume ratio of blood vessels to the heart is more stable 
than the ratio to the lungs. Thus, for airways, we should use the lung volume to get the high recall mask and the high precision 
mask, while for blood vessels we should use the heart volume. 

 Airways to lungs Blood vessels to lungs Airways to heart Blood vessels to heart 

Average volume ratio 0.01102 0.06528 0.07251 0.39433 

Standard deviation 0.00354 0.01756 0.03593 0.08328 

Std divide Average 0.32206 0.26905 0.49556 0.21121 

6  Volume ratios for airways and blood vessels 
In our dataset, at the scan-level, when discarded the largest 1% and the lowest 1%, the airway volume divides the 
lung volume varies in [0.00453, 0.02458] , while for blood vessels, the volume ratio to the heart varies in 
[0.2748, 0.7030].  

Thus, for airways, the high recall mask picks out 0.02458 of the lung volume, and the high precision mask picks 
out 0.00453 of the lung volume. For blood vessels, the high recall mask picks out 0.7030 of the heart volume, 
and the high precision mask picks out 0.2748 of the heart volume. Supplementary Fig. 6 gives illustrations of the 
high recall mask and the high precision mask. 

Experiments show that the high recall masks have an average scan-level recall of 0.95 at the precision 0.56, while 
the high precision masks have an average scan-level precision of 0.93 at the recall 0.65. Thus the high recall mask 
and the high precision mask give good guidance for the second-stage model, and the second-stage model only 
needs to focus and refine for very small regions. 

 
Algorithm 4: Combination functions for the high recall and the high precision masks 
Inputs: rescaled CT, the first-stage model, lung segmentation binary mask (𝐋), heart segmentation binary mask (H) 
# Rescaled CT, lung mask L and heart mask H are arrays in shape [512, 512, 512]. 
# The lung mask L is predicted or provided by the ground truth. 
Output: High recall mask, High precision mask 
# The outputs are binary arrays 
       1. 𝐩l𝐱𝐲, 	𝐩l𝐲𝐳, 	𝐩l 𝐱𝐳 =	first-stage model(rescaled CT)  
       # The probability maps for the three views. 
       2. 𝐏 = (𝐩l𝐱𝐲 + 	𝐩l𝐲𝐳 + 	𝐩l 𝐱𝐳)/𝟑 
       # 𝑷 is the probability map combines three views 
       3. if first-stage model.target is “airways”: 
       4.        lung_voxel_count = 	𝐬𝐮𝐦(𝐋)  
                  # Calculate the number of voxels inside the lungs 
       5.        voxels_for_high_recall = 𝐢𝐧𝐭(𝟎.𝟎𝟐𝟒𝟓𝟖× 𝐥𝐮𝐧𝐠_𝐯𝐨𝐱𝐞𝐥_𝐜𝐨𝐮𝐧𝐭) 



       6.        voxels_for_high_precision = 𝐢𝐧𝐭(𝟎.𝟎𝟎𝟒𝟓𝟑× 𝐥𝐮𝐧𝐠_𝐯𝐨𝐱𝐞𝐥_𝐜𝐨𝐮𝐧𝐭) 
       7. else:  
       8.        # This means the target is “blood vessels” 
       9.        heart_voxel_count = 	𝐬𝐮𝐦(𝐇)  
                  # Calculate the number of voxels inside the heart 
       10.       voxels_for_high_recall = 𝐢𝐧𝐭(𝟎.𝟕𝟎𝟑𝟎× 𝐡𝐞𝐚𝐫𝐭_𝐯𝐨𝐱𝐞𝐥_𝐜𝐨𝐮𝐧𝐭) 
       11.       voxels_for_high_precision = 𝐢𝐧𝐭(𝟎.𝟐𝟕𝟒𝟖× 𝐡𝐞𝐚𝐫𝐭_𝐯𝐨𝐱𝐞𝐥_𝐜𝐨𝐮𝐧𝐭) 
       12. probability_list = flatten_then_sort(𝐏) 
       # The probability_list is from large to small 
       13. threshold high recall = probability_list[voxels_for_high_recall] 
       14. threshold high precision = probability_list[voxels_for_high_precision] 
       15. High recall mask = P > threshold high recall 
       16. High precision mask = P > threshold high precision 
       17. return High recall mask, High precision mask 

4  Calculate the high recall and the high precision masks 

 
Supplementary Fig. 6 Cross-section images from the x-y plane of the high recall mask and the high precision mask for the 
airways. (a) is the rescaled CT with the red lines showing the boundaries of the ground truth. The white regions in (b) give the 
high recall mask, with red lines showing the boundaries of the ground truth. The white regions in (c) give the high precision 
mask, with red lines showing the boundaries of the ground truth. 

6  The high recall and the high precision masks 

1.4.3 Get the final segmentation 

In Supplementary Section 1.2.2 we discussed the input shape for the 2D U-net in our 2.5D model. The second-
stage model is also a 2.5D model, and the input shape for its 2D U-nets are in shape ℝ(AZE)×CDE×CDE, as the input 
is the stack of the previous slice, the current slice and the posterior slice (Supplementary Table 4) and the high 
recall mask and the high precision mask. The probability map for the view x-y, y-z and z-x are pfab, pfbc and pfac 
respectively. And same with the combination function when segmenting the heart, the COVID-19 lesions and the 
lungs, we use pfab + pfbc + pfac > 2 to cast the predictions into the binary segmentation mask. 

1.4.4 The two-stage protocol dramatically improves the segmentation performance 

In Algorithm 3 we defined the region discovery dice (RDD), and we found that the two-stage protocol dramatically 
improved the RDD of the blood vessel segmentations on the 148 CT scans with contrast agents. With the two-
stage protocol, the scan-level RDD is 0.8518 ± 0.0268; while without the two-stage protocol, the scan-level 
RDD drops to 0.7667 ± 0.0293. Thus, the second-stage model significantly improves the RDD performance 
(𝑝 < 0.0001).  

The improvements are mainly in tissues similar to blood vessels in the cross-section images. For example, 
pulmonary fissure and pulmonary nodules may be close to blood vessels while having similar CT signals with 
blood vessels. In these cases, only using the first-stage model cannot distinguish these difficult tissues, while the 
two-stage protocol consistently generates human comparable segmentations. For tiny regions, the two-stage 
protocol actually generates better segmentations. In Supplementary Figure 7 (d), there are at least 10 tiny regions 



(green arrows, authenticated as true discoveries by radiologists) discovered by our methods but not shown in the 
ground truth, which is the main factor that our model cannot reach RDD close to 1 (in the slice shown in 
Supplementary Fig. 7, the RDD between the ground truth and the segmentation of two-stage segmentation is 
0.7868 as our segmentation outperformed human annotations on the tiny blood vessels).  

 
Supplementary Fig. 7 Ablation study of the two-stage protocol on the CT scans with contrast agents. The above figure shows 
an average case for the blood vessel segmentation. In this case, the region discovery dice (RDD) is 0.8580 while only use the 
first-stage model result in RDD of 0.7650. (a) Shows the spatial normalized CT slice from the x-y plane. (b) Red regions give 
the ground truth. (c) Red regions give the predictions of only using first-stage model. We can see that (the yellow arrow) the 
model miss-segmented the pulmonary fissure as blood vessels. (d) We can see with the two-stage protocol, the segmentation 
result is very close to the ground truth, while for tiny structures, the deep-learning model is actually better than human 
annotations (green arrows, authenticated as true discoveries by radiologists). 

7  Ablation study for the two-stage protocol 

1.4.5 Visual interpretations 

Here we give visual interpretations of how the two-stage protocol helps the model to focus on correct regions and 
thus improves the performances. Supplementary Figure 8 and Supplementary Figure 9 give the visual 
interpretations of the first-stage model and the second-stage model when segmenting airways and blood vessels. 
In these figures, the segmentations given by the two-stage protocol are human comparable. In general, the first-
stage model looks for a wide range of regions including: the target semantic, backgrounds that provide important 
features, and structures that look like the target semantic; while the second-stage model focuses more on regions 
containing the target semantic, and the model will give no attention to structures that look like the target semantic. 
This explains why the two-stage protocol is good for the airway segmentation: in the large-scene-small-object 
problem, the first-stage model gives good guidance so that the second-stage model can focus on very small regions 
and generate human comparable segmentations.  



 
Supplementary Fig. 8 Visual interpretation for the first-stage and the second-stage models when segmenting the airways. (a) 
The spatial rescaled CT from the x-y plane. (b) Red regions give the ground truth for the airways. (c) The discriminative 
regions for the first-stage model. We can see that when segmenting the airways, the model searches on a wide range of regions 
that may contain discriminative features. (d) The discriminative regions for the second-stage model. We can see that the 
second-stage model only searches on the regions that contain airways. (e) The feature importance map for the first-stage model. 
We can see that the model focused on the region broader than the airways, as the model needs to find out where the tracheal 
walls are. In addition, the first-stage model also focuses on some wrong regions. (f) The feature importance map for the second-
stage model. We can see that the second-stage model only focused on the airway regions. 

8  Visual interpretation for airway segmentations 



 
Supplementary Fig. 9 Visual interpretation for the first-stage and the second-stage models when segmenting the blood vessels. 
(a) The spatial rescaled CT from the x-y plane. (b) Red regions give the ground truth for the blood vessels. (c) The 
discriminative regions for the first-stage model. We can see the model looks on wide regions, e.g., the model searches on the 
bottom part where there are no blood vessels. (d) The discriminative regions for the second-stage model. We can see that the 
discriminative regions for the second-stage model are much more concentrated. (e) The feature importance map for the first-
stage model. We can see that the model falsely focuses on the bottom regions. (f) The feature importance map for the second-
stage model. We can see that the second-stage model only focused on the blood vessels, and put more focus on tiny vessels. 

9  Visual interpretation for blood vessel segmentations 

1.4.6 Robustness of the two-stage protocol and the DLPE methods 

The DLPE method needs to be applied on chest CT scans from various patients, but the ground truth masks for 
airways and the blood vessels are from patients with no pneumonia. We find that the two-stage protocol 
dramatically improves the robustness of the airway and the blood vessel segmentations for the COVID-19 patients, 
especially for those patients with lots of lesions. Aided by the two-stage protocol, the model can segment the 
airways and blood vessels with high robustness, thus the DLPE method can generate stable and high quality 
parenchyma enhanced images.  

In general, only using the first-stage model has difficulties when segmenting blood vessels and airways for CT 
scans with lesions and noise, while the two-stage protocol can consistently generate human comparable 
segmentations. For example, the chest CT of COVID-19 inpatients usually contain many lesions caused by 
inflammation, consolidations and fibrosis, and these lesions merge together with blood vessels and have very 
close CT signals with blood vessels or airways. Figure 10 gives three cases to give direct impressions about how 
the two-stage protocol improves the segmentation robustness. These cases do not have ground truth annotations, 
but radiologists highly agreed on our predictions and our predictions have natural and reasonable 3D morphologies. 
Based on the accurate segmentations, the DLPE enhanced images are clean and clear for these difficult cases. 



 
Supplementary Fig. 10 The robustness of the two-stage protocol. The training set for airway and blood vessel segmentations 
do not contain CT scans with pneumonia or noise, and it is the two-stage protocol that enables stable and human comparable 
segmentations for these outliers. This means that the DLPE method has a high generalization power. Columns from left to 
right: COVID-19 critical inpatient; COVID-19 severe inpatient and healthy people with noises. Rows from top to bottom: 
spatially normalized CT from the lung window; the airway segmentation (blue regions) and the blood vessel segmentation 
(red regions) without the two-stage protocol; the segmentations (blue for airways and red for blood vessels) with the two-stage 
protocol; and the effects after the DLPE enhancement. 

10 Robustness of the DLPE method 

  



2 Applying DLPE on COVID-19 Inpatients and Survivors 

DLPE aided us to find novel lesions, and this part describes the methods in order to analyze the origins and the 
properties of these novel lesions. 

2.1 Dataset preparation 

2.1.1 Data collection 

The inpatient and the follow-up datasets are from the same group of people (46 people) who were severe or critical 
COVID-19 patients. Supplementary Figure 11 gives the overview of our datasets. Each patient in the inpatient 
datasets has collected a time serie of CT scans, time series of clinical metrics and been recorded stationary status 
like age, sex, etc. A tremendous number of clinical metrics were collected if the patient was in the intensive care 
unit (ICU). For example, every day, the blood tests collected more than 400 clinical metrics for ICU patients. 

The patients in the inpatient datasets came back months after discharge, and formed the follow-up datasets. Each 
survivor in the follow-up datasets has collected the CT scan, subjective lung functions, objective lung functions 
and clinical metrics including blood tests, blood gas analysis, etc.  

 
Supplementary Fig. 11 Overview of the inpatient datasets and the follow-up datasets. These datasets are from the same group 
of people (46 people) who were severe or critical patients. During the hospitalization, we collected their CT scan and clinical 
metrics every day or every few days, and recorded the stationary status like age, sex, medical history for the patients. These 
patients came back and we recorded their lung functions, CT scans and a variety of clinical metrics. 

11 Overview of the inpatient datasets and the follow-up datasets 

2.1.2 Extract features from time series in the inpatient datasets  

We need to extract temporal features from the time series of clinical metrics. Most time series contain 2 to 5 
timepoints, so we decide to use two features to depict the time series: the average value and the extreme difference. 
The extreme difference (the maximum subtracts the minimum, and takes the negation if the maximum occurs 
earlier than the minimum).  

Thus, each time serie will be cast into two temporal features: “average” and “extreme”. If the number of timepoints 
for a time serie is zero (patient did not collect this metric), the “average” and “extreme” will be marked as “None”. 
If the number of timepoints for a time serie is one, the “extreme” will be marked as “None” (see Algorithm 5 for 
details). 

Radiomics are calculated by lesions, and we know that more lesions implies worse conditions. Thus, we only 
record the maximum of the inpatient radiomics, which depict the most difficult period of a COVID-19 patient. 

 
Algorithm 5: Calculate temporal features 
Inputs: time serie 
# The time serie of a metric. In our datasets, most time series with the length of 3 to 5. 
Output: temporal features 
# The outputs are floats or None 
       1. if len(time serie) == 0: 
       2.          return None, None 
       3. average = mean(time serie) 



       # calculate the average value 
       4. if len(time serie) == 1: 
       5.          return average, None 
       6. extreme = max(time serie) − min(time serie) 
       7. if index of max(time serie) > index of min(time serie): 
       8.         extreme = − extreme 
       9. return average, extreme 

5  Calculate temporal features 

2.1.3 Feature reduction  

Each patient in the datasets has 659 features, including inpatient temporal features, stationary status, follow-up 
lung functions, follow-up CT, follow-up blood tests. 

Many of the features are redundant and can be neglected: many of the features (e.g., antibody for herpes) are not 
likely to have any correlation with COVID-19 symptoms and sequelae; many of them (e.g., different 
measurements for the same metric) have very strong correlations; and many of them are not key metrics and were 
only collected by very few people. 

We discard a feature if more than 40% of the people in the datasets do not have this feature, because important 
metrics should be collected by most of the people. We discard a feature if the feature values for all people are 
always in the normal range. These two steps reduce the number of features from 659 to 228. 

We discard a feature if it is unlikely to have any correlation with COVID-19 symptoms and sequelae. These 
features are usually antibodies and traits for other diseases. This step reduces the number of features from 228 to 
209. 

Medical experts discard features that are of the same metric but collected by different measurements. For example, 
the PaO2/FiO2 ratio is approximated non-invasively many times a day, but to test the ground truth PaO2/FiO2 
ratio needs the artery blood and is tested every day or every two days. Thus, the temporal features of the 
approximated PaO2/FiO2 ratio are discarded. This step reduces the features from 209 to 189. 

Finally, each patient in the datasets has 189 features, including inpatient temporal features, stationary status, 
follow-up lung functions, follow-up CT and follow-up blood tests. 

2.1.4 Data normalization 

We use min-max normalization for all features. The feature values are normalized by: 

𝑥′ =
𝑥 − 𝑥8N#

𝑥8Pü − 𝑥8N#
(27) 

Here 𝑥 is the original feature value, 𝑥8N# (𝑥8Pü) is the minimum (maximum) value of this feature among all 
people, and 𝑥′ is the feature value after min-max normalization. 

2.1.5 Target features 

Some features are important for COVID-19 patients, thus, we explore how other factors can predict these 
important features. In the inpatient dataset, the PaO2/FiO2 ratio (PFR) is the most important metric for the 
respiratory functions of COVID-19 inpatients, and we use PFR to classify the mild, severe and critical patients. 
Thus, we want to explore the relationships between PFR and other inpatient features. 

In the follow-up dataset, nearly all survivors reported significant respiratory sequelae. Thus, we analyze factors 
that cause these sequelae. We have 16 respiratory sequelae, which are listed in Supplementary Table 7. 

In all, the target features are PFR and the 16 respiratory sequelae. We will call them “targets”. 

Supplementary Table 7 Respiratory sequelae for COVID-19 survivors. First column, the abbreviation of the sequelae. Second 
column, the full name of the sequelae. Third column, brief descriptions of the sequelae. 

Abbreviation Full name Description 

mMRC Modified medical research council A quick self-rating scale to measure breathlessness 

SGRQ St. George's respiratory questionnaire A comprehensive self-rating scale for the life quality of 
patients with chronic obstructive pulmonary diseases 



DLCO/VA Diffusing capacity for carbon monoxide to 
alveolar volume ratio 

Measures the capability of the lungs to transfer gas into 
capillaries 

pO2(A-a) Alveolar-arterial oxygen tension difference Measures the efficiency of oxygen exchange in the lungs 

FEV1 Forced expiratory volume in one second The maximum air volume that can be exhaled in one second 

FVC Forced vital capacity The maximum air volume that is exhaled during fast exhaling 

FEV1/FVC FEV1 to FVC ratio Less than 0.7 indicates airflow limitations 

MEF50 The maximal expiratory flow at 50 % of the 
forced vital capacity 

Reduced MEF50 indicates small airway disease 

TLC Total lung capacity The maximum gas volume inside the lungs 

FRC Functional residual capacity Volume of gas in the lungs after calm exhalation 

RV Residual volume Volume of gas in the lungs after maximum exhalation. 

ERV Expiratory reserve volume The maximum volume that can be exhaled after calm 
exhalation 

IC Inspiratory capacity The maximum gas volume that can be inhaled after calm 
exhalation 

PEF Peak expiratory flow Maximum flow when exhaling forcefully 

VT Tidal volume The amount of air inhaled or exhaled during calm breathing 

MV Minute ventilation The volume of gas inhaled by the lungs per minute. 

7  Metrics for the lung function sequelae for COVID-19 survivors 

2.1.6 Data imputation 

We use the KNN imputer to impute the missing features. The KNN imputer trains a mapping from nearby features 
to the target feature that contains missing values. Thus, before data imputation, we place features and metrics of 
the same aspect into adjacent columns or rows as they usually have high correlations. For example, before 
imputing data for sequelae prediction, we classify the features: column 1-2 are subjective lung functions; column 
3-16 are objective lung functions; column 16-28 are radiomics; column 29-34 are stationary status; column 35-60 
are follow-up blood lab tests, etc.  

Note that the data imputation requires that the adjacent features or metrics can predict the missing value, thus, if 
a patient misses all values of an aspect, e.g., did not complete the blood-gas analysis, we will not impute values 
for the aspect. 

Supplementary Figure 12 illustrates the data imputation process. When predicting PFR, we use the metrics 
collected on the same day to predict the PFR on that day. As shown in the left figure, if there exist missing values, 
e.g., metric B on the day 2, the imputer uses other columns to train the mapping to impute the missing value. 
However, if it misses all values of an aspect, like on day 4, we will not impute it and day 4 will not become a 
sample in further analysis. 

 
Supplementary Fig. 12 The data imputation process for the analysis of PFR and respiratory sequelae. Green block means that 
the metric or feature is collected. Yellow block means the imputer impute the missing value. Red block means that the imputer 
cannot impute the missing value. Left panel: imputation for the prediction of PFR. We use the metrics collected on the same 
day to predict the PFR. If there exists missing values, e.g., metric B on the day 2, the imputer uses other columns to train the 
mapping to impute the missing value. However, if it misses all values of an aspect, like on day 4, we will not impute it and 



day 4 will not become a sample in further analysis. Right panel: imputation for the prediction of respiratory sequelae. There 
are 7 patients who did not impute, because they did not have metrics of the blood-gas analysis. 

12 The data imputation process 

2.2 The sample inclusion and exclusion criteria 

This section describes the inclusion and exclusion criteria for Supplementary Section 2.3 and 2.4. 

The data analysis has two stages. The first stage is to select informative features (Supplementary Section 2.3) 
from hundreds of candidate features, and the second stage is to analyze the relationships between informative 
features and the target features (Supplementary Section 2.4). 

2.2.1 During feature rating 

There are hundreds of features, but many of them do not contain much information. The feature rating algorithms 
analyze how these hundreds of features relate to the targets, and pick out features containing information (see 
Supplementary Section 2.3 for feature rating algorithms).  

We discard samples containing missing values that cannot be imputed, and remain all other samples.  

 
Supplementary Fig. 13 The inclusion and exclusion criteria for samples during the feature rating. We discard samples 
containing missing values that cannot be imputed, and remain all other samples. 

13 The inclusion and exclusion criteria for feature rating 

2.2.2 During regression 

The feature rating algorithms rated out informative features with the best discriminative powers, and we then use 
these features to predict PFR and respiratory sequelae. 

For the prediction of PFR, each patient provides several samples as the inpatient time can be as long as one month. 
Thus, we only include samples that all values are ground truth, and discard samples with imputed values or missing 
values.  

A large number of features contain information for the predictions of respiratory sequelae, thus, we keep samples 
with imputed value and only discard samples containing missing values that cannot be imputed. 



 
Supplementary Fig. 14 The inclusion and exclusion criteria for samples during regression. We have lots of inpatient samples 
for predicting PFR, thus, we only include samples that all values are ground truth. On the other hand, there are many features 
containing information for the sequelae prediction, thus, we include samples with imputed value. 

14 The inclusion and exclusion criteria for regressions 

2.3 Feature rating and selection 

2.3.1 Aim and idea of the feature selection 

The features selected in this section will be the input features in Supplementary Section 2.4. There are hundreds 
of features that may have predictive power to the target features. This section aims to pick out features that contain 
information, which reduce the features from hundreds to dozens.  

We compare the discriminative powers of these features with random noise, and only features containing more 
information than random noise with 𝑝 < 0.001 will be kept. Among the remaining features we select out the most 
informative ones, and the features selected out constitute 95% of the total discriminative power.  

Methods like multi-variable analysis and XGBoost can rate the input features based on their discriminative powers. 
Multi-variable analysis should be better than XGBoost during the variable selection due to two reasons. First, 
XGBoost tends to give higher ranks to features that are fed into the model earlier: XGBoost builds the decision 
tree based on the features, but the final decision tree and feature importance ranking are influenced by the order 
of features fed into XGBoost. By comparison, the multi-variable analysis does not have this problem. Second, 
XGBoost is only suitable for one target feature, but we have 16 respiratory sequelae. Thus, XGBoost cannot select 
features for the prediction of respiratory sequelae. 

2.3.2 The multi-variable analysis model 

We use a fully connected neural network to establish the mapping between features and targets. During training, 
the network will put more focus on targets that can be predicted, and give more weights to the features containing 
more information. Finally, we can get the feature ranking that indicates the amount of information of these features, 
and the target ranking indicates the predictability of these targets.  



 
Supplementary Fig. 15 The architecture of the fully connected network when predicting respiratory sequelae. There are 173 
inpatient and follow-up features and 16 targets (respiratory sequelae). “FC” means fully-connected. 

15 Fully connected network when predicting respiratory sequelae 

Take the prediction of respiratory sequelae as an example. Denote 𝒙 as the input features, if the batch size is one, 
then 𝒙 is shaped 1 × 173. Denote 𝒚 as the ground truth target values, which is shaped 1 × 16. Denote 𝒚′ as the 
predicted target values, which is shaped 1 × 16. Denote the feature rating as 𝒓N# , which is a vector shaped 
1 × 173, indicating the amount of information of each input feature. Denote the target rating as 𝒓Lþº, which is a 
vector shaped 1 × 16 , indicating the predictability of each output target. We require that sum(𝒓Lþº)  and 
sum(𝒓N#) are always one. Initially, values in 𝒓N# are all D

DÿA
 while values in 𝒓Lþº are all D

D!
. 

The input of the model is the element-wise multiplication of 𝒓N# and 𝒙, or 𝒙 ∘ 𝒓N#. 

The loss function 𝐿 has two parts: the regression loss and regularization loss.  

𝐿 = sum((𝒚 − 𝒚�)E𝒓Lþº# ) + 𝛽𝐿MSO (28) 

We set 𝛽 = 0.01 in our study. 𝐿MSO is the L2 regularization loss, which calculates the average value for the square 
of the learnable weights. 

𝐿MSO = mean(𝑤𝑒𝑖𝑔ℎ𝑡E) (29) 

The error vector is defined as: 

𝑫 =�(𝒚N − 𝒚′N)E
N

∘ 𝒓Lþº (30) 

Here 𝑖 means the 𝑖-th patient. 𝑫 is a vector shaped 1 × 16. We use the five-fold CV. 

We need to train the model to converge with given 𝑟N#  and 𝒓Lþº (need 200-300 epochs with learning rate 0.01 and 
Adam Optimizer and ), and then update 𝒓N# and 𝒓Lþº. 

2.3.3 Update feature rating 

𝑟N#  indicates the relative information amount for input features, and we give higher weights for features containing 
more information. Denote σ as the standard deviation of the 𝑘-th input feature. We replace the feature values with 
Gaussian noise of Normal(0, σ), which removes the information from the 𝑘-th feature. Thus, the error sum(𝑫) 
is likely to increase, and the increase measures the relative information of the 𝑘-th feature. This process will be 
rerun for 10,000 times for better evaluation, see Algorithm 6. As shown in the algorithm, we require the feature 
to outperform the random noise with probability higher than 𝑝 > 0.999, otherwise the feature will be discarded.  

 
Algorithm 6: Calculate the relative information 
Inputs: dataset, k, model 
# Here the “k” means we are calculating the k-th feature. 
# Here the model is trained to converged with given 𝒓𝒊𝒏 and 𝒓𝒐𝒖𝒕. 



Output: relative information for the k-th feature 
# The outputs is a float 
       1. D = model(dataset): 
       # Here D is defined in equation (30) 
       2. increase = 0 
       3. count worse than random = 0  
       # Record the number of times the random noise outperforms the feature 
       4. for i in range(10000): 
       5.       replace the k-th feature with noise 
       6.       error increase = sum(model(dataset with noise))	– sum(D)  
       7.       if error increase < 0: 
                 # this means the noise seems contains more information than the feature 
       8.                count worse than random += 𝟏 
       9.                if count worse than random > 10: 
       10.                         return 0 
       11.       increase = increase + error increase 
       12. return max(increase, 0) 

6  Calculate the relative information 
Thus, we can calculate the relative information for each feature. Denote the relative information for the 𝑘-th 
feature as 𝐼 , then we update the feature rating 𝒓N# according to 𝐼 : 

𝒓N# =
(𝐼D, 𝐼E, 𝐼A,… , 𝐼DÿA)

∑ 𝐼  
(31) 

Once 𝐼  = 0 during any updating, 𝐼  will be fixed to zero forever. Thus, only features that outperform random 
noise (𝑝 < 0.001) will be considered as informative. 

2.3.4 Update target rating 

𝒓Lþº indicates the relative predictability for the targets, and we want the model to put more focus on targets that 
are predictable. Initially, each input 𝒙N corresponds to a ground truth 𝒚N, and we have the error vector 𝑫. During 
the target rating, we shuffle the correspondence between 𝒙N  and 𝒚N  then retrain the model, which erases the 
predictability of all targets. Thus, the error is likely to increase for each target, and the increase measures the 
predictability of the target. We redo this process for ten times and get the error vectors for the shuffled models 
𝑫D,𝑫E,… ,𝑫DÔ.  

The original error vector is 𝑫 shaped 1 × 16, and 𝑫[𝑘] is the error for the 𝑘-th target. The relative predictability 
for the 𝑘-th target is defined as: 

𝑍  = Relu(
∑ ,𝑫°[𝑘] −𝑫[𝑘]-DÔ
°�D

∑ 𝑫°[𝑘]DÔ
°�D

) (32) 

Here ∑ 𝑫°[𝑘]DÔ
°�D  is the total error for the shuffled models, which quantifies the error if the 𝑘-th target is totally 

unpredictable. ∑ ,𝑫°[𝑘] − 𝑫[𝑘]-DÔ
°�D  quantifies how much error is explained. Thus, we update the target rating to: 

𝒓N# =
(𝑍D, 𝑍E,… , 𝑍D!)

∑ 𝑍  
(33) 

2.3.5 The rating workflow 

Start with initial 𝒓N#  and 𝒓Lþº , we train the model, then update 𝒓N#  and 𝒓Lþº  iteratively. 𝒓N#  and 𝒓Lþº  converge 
after 4-7 iterations. For simplicity, we stop updating when max(𝒓Lþº) is converged. Algorithm 7 gives the 
workflow for rating the features and targets during the prediction of the respiratory sequelae.  

 
Algorithm 7: Rating workflow for respiratory sequelae prediction 
Inputs: dataset 
Output: 𝒓𝒊𝒏, 𝒓𝒐𝒖𝒕, model 



# The ratings and the final model 
       1. 𝒓𝒊𝒏 = (1/173, 1/173, …) 
       2. 𝒓𝒐𝒖𝒕 = (1/16, 1/16, …) 
       # Initially, all weights are the same 
       3. while max(𝒓𝒐𝒖𝒕) is not converge: 
       4.        model = training(𝒓𝒊𝒏, 𝒓𝒐𝒖𝒕, dataset) 
       5.        𝒓𝒊𝒏 = update_input_rating(model, 𝒓𝒐𝒖𝒕, dataset) 
       6.        𝒓𝒐𝒖𝒕 = update_output_rating(model, 𝒓𝒊𝒏, dataset) 
       7. return 𝒓𝒊𝒏, 𝒓𝒐𝒖𝒕, model 

7  Rating workflow for respiratory sequelae prediction 
Based on the workflow, we get the rating for the discriminative powers of the features, the rating for the 
predictability of the targets, and the model that builds the mapping between input features and the targets. 

2.3.6 Comparisons between XGBoost 

We also apply Algorithm 7 to rate inpatient features that predict the PaO2/FiO2 ratio, and we skip the line 6 of 
Algorithm 7 as there is only one target.  

As there is only one target, XGBoost can also rate the importance of the input features. We compare the feature 
ranking list given by XGBoost with 𝒓N# given by Algorithm 7. We find that they conform with each other. 1) The 
three most important features are the same, which are the lesion ratio of all parenchyma, lactate dehydrogenase 
(LDH), and C-reactive protein (CRP). 2) The 10 most important features have 6-8 overlaps (the ratings of the 
XGBoost are slightly influenced by the order of features that is fed into XGBoost). 

Thus, feature rating by the multi-variable analysis and XGBoost have high conformity, which means that 𝒓N# 
should give satisfactory ratings for the features. 

2.3.7 Criterion for the feature selection 

We select features with the most information according to 𝒓N#, and the selected features contain 95% of the total 
information. See Algorithm 8. 

 
Algorithm 8: Feature selection 
Inputs: 𝒓𝒊𝒏 
Output: list of feature names for the selected features 
       1. total information = 0 
       2. list_feature_selected = [] 
       3. while total information < 0.95 : 
       4.        name, value = 𝒓𝒊𝒏.pop_max() 
                  # pop the feature name with the most information. 
       5.        list_feature_selected.append(name) 
       6.        total information += value 
       7. return list_feature_selected 

8  Select most informative features 

2.3.8 Features selected for predicting PFR 

For the prediction of PFR, the number of original inpatient features is 147, and we select 3 radiomics, 6 inpatient 
clinical metrics and 3 basic information features, which are listed in Supplementary Table 8. 

The 6 inpatient clinical metrics are: lactate dehydrogenase (LDH), C-reactive protein (CRP), lymphocyte absolute 
count (lym_abs), neutrophils absolute count (neu_abs), neutrophils to lymphocyte ratio (neu_to_lym), and D-
Dimer. 

The 3 basic information features are: sex, age, and body mass index (BMI). 



The radiomics are: R1, R2  and the total signal difference between lesions and baseline (R3). In order to compare 
the differences with and without DLPE, the lesions will be calculated by state-of-the-art COVID-19 lesion 
quantification methods as well as the DLPE method. 

Supplementary Table 8 The 12 selected inpatient metrics for predicting PFR. 
Abbreviation Full name Abbreviation Full name 

LDH Lactate dehydrogenase Sex Sex 

CRP C-reactive protein Age Age at hospitalization 

Lym_abs Lymphocyte absolute count BMI Body mass index at hospitalization 

Neu_abs Neutrophils absolute count R1 The median signal difference between 
lesions and baseline 

Neu_to_lym neutrophils to lymphocyte ratio R2 The ratio between the lesion volume and 
the lung volume 

D-Dimer Blood D-Dimer concentration R3 The total signal difference between 
lesions and baseline 

8  Selected inpatient metrics for predicting PFR 

2.3.9 Features selected for predicting respiratory sequelae 

For the prediction of the 16 respiratory sequelae, the number of original features is 173, and we select out 53 
features: the 21 inpatient features for clinical metrics and 3 radiomics during hospitalization, 5 basic information 
features, 6 follow-up CT radiomics and 18 follow-up lab tests. These features are listed in the Supplementary 
Table 9. 

Note that for inpatient time series, we extract the “average” and the “extreme” features, and the 21 inpatient 
features for clinical metrics are: interleukin-2 (IL-2) average, CRP average, interleukin-4 (IL-4) average, tumor 
necrosis factor (TNF) average, activated partial thromboplastin time (APTT) average, erythrocyte sedimentation 
rate (ESR) average, mean corpuscular volume (MCV) average, IL-2 extreme, interferon gamma (IFG) average, 
the average of aspartate transaminase (AST) to alanine aminotransferase (ALT) ratio, D-Dimer average, thrombin 
time (TT) average, gamma-glutamyl transferase (GGT) average, eosinophil count (EC) average, hemoglobin (Hb) 
average, eosinophil ratio (ER) average, thrombocytes count (TC) average, sodium average, LDH average, albumin 
average, and creatine kinase (CK) average. 

The average of inpatient radiomics are all rated out by the algorithm, they are the average for: the median lesion 
severity (R1 average), the lesion volume ratio (R2 average), and the total lesion severity (R3 average). Here the 
lesion is quantified by the DLPE method, as we find that DLPE quantifies better radiomics. 

Five basic features include: sex, age, BMI, height, and weight. 

All six follow-up radiomics are rated out, they are: the median lesion severity (R1), the lesion volume ratio for 
total parenchyma (R2), the total lesion severity (R3) for total parenchyma, and the R1, R2, R3 for the lower 
respiratory regions. We will use “R1 total” and “R1 lower” to distinguish the total parenchyma and the lower 
respiratory regions. The lower respiratory regions are illustrated by Supplementary Figure 16. As most follow-up 
lesions are invisible under the lung window, the follow-up lesions are quantified by the DLPE method. 

The 18 follow-up blood tests rated out are: LDH, blood oxygen partial pressure (pO2), D-Dimer, blood lactate 
concentration (cLac), oxygen partial pressure at 50% blood oxygen saturation (P50), change in total bilirubin 
(ctBil), CRP, blood carbon dioxide partial pressure (pCO2), CK, GGT, prothrombin time (PT), hemoglobin (Hb), 
leucocytes count (Leu), fractional saturation (FO2Hb), ALT, plasma creatinine (Cr), blood urea nitrogen (BUN), 
and blood pH value. 



 
Supplementary Fig. 16 Illustration of the lower respiratory regions. We use the branching level of the nearest blood vessels 
to approximate the lower respiratory regions. (a) Branching level of the nearest blood vessels. Brighter means higher branching 
level, and the brightest is of branching level around 12. (b) Red regions give the estimated lower respiratory regions. If the 
nearest blood vessel is of branching level > 7 for a parenchyma voxel, we will classify the voxel as a lower respiratory voxel. 

16 The lower respiratory regions 

Supplementary Table 9 The 53 selected features for the predictions of respiratory sequelae. If the abbreviation with “average” 
or “extreme”, this means that the feature is extracted from inpatient time series, and we will neglect the “average” or “extreme” 
in the column of full name. For the follow-up radiomics, we use “total” and “lower” to distinguish whether the lesions are 
calculated from the total parenchyma or the lower respiratory regions. If the full name for a follow-up metric coincides with 
the inpatient feature, we will add “follow-up”. 

Abbreviation Full name without “average” or “extreme” Abbreviation Full name 

IL-2 average Interleukin-2 Height Height at follow-up 

CRP average C-reactive protein Weight Weight at follow-up 

IL-4 average Interleukin-4 R1 total Median follow-up lesion severity for all 
parenchyma 

TNF average Tumor necrosis factor R2 total Follow-up lesion ratio for all 
parenchyma 

APTT average Activated partial thromboplastin time R3 total Follow-up total lesion severity for all 
parenchyma 

ESR average Erythrocyte sedimentation rate R1 lower Median follow-up lesion severity for all 
parenchyma 

MCV average Mean corpuscular volume R2 lower Follow-up lesion ratio for all 
parenchyma 

IL-2 extreme Interleukin-2 R3 lower Follow-up total lesion severity for all 
parenchyma 

IFG average Interferon gamma LDH Lactate dehydrogenase 

AST/ALT average Aspartate transaminase to alanine 
aminotransferase ratio 

pO2 Blood carbon dioxide partial pressure 

D-Dimer average D-Dimer D-Dimer D-Dimer follow-up 

TT average Thrombin time cLac Blood lactate concentration 

GGT average Gamma-glutamyl transferase P50 Oxygen partial pressure at 50% blood 
oxygen saturation 

EC average Eosinophil Count ctBil Change in total bilirubin 

Hb average Hemoglobin CRP C-reactive protein follow-up 

ER average Eosinophil ratio pCO2 Blood carbon dioxide partial pressure 



TC average Thrombocytes count CK Creatine kinase follow-up 

Sodium average Blood sodium concentration GGT Gamma-glutamyl transferase follow-up 

LDH average Lactate dehydrogenase PT Prothrombin time 

Albumin average Albumin Hb Hemoglobin follow-up 

CK average Creatine kinase Leu Leucocytes count 

R1 average Median lesion severity for all parenchyma FO2Hb Fractional saturation 

R2 average Lesion ratio for all parenchyma ALT Alanine aminotransferase  

R3 average Total lesion severity for all parenchyma Cr Plasma creatinine 

Sex Sex BUN Blood urea nitrogen 

Age Age at hospitalization pH Blood pH value 

BMI Body mass index at follow-up   

9  Selected features for the predictions of respiratory sequelae 

2.4 Detailed results for predicting respiratory sequelae 

2.4.1 The prediction method 

The multi-variable analysis (or neural network) model, Lasso and XGBoost are commonly used regression 
methods. We find that these methods conform to each other to a great extent, and XGBoost outperforms others 
by a small extent in most cases. Thus, we use the XGBoost to do the prediction for all targets (PFR, mMRC, 
SGRQ, etc.). 

We use the leave-one-out cross-validation to evaluate how the input can predict the target feature. When predicting 
PFR, the inputs are the 12 selected features (among them there are 3 radiomics), and the output is the predicted 
value for PFR. When predicting the respiratory sequelae, the inputs are the 53 selected out features (among them 
there are 6 radiomics), and the output is the predicted value for a sequela (16 sequelae means we need to train 16 
XGBoost models). 

The XGBoost can rank the input features according to the discriminative power. Despite the ranking being slightly 
influenced by the order of features that are fed into the XGBoost model, we find that the top three most informative 
features are always the same. 

2.4.2 The prediction, feature ranking and ablations with XGBoost 

Supplementary Table 10 gives the prediction, the feature ranking and the ablation studies for each target. In 
general, the DLPE method plays a crucial role for extracting features to predict the gas transferring capabilities 
(DLCO/VA, pO2(A-a)), the lung capacities (FVC, TLC), and the comprehensive life quality scale SGRQ. In these 
cases, the PCC will drop significantly without information provided by DLPE. In addition, the PCC without DLPE 
decreases in most cases, which means the radiomics quantified by DLPE should provide information for many 
scenarios. 

Supplementary Table 10 Using inpatient and follow-up clinical metrics and radiomics to predict the COVID-19 long-term 
respiratory sequelae. See Supplementary Table 7 for the descriptions of these sequelae (the first column). See Supplementary 
Table 9 for the description of these targets (the third column). The prediction model is XGBoost. First column, the 16 sequelae. 
Second column, the PCC between the predicted value and the ground truth value. Third column, the top three most informative 
features ranked by the XGBoost. Fourth column, replace the radiomics with the lesion quantification of the state-of-the-art 
methods for COVID-19 lesions, but without using the DLPE scheme, and re-train the model. Fifth column, radiomics that 
without DLPE to remove bias will significantly decrease the PCC: * means 𝒑 < 𝟎.𝟎𝟏, ** means 𝒑 < 𝟎.𝟎𝟎𝟏 and *** means 
𝒑 < 𝟎. 𝟎𝟎𝟎𝟏. We compare the second column and the fourth column, and the best performer is in bold. 

Target PCC with DLPE Top three informative PCC without DLPE DLPE Sensitive Radiomics 

SGRQ 0.732 R2 total, R1 total, R1 lower 0.243 R2 total***, R1 total** 

DLCO/VA 0.550 ctBil, R2 Total, pH 0.327 R2 total* 

pO2(A-a) 0.718 Leu, ctBil, R2 total 0.532 R2 total* 

FEV1 0.623 ctBil, FO2Hb, R1 lower 0.471 R1 lower* 

FVC 0.605 R2 total, ctBil, cLac 0.325 R2 total**, R2 average* 



FEV1/FVC 0.649 R1 lower, FO2Hb, CK 0.387 R1 lower** 

MEF50 0.462 CRP, pO2, PT 0.411 None 

TLC 0.705 R1 total, pO2, R1 lower 0.391 R1 total**, R1 lower*, R2 lower* 

FRC 0.434 R2 total, cLac, CK 0.395 None 

RV 0.413 P50, ALT, Age 0.420 None 

ERV 0.729 Height, R2 total, Cr 0.546 R2 total* 

IC 0.444 CRP, ctBil, Leu 0.449 None 

PEF 0.450 pO2, ALT, R1 lower 0.375 None 

VT 0.386 BMI, Cr, R1 lower 0.361 None 

MV 0.483 R2 total, pH, LDH 0.423 None 

mMRC 0.675 Age, Cr, LDH 0.613 None 

10  The prediction, feature ranking and ablation details 

2.4.3 Feature rating and target rating by multi-variable analysis 

We use the multi-variable analysis model to build the mapping between 53 features and the 16 respiratory sequelae, 
and the most informative features and most predictable features are listed below: 

Supplementary Table 11 The top six feature rating 𝒓𝒊𝒏 and target rating 𝒓𝒐𝒖𝒕 during the prediction of respiratory sequelae. 
The top three most informative features include three radiomics quantified by the DLPE method. 

Features 𝒓N# Targets 𝒓Lþº 

R2 total 0.105 SGRQ 0.326 

LDH 0.080 pO2(A-a) 0.135 

Age 0.073 TLC 0.101 

R1 total 0.054 mMRC 0.084 

pO2 0.051 DLCO/VA 0.071 

R1 lower 0.047 ERV 0.069 

11  Most informative features and most predictable features 

2.5 Follow-up abnormalities in our cohort 

Supplementary Table 12 gives the overview of the respiratory sequelae of COVID-19 on our survivor cohort, with 
their normal value ranges, the ratio of the abnormal ones in our cohort, and the mean and the worst values in our 
cohort. 

Supplementary Table 12 
FOLLOW-UP ABNORMALITIES 

 

Sequelae Reference 
Value 

Abnormal 
Ratio 

Mean & 
Worst 

SGRQ ≤1 43/46 18.6, 49 
DLCO ≥80 18/46 83.4, 55.3 
MEF50 ≥80 17/46 81.2, 31.0 

FRC ≥80 17/46 84.9, 58.5 
RV ≥80 14/46 88.1, 64.3 

FEV1/FVC ≥70 7/46 77.9, 50.7 
Chest CT,  

lung window 
No Abnormal 
CT Patterns 

 

21/46 
 

NA 
   Chest CT,  
   with DLPE 

No Abnormal 
CT Patterns 

 

38/46 
 

NA 

12  Follow-up abnormalities in our cohort 



2.6 Other potential applications for the DLPE method 

2.6.1 Remove scan-level biases 

As shown in the Fig.3 (b) the main text, the scan-level biases can be much larger than the radiomics of the sub-
visual lesions here we further give the comparison of the R1 (median lesion severity) with scan-level biases and 
using DLPE to remove scan-level biases: 

 

Supplementary Fig. 17 Comparison between the median lesion severity before and after removing the bias of the baseline 
CT. Each data point represents a CT scan in the follow-up cohort, its y-value is the median lesion severity after enhanced 
(close to the ground truth value), while its x-value is the severity before enhanced, i.e., equals to the median CT signal (HU) 
for lesion regions on original CT, which contains many biases. The above figure shows that when the major noise (like baseline 
CT) is not removed by DLPE, the measured features (like median lesion severity) may reflect very few of their ground truth 
values (here the Pearson correlation coefficient is only 0.177). 

17 Median lesion severity before and after removing biases 

2.6.2 Improve segmentation performance and reduce training size 

As shown in Fig. 3, using DLPE to remove the biases contributed most to the segmentation of sub-visual lesions. 
Other lesions like GGO lesions of COVID-19, pulmonary nodules and some lung cancers can also be quite faint. 
We found using DLPE as a pre-processing methods to remove the biases can help to achieve better performances 
for the segmentation of pulmonary nodules and COVID-19 lesions, and using DPE to remove biases can achieve 
the same average dice with less training size. The model, training and testing procedures were exactly the same 
with our previous TMI work (10.1109/TMI.2020.3001810).  

Supplementary Table 13 The segmentation for pulmonary nodules. The best performer is in bold. The performances were 
shown in the form of average dice. Test set is 55 CT scans from a different hospital of the training set. First row: number of 
training CT scans. Second row and third row: the performances on the test set when the model is trained on these number of 
CT scans with and without DLPE enhancement. 



Training Scans: 10 25 50 100 179 
Dice with DLPE: 0.677 0.826 0.875 0.903 0.905 

Dice without DLPE: 0.309 0.649 0.813 0.881 0.892 

13  DLPE reduced training sample needed for the pulmonary nodule segmentation 
Supplementary Table 14 The segmentation for COVID-19 inpatient lesions (visible lesions). The best performer is in bold. 
The performances were shown in the form of average dice. Test set is 109 CT scans from a different hospital of the training 
set. First row: number of training CT scans. Second row and third row: the performances on the test set when the model is 
trained on these number of CT scans with and without DLPE enhancement. 

Training Scans: 10 25 50 100 250 
Dice with DLPE: 0.540 0.766 0.811 0.859 0.899 

Dice without DLPE: 0.364 0.492 0.681 0.818 0.841 

14  DLPE reduced training sample needed for the COVID-19 lesion segmentation 
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