
Efficient Authenticated Multi-Pattern Matching

Zhe Zhou1, Tao Zhang1, Sherman S.M. Chow1, Yupeng Zhang2, Kehuan Zhang1

1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electrical and Computer Engineering, University of Maryland, College Park
1{zz113, zt112, sherman, khzhang}@ie.cuhk.edu.hk, 2zhangyp@umd.edu

ABSTRACT

Multi-pattern matching compares a large set of patterns
against a given query string, which has wide application in
various domains such as bio-informatics and intrusion de-
tection. This paper shows how to authenticate the classic
Aho-Corasick multi-pattern matching automation, without
requiring the verifier to store the whole pattern set, nor
downloading a proof for every single matching step. The
storage complexity for the authentication metadata at the
server side is the same as that of the unauthenticated ver-
sion. The communication overhead is minimal since the
proof size is linear in the query length and does not grow
with the sizes of query result nor the pattern set. Our eval-
uation has shown that the query and verification times are
practical.

Keywords

Authenticated Data Structure; Verifiable Computation; Pat-
tern Matching

1. INTRODUCTION
Cloud services emancipate organizations and individuals

from maintaining a large amount of storage and conduct-
ing resource-consuming computations, as they can elasti-
cally rent storage and computation capability to satisfy their
dynamically fluctuating demand. As paying customers, they
may not fully trust the cloud service provider, and it is
crucial to have a mechanism to verify the authenticity of
the cloud computation. Ideally, the outsourcing mechanism
should allow a data owner to outsource the data, possi-
bly with some additional meta-data for authentication, to
the cloud server for answering the queries from clients with
proofs, which the clients can verify the proof to assert their
correctness, without interacting with the data owner nor
downloading a large set of the original data.

In this paper, we consider the authenticated multi-pattern
matching problem — Given a pattern set P which contains
a large amount of patterns formed by alphabets Σ, and some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897906

queries which are texts from Σ, it reports all the occurrences
of patterns in each of the given query, as well as the corre-
sponding proof which can be used to authenticate the cor-
rectness of the answers.

Multi-pattern matching query has a lot of deployed appli-
cations such as anti-virus scanning, bio-informatics, business
analytics, intrusion detection, natural language processing,
web search engines, etc. Take bio-informatics as an exam-
ple, when a doctor wants to know if a patient has genetic
disease, he can query to the disease-causing gene pool for
DNA pieces collected from the patient.

Real world multi-pattern matching applications occupies
a lot of storage resulted from the accommodation of the huge
pattern set (simply consider pools for human gene or virus).
It is a perfect example for leveraging the cloud for outsourc-
ing the patterns storage and decreasing the query complex-
ity as much as possible, ideally, making it independent of
the size of the pattern set. Yet, since the results are not
computed by the user themselves, the users may have doubt
in the trustworthiness of the cloud service, unless there are
cryptographic proofs provided which assert the correctness.

In this work, we present the first solution of efficient au-
thenticated multi-pattern matching, which is based on Aho-
Corasick algorithm (AC automaton) [5], to be described in
Section 2.2. We first propose a scheme for small alphabet
size, and then a tailor-made one for large alphabet size. Our
schemes have the following desirable features:

• Short proof : The proof size is only proportional to
the size of the query n. It is independent of both the
pattern set size and the result size m.

• Low query overhead : The proof generation time com-
plexity is O(n + m logm log n), where n is the query
string length and m is the number of matched pat-
terns. There is only a logarithmic overhead compared
to that of the original AC-automaton without authen-
tication, which is O(n+m). It is also independent of
the pattern set size.

• Efficient verification: The verification time is O(n +
m logm), which is efficient, as the client at least needs
to read the query and the answer which already add up
to O(n + m). Again, it is independent of the pattern
set size.

1.1 Scheme Overview
Our schemes are based on AC automaton built on trie.

In the original AC automaton, a path is explored according
to the query string. For every node lying on the path, the

593

Table 1: Complexity comparison with generic solutions in the context of pattern matching: N is the total number of patterns
outsourced, l̄ is the average length of these patterns, m is the number of matched patterns, n is the length of queried text.

Space Setup Proof Size Query Time Verification Time Assumption

Näıve Signature Scheme Nl̄ Nl̄ Nl̄ Nl̄ Nl̄ Digital Signature

Generic VC Nl̄ Nl̄ 1 N logN n Non-falsifiable Assumptions

Generic ADS Nl̄ Nl̄ (n+m) logN (n+m) logN (n+m) logN Collision Resistant Hash

Our Schemes Nl̄ Nl̄ n n+m logm log n n+m logm q-Strong Diffie-Hellman

automaton outputs a set of matching patterns. The com-
plete result pattern set is the multi-set union of those sets
for every node.

To enable users to verify the result, our schemes attach
a cryptographic accumulator as well as a signature to every
node in the trie during the setup. With the help of the
signatures, the node can be authenticated and the path can
be verified thereby. An accumulator stores all the patterns
which are the outputs for a node. So, users can verify if
the accumulation of all the accumulators on a path matches
with the result.

For better performance and shorter proof, we used an ac-
cumulation tree structure to enable users to verify the union
relationship.

1.2 Related Works
Verifiable Computation (VC). General-purpose tech-

niques for verifiable computation [19, 9, 10, 20, 11, 15] and
their implementations [30, 29] are potential solutions to the
problem. To use these systems, the computation of the
multi-pattern matching is either modeled as a circuit [28, 16]
or as a RAM program [14, 31, 6, 7, 15]. In circuit-based VC,
the whole pattern set must be hardcoded into the circuit,
which makes the computation on the server side inefficient
(quasi-linear in the circuit size). RAM-based VC partially
solves this problem, but their practicality is still question-
able. Besides, the security of these systems is often based on
non-standard assumptions or non-falsifiable assumptions.

Authenticated Data Structure (ADS). Naor and Nis-
sim [25] proposed a generic solution to construct an ADS for
arbitrary data structure. Martel et al. [23] improves the per-
formance for tree-based data structures. The idea is to build
a Merkle tree [24] on top of the whole data structure, and
provide a proof for each step of the query process. The query
time and the proof size are thus both quasi-linear in the num-
ber of steps to generate the result, which is inefficient in the
multi-pattern matching case. In particular, the query time,
proof size, and verification time are all O((n + m) logN),
where n is the queried string length, m is the number of
matching patterns, and N is the total number of patterns.
Note that m could be as much as n2 in the worst case. In
contrast, the proof size of our schemes is O(n).

ADS for Pattern Matching. Papadopoulos et al. [27]
proposed an authenticated single pattern matching scheme
with optimal proof size by employing cryptographic accu-
mulators [26, 4]. Faust et al. proposed a verifiable pattern
matching scheme [18] which further achieves query privacy,
yet it requires the data owner’s online presence. XML file
search is a typical pattern matching application. Existing
schemes [17, 8] support single pattern matching on XML
file, where each query shows whether the queried pattern
occurs in the XML file. All these schemes only support sin-

gle pattern matching, which is essentially a Applying these
schemes to the multi-pattern matching problem gives even
worse complexity than the näıve approach of signing all the
patterns and returning them with the corresponding signa-
tures. different problem. In their model, a long string is
outsourced to the server, and a client queries whether a par-
ticular pattern occurs in the string. While in our case, a
large set of patterns are outsourced and a client queries
what patterns occur in the queried string. To the best of
our knowledge, we are the first to consider this problem.

A detailed comparison is presented in Table 1.

2. PRELIMINARIES
This section reviews the pattern matching algorithm and

some cryptographic primitives used in our proposed system.

2.1 Trie
Trie is a data structure to store a large amount of strings

formed by alphabet Σ, also named as a prefix tree. It is a
|Σ|-ary tree where every string is represented as a path from
the root to a node, and each node represents a common
prefix of some strings. Root node represents a null string
while other node represents a prefix that is constructed by
appending the character represented by the incoming edge,
to the prefix that its parent node represents.

Figure 1 shows a trie of the set {“adv”,“d”,“re”,“read”,“rec”}.
Prefixes which are complete strings are marked “gray”, e.g.,
Node 6 is in gray since the prefix “re” it represents is in the
string set. We remark that dashed and dotted edges shown
in Figure 1 do not belong to the trie, and will be used by
the AC automaton (to be explained later).

0

1

2

3

v

d

a

4

d

5

6

7

8

d

a

9

c

e

r

Figure 1: Illustration of trie and AC automaton of
{“adv”,“d”,“re”,“read”,“rec”}: gray node denotes an ending of
a pattern, dotted link represents suffixP pointer, and dashed
link represents fail pointer. Pointers to the root are omitted.

To set up a trie T , strings should be added to the trie

594

Table 2: Matching Flow for “breadv”

Step Prefix Longest Suffix Movement Action
1 “b” “” 0 → 0 The root has no edge for ‘b’, so stay at the root.
2 “br” “r” 0 → 5 The root has an edge for ‘r’, so move along the link to Node 5.

3 “bre” “re” 5 → 6
Node 5 has edge ‘e’, move to Node 6.
Node 6 was marked as pattern ending, so output a match “re” here.

4 “brea” “rea” 6 → 7 Node 6 has edge ‘a’, move to Node 7.

5 “bread” “read” 7 → 8
Node 7 has edge ‘d’, move to Node 8. Node 8 is pattern ending, output “read”.
Node 8 has suffixP, traverse along the pointer, and include “d” as a matched output.

6 “breadv” “adv” 8 → 3
Node 8 has no edge ‘v’, use fail to traverse to Node 2.
Node 2 has edge ‘v’, move along the edge to Node 3, output “adv” as it is an ending.

one by one. Specifically, for each string, traverse T from the
root according to the character sequence of the string to be
inserted, until the current node does not have an outgoing
edge representing the current character for continuing the
walk, which is the node for adding the rest of the string.
Specifically, we add a new edge representing the missing
character and direct it to a new node, and then continue the
rest of the walk. After finishing walking, the current node
should be at the end of the path representing the new string,
and is marked as the ending of a string. The node identifier
(ID) is set to be the insertion timestamp, as illustrated in
Figure 1.

Trie has a lot of good properties enabling it to be a good
data structure for storing strings. Firstly, all the common
prefixes in the string set are stored only once. So, it can
achieve compression to some extent. Even in the worst case,
it requires less space than simply storing all the strings.
It can be further compressed by aggregating nodes in the
intermediate path without branches. Besides, trie enables
searching strings with prefix quickly. Many algorithms em-
ploy trie as a base data structure for both compression and
fast searching, and AC automaton is such an algorithm [5].

2.2 Aho-Corasick String Matching Algorithm
A simple (and näıve) multi-pattern matching algorithm

works as follows. Given a query text, enumerate all the
patterns and check if the pattern occurs by checking if the
pattern is a prefix of any suffix of the text. For the last
step, advanced pattern matching algorithm like KMP [22]
or Boyer-Moore string searching algorithm [13] can be used.
Yet, the pattern enumeration remains. For a huge number
of patterns, the query text probably matches only a small
portion of them, but enumeration means all of them are
accessed at least once, which is a waste.

Aho-Corasick string matching algorithm (AC automaton)
does not need to access all the patterns while correctness can
still be guaranteed. The searching philosophy is to traverse
all the prefixes of the query text from shorter to longer (e.g.,
“b”, “br”, · · · , “bread”, “breadv”), and for each prefix, find
all its suffixes which are in the pattern set (e.g., “read” and
“d” for “bread”). Correctness comes from the fact that all
suffixes have been conceptually covered. Now we can divide
our problem into two sub-problems, namely, given a prefix
of the query, how to do faster than trying all suffixes, and
how to output those suffixes.

Matching Flow. According to the query string, the au-
tomaton traverses the trie starting from the root. It sequen-
tially takes one character from the query string each time
and tries to move from the present node to another node
according to the character. If the present node has an edge
for the character, it moves along the edge to the lower node.

If however the present node has no such edge, it iteratively
uses the fail pointers to try to find a node that has an eligible
edge and then move along that edge. Along traversing the
fail pointers, if the root node is reached and it still cannot
find an eligible edge, the automaton just stays at the root.
This part will be elaborated in the paragraph for “Efficient
Transition”.

Every time the automaton moves to a new node according
to the rules, it tries to output the matched patterns if possi-
ble. If the current node is an ending of a pattern, the pattern
must be output. Besides, if the suffixP pointer points to a
node rather than the root, the automaton iteratively out-
puts nodes using suffixP. This part will be elaborated in the
paragraph for “Efficient Output”.

For example, if the pattern set is what showed in Figure 1
and the query string is “breadv”, the automaton starts from
the root and follows the steps showed in Table 2.

Efficient Output. The suffixP pointer of a node guar-
antees that it is pointed to the longest suffix (except itself)
of the node which is in the pattern set. For the i-th long
prefix of query text qi, if the longest suffix of qi on the trie
(may not be a pattern ending) is represented by node v, we
can efficiently output all the matches for qi by backtracing
from v along suffixP pointer until the root is reached. (See
Step 5 in Table 2 as an example.)

Backtracing the path does not miss any result and guar-
antees that all the suffixes for the node were accessed. This
step can be regarded as a sub-routineTracePatterns(v), which
outputs all the hit patterns when node v is accessed. Our
proposed scheme will use this sub-routine.

Efficient Transition. The AC automation introduces a
fail pointer to realize fast transition from a longer suffix to a
shorter one (may not be a pattern). Specifically, suppose for
the i-th long prefix qi, node v in the trie represents its longest
eligible suffix, but we failed to find the longest eligible suffix
for qi+1 by moving along any outgoing edge from node v.
We can still use the fail pointers to quickly locate the node
for a shorter suffix, which may lead to the longest eligible
suffix for qi+1. (See Step 6 in Table 2 as an example.)
Efficiency. The AC automaton is very efficient. First,

note that the additional links are just two pointers for each
node which do not increase the space complexity of the trie.
For setup, the time complexity is O(Nl̄), including con-
structing the trie, the fail pointers as well as the suffixP
pointers for each node of the trie. For searching, O(n+m)
nodes are accessed where n nodes are accessed for stepping
down, and the nodes accessed for outputting result (back-
tracing) is O(m).

2.3 Bilinear Pairings
Bilinear pairing is a powerful cryptographic primitive which

595

maps a pair of base group elements to a target group ele-
ment. Let G and GT be two cyclic groups of prime order p.
A (type-I) bilinear pairing e(·, ·) : G×G→ GT satisfies:

• Bilinearity. For all u, v ∈ G, a, b ∈ Z, e(ua, vb) =
e(u, v)ab.

• Non-degeneracy. e(g, g) 6= 1 where g is a generator of
G.

• Efficiency. For all u, v ∈ G, e(u, v) is efficiently com-
putable, but the inverse is not.

We also say (G,GT , e, p, g) defines a bilinear group.

2.4 q-Strong Diffie-Hellman Assumption
The q-Strong Diffie-Hellman (q-SDH) assumption was first

introduced by Boneh and Boyen [12]. The q-SDH problem
states that: given a bilinear group (G,GT , e, p, g), and a

(q+1)-tuple (g, gx, gx
2

, · · · , gx
q

), output a pair (c, g
1

x+c). An
adversary A has advantage ǫ in solving the q-SDH problem
in G if

Pr[A(g, gx, gx
2

, · · · , gx
q

) = (c, g
1

x+c)] ≥ ǫ.

We say that the q-SDH assumption holds for group G if
no probabilistic polynomial-time (PPT) adversary has non-
negligible advantage in solving the q-SDH problem in G.

2.5 Dynamic Accumulator
A dynamic accumulator securely represents a set of ele-

ments in Zp in a compact manner. A dynamic accumulator
has the following properties.

• Efficiency. The calculation of an accumulator and the
evaluation of membership relations or subset relations
are efficient.

• Commutativity. The accumulation order of the set
members does not affect the result.

• Collision-Resistance. No PPT adversary can output a
set A of polynomial size, an element a′ which is not in
the set A, and a corresponding witness wit which will
pass the verification algorithm for proving that a′ is in
A.

A dynamic accumulator scheme ACC is a collection of five
polynomial-time algorithms ACC = (Setup, Accu, Update,
CompuWit, AccVerify). Here, we review Nguyen’s pairing-
based construction [26, 4], which is collision-resistant under
the q-SDH assumption.

Setup(1λ)→ (param, aux).

1. Choose a type-I bilinear group (G,GT , e, p,G), where
the q-SDH assumption holds for G, and G is a random
generator of G.

2. Randomly choose s
$
← Zp and compute ζ = (G,Gs,

Gs2 , · · · , Gsq).

3. Output the public parameters param = (G, GT , e, p,
G, ζ) and the auxiliary information aux = s.

Accu(param, aux, A)→ accA. On input a member set A =

{ai}
m
i=1, compute the accumulator accA = G

∏m
i=1 (s+ai).

Update(param, acc, a∗) → acc∗. On input an accumulator
acc and a member a∗,

• Add(param, acc, a∗)→ acc∗: add new member a∗, acc∗ =

accs+a∗

.

• Delete(param, acc, a∗)→ acc∗: delete member a∗, com-

pute acc∗ = acc
1

s+a∗ .

CompuWit(param, accA, B ⊆ A) → WB⊆A. On input an
accumulator accA and a subset B, generate a membership
witness WB⊆A = G

∏
i∈A\B (s+ai) for proving the relation of

B ⊆ A.

AccVerify(param, accA, B,W) → 0/1. Verify the mem-
bership relation of sets A and B by evaluating the equa-
tion e(W, G

∏
i∈B (s+ai)) = e(accA, G). This relation can

be proved without revealing B via a zero-knowledge proof,
which is a standard technique in the cryptography literature.

This instantiation of dynamic accumulator supports the
verification of multiset union relationship described in the
algorithm AccVerify⊎() below.

AccVerify⊎(param, accA, accB , accC) → 1/0. On input of
three accumulators for the sets A,B,C respectively, verify
the multiset union relation A = B ⊎ C by evaluating the
equation e(accA, G) = e(accB , accC). If the equation holds,
output 1. Otherwise, output 0.

Finally, given only ζ = (G,Gs, Gs2 , · · · , Gsq) and without
the auxiliary information s, accA for any set A of size at most
q can be computed in time O(n log n) with polynomial in-
terpolation using Fast Fourier Transform (FFT) techniques.
This feature is described in the algorithm Accuζ() below.

Accuζ(param, A) → 1/0. On input a member set A =
{ai}

m
i=1, compute the accumulator without the auxiliary in-

put s using the public parameter ζ. Parse ζ as (G0 =

G,G1 = Gs, · · · , Gq = Gsq) and compute accA =
∏q

i=0 G
bi
i ,

where bi =
∑

B⊂A,|B|=q−i

∏

a∈B a.

2.6 Digital Signature Scheme
A digital signature demonstrates the authenticity of a

message. A digital signature scheme SIG is a collection
of four polynomial-time algorithms SIG = (Setup, KeyGen,
Sign, Verify). Setup(1λ) → param takes in a security pa-
rameter λ and generates the system parameter param which
defines the message space M. KeyGen(param) → (pk, sk)
takes in the system parameter and generates a verification-
signing key pair (pk, sk). Sign(pk, sk,m) → σ generates a
signature σ on the input message m using the input sign-
ing key sk. Verify(pk,m, σ)→ 1/0 is a verification algorithm
that outputs 1 for acceptance or 0 for rejection depending on
the authenticity of the input message-signature pair (m,σ).

3. SYSTEM MODEL
Authenticated multi-pattern matching involves three en-

tities, the data owner, the cloud server, and the client. The
data owner owns a set of patterns or keywords. The pat-
tern set is usually too large to be hosted locally for a long
time. So the data owner authenticates the patterns and
stores them on a cloud server along with the authentica-
tion information. The cloud server then provides pattern
matching service for the client and proves that the answer
it returns is authentic. Each time a client sends a query
in the form of a string to the cloud server, the server will

596

traverse the queried string and find the patterns contained
in the queried string. The server will return these matched
patterns and the number of occurrences of each pattern to
the client, along with a proof for the answer. The client can
verify the proof upon receiving the answer. If the proof is re-
jected, the client may act accordingly, say, filing complaints
against the cloud server.

Our construction is based on an AC automaton built from
a trie over the outsourced keywords. The authenticated
multi-pattern matching scheme consists of four algorithms
(KeyGen, Setup,Query,Verify).

• KeyGen(1λ)→ (pk, sk). The data owner runs this PPT
algorithm. This algorithm takes in a security param-
eter 1λ, and outputs the public-private key pair. The
data owner publishes the public key.

• Setup(pk, sk,P) → T . The data owner runs this al-
gorithm to construct a trie storing the pattern set P,
build an AC automaton on the trie, and authenticate
the trie. At the end of this algorithm, the data owner
sends the AC automaton T , including the authentica-
tion information (e.g., signatures), to the cloud server.

• Query(T , q)→ (R, π). The cloud server runs this algo-
rithm. This algorithm takes in the AC automaton T
(including its authentication data) stored on the cloud
server and a query from a client, and outputs the multi-
pattern matching result with a proof for the correct-
ness and authenticity of the result. At the end of this
algorithm, the cloud server sends the result and the
proof to the querying client.

• Verify(q,R, π, pk) → 1/0. A querying client runs this
algorithm to verify the correctness and authenticity of
the result returned from the cloud server. This algo-
rithm takes in the query, the result, and the proof as
input, and outputs a bit indicating whether the result
is correct and authentic. If the result is correct and
authentic, the client accepts the result; otherwise, the
client rejects the result.

Definition 3.1 (Correctness). Authenticated multi-
pattern matching scheme is said to be correct, if for all
pk, sk output by KeyGen(1λ), all pattern sets P, all T output
by Setup(pk, sk,P), and all query q, we have Verify(q,R, π,
pk)→ 1 where (R, π) is output by Query(T , q).

Definition 3.2 (Soundness). An authenticated multi-
pattern matching scheme is said to be sound, if for all pk, sk
output by KeyGen(1λ), all pattern sets P, all T output by
Setup(pk, sk,P), any PPT adversary Adv, and any query q,
we have the following inequality holds, where R is the correct
answer of q on P,

Pr





{R∗, π} ← Adv(1λ, pk, T , q);
1← Verify(q,R∗, π, pk);
R∗ 6= R



 ≤ negl(k) .

4. PROPOSED SCHEMES
Alphabet Size. There are two different settings for our

problem of authenticated multi-pattern matching. In one
setting, the alphabet size |Σ| is a small constant. |Σ| is a

relatively small constant for most alphabetic scripts. For ex-
ample, English has 26 distinct characters, and Greek has 24
distinct characters. In this setting, we do not need to con-
sider the effect of |Σ| on the efficiency of the authenticated
multi-pattern matching system.

In the other setting, |Σ| is relatively large or even infi-
nite. Most pictographic scripts consist of a large number
of symbols. Take Sinitic languages as an example, although
the number of commonly used characters is about 7,000, the
total number of distinct characters is about 85,000 which is
huge. The size of a single node becomes huge because it
contains O(|Σ|) pointers, and only a small portion of them
are not null while a large amount of space is wasted. If it is
not treated separately, the space efficiency degrades signifi-
cantly. Hence, certain measures have to be taken to mitigate
this impact of the size |Σ| on the efficiency.

The major differences in the implementation of the two
settings reside in the setup phase to be discussed. The com-
parison of the two different implementations will be given in
the analysis part.

Building Block. Our proposed schemes use a digital
signature scheme SIG and a dynamic accumulator scheme
ACC as building blocks.

4.1 Small Constant Alphabet Size
We first describe the authenticated multi-pattern match-

ing scheme for alphabet size |Σ| being a small constant.

KeyGen(1λ) → (pk, sk). The data owner runs this algo-
rithm to generate the public-private key pairs for SIG and
ACC. The data owner invokes SIG.Setup(), SIG.KeyGen(),
and ACC.Setup() to setup the signature scheme and the ac-
cumulator scheme, and obtains (pk = (SIG.pk,ACC.param),
sk = (SIG.sk,ACC.aux)). The data owner publishes pk.

Algorithm 1 Setup(pk, sk)

1: procedure Setup(pk, sk)
2: setup AC-automaton T
3: rootT .acc := G
4: let Q be a queue
5: Q.enqueue(rootT)
6: while Q is not empty do
7: v := Q.dequeue()
8: (ID, {wc}c∈Σ∪{fail,suffixP}, acc, σ)← v
9: if pv is a pattern then
10: acc∗ := v.wsuffixP.acc
11: v.acc := ACC.Add(param, acc∗, pv)
12: else
13: v.acc := v.wsuffixP.acc

14: m := ID||wc1|| · · · ||wc|Σ|||w||acc
15: v.σ := SIG.Sign(pk, sk,m)
16: for all child node w of v do
17: Q.enqueue(w)

18: Output: T

Setup(pk, sk)→ T . Algorithm 1 shows the pseudocode of
Setup(). The data owner runs this algorithm to setup the
AC automaton and provide authentication for the data to
be stored on the trie. The data owner first constructs the
trie and builds the AC automaton T on the trie as described
in Section 2.2.

597

For authentication, this algorithm initializes the root node
rootT and set rootT .acc = G, where G is the accumulator
for empty set from ACC.param. Let pv be the word denoted
by the path (rootT , v). Each node v on T stores the tu-
ple (ID, {wc}c∈Σ∪{fail,suffixP}, acc), where ID is the identity
of node v representing the insertion timestamp, wc denotes
the child node of v for character c represented by the edge
between them, wfail denotes the node that node v’s fail link
connects to, wsuffixP denotes the node that node v’s suffixP
link connects to, and acc denotes the accumulator of node v
accumulating all the patterns which are the suffixes of the
word denoted by the path (rootT , v) (including the word pv
if it is a pattern). In the case that wc does not exist for
some c, which means there is no child edge of v denoting the
character c, the data owner sets wc to NULL.

The algorithm firstly sets up the trie T and sets up the
AC automaton on T , then the data owner traverses T in a
breadth-first-search (BFS) manner. For each node the data
owner arrives at, the data owner first finds the node wsuffixP

which is connected to node v by suffixP link, and gets its
accumulator wsuffixP.acc. If pv is a pattern, the data owner
computes node v’s accumulator acc by adding pv to the accu-
mulator wsuffixP.acc; if not, the data owner sets the accumu-
lator of v to v.wsuffixP.acc. Then, the data owner generates a
signature σ := SIG.Sign(pk, sk, ID||wc1|| · · · ||wc|Σ|||wfail||acc)
on the information of node v, and updates the node v as (ID,
{wc}c∈Σ∪{fail,suffixP}, acc, σ). After the traversal, the data
owner sends T , including the signatures and the accumula-
tors for all the nodes, and the basic AC automaton itself, to
the cloud server.

Algorithm 2 Query(T , q)

1: procedure Query(T , q)
2: let R,B be arrays
3: let S be a set
4: let A be a queue storing <accumulator, pattern list>
5: v := rootT
6: for all i := 1 to q.length do
7: while (v.wq[i] == NULL) & (v 6= rootT) do
8: S.insert(v)
9: v := v.wfail

10: if (v.wq[i] == NULL) & (v == rootT) then
11: continue
12: v := v.wq[i]

13: S.insert(v)
14: SP := tracePatterns(v)
15: if SP 6= φ then
16: R.append(SP)
17: A.enqueue(v.acc, SP)

18: while A contains more than 1 member do
19: a1 := A.dequeue()
20: a2 := A.dequeue()
21: acc := ACC.Accu(param, a1.SP ⊎ a2.SP)
22: A.enqueue(acc, a1.SP ⊎ a2.SP)
23: B.append(acc)

24: π := (S,B, rootT)
25: Output: (R, π)

Query(T , q)→ (R, π). Algorithm 2 shows the pseudocode
of Query(). When a client wants to find the patterns con-
tained in a string q, the client sends q to the cloud server

as a query. Upon receiving a query q, the cloud server runs
this algorithm to generate the multi-pattern matching result
and a proof for the result.

Let R be a container storing the counters for each pattern
hit, and S be a container storing the nodes on T which are
hit during the traversal. The cloud server starts from rootT
and traverses T according to the character sequence in q.
When the cloud server arrives at the node v at the (i−1)-th
step, and needs to continue the traversal according to the
character q[i], the i-th character in the sequence q, the cloud
server will face one of the following situations.

1. (Case 1 — q[i] on the edge :) Node v has a child edge
marked with the character q[i]. In this case, the cloud
server first adds v to the container S, and then goes to
node v’s child node wq[i]. On the node wq[i], the cloud
server performs a tracePatterns() operation. This op-
eration finds the pattern set SP which contains all
the suffixes of the word denoted by the path (rootT ,
wq[i]). This operation is realized by tracing the suffixP
link of the nodes recursively starting at wq[i] (refer to
Section 2.2). If the word pwq[i]

denoted by the path

(rootT , wq[i]) is also a pattern, it is a member in SP .
The cloud server increases the counter for each of the
patterns in SP stored in R by 1, adds node wq[i] to
the container S, and takes the accumulator acc of node
wq[i] for later use. After the cloud server finishes these
operations, it continues the traversal with the charac-
ter q[i+ 1] from the node wq[i].

2. (Case 2 — No edge with q[i] :) There is no existing
child edge of node v denoting the character q[i]. In this
case, the cloud server needs to continue the traversal
via the fail link of node v. If node v is not rootT , the
cloud server needs to add node v to the container S
indicating that node v is on the path of traversal for
query q. This information is important for the verifi-
cation. Then the cloud server goes to the node wfail

to continue the traversal with the character q[i]. How-
ever, if node v is rootT , the cloud server will face a dead
lock since the fail link of rootT points to rootT itself.
According to the mechanism of AC automaton, if we
cannot find a child edge denoting a character q[i], then
we can safely say that there exists no pattern which is
or contains any suffix of the string q[1]q[2] · · · q[i] (refer
to Section 2.2). Hence, in this case, the cloud server
can just skip the character q[i] and continue the traver-
sal with the character q[i+ 1].

After finishing the traversal (reaching the last character
of the sequence q), the cloud server constructs an accumula-
tion tree from the accumulators of the nodes hit (which are
stored in A) as shown in Figure 2. On the accumulation tree,
the leaf nodes store the accumulators of the nodes hit (which
are temporarily stored in A). Each parent node stores the
accumulator of the multiset union of the child nodes’ mem-
ber sets (the duplicated members are not eliminated). The
root stores the accumulator of all the patterns hit during
the traversal. The cloud server stores all the nodes except
the leaves of the accumulation tree in a container B. R is
the result of the query, and π = (S,B, rootT) is the proof
for the authenticity of the result. Note that all the members
in the container S are only stored once. The cloud server
sends (R, π) to the client at the end of this operation.

598

7

5

G

∏

a∈A1∪A2

(s+a)

1

G

∏

a∈A1

(s+a)

2

G

∏

a∈A2

(s+a)

6

3 4

Figure 2: Accumulation Tree

Verify(q,R, π)→ 1/0. Algorithm 3 shows the pseudocode
of Verify(). The client receives the result R and the proof π
after a query. The client parses the proof π as (S,B, rootT),
and proceeds with the verification.

1. The client verifies the signatures for all the nodes stored
in S.

2. The client runs VerifyPath() to verify the path that the
cloud server walked during Query(). This can be easily
done as the client holds the query q and all the nodes
hit on the path.

3. The client runs VerifyAccumulator() to verify the cor-
rectness of the accumulation tree. The client takes the
accumulators of the nodes stored in S as leaf nodes,
and verifies all the intermediate nodes received from
the cloud server using the algorithm Verify⊎(param,
accp, accc1 , accc2) in Section 2.5, where accp is the ac-
cumulator of the parent node, accc1 and accc2 are the
accumulators of the two child nodes. The verification
is performed level by level in a bottom-up manner.

4. The client runs VerifyAccumulationTreeRoot() to ver-
ify the root of the accumulation tree. The client con-
structs an accumulator for the multiset of patterns
stored in the container R by accR ← Accu(param, R),
and evaluates the equation accR == accroot.

If all the signatures are authentic, the path is correct, the
accumulation tree can be correctly verified, the accumulator
stored on the root of the accumulation tree accumulates the
multiset of patterns stored in the result R, then the result
R is correct; otherwise, the client rejects the result.

The mismatch cases are not specially authenticated since
they are just the cases that the result is an empty set. In
those cases, every accumulator on nodes accumulates an
empty set, and every root accumulator also accumulates an
empty set. All steps need not be specially treated for empty
sets.

4.2 Large Alphabet Size
In the case that the alphabet size, |Σ|, is relatively large

(or even unlimited), the size of the child node set {wc}c∈Σ is
large for a large |Σ|. This fact makes the path verification re-
source consuming. We need to take special measures to pro-
vide authentication for the multi-pattern matching queries.

For our scheme described in Section 4.1, the cloud server
sends the complete node information (including all the child
edges and null edges) of each node hit during the traversal to
the client as a part of the proof. When the alphabet size is
large or even unlimited, the number of possible child edges

Algorithm 3 Verify(q,R, π)

1: procedure Verify(q,R, π)
2: (S,B, rootT)← π
3: for v in S do
4: b0 := b0 & SIG.Verify(pk, v.m, v.σ)

5: b1 := VerifyPath(q, S)
6: b2 := VerifyAccumulator(S,B)
7: b3 := VerifyAccumulationTreeRoot(R,B)
8: if b0 & b1 & b2 & b3 is true then
9: Output: Accept
10: else
11: Output: Reject

is also large or unlimited, though the number of effective
edges is small. This makes the proof inefficient to generate.

To solve this problem, the data owner generates signa-
tures for each pair of adjacent child edges of each node, in-
stead of directly signing on each node. Each signature now
not only authenticates the two child edges it signs on, but
also proves that there exist no other child edges for the char-
acters in between the two characters corresponding to the
two signed child edges.

During each query, the cloud server picks only the neces-
sary edge information to generate the proof, and leaves out
the unnecessary edge information. The cloud server picks
the walked edge of each node and sends the signature for
that specific edge to the client as the proof. In this way, the
client only needs to verify the child edge it needs to walk,
instead of verifying the node. KeyGen() and Verify() remains
the same as the scheme in Section 4.1. We describe Setup()
and Query() in this setting below.

Algorithm 4 Setup(pk, sk)

1: procedure Setup(pk, sk)
2: setup AC-automaton T
3: rootT .acc := G
4: let Q be a queue
5: Q.enqueue(rootT)
6: while Q is not empty do
7: v := Q.dequeue()
8: (ID, cv, {wc}c∈Σv∪{fail,suffixP}, acc, {σc})← v
9: if pv is a pattern then
10: acc∗ := v.wsuffixP.acc
11: v.acc := ACC.Add(param, acc∗, pv)
12: else
13: v.acc := v.wsuffixP.acc

14: for (v.wci , v.wcj 6= NULL) & (∄k ∈ (i, j) s.t.
v.wck 6= NULL) do

15: m := ID||wci ||wcj ||wfail||acc
16: v.σci := SIG.Sign(pk, sk,m)

17: for all child node w of v do
18: Q.enqueue(w)

19: Output: T

Setup() is modified as shown by the pseudocode in Algo-
rithm 4. The alphabet Σ is sorted beforehand. Each node v
only stores the existing child nodes with two additional vir-
tual nodes w−∞ and w+∞. That is to say, for all child
nodes wc stored on node v, the character c is denoted by
an existing child edge. Node v’s subset {c} ⊂ Σ is sorted

599

in the same order of the alphabet Σ. There is one more
item cv stored on node v which is used to identify the char-
acter denoted by the edge between node v and its parent
node.

Setup() constructs the trie and initiates the AC automa-
ton. The data owner then traverses T in a BFS manner.
During the traversal, the data owner sets up the accumu-
lators for each node in the same way as it does in the case
of small |Σ|. When it comes to the signature generation,
the data owner behaves differently as discussed. For each
node v, the data owner creates one signature for each pair
of adjacent characters ci and cj , which certifies the fact that
node v has two child edges denoting characters ci and cj re-
spectively and node v does not have any child edge denoting
any characters between ci and cj .

An example is shown in Figure 3. The node v shown in
Figure 3 has four child edges denoting the characters ‘a’, ‘c’,
‘r’, and ‘s’ respectively, along with two virtual edges −∞ and
+∞. Node v has five pairs of adjacent child edge pairs, (−∞,
‘a’), (‘a’, ‘c’), (‘c’, ‘r’), (‘r’, ‘s’), and (‘s’, +∞). The data
owner constructs the following five pieces of information
m−∞ = ID||w−∞||wa||wfail||acc, ma = ID||wa||wc||wfail||acc,
mc = ID||wc ||wr||wfail||acc, mr = ID ||wr||ws||wfail||acc,
and ms = ID||ws||w+∞||wfail||acc, and then generates five
signatures σ−∞, σa, σc, σr, and σs on the five pieces of
information respectively with the signature scheme SIG.

After finishing the traversal, the data owner sends T ,
along with the signatures and the accumulators of all the
nodes, to the cloud server.

v

w−∞

−∞

wa

a

wc

c

wr

r

ws

s

w+∞

+∞

Figure 3: Signing on the Edges

Query() is modified as shown by the pseudocode in Algo-
rithm 5. The cloud server traverses T in the same way as
it does in the case of small |Σ|. For each node hit, the
cloud server only sends the authentication of the walked
child edges to the client. Suppose the cloud server arrives
node v at the (i− 1)-th step, it needs to generate the proof
showing that node v is hit during the traversal and goes to
the next node according to q[i]. As the case of small |Σ|, the
cloud server will face one of the following conditions. The
traversal behavior is the same as in the case of small |Σ|.
Here, we only describe the different part.

1. Node v has a child edge denoting the character q[i]:
The cloud server finds (j, k) so that q[i] == cj , and
v.wcj , v.wck are adjacent child nodes of v. The cloud
server then sends (wcj , wck , wfail, σcj) to the client for
path verification.

2. There is no existing child edge of node v denoting the
character q[i]: The cloud server finds (j, k) so that q[i]
falls between cj and ck in Σ, and sends (wcj , wck ,
wfail, σcj) to the client for path verification.

To illustrate, let us consider an example shown in Figure 3
again. When the cloud server arrives at node v during the

Algorithm 5 Query(T , q)

1: procedure Query(T , q)
2: let R,B be arrays
3: let S be a set
4: let A be a queue storing <accumulator, pattern list>
5: v := rootT
6: for all i := 1 to q.length do
7: while (v.wq[i] == NULL) & (v 6= rootT) do
8: find i, j s.t. (v.wci , v.wcj 6= NULL) & (q[i] is

between ci and cj)
9: v′ := (v.ID, {v.wci , v.wcj , v.wfail}, v.acc, v.σci)
10: S.insert(v′)
11: v := v.wfail

12: if (v.wq[i] == NULL) & (v == rootT) then
13: continue
14: A.enqueue(v.acc)
15: find j, k s.t. (q[i] == cj) & (ck is the first char-

acter after q[i] in the Σ that v.wck 6= NULL)
16: v′ := (v.ID, {v.wcj , v.wck , v.wfail}, v.acc, σcj)
17: S.insert(v′)
18: SP := tracePatterns(v)
19: R.append(SP)
20: A.append(v.acc, SP)

21: while A contains more than 1 members do
22: a1 := A.dequeue()
23: a2 := A.dequeue()
24: acc := ACC.Accu(param, a1.SP ⊎ a2.SP)
25: A.enqueue(acc, a1.SP ⊎ a2.SP)
26: B.append(acc)

27: π := (S,B, rootT)
28: Output: (R, π)

traversal at the (i−1)-th step, it takes the next step accord-
ing to the character q[i]. If q[i] ∈ {‘a’, ‘c’, ‘r’, ‘s’}, the cloud
server can just give out the corresponding signature as the
proof. Take q[i] == ‘c’ as an example, the cloud server just
picks v.σc to prove that wc is truly the node hit in the next
step. On the other hand, if q[i] /∈ {‘a’, ‘c’, ‘r’, ‘s’}, the cloud
server needs to go to wfail in the next step. In this case, the
cloud server needs to prove two statements that node v does
not have a child edge corresponding to the character q[i] and
that wfail is the node connected by v’s fail link. Take q[i] ==
‘h’ as an example, ‘h’ falls between ‘c’ and ‘r’, so the cloud
server picks the signature v.σc as the proof for the two state-
ments. v.σc indicates that there is no character between ‘c’
and ‘r’ which corresponds to one child edge of v. Mean-
while, v.σc also authenticates wfail. Thus, both statements
are proved by this single signature. The cloud server just
adds part of node v’s information, ID||wc||wr||wfail||acc||σc,
to the container S. The rest of the operations remain the
same as stated in the case of small |Σ|.

4.3 Complexity Analysis
We discuss the complexity of our schemes in this section,

and further discuss the feasibility to parallelize the schemes.
Setup. The setup consists of two main parts: the AC-

automaton setup and the later authentication information
setup. With no doubts, the AC automaton setup complexity
is O(Nl̄), which is the total length of the patterns. The
authentication information setup part for the small alphabet
case accessed every node on the trie once in a BFS way.

600

The complexity of operations for every node is O(1), and
the number of nodes does not exceed Nl̄, so the total setup
complexity is O(Nl̄).

For the large alphabet size case, during the nodes traver-
sal, each adjacent edge pair is also accessed once. The num-
ber of edges is the number of nodes minus one (the root has
no parent edge and each other node has one and only parent
edge exclusively). So, the total complexity is also O(Nl̄).

For each node, there is only one accumulator update con-
ducted, so for either case, overall only O(N) accumulator
updates are conducted.

Space. For the small alphabet case, each node is asso-
ciated with an accumulator and a signature, which are all
constant size. So the space usage is O(Nl̄). For the large
alphabet, each node is associated with an accumulator and
each edge is associated with a signature. So, the total space
used in this case is also O(Nl̄).

Query. The original query time complexity of the AC au-
tomaton is O(n +m). The extra complexity introduced by
our schemes is resulted from the accumulation tree compu-
tation. The number of the nodes at the leaf level is bounded
by n, so the height of the accumulation tree is bounded
by O(logn), as it is a binary tree. For different levels,
the numbers of nodes are different, but the total number
of elements for each accumulator at each level is the same,
thusm. Calculating an accumulator without secret key costs
O(k log k) time where k is the number of the elements it ac-
cumulates. So the calculation time for each level is bounded
by O(m logm). As the result, the total complexity for the
accumulation tree is O(m logm log n). The total complexity
for the query algorithm is thus O(n+m logm log n), where
O(n) accumulations are conducted.

Verification. The verification complexity comes from
four parts. The first is for verifying all the signature of
nodes in the small alphabet case, or the signature of edges
in the large alphabet case. Apparently, this step costs O(n)
complexity, since the number of nodes or edges does not
exceed two times the length of queries as guaranteed by AC
automaton.

The second step of verifying the path is just traversing
the query and recording the accumulators. The number of
nodes accessed does not exceed 2n. The complexity of this
step is lower than the AC automaton’s searching, since the
client already has the final (temporally untrusted) result,
and needs not (and actually could not backtrace) to fetch
hitting patterns.

The third part of verifying the accumulator tree costs
O(n) time, since there are O(n) internal nodes to be verified
and verifying each node costs only two pairings. This step is
much faster than generating those accumulators, since gen-
erating an accumulator needs conducting FFT on the set,
while verifying if one accumulator is the union of other two
accumulators needs two pairings.

The last step of verifying the root costs O(m logm) com-
plexity because it is just a round of FFT on the result
set. As the result, the overall verification complexity is
O(n + m logm). Among all the operations, O(n) pairings
are conducted.

Proof Size. The proof consists of two parts: nodes set
S and internal accumulator tree node array B. The size of
either one does not exceed O(n). So, the overall length of
the proof is O(n).

Parallelism. The scheme can be easily adapted to a

parallel computing environment. Firstly, for the setup, both
AC automaton and the accumulator construction are done
in a BFS order, and constructing a node needs only infor-
mation from the higher level nodes. So, the nodes at the
same level can be constructed simultaneously. Secondly, for
the query, the proof construction mainly spends time on the
accumulation tree construction, where the accumulators at
the same level can be constructed simultaneously without
conflict. Besides, for each node, the accumulator construc-
tion relies on FFT which is much more efficient in a parallel
environment. Thirdly, for the verification, the signature ver-
ification can be done in parallel and the accumulation tree
can be similarly verified in parallel at each level. The FFT
required for verifying the root accumulator can also be par-
allelized.

4.4 Security

Theorem 4.1. The authenticated multi-pattern matching
schemes described above are correct and sound, according to
Definitions 3.1 and 3.2.

The correctness of the result follows the correctness of the
AC automaton. The correctness of proof is elaborated as
follow: 1) The signature guaranteed the authenticity of the
nodes including the accumulators. 2) With those authenti-
cated nodes, the AC automaton can output a set of accumu-
lators which are also inherently authenticated, because the
automaton algorithm is fixed and the input of the automa-
ton is authenticated. 3) The accumulation tree structure
guaranteed that the root accumulator is the accumulation
of all the authenticated accumulators, which implies that
the root accumulator is the accumulation of the result. 4)
The ultimate result is verified by the relationship between
the root accumulator and the result set.

For the soundness, if an adversarial cloud server can out-
put a wrong result R with a proof π which passes the verifi-
cation, it implies the ability to either generate forgeries for
SIG, or to break the security of ACC. In R, the node set
S must contain all the hit nodes of the query q; otherwise,
Verify() trivially rejects the result. Hence, it is reasonable to
assume the node set S is correct with respect to q. If ACC
is secure, then the accumulators stored in the nodes and
on the accumulation tree accumulate the members from a
wrong pattern set corresponding to the result R, which in-
dicates that the accumulators stored in the nodes are not
genuine. Hence, the signatures on the nodes are forged by
the adversarial cloud server. If SIG is unforgeable, then the
accumulators stored in the nodes are genuine. In this case,
it means that genuine accumulators yield a wrong multiset
union result, which implies that the adversarial cloud server
can break the security of ACC.

5. EVALUATIONS
In this section, we discuss the performance of our pro-

posed scheme. For evaluation, we implemented a keyword
searching application that uses the small |Σ| scheme de-
scribed in Section 4. The application reads pattern strings,
generates the AC automaton, and sets up the authentica-
tion related information thereafter. Then, it reads query
strings and answers all the occurrences with proofs. Finally,
it checks the answers with the proofs.

The application was all written in C++ with third-party
libraries including PBC [3] for pairing, Crypto++ [1] for

601

Query Length

100 101 102 103 104

H
it
 N

u
m

b
e
r

100

101

T
im

e
 (

s
)

10-6

10-4

10-2

100

of Hit

Query Time

Verification Time

(a) Evaluation Result on Set #2

Query Length

100 101 102 103 104

H
it
 N

u
m

b
e
r

101

102

T
im

e
 (

s
)

10-6

10-4

10-2

100

102

of Hit

Query Time

Verification Time

(b) Evaluation Result on Set #3

Query Length

100 101 102 103 104

H
it
 N

u
m

b
e
r

100

101

102

103

T
im

e
 (

s
)

10-6

10-4

10-2

100

102

of Hit

Query Time

Verification Time

(c) Evaluation Result on Set #4

Query Length

100 101 102 103 104

S
iz

e
 (

B
)

103

104

105 Node Part

Acc Part

Overall Size

(d) Proof Size on Set #2

Query Length

100 101 102 103 104

S
iz

e
 (

B
)

103

104

105

Node Part

Acc Part

Overall Size

(e) Proof Size on Set #3

Query Length

100 101 102 103 104

S
iz

e
 (

B
)

104

106

Node Part

Acc Part

Overall Size

(f) Proof Size on Set #4

Figure 4: Number of hit, query time, verification time, and proof size (the nodes (Node) and the accumulators (Acc)) vs.
Query string length (for different pattern word sets)

signature, and GMP [21] for high precision computation.
We employ type-I (symmetric) bilinear group. PBC library
implements such group over an elliptic curve of 512 bits,
providing security of 1024-bit discrete logarithm. It is also
easier to instantiate the accumulator by a symmetric bilinear
group, or verification may require each node to have two
accumulators, one in each of the asymmetric base groups.

The latter parts in this section show the time, storage,
and some other performance quantities for each step. All
the performance experiments were conducted in a PC with
Core i5 3.2GHz CPU and 8GB main memory.

5.1 English Keyword Search
As one of the most important applications for pattern

matching, keyword search demonstrates the performance of
the scheme well in many practical scenarios. We test our
application in a natural language environment to better em-
ulate practical cases.

Setup. To evaluate the scheme, we need a typical and
representative pattern string set. After researching on a lot
of different sets, we chose Complete English Words List
provided by SIL [2] as the pattern set (hot word). This
list contains over 100, 000 real English words. This set is
the set #4 in our experiment. To test the performance
in different scales, besides using the whole dictionary, we
also randomly sampled one hundred, one thousand, and ten
thousand words from the list, and tested the time used to
set them up respectively. The results are shown in Table 3.

According to the experiment result, we can see that the
time used to setup increases nearly linearly with the pattern
number, because most of the setup time was used in accumu-
lator updating and it happens once and only once for every
pattern. However, the storage used to store the automaton
and authentication information does not increasing linearly

Table 3: Setup performance test result

Number # Number of Patterns l̄ Time Storage

1 100 8.43 289 ms 273 KB

2 1,000 8.45 2.89 s 2.32 MB

3 10,000 8.55 29.5 s 17.34 MB

4 109,582 9.53 318.8 s 87.12 MB

with the size, because of the compression feature of trie: the
common prefixes of all the patterns are stored only once. So,
at least for English, the larger the pattern set is, the higher
compression ratio it will be. Hence, we believe in a larger
scale, the storage performance could even be better because
of the compression.

Query & Verification Time. We selected some En-
glish texts from wiki pages as the query texts and tested
the time used to answer the query on different pattern scale
and different query lengths (result from pattern set #1 is
abandoned since that set is too small to be typical). One
may question the necessity to conducting experiment on dif-
ferent pattern scale, since according to the complexity anal-
ysis, the query time is independent of the scale. We found
that in the natural language environment, the pattern size
influences the hit rate, which in turns influences the result
set size, and therefore influences the query time indirectly.
In other words, the more keywords, the more hit will be ob-
tained and slower the query will be. The query times used
for different pattern sets were measured and are shown in
Figure 4a, Figure 4b and Figure 4c.

The evaluation results show that the query time is negligi-
ble when there is no pattern hit, because the accumulation
tree is null for those cases. So, we focus on the matched

602

cases. We analyzed the cases with similar hit pattern num-
ber but different query lengths to see how the query length
influences query time, and analyzed the cases with different
hit pattern number but the same query length to see the
effect of result set size. We found that the query time is
mainly influenced by the hit pattern set size, because most
of the time was spent on computing the accumulators of
the tree. While the query length results in only tiny differ-
ence, as the number of hit pattern increases, the query time
increases not prominently faster than linear. As a represen-
tative case, a query of 1,000 characters on pattern set #3
costs 183ms, where there are 67 hits.

We also tested the verification time used in those cases.
The verification time also increases linearly. As a reason,
according to our analysis, the dominant part of time lies in
the verification of the accumulator tree, or in other words,
the pairings. The root accumulator verification in fact costs
negligible time, in our test scale. We believe that the verifi-
cation time may increase faster than linear in some extreme
cases where the result set is very large. But, even in the
case which has the largest result size, the verification time
is dominated by the pairing calculation and the effect from
the result size is not obvious enough. As a representative
case, verification to a query of 1,000 characters on pattern
set #3 costs 147ms.

Proof Size. The proof size increases linearly with query
length, as shown in Figure 4d, Figure 4e, and Figure 4f. In
theory, the proof size is independent of the pattern set size.
However, by comparing the proof sizes for the same query
on two different pattern sets, we found that the proof size
for a larger set is larger. This is because the server may
walk through one node more than once, but the authenti-
cation information is stored only once, yet the user can still
correctly verify that. It is deduplication in a sense. When
the set size is small, a node is more likely to be accessed
multiple times in the natural language settings. So, it needs
a smaller space to contain less nodes’ authentication infor-
mation. The overall proof size is still acceptable and the
proof can be further compressed using generic compression
algorithms.

Analysis. The evaluation reflects the performance of
the scheme in a natural language keyword matching sce-
nario. The time spent on Setup, Query, and Verify are all
reasonable and practical enough for real world usage. Most
importantly, the times for both Query and Verify are not
directly influenced by the number of patterns.

5.2 Evaluation Beyond Natural Language
Section 5.1 tested the performance of our scheme in a

natural language environment. Some extreme situation may
never happen in this environment. For example, a query text
of length n theoretically may result in a result set which at
most has n · (n+ 1)/2 elements, where all the substrings of
the query are in the pattern set. Yet, meaningful text can
hardly have so many meaningful keywords occurred. Even
for the complete word set used in Section 5.1, the highest
witnessed hitting rate (m/n) is 0.83. Besides, the hitting
rate is influenced by the pattern set size, which masked the
effect from pattern size to query time, and we cannot distin-
guish the time consumption resulted from the larger pattern
set or from the larger result set. So, we also devised some
experiments on data set beyond natural language to show
the effects from those parameters only.

Effects from Hit Pattern Number. To test the effects
from hit pattern numberm only, we fixed the pattern set size
to be 10,000 and the query length to be 100, then we craft
the content of the query string to make the result number
different (with meaningless string).

Hit Pattern Number

0 1000 2000 3000 4000 5000

T
im

e
 (

m
s
)

100

200

300

400

500

600

700

800

Query Time

Verification Time

Figure 5: Performance vs. Hit Pattern Number

Figure 5 shows the time used to query and verify in those
cases with different number of hit patterns. As we can see
from the result, the time consumption increases with the hit
pattern number slightly faster than linear, which is compat-
ible with our theoretical analysis. In the case where almost
all the substrings are hit, the performance is relatively bad.
But we believe it happens only when the data set is special.
In real situations, it does not happen often.

Effects from Pattern Set Size. Theoretically, the pat-
tern set size does not influence the query time directly. But
in general, a larger pattern set implies a higher hitting pos-
sibility. We crafted some meaningless patterns to make the
hitting rate independent of the pattern set size, and tested
the time performance in different pattern sets.

103

Hit Pattern Number

101 102 104 105

T
im

e
 (

m
s
)

0

50

100

150

200

250

300

350

Query Time

Verification Time

Figure 6: Performance vs. Pattern Number

We fix the query length at 100 and the hit pattern number
also at 100. Figure 6 shows the time used for query and
verification on random pattern set with different sizes. The
results show that the time consumption is nearly irrelevant
to the pattern set size, which implies that it is an efficient
multi-pattern matching scheme.

6. CONCLUSION
This paper presented the first authenticated multi-pattern

matching scheme, which enables a data owner who owns a
large amount of patterns to outsource them to an untrusted
cloud server which provides pattern matching services, such
that any clients can verify the authenticity of the query re-
sult without contacting the data owner or getting the whole

603

set of data. Our schemes are efficient and do not introduce
extra storage complexity at the cloud server. The proof at-
tached with the result is of an acceptable size, which does
not prominently increase the communication overhead. The
verification process is also efficient. At last, we conducted a
lot of evaluations to support the efficiency claim.

Acknowledgement

Sherman Chow is supported by the Direct Grant (4055018)
of the Chinese University of Hong Kong, Early Career Scheme
and the Early Career Award (CUHK 439713) and General
Research Funds (CUHK 14201914) of the Research Grants
Council, University Grant Committee of Hong Kong.

The work of Kehuan Zhang was partially supported by
Direct Grant (4055047) of the Chinese University of Hong
Kong, NSFC (61572415), and the General Research Funds
(CUHK 24207815) established under the Research Grants
Council, University Grant Committee of Hong Kong.

7. REFERENCES
[1] Crypto++ Library. http://www.cryptopp.com.

Accessed: 2015-Jul-11.

[2] English Wordlists Source.
http://www-01.sil.org/linguistics/wordlists/english.
Accessed: 2015-Nov-11.

[3] The PBC (Pairing-Based Cryptography) Library.
https://crypto.stanford.edu/pbc. Accessed:
2015-Jul-11.

[4] T. Acar, S. S. M. Chow, and L. Nguyen. Accumulators
and U-Prove Revocation. In Financial Cryptography,
pages 189–196, 2013.

[5] A. V. Aho and M. J. Corasick. Efficient String
Matching: An Aid to Bibliographic Search. Commun.
ACM, 18(6):333–340, 1975.

[6] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza. SNARKs for C: Verifying Program
Executions Succinctly and in Zero Knowledge. In
CRYPTO, pages 90–108, 2013.

[7] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.
Succinct Non-Interactive Zero Knowledge for a von
Neumann Architecture. In USENIX Security
Symposium, pages 781–796, 2014.

[8] E. Bertino, B. Carminati, E. Ferrari, B. M.
Thuraisingham, and A. Gupta. Selective and
Authentic Third-Party Distribution of XML
Documents. IEEE Trans. Knowl. Data Eng.,
16(10):1263–1278, 2004.

[9] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer.
From Extractable Collision Resistance to Succinct
Non-interactive Arguments of Knowledge, and Back
Again. In ACM ITCS, pages 326–349, 2012.

[10] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer.
Recursive Composition and Bootstrapping for
SNARKS and Proof-carrying Data. In ACM STOC,
pages 111–120, 2013.

[11] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and
O. Paneth. Succinct Non-interactive Arguments via
Linear Interactive Proofs. In Theory of Cryptography
Conference (TCC), pages 315–333, 2013.

[12] D. Boneh and X. Boyen. Short Signatures Without
Random Oracles and the SDH Assumption in Bilinear
Groups. J. Cryptology, 21(2):149–177, 2008.

[13] R. S. Boyer and J. S. Moore. A Fast String Searching
Algorithm. Commun. ACM, 20(10):762–772, 1977.

[14] B. Braun, A. J. Feldman, Z. Ren, S. T. V. Setty, A. J.
Blumberg, and M. Walfish. Verifying Computations
with State. In ACM SOSP, pages 341–357, 2013.

[15] Y. Chen, S. S. M. Chow, K. Chung, R. W. F. Lai,
W. Lin, and H. Zhou. Cryptography for Parallel RAM
from Indistinguishability Obfuscation. In ACM ITCS,
pages 179–190, 2016.

[16] C. Costello, C. Fournet, J. Howell, M. Kohlweiss,
B. Kreuter, M. Naehrig, B. Parno, and S. Zahur.
Geppetto: Versatile Verifiable Computation. In IEEE
Symp. on Security and Privacy, pages 253–270, 2015.

[17] P. T. Devanbu, M. Gertz, and A. Kwong. Flexible
Authentication of XML Documents. Journal of
Computer Security, 12(6):841–864, 2004.

[18] S. Faust, C. Hazay, and D. Venturi. Outsourced
Pattern Matching. In ICALP, pages 545–556, 2013.

[19] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
Verifiable Computing: Outsourcing Computation to
Untrusted Workers. In CRYPTO, pages 465–482, 2010.

[20] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic Span Programs and Succinct NIZKs
without PCPPs. In EUROCRYPT, pages 626–645,
2013.

[21] T. Granlund and the GMP Development Team. The
GNU Multiple Precision Arithmetic Library.
https://gmplib.org, 2006. Accessed: 2015-Jul-11.

[22] D. E. Knuth, J. H. M. Jr., and V. R. Pratt. Fast
Pattern Matching in Strings. SIAM J. Comput.,
6(2):323–350, 1977.

[23] C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A General Model
for Authenticated Data Structures. Algorithmica,
39(1):21–41, 2004.

[24] R. C. Merkle. A Certified Digital Signature. In
CRYPTO, pages 218–238, 1989.

[25] M. Naor and K. Nissim. Certificate Revocation and
Certificate Update. IEEE Journal on Selected Areas in
Communications, 18(4):561–570, 2000.

[26] L. Nguyen. Accumulators from Bilinear Pairings and
Applications. In CT-RSA, pages 275–292, 2005.

[27] D. Papadopoulos, C. Papamanthou, R. Tamassia, and
N. Triandopoulos. Practical Authenticated Pattern
Matching with Optimal Proof Size. PVLDB,
8(7):750–761, 2015.

[28] B. Parno, J. Howell, C. Gentry, and M. Raykova.
Pinocchio: Nearly Practical Verifiable Computation.
In IEEE Symp. on Security and Privacy, pages
238–252, 2013.

[29] S. T. V. Setty, B. Braun, V. Vu, A. J. Blumberg,
B. Parno, and M. Walfish. Resolving the Conflict
between Generality and Plausibility in Verified
Computation. In EuroSys, pages 71–84, 2013.

[30] S. T. V. Setty, R. McPherson, A. J. Blumberg, and
M. Walfish. Making Argument Systems for Outsourced
Computation Practical (Sometimes). In NDSS, 2012.

[31] V. Vu, S. T. V. Setty, A. J. Blumberg, and
M. Walfish. A Hybrid Architecture for Interactive
Verifiable Computation. In IEEE Symp. on Security
and Privacy, pages 223–237, 2013.

604

