
Identifying and Utilizing Dependencies Across Cloud
Security Services

Ahmed Taha
Technische Universität
Darmstadt, Germany

Patrick Metzler
Technische Universität
Darmstadt, Germany

Ruben Trapero
Technische Universität
Darmstadt, Germany

Jesus Luna
Technische Universität
Darmstadt, Germany

Neeraj Suri
Technische Universität
Darmstadt, Germany

ABSTRACT
Security concerns are often mentioned amongst the reasons
why organizations hesitate to adopt Cloud computing. Given
that multiple Cloud Service Providers (CSPs) offer similar
security services (e.g., “encryption key management”) albeit
with different capabilities and prices, the customers need to
comparatively assess the offered security services in order to
select the best CSP matching their security requirements.
However, the presence of both explicit and implicit depen-
dencies across security related services add further chal-
lenges for Cloud customers to (i) specify their security re-
quirements taking service dependencies into consideration
and (ii) to determine which CSP can satisfy these require-
ments.
We present a framework to address these challenges. For
challenge (i), our framework automatically detects conflicts
resulting from inconsistent customer requirements. More-
over, our framework provides an explanation for the de-
tected conflicts allowing customers to resolve these conflicts.
To tackle challenge (ii), our framework assesses the secu-
rity level provided by various CSPs and ranks the CSPs
according to the desired customer requirements. We demon-
strate the framework’s effectiveness with real-world CSP
case studies derived from the Cloud Security Alliance’s Se-
curity, Trust and Assurance Registry.

Keywords
Cloud security, security quantification, security service level
agreements, service dependencies

1. INTRODUCTION
Cloud computing offers a model where resources (storage,

server, etc.) are abstracted and provided “as-a-service” in a
remotely accessible manner. In such a service-based envi-
ronment, service provisioning relies on a service level agree-
ment (SLA) which represents a formal contract established

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’16, May 30-June 03, 2016, Xi’an, China
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897911

between the Cloud Service Customer (CSC) and the Cloud
Service Provider (CSP). The SLA specifies how provision-
ing takes place as well as the respective rights and duties
of the CSC and the CSP. Furthermore, the SLA includes
the list of Service Level Objectives (SLOs) which are the
measurable elements of an SLA that specify the Cloud ser-
vices levels requested by the customers, and required to be
achieved by the CSP. With security as a major driver, dif-
ferent stakeholders in the Cloud community1 have identified
that specifying security parameters in SLAs (termed as secu-
rity SLAs or simply secSLAs) is useful to establish common
semantics to provide and manage security assurance from
two perspectives, namely (i) the security level being offered
by a CSP, and (ii) the security level being requested by a
Cloud customer.
With the growth of public Cloud security services, multiple
CSPs offer “similar” services at different prices and capa-
bilities. However, the offered services are typically bundled
together with explicit and implicit dependency2 relations
across them to complicate selection of the single appropri-
ate CSP. For example, the “encryption key management”
service in the Cloud depends on several factors such as (a)
the techniques used to store the encryption keys, (b) the pro-
cesses specifying how keys are accessed, (c) the possibility
of the key recovery, and finally (d) the control and manage-
ment of each key. Each of these factors contains different
levels of services (e.g., different techniques to store and dis-
tribute the keys) which the customer can require and the
CSP agrees to fulfill. Most of these factors also depend on
each other. These dependency relations increase the difficul-
ties of the customers for finding the single CSP that satisfies
their requirements since these relations can easily introduce
conflicts; for instance, a customer may require an unachiev-
able level3 of a dependent security service which cause these
requirements to be impossible to satisfy. Moreover, a cus-
tomer requirement may influence or be influenced by other
requirements. Consequently, a CSP being unaware of re-

1For example, the European Network and Information Se-
curity Agency (ENISA), Cloud Security Alliance (CSA),
ISO/IEC, and the European Commission
2Dependency relations between services or simply service
dependencies are the direct relations between one or more
services, where a service can depend on data or resources
provided by another service
3Unachievable service level exists when a service depends
on resources which are not provided by the corresponding
dependent service

Asia CCS 2016 http://meeting.xidian.edu.cn/conference/AsiaCCS2016/home.html

lated dependencies can erroneously agree on providing an
unachievable level of security service according to the cus-
tomer requirement. Naturally, the CSP will not be able to
fulfill this requirement which results in a secSLA violation.
As the number of Cloud security services grow, the number
of dependencies across the security services also increases
making it more likely for customers to introduce conflicts.
Also it becomes harder to manually detect and identify the
causes of these conflicts especially when multiple types of de-
pendency relations are involved. Therefore, customers need
to first consider the dependencies between security services
that span across their security requirements specification,
and then assess the security services offered by different
CSPs to rank different CSPs based on the customer secu-
rity requirements and priorities.
Although the state of the art predominantly focuses on the
methodologies to evaluate and assess Cloud secSLAs [18, 27,
12, 21], most of these methodologies do not account for in-
formation about dependencies between services. Overall, it
is important to provide customers with comprehensive sup-
port that can enable an automatic detection of conflicts and
explanations for the dependent relations.

1.1 Contributions
This paper aims to solve the aforementioned issues by

proposing a framework for the (i) analysis of the secSLAs
service dependencies with the handling of all conflicts, and
(ii) the selection of security services. This is done by:

1) Proposing a dependency representation model for vali-
dating the secSLAs by checking the existence of conflicts
that occur due to different dependency relations between
services. The process of analyzing conflicts is both itera-
tive and interactive.

2) Assisting customers who could not resolve the conflicts
and thus could not specify their requirements by repre-
senting the security requirements in an easy dependent
ordered structure using Design Structure Matrix (DSM).
In this structure, the security services are ordered accord-
ing to their level of dependency. This makes the secSLA
services and dependencies explicit and traceable regard-
less of the number of security services.

3) Ranking the CSPs according to the customer require-
ments in order to find the best matching CSP.

4) Validation of the proposed framework by evaluating CSPs
secSLAs found on the public CSA STAR (Security, Trust
and Assurance Registry) [8] repository.

To the best of our knowledge, our approach is the first at-
tempt to provide customers with (a) a wide range of sup-
port covering conflict detection, (b) outlining dependency
conflicts for problematic customers requirements, and (c) a
framework to assess and rank the CSPs according to the
customer requirements. The rest of the paper is organized
as follows. Section 2 develops the background and the ba-
sic terminologies related to Cloud secSLAs and the service
dependencies. The architecture of the proposed framework
is elaborated in Section 3. Section 4 presents a real-world
use-cases validating the Cloud services evaluation as well as
dependency management. Section 5 describes the related
work.

2. BASIC CONCEPTS

2.1 Security Service Level Agreements
A Cloud security Service Level Agreement (secSLA) de-

scribes the provided security services, and represents the
binding commitment between a CSP and a customer. Ba-
sically, this outlines the desired security services, each of
which contains a list of SLOs. Each SLO is composed of one
or more metric values that help in the measurement of the
Cloud SLOs by defining parameters and measurement rules
that facilitate assessment and decision making. Based on the
analysis of the state of practice presented in [14], Cloud sec-
SLAs are typically graphically modeled using a hierarchical
structure, as shown in Figure 1. The root of the structure
defines the main container for the secSLA. The intermediate
levels (second and third levels in Figure 1) are the services
which form the main link to the security framework used by
the CSP. The lowest level (SLO level) represents the actual
SLOs committed by the CSP and consequently offered to
the Cloud customer. These SLOs are the threshold values
which are specified in terms of security metrics.
It is worth noting that the process of modeling values to a
quantitative metric is not straightforward as SLOs can have
varied types/ranges of composite qualitative and quantita-
tive values. Hence, we introduce the notion of a “security
level” associated to each SLO of the secSLA. To formalize
this concept we introduce the following definition.

Definition 1. A secSLA consists of a set of services S =
s1, ..., sn. Each service s consists of finite positive number
n of SLOs ki; where i = 1 . . . n. Each SLO ki consists of m
different metric values vi; such that ki = vi,1, vi,2, ..., vi,m.
Each value implies a different security level offered by the
CSP and required by the customer. The total order of secu-
rity levels ki is defined using an order relation ” <i ”; such
that ki = vi,1 < vi,2 < ... < vi,m. Each ki value is mapped to
a progressive numerical value according to its order. These
numerical values are then normalized with respect to the ki’s

number of values (m) such that ki =
1

m
<

2

m
< . . . <

m

m
.

Information
Security Incident

Management (sn.1)

Crypt brute force
resistance

Hardware module
protection level

Percentage of
timely incident

reports

Percentage of
timely incident

responses

level1
leve

l3
level2

level0

Cloud secSLA

Encryption and
Key

Management
EKM (s1)

Identity and
Access

Management
IAM (sn)

Cryptography
(s1.1)

security
verification

(s1.2)

R
o

o
t

le
ve

l
SL

O
 le

ve
l

Figure 1: Cloud secSLA hierarchy

An example of an SLO, as shown in Figure 1, is “Percent-
age of timely incident reports” SLO which is composed of

{yearly < halfyearly < monthly < weekly} values which
are defined using security levels as level1 < level2 < . . . <

level4 respectively. These security levels correspond to {1

4
<

2

4
< . . . <

4

4
}. Let us consider a CSP committing “Percent-

age of timely incident reports” such that the CSP’s secSLA
specify: Percentage of timely incident report= level2 such

that vi =
2

4
. A CSP commits other SLOs in a similar man-

ner such that the overall CSP’s secSLA contains a list of
SLOs with different values that the CSP is committed to
fulfill. If any of these committed values is not fulfilled by
the CSP, then the secSLA is violated.

2.2 Service Dependencies
A service dependency is a directed relation between the

services offered in Cloud scenarios. It is expressed as a 1 : n
relationship where one service (termed as dependent) de-
pends on one or multiple services (termed as antecedent).
A service can depend on data or resources provided by an-
other service. A service s1 is dependent on service s2 if the
provisioning of s1 is conditional to the provisioning of s2.
Explicit knowledge about dependencies is needed to sup-
port the management of secSLA by both CSPs and cus-
tomers. Several types of dependencies are used in literature
such as Quality of Service (QoS), price, resource and time
dependencies [30]. In this paper we only consider resource
dependencies which are validated by matching the security
values of the dependent and antecedent SLOs specified in
their secSLAs.

Root

service 1
s1

k1

s1.2

k2

k5k3

k4

k6

k7

k8

k9

service 2
s2

s2.1 s2.2

Horizontal dependency
Vertical dependency

s1.1

unidirectional
Bidirectional

s1.3

3 3

3

3 1
1 2 2 2

3
3 2 2 2 2 1

23

2
3 3

2

2

2

2

2
1

11

level1
level3

level2
level0

2

R
o

o
t

le
ve

l

Figure 2: SecSLA hierarchy showing dependencies

We classify dependencies based on their occurrence between
services and/or SLOs at the same hierarchical level (horizon-
tal dependencies), as well as between different levels in the
hierarchical structure (vertical dependencies) [29] as shown
in Figure 2. Dependencies can be further classified into di-
rect and indirect dependencies. Indirect dependencies occur
between services which do not directly interact with each
other, but where a transitive relationship exists via an in-
termediate service. In many cases horizontal and vertical
dependencies occur at the same time and both dependen-
cies affect the whole composition hierarchy. We also consider

different level of dependencies importance presented using a
three level scale as shown in Table 1 and Figure 2.
All the dependencies explained so far are considered unidi-
rectional dependencies. Other dependencies as bidirectional
(interdependent relations between services) may occur as
well. Bidirectional dependency occurs between services s1
and s2 if the provisioning of s1 is conditional to the provi-
sioning of s2 and at the same time the provisioning of s2 is
conditional to the provisioning of s1.
We assume that dependencies between services and SLOs in
the secSLA are predefined and described by relevant stan-
dards working groups. In these groups, the secSLAs contents
are defined along with the type of dependencies and associ-
ated dependency importance levels. These sets of dependen-
cies are categorized in the secSLA template. This template
is later used in the creation of the dependency model and
for the SLOs validation (cf., Section 3.2).

Table 1: Dependency importance level
Numeric scale Meaning

1 Weak dependency
2 Medium dependency
3 Strong dependency

3. PROPOSED FRAMEWORK
We now develop the framework to achieve the quantita-

tive assessment of CSPs security levels where the CSPs are
ranked (as per their secSLAs) for the best match to the cus-
tomer requirements. As an overview of our framework, the
dependency management and CSPs ranking are performed
in progressive stages as shown in Figure 3.

(B) Dependency management
approach

1

3
2

Ranked CSPs

(A) Security
requirements

definition

Auditor

CSPs
secSLAs

(C) Structuring
secSLA services

using DSM

CSC
secSLA

1. Dependency model creation

2. secSLA validation
Validated CSPs

secSLAs

Validated
CSC secSLA

Trusted
repository

(D) SecSLAs
evaluation and

CSPs ranking

CSPs

Customer
(CSC)

Figure 3: Proposed methodology stages

After the CSPs submit their secSLAs and the customers
specify their security requirements in Stage (A), a depen-
dency model is created in Stage (B) to capture informa-
tion about secSLAs services and the dependencies that oc-
cur between them. This model is specified using a machine

readable format to allow automated validation for check-
ing service conflicts and different SLOs compatibility issues.
Subsequently in Stage (C), the validated secSLAs are struc-
tured using the DSM with the structured secSLA depicting
dependencies between services as an ordered listing. The
data from the preceding stage feeds into Stage (D) to assess
and rank the CSPs according to the customer requirements.
In order to guarantee the validity of the proposed framework,
the secSLAs provided by the participating CSPs are required
to come from a trusted source. In a real-world setup, the
trust relationships can be given by an Auditor performing
a third-party attestation of the CSP secSLA (e.g., through
a scheme such as the CSA Open Certification Framework
(OCF) [7]). The audited secSLAs are then stored by the
CSPs in a trusted repository of SLAs (e.g., the CSA STAR
repository [8]) as shown in Figure 3. This trust assumption
relies on the fact that the certifications and the repository
are trusted, and that the published secSLAs were valid at
the time of issuing the corresponding certification or publish-
ing the information in the repository. Stronger assurance
levels can be provided by mechanisms such as continuous
monitoring (e.g., the CSA STAR continuous monitoring de-
fined at the level 3 of the OCF). The described trust model
is able to mitigate the risk of having malicious CSPs pub-
lishing false secSLA information with the goal of achieving
higher scores in the proposed evaluation system. Other mi-
nor risks (e.g., tampered evaluation systems’ software) can
be mitigated through traditional security controls and secure
software development techniques.

3.1 Stage A: Security Requirements Definition
During this stage, the customers create their set of secu-

rity requirements based on the same secSLA template used
by the CSPs to specify their offered security services (as the
one shown in Figure 2). The output of this stage is a cus-
tomer secSLA which is then used, along with one or more
CSP secSLAs, as an input to the next stage.

3.2 Stage B: Dependency Management Appr-
oach

The approach for managing service dependencies builds
on a dependency model, which is used to capture informa-
tion about security services and the dependencies that occur
between them. In order to model service dependencies, it is
important to first derive the expected requirements that the
dependency model should support.

1. Support of different dependency types. The depen-
dency model should support different types of depen-
dencies as well as various dependency classifications
(e.g., Horizontal, vertical, unidirectional and bidirec-
tional dependencies).

2. Support of multiple dependencies. One security service
can have dependencies to several other security ser-
vices. These dependencies could be of the same or of
different types.

3. Dependency model validation. It should be possible to
automatically validate the dependency model to avoid
inconsistencies and conflicts.

This dependency management approach is performed in two
phases as shown in Figure 3.

3.2.1 Phase 1: Dependency Model Creation
Handling all the dependencies in the secSLA is a very

time consuming and complex task. Therefore, a dependency
model is created for each secSLA to cover all identified de-
pendencies within the secSLA. This model is used to capture
information about services (each composed of a set of SLOs)
and the dependencies that occur between them. We model
a secSLA by a tuple secSLA = (S, l,−→S ,K,−→K , v) where:

• S is a set of services s with associated hierarchy levels
l(s) ∈ {0, 1, . . . , n − 1}. In this paper the secSLA is
composed of four hierarchical levels as shown in Figure
2. A secSLA contains exactly one service s with l(s) =
0, which is the root service. Level n is the SLO level.

• −→S⊆ S× (S ∪K)×{1, 2, 3} models service dependen-
cies where {1, 2, 3} shows the dependency importance
level w (cf., Table 1).

• We write s1
w−→S s2 if s1 (dependent service) depends

on s2 (antecedent service) with dependency impor-
tance level w, where w ∈ {1, 2, 3}. We write s −→S o

to express that s
w−→S o for some w ∈ {1, 2, 3} (where

o is either a service or an SLO).

• K is a set of SLOs with associated hierarchy level
l(k) = n for all k ∈ K.

• −→K⊆ K×K×{1, 2, 3} models SLO dependencies. We

have k1
w−→K k2 if k1 (dependent SLO) depends on k2

(antecedent SLO) with importance level w.

• v : K 7→ V is an assignment of values in V to SLOs,
where V is the set of all metric values of each SLO in
K.

• Constraints on the SLO dependency relation are spec-
ified using a constraint set C−→K

v ⊆ K ×K ×{=, 6=, <
,≤, >,≥}. A constraint (k1, k2,≡) ∈ C−→K

v is satisfied
if the values of k1 and k2 are related by the given com-
parison, i.e., v(k1) ≡ v(k2). A dependency relation
k1 −→K k2 is called valid, written valid

C
−→K
v

(k1, k2), if

the relation satisfies all its constraints, i.e., ∀(k′
1, k

′
2,≡

) ∈ C−→K
v .(k1 = k′

1 and k2 = k′
2)⇒ v(k1) ≡ v(k2).

• We write the transitive closure of −→S as →+
S , i.e.,

s1 →+
S s2 if s1 −→S s2 or ∃s3 ∈ S.s1 −→S s3 and s3 →+

S

s2. A dependency o1 → o2, where→∈ {−→S ,−→K}, be-
tween two objects o1, o2 ∈ S ∪K is called symmetric
if also o2 → o1. Otherwise, o1 → o2 is called non-
symmetric. In other words, o1 and o2 are symmetri-
cally dependent if o1 → o2 and o2 → o1.
Note that it is possible that o1 → o2 is symmetric while
the relation → is non-symmetric. We explain this us-
ing an example, let us consider→= {(o1, o2, w), (o2, o1,
w), (o1, o3, w)} which is a non-symmetric relation and
where we have that o1 → o2 is symmetric.

• A secSLA has to satisfy the following constraints:

i) Services do only depend on services of the same or
the next lower hierarchy level: ∀s1, s2 ∈ S.s1 −→S

s2 ⇒ l(s1) = l(s2) or l(s1) + 1 = l(s2)

ii) Only services of hierarchy level n − 1 depend on
SLOs: ∀s ∈ S∀k ∈ K.s −→S k ⇒ l(s) = n− 1

iii) Services do not depend on themselves: ∀s ∈ S.¬s
−→S s

iv) All services depend directly or indirectly on an
SLO: ∀s ∈ S∃k ∈ K.s→+

S k

3.2.2 Phase 2: SecSLA Validation
A meta-model is developed based on the dependency def-

initions. This meta-model allows the description of SLOs
along with information on the secSLA drafted for it. The
meta-model is specified using a machine readable format (al-
lowing fully automatic validation) such as an XML data
structure using an XML Schema. In this Schema, depen-
dency relations between services are modeled by including
the involved service SLOs and their roles as dependent or
antecedent as well as their values. Moreover, the constraint
comparison is extracted and modeled in the Schema. A brief
excerpt from the secSLA dependency model is presented in
Appendix A.
Following the development of the dependency model, the
secSLA SLOs are validated as depicted in Figure 4. The
validation is done by first extracting the secSLA ID, depen-
dency model ID and dependency ID of each two dependent
SLOs (each dependency relation in the same dependency
model has a unique ID) defined in the XML Schema. Fur-
thermore, for each dependent relation the antecedent and
dependent SLO’s values are extracted. This entails extract-
ing the constraint comparative (i.e., =, 6=,≤,≥) and check-
ing if the two dependent SLO values satisfy the constraint.
If the constraint between dependent SLOs is not satisfied,
the validation scheme shows a conflict between these two
SLOs. The dependency ID and dependent SLO ID of the
affected SLOs are saved in a list, while the evaluation is
continued to determine further conflicts. At the end of this
phase a list of all conflicts found in the CSP’s secSLA with
the conflicts explanation is sent to the CSP in order to re-
solve these conflicts and resubmit his/her secSLA again to
be validated. Similarly, a list of all conflicts found in the cus-
tomer requirements (specified using the customer secSLA)
are resolved by the customer and validated again. If no prob-
lems are detected, both the validated CSPs secSLAs along
with the customer secSLA are used as an input to Stage (C).

secSLA Validation

Get antecedent SLO

Get dependent SLO

Get comparator

Validate the data SLOs conflicts List of conflicts

no

More dependenciesyes

yes

no End

Dependency
model

Figure 4: Dependency based secSLA validation
stages

3.3 Stage C: Structuring SecSLA Services
In a secSLA, as the number of offered services and SLOs

along with the dependencies between them increases, the

secSLA hierarchical structure (shown in Figure 2) quickly
becomes cluttered and a disorderly network of tangled arcs.
This makes it hard for (i) the customers to specify their
requirements and resolve the conflicts (which requires an
expert customer and is time consuming) and (ii) the CSPs
to check the dependency relations between their offered ser-
vices to avoid any violation. Consequently, the objective of
this stage is to embody the secSLA hierarchical structure by
mapping the dependencies in a precise order where services
and SLOs are ordered according to their level of dependency.
This ordering makes the dependency relations explicit and
more traceable regardless of the size which allows customers
to (a) easily define their security requirements and (b) assess
and rank the CSPs according to their security requirements.
Furthermore, this provides CSPs with the guidance on the
security improvements that should be performed in order to
achieve the customer requested security level.
A variety of techniques exist for the analysis, management
and ordering of the secSLA services and SLOs other than
the graphs used in building the secSLA hierarchical struc-
ture. One of these techniques is the program evaluation and
review technique [28]. Although this technique incorporates
more information than the directed graphs, it is still inade-
quate for representing the vast majority of design procedures
where iteration4 task relationships are involved. Another
technique which has been widely used in documenting design
procedures is the structured analysis and design technique
[22]. This technique attempts to overcome the size limita-
tions by restricting the amount of information that can be
placed on each document. Unfortunately, loops remain an
unsolved problem [19].
A representation which overcomes the size and the itera-
tion tasks limitations of those discussed above is the Design
Structure Matrix (DSM) (also known as“Dependency Struc-
ture Matrix”) [26]. There are two main categories of DSMs:
static and time-based [2]. Static DSM represents system
elements existing simultaneously, such as components of a
product architecture or groups in an organization. In time-
based DSM, which is the type of DSM used in this paper, the
ordering of the rows and columns indicates a flow through
time. The DSM embodies the structure of the underlying
design activity by mapping the relations between services in
a precise order which makes the secSLA clear and easy to
read; regardless of the size. To clarify, a secSLA of n ser-
vices is represented as an n × n matrix with identical row
and column labels. The matrix element aij is empty if the
ith column is independent on the jth row, and not empty
if they are dependent. This means, services and SLOs with
empty rows have all required information and do not depend
on others. Furthermore, the empty columns provide no in-
formation required by other services and SLOs.
To demonstrate the idea of DSM, the mapping of the secSLA
shown in Figure 2 into a DSM is presented in this section
and is depicted in Figure 5. As the dependencies of ser-
vices on themselves are not considered (as specified in the
dependency model constrains in Section 3.2), there are no
marks along the diagonal. The strength of the dependencies
is given using numerical values; these values provide more
detailed information on the relationships between the dif-
ferent system services [26]. In this paper we use the three

4A loop of information which occurs if there are bidirec-
tional relations between services, which means each service
is waiting for information from the other one

level scale dependency importance rating defined in Table
1. Examining row 2 we note that s1 strongly depends on s2
and s1.1, and weakly depends on s1.2 and s1.3. Examining
row 10 we note that SLO k2 weakly depends on k3.

Figure 5: DSM mapping of the secSLA shown in
Figure 2

After mapping the secSLA into a DSM, we can start re-
ordering the DSM rows and columns in order to transform
the DSM into a lower triangular form (that is, the matrix
has no entries above the diagonal), this is called DSM par-
titioning [13] and is done in two steps:

Step 1: Services which have a minimum number of depen-
dencies (initially there will be none) are placed at
the top of the DSM. These services are identified
as services with minimum number of row values. If
there is more than one such service, the one with
maximum number of column values is selected.

Step 2: Services that deliver no information to others in the
matrix are placed at the bottom of the DSM. This
is easily identified by observing an empty column
in the DSM. Once a service is rearranged, it is re-
moved from the DSM and step 2 is repeated on the
remaining elements.

Figure 6 shows the result of partitioning the DSM depicted
in Figure 5. Bidirectional dependencies occur when the ma-
trix cannot be reordered to have all matrix elements sub-
diagonal. As shown in Figure 6, k2 and k3 are bidirectionally
dependent (indicated by shading); k2 needs the information
of k3 and k3 needs the information of k2. If k2 and k3 are
regarded as a single composite service, the cycle can be elim-
inated [24].
The output of this stage will be (a) one customer secSLA
and (b) one or more CSP secSLAs mapped as a DSM where
the services and the SLOs are progressively ordered starting
from the least dependent.

3.4 Stage D: Evaluation
The quantitative security level assessment of CSPs (for

their match to the customer requirements) is the primary
objective of the proposed framework developed in this stage.
The challenge is not only how to quantify different SLOs in
the secSLAs, but also how to aggregate them with a mean-
ingful metric. To solve these issues, we use a ranking mech-
anism based on the Analytic Hierarchy Process (AHP) [23].

Figure 6: Final DSM after partitioning and schedul-
ing

AHP is a widely used method for solving problems related to
Multi Criteria Decision Making (MCDM) [31]. The advan-
tages of AHP over contemporary multi-criteria methods is
its ability to handle composite qualitative and quantitative
attributes, along with its ability to identify inconsistencies
across requirements [20]. AHP uses a pairwise comparisons
for evaluating the alternatives. As an overview of our eval-
uation framework, the secSLA assessment and the ranking
of CSPs are performed in the following progressive phases.

k5

k3

k4

k6

k7

k8

k9

 k2

k1
W

e
ig

h
ts

W
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

Bottom-up aggregation approach

level0

s2

s1

W
ei

gh
ts

R
o

o
t

1
1

2

2
1

s2.1

s1.2

s1.1

s1.3

W
ei

gh
ts

W
e

ig
h

ts
s2.2

Figure 7: Dependent secSLA hierarchy

Phase 1. Hierarchical Structure
The DSM mapping of each secSLA (either the customer
secSLA or the CSPs secSLAs) is modeled as a hierarchi-
cal structure in this phase. In this structure the top level
of the hierarchical structure defines the main goal and aims
to find the overall rank (i.e., the root level). The lowest
level is represented by the least dependent SLOs as shown
in Figure 7. This hierarchical structure can be used by the
basic customers to specify their requirements at the lowest
level only (i.e., level0 in Figure 7). We explain the frame-
work presented in this section using a real-world case study
in Section 4.
Note that Figure 7 outlines the hierarchical representation

of the DSM shown in Figure 6 where the least dependent
SLOs are the SLOs with empty rows in Figure 6.

Phase 2. Weights Assignment
The dependency importance level of each dependency rela-
tion (strong, medium or weak dependency with numerical
scaling 3, 2 and 1, respectively; cf., Table 1) is specified as
a weight (w) during the assessment process. The weight of
each relation is used to show how different dependency levels
affect the overall security level.

Phase 3. Services Quantification
In order to assess each CSP secSLA, a measurement model
for different SLOs should be defined. We use the relative
ranking model proposed in [27], which defines the most im-
portant requirements used and their quantitative values.
The ranking model is based on a pairwise relation of the
services (a) provided by different CSPs, and (b) required by
customers’ such that:

CSP1,k/CSP2,k =
v1,k
v2,k

(1)

Where v1,k implies the SLO value provided by CSP1,k (cf.,
Definition 1) and CSP1,k/CSP2,k indicates the relative rank
of CSP1,k over CSP2,k for a particular SLO k. Similarly,
CSP1,k/CSCk indicates the relative rank of CSP1,k over
CSCk, which specifies whether CSP1,k satisfies CSCk re-
quirements or not. This results in a one to one comparison
matrix (CM) of size (n + 1)× (n + 1) if there is a total of n
CSPs and one CSC for each SLO such that:

CMk =


CSP1,k . . . CSPn,k CSCk

CSP1,k/CSP1,k . . . CSP1,k/CSPn,k CSP1,k/CSCk

...
. . .

...
...

CSPn,k/CSP1,k . . . CSPn,k/CSPn,k CSPn,k/CSCk

CSCk/CSP1,k . . . CSCk/CSPn,k CSCk/CSCk


(2)

The relative ranking of all the Cloud providers and the cus-
tomer for each SLO is calculated as a priority vector (PV)
of the CM. The PV is an approximation eigenvector of the
CM. The PV indicates a numerical ranking of providers that
specifies an order of preference among them, as indicated by
the ratios of numerical values.

PVk =
(CSP1,k CSP2,k . . . CSPn,k CSCk

N1,k N2,k . . . Nn,k Nu,k

)
(3)

Where N1 is a numerical value representing the relative rank
of CSP1 to other CSPs as well as the CSC regarding an
SLO. Nu is the relative rank of the CSC required security
level with respect to the security levels offered by the CSPs.

Phase 4. Services Aggregation
In the final phase, we follow up with a bottom-up aggre-
gation to give an overall assessment of the security levels
and a final ranking of the CSPs. To achieve that, the pri-
ority vector of each SLO (Phase 3) is aggregated with their
relative normalized weights (dependency importance level)
specified in Phase 2. This aggregation process is repeated
for all the SLOs in the hierarchy with their relative weights,
which results in the ranking of all the Cloud providers based

on customer-defined requirements and weights.

PVaggregated =
[
PVk1 . . . PVkn

]
.
[
W
]T

(4)

Where W is the set of normalized weights of different SLOs
such that W = wk1 , wk2 , . . . , wkn . Note that the weights
are normalized to satisfy the AHP requirements. PVk1 is
the PV calculated for SLO k1. We demonstrate and validate
the framework presented in this section using a real-world
case study in Section 4.

4. CASE STUDY: SECURITY EVALUATION
This section shows an empirical validation of the proposed

framework through two scenarios that use real world sec-
SLA information derived from the Cloud Security Alliance’s
STAR repository [8].

4.1 The Customer Perspective: Security Com-
parison of CSPs

This initial validation scenario demonstrates how a Cloud
customer can apply the framework presented in this paper
to compare side-by-side three different CSPs based on their
advertised secSLAs (compliant with the hierarchy of Fig-
ure 2) and with respect to a particular set of security re-
quirements (also expressed as a secSLA). Table 2 presents a
sample dataset used for this scenario which is based on the
information available in the CSA STAR repository, where
the values associated to 15 SLOs for the three selected CSPs
are presented. In order to perform a comprehensive vali-
dation, the selected SLOs comprised both qualitative and
quantitative metrics. The qualitative metrics are specified
as security levels (cf., Definition 1) such as monthly, weekly,
and daily denoted as security levels level1, level2 and level3,

which are modeled as
1

3
,

2

3
,

3

3
. Furthermore, no, yes metrics

are denoted as level0, level1 respectively. All CSPs secu-
rity SLOs are normalized to the customer requirements to
eliminate masquerading5. Furthermore, Table 2 shows two
sets of Cloud customer requirements used as a baseline for
comparing the selected CSPs:

1) In the Table 2 column marked as Case I, the customer
requirements are expressed at a per-SLO granular level.
This represents a security-expert customer where the cus-
tomer specifies his/her requirements at Case I “req” col-
umn. After that the customer secSLA is validated to
check if each constraint between two dependent SLOs is
satisfied and at the end of the validation showing the
conflicts found. The customer then resolves the SLO
conflicts by specifying new values to the SLOs causing
conflicts. These new values are shown at Case I “rev”
column in Table 2.

2) The column marked as Case II shows a set of require-
ments on SLOs that do not depend on any other SLO
(identified using the DSM). These set of SLOs is used
to model the customer requirements for the remaining
SLOs. This might be the case of a novice or basic cus-
tomer who can not specify all the secSLA SLOs and re-
solve the SLO conflicts if any is found.

5The masquerading effect happens when the overall ag-
gregated security level values mostly depend on those ser-
vices with a high-number of SLOs, thus negatively affecting
groups with fewer, although possibly more critical, provi-
sions

Table 2: Case Study: Excerpt of secSLA’s from CSPs and customer requirements.
Cloud secSLA based on CSA STAR [8] CSPs Customer (CSC)

Services SLO
CSP1 CSP2 CSP3

Case I
Case II

category lvl category lvl category lvl name dep. lvl req rev

Root

3

Audit &
Compli-

ance
AC

3
Planning
AC1

2 AC1.1 Dep1 yes yes yes yes yes
3 AC1.2 Dep2 2 level2 level2 level3 level3

3

Independent
Audits
AC2

3 AC2.1
Dep1 2

yes yes yes yes
Dep3 3

3 AC2.2 Dep4 3 no yes yes no yes

2 AC2.3
Dep4 no yes yes yes
Dep5 2

1 AC2.4 Dep6 1 yes no yes yes
1 AC3.1 yes yes yes yes
1 AC3.2 no yes yes yes

3
Regulatory
Mapping
AC3

2 AC3.1 Dep3 yes yes yes yes yes
2 AC3.2 Dep5 no yes yes yes yes
3 AC3.3 level2 level1 level3 level3 level3

3

Business
Continu-

ity
BC

2
Testing 1 BC2.1 Dep7 1 yes yes yes no yes

BC2 1 BC2.2 Dep6 no yes no no no

2
Policy
BC11

3 BC11.1 Dep7 yes yes yes yes yes
3 BC11.2 level3 level2 level3 level3 level3

2
Regulatory 2 AC3.1 yes yes yes yes
Mapping 2 AC3.2 no yes yes yes

AC3 3 AC3.3 level2 level1 level3 level3

3
Interface
Security

IS
3

Application
Security
IS1

2 IS1.1 Dep8 1 weekly weekly daily weekly daily daily

1 IS1.2
Dep8 1

level2 level2 level3 level3 level3Dep2
1 AC3.1 yes yes yes yes

Finally, we consider dependencies between services and SLOs
which are going to be validated using the validation model
presented in Section 3.2 such that:

SLO dependencies:

• AC2.1 is medium dependent on AC1.1 (this depen-
dency relation is named as Dep1 in Table 2 and the
level of dependency is shown in the SLO “lvl” column).

This is modeled as AC2.1
2−→K AC1.1 with constraint

(AC2.1, AC1.1,=) ∈ C−→K
v .

• AC1.2 is medium dependent on IS1.2 (i.e., named

as Dep2) so that AC1.2
2−→K IS1.2 with constraint

(AC1.2, IS1.2,=) ∈ C−→K
v .

• In the same way, Dep3, Dep4 and Dep5 are speci-

fied as AC2.1
3−→K AC3.1 with (AC2.1, AC3.1,=) ∈

C−→K
v , AC2.2

3−→K AC2.3 with (AC2.2, AC2.3,=) ∈
C−→K

v and AC2.3
2−→K AC3.2 with (AC2.3, AC3.2,=

) ∈ C−→K
v respectively.

• Dep6 is modeled as AC2.4
2−→K BC2.2 with constraint

(AC2.4, BC2.2, 6=) ∈ C−→K
v .

• Finally, IS1.1 and IS1.2 are symmetrically dependent

(i.e., Dep8) so that IS1.1
1−→K IS1.2 ∧ IS1.2

1−→K

IS1.1 with constraint (IS1.1, IS1.2,=) ∈ C−→K
v .

Service dependencies:

• AC equally depends on AC1, AC2 and AC3 (i.e.,
equally depends refers to the level of dependency, cf.

Table 1, shown in the second column named “lvl” in

Table 2). So that AC
3−→S AC1 ∧ AC

3−→S AC2 ∧
AC

3−→S AC3.

• BC equally depends on BC2, BC11 and AC3. Fur-
thermore, IS strongly depends on IS1. Each is further
depending on the SLOs with different dependency im-
portance levels as shown in Table 2.

• AC2 depends on two of AC3 SLOs which are AC3.1
and AC3.2 (shaded in Table 2).

• Since BC depends on AC3, and AC3 depends on SLOs
AC3.1, AC3.2 and AC3.3. Then using transitive clo-
sure BC →+

S AC3.1 ∧ BC →+
S AC3.2 ∧ BC →+

S

AC3.3 (shaded in Table 2).

4.2 The Customer Perspective: Security Com-
parison of CSPs

4.2.1 Cloud Customer Case I Requirements
In this case, both the customer requirements and the CSPs

secSLAs are validated to check conflicts between SLOs based
on the defined dependencies as specified in Section 3.2. Er-
rors in the customer requirements are automatically detected
based on the modeled dependencies, such that:

- Dep1 Validation: AC2.1 security level (level1) is equal
to the AC1.1 security level (level1),v(AC2.1) = v(AC1.1).
Result: Valid. Furthermore, Dep2 Validation: AC1.2
security level (level3) is equal to IS1.2 security level. Re-
sult: Valid. Similarly, Dep3 and Dep5 are valid.

- Dep4 Validation: AC2.2 security level (level0) is not-
equal to the AC2.3 security level (level1). Result: An
SLO conflict occurs, thus the customer modifies AC2.2
(dependent SLO) to yes (level1) to satisfy the dependency
constraint (as shown in Case I “rev” column in Table 2).
In the same way, Dep7 is validated.

- Dep6 Validation: Since the (AC2.4, BC2.2, 6=) ∈ C−→K
v

and AC2.4 security level (level1) is not-equal to the BC2.2
security level (level0), v(AC2.4) 6= v(BC2.2) the con-
straint is satisfied. Result: Valid.

- Dep8 Validation: IS1.1 security level (weekly which is
level2) is not-equal to the IS1.2 security level (level3).
Result: SLO conflict occurs. The customer changes IS1.1
to daily (level3).

After the customer has resolved all the SLO conflicts and
the CSPs secSLAs are validated, each secSLA is mapped to
a DSM (cf., Section 3.3) to embody the secSLA hierarchi-
cal structure. This structure is used in the ranking of CSPs
according to the customer requirements (cf., Section 3.4).
The ranking computation process for Cloud security SLOs
defined in Table 2 is explained step-by-step, in the rest of
this section.
For the Audit & Compliance control of Cloud secSLA, there
are three security controls (AC1, AC2 and AC3) which are
further divided to SLOs (AC1.1, AC1.2, AC2.1, . . .). For
AC1.2 the providers and the customer can specify their
SLOs values from level1 to level3. Using the data shown
in Table 2, Equation 1 is used to define the AC1.2 pairwise
relation such that:

CSP1,AC1.2/CSP3,AC1.2 =
2

3
/

3

3

CSCAC1.2/CSP2,AC1.2 =
3

3
/

2

3

Thus, the CM of AC1.2 is calculated using Equation 2 as:

CMAC1.2 =


CSP1 CSP2 CSP3 CSC

CSP1 1 1 2/3 2/3
CSP2 1 1 2/3 2/3
CSP3 3/2 3/2 1 1
CSC 3/2 3/2 1 1


The relative ranking of the CSPs for AC1.2 is given by the
priority vector of CMAC1.2 (PVAC1.2) which is calculated
using Equation 3.

PVAC1.2 =
(CSP1 CSP2 CSP3 CSC

0.2 0.2 0.3 0.3
)

This implies that only CSP3 satisfies the customer require-
ment for AC1.2. In a similar way, we calculate CMAC1.1

and PVAC1.1. The AC1 priority vector is then premeditated
by aggregating PVAC1.1 and PVAC1.2 with the normalized
dependency levels (which are defined as weights wAC1 as
specified in Section 3.4) where AC1 is medium dependent
on AC1.1 and strongly dependent on AC1.2 then after nor-
malization:

wAC1 =
(AC1.1 AC1.2

2

5

3

5

)

Thus, PVAC1 is calculated using Equation 4 such that:

PVAC1 =


PVAC1.1 PVAC1.2

CSP1 0.25 0.2
CSP2 0.25 0.2
CSP3 0.25 0.3
CSC 0.25 0.3

.

(wAC1

0.4
0.6

)

Therefore,

PVAC1 =
(CSP1 CSP2 CSP3 CSC

0.22 0.22 0.28 0.28
)

This means that only CSP3 satisfies the customer require-
ments for AC1 as shown in Figure 8. Similarly, the In-
dependent Audits and Regulatory Mapping priority vectors
are calculated. Subsequently, the three Audit & Compliance
services AC1, AC2, AC3 priority vectors are aggregated to
have the overall Audit & Compliance priority vector PVAC

as:

PVAC =


PVAC1 PVAC2 PVAC3

CSP1 0.22 0.1212 0.1667
CSP2 0.22 0.2727 0.2143
CSP3 0.28 0.3030 0.3095
CSC 0.28 0.3030 0.3095




wAC

0.3333
0.3333
0.3333


In a similar way, the Business Continuity and Interface Se-
curity priority vectors are considered, such that the IS1 pri-
ority vector is calculated by aggregating PVIS1.1, PVIS1.2

and PVAC3.1 with the normalized dependency levels (wIS1)
using Equation 4, as:

PVIS1 =


PVIS1.1 PVIS1.2 PVAC3.1

0.2 0.2 0.25
0.2 0.2 0.25
0.3 0.3 0.25
0.3 0.3 0.25




wIS1

0.5
0.25
0.25


Therefore,

PVIS1 =
(CSP1 CSP2 CSP3 CSC

0.21 0.21 0.29 0.29
)

This means only CSP3 satisfies IS1 customer requirement
as shown in Figure 8. Finally, the priority vectors of Audit
& Compliance, Business Continuity and Interface Security
are aggregated to obtain the total secSLA priority vector
PVRoot.

PVRoot =


PVAC PVBC PVIS

CSP1 0.1693 0.2260 0.21
CSP2 0.2357 0.2267 0.21
CSP3 0.2975 0.2736 0.29
CSC 0.2975 0.2736 0.29


0.3333

0.3333
0.3333



PVRoot =
(CSP1 CSP2 CSP3 CSC

0.2018 0.2241 0.2870 0.2870
)

Consequently, CSP3 is the only provider that fulfills the
customer’s requirements. That was expected, as CSP1 is
not offering AC2.2, AC2.3, AC3.2 and is under-provisioning
IS1.1 and IS1.2. CSP2 is not providing BC2.2 and is not
fulfilling customer requirements for AC1.2, AC3.3, BC11.2,
IS1.1 and IS1.2. Only CSP3 fulfills all the customer’s re-
quirements. As a result, CSP3 is the best matching provider
according to the customer’s requirements, followed by CSP2

and CSP1.

AC1 AC2 AC3 BC2 BC11 IS1

0.1

0.2

0.3

A
g
g
re

g
a
te

d
S
ec

u
ri

ty
le

v
el

CSP1 CSP2 CSP3 CustomerCaseI

Figure 8: CSPs comparison with respect to Customer Case I requirements.

4.2.2 Cloud Customer Case II Requirements
In this case we consider a novice customer who cannot

specify his/her precise SLO requirements and/or resolve the
SLOs conflicts. The structured secSLA presented using DSM
enables the customer to easily specify his/her requirements,
regardless of the size of the secSLA and the number of de-
pendencies. In this case the customer defines the least de-
pendent SLOs - these are specified using DSM and are shown
in the column marked as Case II in Table 2.
Using the data shown in Table 2, Equation 1 defines the
AC1.1 pairwise relation as in Case I. Then the relative rank-
ing of the CSPs for AC1.1 is given by the priority vector
calculated using Equation 3 (as explained in Case I).

PVAC1.1 =
(CSP1 CSP2 CSP3 CSC

0.25 0.25 0.25 0.25
)

Similarly, all the lowest level SLOs (least dependent SLOs)
are calculated. The PVAC3.1, PVAC3.2, PVAC3.3, PVBC2.2,
PVBC11.1, PVBC11.2, PVIS1.1 and PVIS1.2 are calculated in
a similar way. Then based on the DSM order AC1.2 is cal-
culated. AC1.2 is depending on IS1.2 (Dep1), thus the
PVAC1.2 is equal to PVIS1.2.

PVAC1.2 =
(CSP1 CSP2 CSP3 CSC

0.2 0.2 0.3 0.3
)

In the same way, PVAC2.3, PVAC2.4 and PVBC2.1 are cal-
culated (they are equal to PVAC3.2, PVBC2.2 and PVBC11.1

respectively). Furthermore, AC2.1 is calculated. AC2.1 de-
pends on AC1.1 and AC3.1 (Dep1 and Dep3) with different
levels of dependencies. Thus, using Equation 4:

PVAC2.1 =


PVAC1.1 PVAC3.1

CSP1 0.25 0.25
CSP2 0.25 0.25
CSP3 0.25 0.25
CSC 0.25 0.25

 (wAC2.1

0.4
0.6

)

After all the SLO priority vectors are determined, the prior-
ity vectors are aggregated with the dependency importance
level to get the overall rank of CSPs according to the cus-
tomer requirements as specified in Case I. As a result the
root priority vector is equal to:

PVRoot =
(CSP1 CSP2 CSP3 CSC

0.2018 0.2241 0.2870 0.2870
)

4.3 The CSP Perspective: Maximising Offered
Security Levels

The second validation scenario presented in this paper ap-
plies the secSLA evaluation techniques to solve problems
faced by CSPs i.e., which specific security SLO from the
offered secSLA should be improved in order to maximise
the overall security level according to the customer require-
ments? This might be the case of a well-established CSP
deciding where to invest in order to achieve the highest pos-
sible security level, or a new CSP designing the secSLA. To
answer this question, we could perform a sensitivity anal-
ysis to ascertain the security benefits of improving one or
more SLOs. However, this analysis becomes impractical as
the number of SLOs and the dependencies between them
increase. Thus the sensitivity analysis is performed on the
least dependent SLOs identified by the DSM.
We used the CSP1 dataset described at Table 2, and applied
the Case II requirements to setup the customer’s baseline
for the security evaluation. From the existing 9 least depen-
dent SLOs (Case II column in Table 2) the CSP1 is under-
provisioning 4 of them (AC3.2, AC3.3, IS1.1 and IS1.2).
Figure 9 shows how the proposed framework can be used to
analyse an existing secSLA, and extract the individual SLOs
that, if enhanced, would result on different improvements as-
sociated to the overall security level. In this case, the X-axis
represents the improvement associated to the overall secu-
rity level after enhancing any of the SLOs. It is shown as
a percentage where 0% corresponds to the original secSLA
and 100% is the most effective SLO. For example, providing
tenants with the security policies applicable to virtualised re-
sources (AC3.2 in Figure 9), quantitatively increases CSP1

security level better than improving the thresholds commit-
ted for any of the other SLOs.

5. RELATED WORK
With the rapid growth of the Cloud services, multiple ap-

proaches are emerging to assess the functionality and secu-
rity of CSPs. In [16], the authors proposed a framework to
compare different Cloud providers across performance indi-
cators. In [12], an AHP-based ranking technique that uti-
lizes performance data to measure various QoS attributes
and evaluates the relative ranking of CSPs was proposed.
In [25], a framework of critical characteristics and measures
that enable a comparison of Cloud services is presented.
However, these studies focused on assessing performance of
Cloud services but not their security properties.

70 80 90 100

AC3.2

IS1.1

AC3.3

IS1.2

Security level improvement (%)

Figure 9: Sensitivity analysis: CSP1 SLOs that max-
imise the overall security level.

Security requirements for non-Cloud scenarios have been ad-
dressed by Casola et al. [3], who proposed a methodology
to evaluate security SLAs for web services. Chaves et al. [5]
explored security in SLAs by proposing a monitoring and
controlling architecture for web services. In [11] and [15],
the authors propose a technique to aggregate security met-
rics from web services. Their approach focused on the pro-
cess of selecting the optimal service composition based on
a set of predefined requirements. However, the authors did
not propose any techniques to assess Cloud secSLAs or em-
pirically validate the proposed metrics.
In [1], the authors propose the notion of evaluating Cloud
secSLAs by introducing a metric to benchmark the security
of a CSP based on categories. However, the resulting secu-
rity categorization is purely qualitative and lacks the sup-
port of dependencies. Luna et al. [18] presented a method-
ology to quantitatively benchmark Cloud security with re-
spect to customer defined requirements (based on control
frameworks). In [27], the authors presented a framework to
compare, benchmark and rank the security level provided
by two or more CSPs. However in both of them, the depen-
dencies and conflict detection are not covered.
There has been considerable effort on the conflict analy-
sis of network system management policies. Charalambides
et al. [4] expressed QoS policies using Event Calculus for
managing DiffServ networks, and their conflict analysis is
conducted in a pairwise comparison fashion. Dunlop et al.
[9] proposed a model to specify policies of permission, pro-
hibition and obligation in a temporal logic language that
can reason about the sequences of events. In [6], the au-
thors presented a framework for automatic detection of con-
flicts covering violation of enterprise policies and inconsis-
tency of customer requirements. Ensel and Keller [10] intro-
duced an approach to handle dependencies between man-
aged resources (e.g., web application server, database) in a
distributed system. However, the support for secSLA man-
agement is not provided. The COSMA approach [17] sup-
ports the providers of composite services to manage their
SLAs. However, COSMA does not support the determina-
tion of the effect of SLO violations on other services based
on dependency information.

6. CONCLUSIONS
Choosing a Cloud provider that satisfies the security re-

quirements of the customer has become challenging. Quan-
tification and evaluation offer powerful tools for choosing
between different CSPs. While the initial results of such
techniques are promising, they still lack tackling the depen-

dency relations that span across customer requirements.
Most of these methodologies do not account for information
about dependencies between services. It is important to pro-
vide customers with comprehensive support which enables
automatic conflict detection and explanation dedicated to
the dependent relations. Our framework automatically de-
tects any conflicts caused by inconsistent customer require-
ments. Additionally, our framework ranks CSPs and selects
the CSP that best satisfies the customer requirements. Ex-
planations of the detected conflicts are generated to identify
problematic customer requirements. Using our framework,
we evaluated different CSPs based on varied security specifi-
cations with respect to the customer security requirements.
Additionally, we also addressed different assignments of se-
curity levels and weights enabling customers to compare the
security levels offered by different CSPs.
Our case study based evaluation showed that our framework
effectively validated complicated requirements from different
customers and selected the best matching CSP from the set
of all CSPs. Currently, we are enhancing our input model
of Cloud services by encoding more services from the STAR
repository [8].

7. ACKNOWLEDGMENTS
Research supported, in part, by H2020- 644579 (ESCUDO-

CLOUD), FP7-ICT-2013-11610795 (SPECS) and DFG SFB
CROSSING.

8. REFERENCES
[1] M. Almorsy, J. Grundy, and A. Ibrahim.

Collaboration-based cloud computing security
management framework. Proc. of Cloud Computing,
pages 364–371, 2011.

[2] T. Browning. Applying the design structure matrix to
system decomposition and integration problems: a
review and new directions. In Trans. on Engg.
Management, 48(3):292–306, 2001.

[3] V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak. A
sla evaluation methodology in service oriented
architectures. In Quality of Protection, pages 119–130,
2006.

[4] M. Charalambides, P. Flegkas, G. Pavlou,
J. Rubio-Loyola, A. Bandara, E. Lupu, A. Russo,
N. Dulay, and M. Sloman. Policy conflict analysis for
diffserv quality of service management. In Network
and Service Management, 6(1):15–30, 2009.

[5] S. Chaves, C. Westphall, and F. Lamin. SLA
perspective in security management for cloud
computing. Proc. of Networking and Services, pages
212–217, 2010.

[6] C. Chen, S. Yan, G. Zhao, B. Lee, and S. Singhal. A
systematic framework enabling automatic conflict
detection and explanation in cloud service selection for
enterprises. Proc. of Cloud Computing, pages 883–890,
2012.

[7] Cloud Security Alliance. The Open Certification
Framework.
https://cloudsecurityalliance.org/research/ocf/.

[8] Cloud Security Alliance. The Security, Trust &
Assurance Registry (STAR).
https://cloudsecurityalliance.org/star/.

[9] N. Dunlop, J. Indulska, and K. Raymond. Dynamic
conflict detection in policy-based management
systems. Proc. of the Enterprise Distributed Object
Computing Conference, pages 15–26, 2002.

[10] C. Ensel and A. Keller. Managing application service
dependencies with xml and the resource description
framework. Proc. of the Integrated Network
Management Proceedings, pages 661–674, 2001.

[11] G. Frankova and A. Yautsiukhin. Service and
protection level agreements for business processes.
Proc. of European Young Researchers Workshop on
Service Oriented Computing, pages 38–43, 2007.

[12] K. Garg, S. Versteeg, and R. Buyya. A framework for
ranking of cloud computing services. In Future
Generation Computer Systems, 29(4):1012–1023, 2013.

[13] D. Gebala and S. Eppinger. Methods for analyzing
design procedures. Proc. of Design Theory and
Methodology, pages 227–233, 1991.

[14] J. Luna, A. Taha, R. Trapero, and N. Suri.
Quantitative reasoning about cloud security using
service level agreements. In Trans. on Cloud
Computing, (99), 2015.

[15] L. Krautsevich, F. Martinelli, and A. Yautsiukhin. A
general method for assessment of security in complex
services. Proc. of Towards a Service-Based Internet,
pages 153–164, 2011.

[16] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp:
comparing public cloud providers. Proc. of Internet
Measurement, pages 1–14, 2010.

[17] A. Ludwig and B. Franczyk. Cosma–an approach for
managing slas in composite services. Proc. of
Service-Oriented Computing, pages 626–632, 2008.

[18] J. Luna, R. Langenberg, and N. Suri. Benchmarking
Cloud Security Level Agreements Using Quantitative
Policy Trees. Proc. of Cloud Computing Security
Workshop, pages 103–112, 2012.

[19] D. Marca and C. McGowan. Sadt: structured analysis
and design technique. McGraw-Hill, 1987.

[20] R. Ramanathan. A note on the use of the analytic
hierarchy process for environmental impact
assessment. In Journal of Environmental
Management, 63(1):27–35, 2001.

[21] Z. Rehman, F. Hussain, and O. Hussain. Towards
multi-criteria cloud service selection. Proc. of
Innovative Mobile and Internet Services in Ubiquitous
Computing, pages 44–48, 2011.

[22] D. Ross. Structured analysis (SA): A language for
communicating ideas. In Software Engineering,
(1):16–34, 1977.

[23] T. Saaty. How to make a decision: the analytic
hierarchy process. In European journal of operational
research, 48(1):9–26, 1990.

[24] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Sigplan Notices, 40(10):167–176, 2005.

[25] J. Siegel and J. Perdue. Cloud services measures for
global use: the service measurement index (smi). Proc.
of Global Conference, pages 411–415, 2012.

[26] D. Steward. The design structure system: a method
for managing the design of complex systems. In Trans.
on Engg. Management, (3):71–74, 1981.

[27] A. Taha, R. Trapero, J. Luna, and N. Suri.
AHP-Based Quantitative Approach for Assessing and
Comparing Cloud Security. Proc. of Trust, Security
and Privacy in Computing and Communications,
pages 284–291, 2014.

[28] J. Wiest and F. Levy. A management guide to
PERT/CPM. Prentice-Hall, 1977.

[29] M. Winkler and A. Schill. Towards dependency
management in service compositions. Proc. of
e-Business, pages 79–84, 2009.

[30] M. Winkler, T. Springer, and A. Schill. Automating
composite sla management tasks by exploiting service
dependency information. Proc. of Web Services, pages
59–66, 2010.

[31] M. Zeleny. Multiple Criteria Decision Making.
McGraw Hill, 1982.

APPENDIX
A. EXCERPT OF A SECSLA DEPENDENCY

MODEL
The extract of a CSP secSLA dependency model with two

SLOs (named “User authentication and identity assurance
level” (kUsauth) and“CSP-Authentication”(kCSauth)) and the
dependency relation between them is shown in Listing 1. In
the Listing, kUsauth −→K kCSauth and the two SLOs secu-
rity levels are modeled as v(kUsauth) and v(kCSauth), respec-
tively. The requirement is that the security level of kCSauth

is higher than or equal the security level of kUsauth , i.e.,
v(kCSauth) ≥ v(kUsauth). This requirement is modeled as
(kUsauth , kCSauth ,≤) ∈ C−→K

v .
Note that all service levels (e.g., level2, level3, monthly,
. . .) are modeled as numerical values. These numerical val-
ues are the security SLOs values in the XML schema shown
in Listing 1.

Listing 1: Excerpt of dependency model of a secSLA
<secSLA slaid=‘‘sla1”>
<dependencyModel Depmodelid=‘‘depmod 1”>

<sloDependency Depid=‘‘dep−1” type=‘‘unidirectional”>
<dependent depSLOid=‘‘AA1.1 sla1” value =‘‘2”/>
<antecedent antSLOid=‘‘AA1.2 sla1” value=‘‘3”/>
<constraint> leq </constraint>

</sloDependency>
</dependencyModel>
</secSLA>

	Button1:

