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Abstract

Serial dependence is a general phenomenon in time series data, and has motivated the devel-

opment of many dependence conditions. However, the commonality between these dependence

conditions is relatively less known. In this paper, we propose a new dependence measure, named

Kolmogorov dependence measure, and develop the Kolmogorov dependence condition under this

measure. We show that the Kolmogorov dependence condition unifies a number of widely used

dependence conditions by serving as a common necessary condition. To demonstrate the ap-

plicability of the Kolmogorov dependence condition, we derive the rates of convergence for a

class of large quantile-based scatter matrix estimators under this condition. This manifests the

usefulness of the results devised in this paper since asymptotic analysis of quantile statistics

under dependence is known to be challenging in high dimensions.
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1 INTRODUCTION

Dependent data arises from a wide range of applications (Fan et al., 2014). For example, in finance,

the series of asset returns commonly exhibit short-term or long-term memory (Andersen, 2009);

in functional magnetic resonance imaging (fMRI), the images from consecutive scans are serially

dependent (Purdon and Weisskoff, 1998; Woolrich et al., 2001); in geophysics, measurements made

in geographical sites over time usually exhibit temporal dependence (Majda and Wang, 2006).

The prevalence of serial dependence has motivated the development of various dependence condi-

tions. These conditions can be categorized into structural conditions and non-structural conditions.

The former are based on specific models for the data generating mechanism. Examples of structural

conditions include vector autoregressive (VAR) models and physical dependence conditions. We

provide a brief review of these conditions and their applications in high dimensions.

• VAR models: The VAR models specify that the observed random vector depends linearly

on its previous realizations. Under this model, Loh and Wainwright (2012) investigated

sparse linear regression; Han and Liu (2013c) and Qiu et al. (2015b) proposed to estimate
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the transition matrix via Dantzig-selector-type approaches; Wang et al. (2013) studied the

performance of sparse principal component analysis; Qiu et al. (2016) considered estimating

time-varying graphical models.

• Physical dependence: For stationary causal processes in the form of {Xt= g({εj}j≤t)}t∈Z,

the physical dependence condition (Wu, 2005) assumes that the difference between Xt =

g({εj}j≤t) and X ′t = g({ε′0, εj : j ≤ t, j 6= 0}) decays to 0 as t goes to infinity. Here

{ε′0, εj : j ∈ Z} is a sequence of independent and identically distributed random vectors, and

g is a measurable function1. The difference between Xt and X ′t quantifies the dependence

of Xt on ε0. Under this condition, Xiao and Wu (2012) derived rates of convergence for

banding and thresholding estimators of the autocovariance matrix for stationary time series;

Chen et al. (2013) studied the estimation of covariance and inverse covariance matrices for

stationary and locally stationary time series.

Despite the wide applications of the structural dependence conditions, some inconvenience exists

in that the dependence measure relies on a model while the “true” generating mechanism is usually

unknown2. In contrast, non-structural dependence conditions rely on model-free dependence mea-

sures. For a time series {Xt}t∈Z, these dependence measures quantify the degree of dependence

between the “past”, {Xt}t≤0, and the “future”, {Xt}t≥n. Examples of non-structural dependence

conditions include, among many, the mixing conditions and the weak dependence conditions, as

illustrated below with a focus on the applications in high dimensions.

• Mixing conditions: The mixing conditions are built on various mixing coefficients, which

quantify the dependence strength between the σ-fields generated by {Xt}t≤0 and {Xt}t≥n.

The mixing conditions specify that the mixing coefficients decay to 0 as n goes to infinity. As-

suming exponentially decaying α-mixing coefficients, Fan et al. (2012) studied the asymptotic

behavior of the sample covariance matrix; Fan et al. (2011) and Fan et al. (2013) considered

covariance matrix estimation under factor models with factors observed and unobserved, re-

spectively. Based on these covariance matrix estimators, Fan et al. (2015) derived limiting

distributions for portfolio risk estimators; Bai and Liao (2016, 2013) derived limiting distri-

butions for the estimated factors and factor loadings. Besides the α-mixing conditions, Pan

and Yao (2008) and Lam et al. (2011) exploited the φ- and ψ-mixing conditions in estimating

factors and factor loadings. Under φ-mixing conditions, Han and Liu (2013a) studied princi-

pal component analysis, Qiu et al. (2015a) studied quantile-based scatter matrices, and Fan

et al. (2016) studied risk inference. Recently, Han (2018), Shen et al. (2020), and Han and Li

(2019), among many others, also established relevant exponential inequalities.

• Weak dependence: The weak dependence conditions rely on a dependence measure quan-

tified by the covariance between smooth functions of {Xt}t≤0 and {Xt}t≥n, and require that

the covariance goes to 0 as n goes to infinity (Doukhan and Louhichi, 1999). Under the weak

1Xt = g({εj}j≤t) is interpreted as a physical system with {εj}j≤t as the inputs and Xt as the output.
2We note that the data generating mechanisms themselves can be fairly general. For example, linear processes are

special cases of stationary causal processes with g({εj}j≤t) =
∑∞
k=0 Φkεt−k, where Φ0 = Id and Φk ∈ Rd×d. Wold’s

decomposition theorem (Wold, 1938) states that any process where the only deterministic term is the mean term can

be represented as a linear process.
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dependence conditions, Kallabis and Neumann (2006) and Doukhan and Neumann (2007)

derived various probability and moment inequalities; Fan et al. (2012) studied the sample

covariance matrix; Sancetta (2008) considered shrinkage estimators of covariance matrices.

The mixing conditions have been criticized for being difficult to verify (Doukhan and Louhichi,

1999 and more recently Han and Wu, 2019). The difficulty is mainly due to the σ-fields involved in

the definitions of the mixing coefficients. In comparison, the weak dependence conditions are easier

to verify in many scenarios. However, the covariance-based dependence measure only considers

smooth transformations of the data. These conditions are not directly applicable to many other

scenarios, such as the analysis of many quantile-based statistics, where non-smooth transformations

are involved.

The aforementioned dependence conditions are based on distinct measures of dependence, and

the commonality between them is unclear.

In this paper, we propose a new dependence measure named the Kolmogorov dependence mea-

sure. This dependence measure is naturally formulated using the Kolmogorov distance. Specifically,

for two sequences of random variables, we quantify their dependence by the Kolmogorov distance

(a.k.a. the Kolmogorov metric, referred to as the celebrated Kolmogorov–Smirnov statistic) between

their joint distribution and the product of their marginal distributions. Using this dependence mea-

sure, we develop the Kolmogorov dependence condition for multivariate time series. We show that

the Kolmogorov dependence condition unifies a class of VAR models, mixing conditions, physical

dependence conditions, and covariance-based weak dependence conditions by serving as a common

necessary condition.

The major challenge in building the connections between the Kolmogorov dependence condition

and other conditions lies in the fundamental difference in the dependence measures. In particular,

the Kolmogorov dependence measure is essentially the covariance between non-smooth transfor-

mations of the data, and hence standard techniques for analyzing smooth transformations are no

longer applicable. To overcome this challenge, we devise a technique that approximates the discon-

tinuous functions via smooth ones. These techniques enable the establishment of the Kolmogorov

dependence condition under a wide variety of existing dependence conditions.

To further demonstrate the usefulness of the Kolmogorov dependence condition, we analyze a

family of quantile-based scatter matrix estimators under high dimensional dependent data. It is

shown that the Kolmogorov dependence measure facilitates an easy analysis of these estimators,

and also captures the impact of serial dependence on estimation accuracy in a natural way.

Our contributions lie in three main aspects. First, we propose a novel dependence condition with

a novel dependence measure. It unifies a number of widely used dependence conditions by serving as

a common necessary condition. Secondly, under the Kolmogorov dependence condition, we derive

the rates of convergence for a family of quantile-based scatter matrix estimators. This enables the

analysis of quantile statistics under much weaker dependence assumptions than φ-mixing that was

used in Qiu et al. (2015a), the only paper that gives comparable results. Lastly, we develop a set of

techniques for analyzing time series using the Kolmogorov dependence condition. These techniques

are of independent interest.
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1.1 Organization

We organize the rest of this paper as follows. In Section 2, we propose the Kolmogorov dependence

condition, and demonstrate its relations with other dependence conditions. In Section 3, we ap-

ply the Kolmogorov dependence condition to analyzing a family of quantile-based scatter matrix

estimators. In Section 4, we provide a discussion of the main contributions of this paper. We

gather the proofs of the theoretical results, additional technical results, and supporting lemmas in

a supplement.

1.2 Notation

Let v = (v1, . . . , vd)
T ∈ Rd be a d-dimensional vector, and M = [Mjk] ∈ Rd1×d2 be a d1 × d2

matrix with Mjk as the (j, k)-th entry. For 0 < q < ∞, we denote the `q norm of v as ‖v‖q :=

(
∑d

j=1 |vj |q)1/q and the `∞ norm of v as ‖v‖∞ := maxj |vj |. Let the matrix `max norm of M be

‖M‖max := maxjk |Mjk|, the matrix `∞ norm of M be ‖M‖∞ := maxj
∑d

k=1 |Mjk|, the Frobenius

norm be ‖M‖F :=
√∑

jkM
2
jk, and the spectral norm be ‖M‖2 := λmax(

√
MTM), i.e., the largest

singular value of M.

For a sequence of numbers a1, . . . , ad, we denote diag(a1, . . . , ad) to be a diagonal matrix

with a1, . . . , ad on the diagonal. Similarly, for a sequence of matrices A1, . . . ,Ad, we denote

diag(A1, . . . ,Ad) to be a block diagonal matrix with A1, . . . ,Ad on the diagonal.

Denote Z to be the set of all integers, and Z+ to be the set of all positive integers. Let S, T ⊆ Z
be two sets. We denote |S| as the cardinality of S, and d(S, T ) := inf{|s− t| : s ∈ S, t ∈ T } as the

minimal distance between the elements in S and T .

Throughout the paper, we use C,C1, C2, . . . to denote generic constants, though the actual

values may vary at different occasions. We use ej to denote the j-th column of the identity matrix,

and define Se := {ej , ej + ek, ej − ek : j 6= k ∈ {1, . . . , d}}.
For a sequence of random variables {Xn} and a sequence of non-negative real numbers {an},

we write Xn = OP (an) if Xn is stochastically bounded by an. That is, for any ε > 0, there exist

finite numbers M > 0 and N > 0 such that P(|Xn| > M |an|) < ε for all n > N .

2 KOLMOGOROV DEPENDENCE

The following is the definition of the Kolmogorov dependence measure.

Definition 2.1. Let {Xs}s∈S and {Yt}t∈T be two sequences of random variables indexed by sets

S, T ⊆ Z. We define the Kolmogorov dependence measure between the two sequences by

κ({Xs}s∈S , {Yt}t∈T ) :=

sup
u∈R

∣∣∣P(Xs ≤ u, Yt ≤ u,∀s ∈ S, t ∈ T
)
−

P
(
Xs ≤ u,∀s ∈ S

)
P
(
Yt ≤ u,∀t ∈ T

)∣∣∣.
If we define F (u) := P(Xs ≤ u, Yt ≤ u,∀s ∈ S, t ∈ T ) and G(u) := P(Xs ≤ u,∀s ∈ S)P(Yt ≤

u,∀t ∈ T ), the Kolmogorov dependence measure between {Xs}s∈S and {Yt}t∈T is the Kolmogorov

distance between F and G: κ({Xs}s∈S , {Yt}t∈T ) = supu∈R |F (u) − G(u)|. It is hence also clear
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that Kolmogorov dependence measure, which corresponds to the Kolmogorov distance, is strictly

weaker than the α-dependence measure, which will be introduced later and corresponds to the total

variation distance.

Based on the Kolmogorov dependence measure, we next introduce the Kolmogorov dependence

condition for stationary time series.

Definition 2.2 (Kolmogorov dependence condition). A stationary univariate time series {Xt}t∈Z
is called (Ψ, ρ)-Kolmogorov dependent if there exist a function Ψ : Z+ × Z+ → R and a sequence

{ρ(n)}n≥0 decreasing to 0 at infinity such that for any finite non-empty sets S, T ⊆ Z with max(S) ≤
min(T ), we have

κ({Xs}s∈S , {Xt}t∈T ) ≤ Ψ(|S|, |T |)ρ{d(S, T )}.

A stationary multivariate time series {Xt ∈ Rd}t∈Z is called (S,Ψ, ρ)-Kolmogorov dependent if

there exits a set S ⊆ Rd such that for any a ∈ S, the time series {aTXt}t∈Z is (Ψ, ρ)-Kolmogorov

dependent.

Kolmogorov dependence condition falls in the category of non-structural conditions. Here

d(S, T ) represents the gap in time between the “past”, {Xt}t∈S , and the “future”, {Xt}t∈T . The

sequence {ρ(n)}n≥0 characterizes how fast the dependence strength between them, measured by κ,

decays as the time gap increases. We also note that S controls the stringency of the condition. If

S1 ⊆ S2, (S2,Ψ, ρ)-Kolmogorov dependence implies (S1,Ψ, ρ)-Kolmogorov dependence.

In the following theorems, we connect the Kolmogorov dependence condition to several de-

pendence conditions frequently used in the literature, i.e., VAR models, mixing conditions, weak

dependence, and physical dependence. In particular, we show that time series satisfying these

dependence conditions are Kolmogorov dependent.

Theorem 2.1 (VAR model). Let {Xt ∈ Rd}t∈Z be a stationary time series satisfying the vector

autoregressive model

Xt = AXt−1 + εt, for any t ∈ Z,

where {εt}t∈Z is a sequence of i.i.d. random vectors. For S ⊆ Rd such that supx∈S ‖x‖2 < ∞,

assume the following conditions hold:

1. ‖A‖2 < 1.

2. E|aTA`ε1| ≤ C‖a‖2‖A‖`2 for any a ∈ S, any ` ∈ Z+, and some constant C > 0.

3. For any a ∈ S, there exists a constant H > 0 such that P(u ≤ aTXt ≤ u+ v) ≤ Hv for any

u ∈ R, v > 0.

Then {Xt}t∈Z is (S,Ψ, ρ)-Kolmogorov dependent with

Ψ(u, v)ρ(n) =
{

4H+
3C supx∈S ‖x‖2

2(1−‖A‖2)

}
(u+v)‖A‖n/22 .

Remark 2.2. Condition 1 guarantees that {Xt}t∈Z is a stable process. Condition 3 is a smoothness

condition on the distribution function. For Condition 2, when d is fixed, since E|aTA`ε1| ≤
‖aTA`‖2E‖ε1‖2 ≤ ‖a‖2‖A‖`2E‖ε1‖2, the condition is satisfied with S = Rd provided that E‖ε1‖2 <
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∞. When d may scale with the sample size, Condition 2 can be satisfied by assuming either

Gaussian innovations, {εt}t∈Z, or certain sparsity structures on the transition matrix A, depending

on the structure of S:

1. Gaussian innovations: Suppose that ε1 ∼ N(0,Σε) follows a Gaussian distribution with

‖Σε‖2 ≤ C for some constant C. By the properties of Gaussian distributions, we have

aTA`ε1 ∼ N(0,aTA`ΣεA
`Ta).

Thus, we obtain

E|aTA`ε1| =
√

2

π
aTA`ΣεA`Ta

≤
√

2

π
‖Σε‖2‖A`Ta‖22 ≤

√
2C

π
‖a‖2‖A‖`2.

Thus, Condition 2 is satisfied with S = Rd.

2. Sparse transition matrix: Consider S = Se. In Section 3, we will show that Se is what

we need to obtain the rate of convergence for a class of scatter matrix estimators. Sup-

pose that A is block diagonal: A = diag(A1, . . . ,Am), where di := dim(Ai) is fixed for

i = 1, . . . ,m while m may scale with sample size. In other words, {Xt}t∈Z consists of

autoregressive blocks. For any j ∈ {1, . . . , d}, let i0 = min{i : j ≤ d1 + · · · + di} and

ε1 = (ε11, . . . , ε1m) partitioned according to the dimensions of (A1, . . . ,Am). We have

E|eTj A`ε1| ≤ ‖Ai0‖`2E‖ε1i0‖2 ≤ ‖A‖`2E‖ε1i0‖2. Thus, E|aTA`ε1| ≤ 2‖A‖`2E‖ε1i0‖2 for any

a ∈ Se. Therefore, Condition 2 is satisfied if E‖ε1i‖2 <∞ for i = 1, . . . ,m.

Next, we introduce the mixing conditions.

Definition 2.3 (Bradley (2005)). Let {Xt}t∈Z be a stationary time series defined on a common

probability space (Ω,F ,P). For −∞ ≤ J ≤ L ≤ ∞, define FL
J := σ(Xt : J ≤ t ≤ L, t ∈ Z) as the

σ-field generated by {Xt : J ≤ t ≤ L, t ∈ Z}. Denote L2(FL
j ) to be the space of square-integrable,

FL
J -measurable random variables. For any n ≥ 1, define the following mixing coefficients:

α(n) := sup
A∈F0

−∞, B∈F∞n

∣∣∣P(A ∩B)− P (A)P (B)
∣∣∣;

φ(n) := sup
A∈F0

−∞, B∈F∞n , P(A)>0

∣∣∣P(B | A)− P(B)
∣∣∣;

ψ(n) := sup
A∈F0

−∞, B∈F∞n , P(A)>0, P(B)>0

∣∣∣ P(A ∩B)

P(A)P(B)
− 1
∣∣∣;

%(n) := sup
f∈L(F0

−∞), g∈L(F∞n )

∣∣∣Corr(f, g)
∣∣∣;

β(n) := sup
{Ai}Ii=1 partition Ω, Ai∈F0

−∞
{Bi}Ji=1 partition Ω, Bi∈F∞n

1

2

I∑
i=1

J∑
j=1

∣∣∣P(Ai ∩Bj)− P(Ai)P(Bj)
∣∣∣.
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The time series {Xt}t∈Z is α-, φ-, ψ-, ρ-, or β-mixing if and only if the corresponding mixing

coefficient goes to 0 as n goes to infinity.

The mixing coefficients measure the dependence of two subsequences with time gap n. Analo-

gous to the sequence ρ(n) in the Kolmogorov dependence condition, the rate at which they converge

to 0 characterizes the degree of dependence over the time series. If any of these mixing coefficients

is 0 for all n, the series {Xt}t∈Z is independent. These mixing coefficients satisfy the following

inequalities (Bradley, 2005): {
2α(n) ≤ β(n) ≤ φ(n) ≤ 1/2ψ(n)

4α(n) ≤ %(n) ≤ ψ(n)
(2.1)

for any n ∈ Z+.

The connection between the Kolmogorov dependence measure and the mixing coefficients are

straightforward. For any a ∈ Rd and finite sets S, T ⊆ Z with max(S) < min(T ), we have

{aTXt ≤ u : t ∈ S} ∈ σ{Xt : t ≤ max(S)},
{aTXt ≤ u : t ∈ T } ∈ σ{Xt : t ≤ min(T )}

for any u ∈ R. Therefore, we have κ({aTXt}t∈S , {aTXt}t∈T ) ≤ α{min(T ) − max(S)}. Using

(2.1), we immediately have the following theorem.

Theorem 2.3 (Mixing). α-, φ-, ψ-, ρ-, and β–mixing time series are (Rd,Ψ,α)-, (Rd,Ψ,φ)-,

(Rd,Ψ,ψ)-, (Rd,Ψ,%)-, (Rd,Ψ,β)-Kolmogorov dependent ,respectively, for any function Ψ ≥ 1.

Compared with the mixing conditions, the Kolmogorov dependence condition is easier to verify.

For example, establishing the relation between VAR models and the α-mixing condition has proven

to be difficult, mainly due to the σ-fields involved in the definition of the mixing coefficient (Chanda,

1974; Gorodetskii, 1978; Andrews, 1984; Pham and Tran, 1985). In comparison, the proof of

Theorem 2.1 is natural and concise (Section A.1).

Next, we introduce the weak dependence measure of Doukhan and Louhichi (1999). For a

function g : (Rd)u → R, define

Lip(g) := sup
{ |g(x1, . . . ,xu)− g(y1, . . . ,yu)|
‖x1 − y1‖+ · · ·+ ‖xu − yu‖

:

(x1, . . . ,xu) 6= (y1, . . . ,yu)
}
, (2.2)

where ‖ · ‖ is a norm on Rd. Denote Λ := {g : (Ru)d → R for some u : Lip(g) < ∞} and

Λ(1) := {g ∈ Λ : ‖g‖∞ ≤ 1}, where ‖g‖∞ := supx g(x).

Definition 2.4 (Doukhan and Louhichi (1999); Doukhan and Neumann (2007)). A stationary time

series {Xt}t∈Z is (Λ(1), ψ, ζ)-weakly dependent if and only if there exist a function ψ : R2
+×N2 → R+

and a sequence {ζ(n)}n≥0 decreasing to 0 as n goes to infinity, such that for any g1, g2 ∈ Λ(1) with

g1 : (Rd)u → R, g2 : (Rd)v → R, u, v ∈ Z+, and any u-tuple (s1, . . . , su), v-tuple (t1, . . . , tv) with

s1 ≤ · · · ≤ su < t1 ≤ · · · ≤ tv, the following inequality is satisfied:∣∣∣Cov
{
g1(Xs1 , . . . ,Xsu), g2(Xt1 , . . . ,Xtv)

}∣∣∣
≤ ψ(Lip(g1),Lip(g2), u, v)ζ(t1 − su).
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Important examples of (Λ(1), ψ, ζ)-weakly dependent processes include θ-, η-, κ-, and λ-dependence.

They correspond to specific choices of function ψ, as listed in Table 1.

Similar to the sequence ρ(n) in Kolmogorov dependence condition, the sequence ζ(n) describes

the degree of dependence over the (Λ(1), ψ, ζ)-weakly dependent time series. The next theorem

relates the weak dependence condition to Kolmogorov dependence.

Table 1: Important Examples of Weak Dependence (Definition 6 in Doukhan and Neumann, 2007).

θ-dependence: ψ(x, y, u, v) = vy

η-dependence: ψ(x, y, u, v) = ux+ vy

κ-dependence: ψ(x, y, u, v) = uvxy

λ-dependence: ψ(x, y, u, v) = ux+ vy + uvxy

Theorem 2.4 (Weak dependence). Let {Xt}t∈Z be a (Λ(1), ψ, ζ)-weakly dependent time series,

and ‖ · ‖∗ be the dual norm of ‖ · ‖ in (2.2). For S ⊆ Rd such that supx∈S ‖x‖∗ <∞, assume that

for any a ∈ S, there exists a constant H > 0 such that P(u ≤ aTXt ≤ u+ v) ≤ Hv for any u ∈ R
and v > 0. Then the following statements hold:

1. If {Xt}t∈Z is θ- or η-dependent, then {Xt}t∈Z is (S,Ψ, ρ)-Kolmogorov dependent with

Ψ(u, v)ρ(n) =
(

4H +
3

4
sup
x∈S
‖x‖∗

)
(u+ v)

√
ζ(n).

2. If {Xt}t∈Z is κ-dependent, then {Xt}t∈Z is (S,Ψ, ρ)-Kolmogorov dependent with

Ψ(u, v)ρ(n)=
{

4H(u+v)+
9

16
sup
x∈S
‖x‖2∗uv

}
ζ(n)1/3.

3. If {Xt}t∈Z is λ-dependent, then {Xt}t∈Z is (S,Ψ, ρ)-Kolmogorov dependent with

Ψ(u, v)ρ(n)=
{(

4H+
3

4
sup
x
ζ(x) sup

x∈S
‖x‖∗

)
(u+v)+

9

16
sup
x∈S
‖x‖2∗uv

}
ζ(n)1/3.

A special case of the mixing conditions and the weak dependence condition is m-dependence.

Definition 2.5. A stationary time series {Xt}t∈Z is m-dependent if and only if for any t ∈ Z,

{Xs : s ≤ t} and {Xs : s > t+m} are independent.

If the time series {Xt}t∈Z is m-dependent, it is mixing with the mixing coefficients being

0 whenever n > m, and is (Λ(1), ψ, ζ)-weakly dependent with ζ(n) = 0 whenever n > m. In

particular, we have the following corollary.

Corollary 1 (m-dependence). An m-dependent time series {Xt ∈ Rd}t∈Z is (Rd,Ψ, ρ)-Kolmogorov

dependent with ρ(n) = I(n ≤ m) and Ψ = supS,T ⊆Z,a∈Rd κ({aTXs}s∈S , {aTXt}t∈T ).

Lastly, we introduce the physical dependence measure proposed in Wu (2005)3.

3We slightly generalize the definition in Wu (2005) to accommodate multivariate time series.
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Definition 2.6 (Wu (2005)). Let {εt}t∈Z be i.i.d. random vectors, and {ε′t}t∈Z be an i.i.d. copy

of {εt}t∈Z. For a set I ⊆ Z, let εt,I := ε′t if t ∈ I and εt,I := εt if t /∈ I. Let Ft := {. . . , εt−1, εt} be

a shift process, and Ft,I := {. . . , εt−1,I , εt,I} be a coupled version of Ft, where εt is replaced by ε′t
if t ∈ I. Let g be a measurable function to Rd. We define the physical dependence measure to be

δp(I, t, g) := ‖g(Ft)− g(Ft,I)‖p,

where p ≥ 1 is a constant, and ‖g(Ft)− g(Ft,I)‖p := {E‖g(Ft)− g(Ft,I)‖p}1/p for a norm ‖ · ‖ on

Rd.

The process {Xt = g(Ft)}t∈Z is stationary, and is causal or non-anticipative in the sense that

Xt does not depend on future innovations {εs : s > t}. Ft and Xt can be regarded as the inputs

and output of a physical system g. δp(I, t, g) quantifies the dependence of g(Ft) on {εt : t ∈ I}.
The next theorem connects physical dependence measure to Kolmogorov dependence.

Theorem 2.5 (Physical dependence). Following the notations in Definition 2.6, let Xt = g(Ft),
‖·‖∗ be the dual norm of ‖·‖ on Rd, and S ⊆ Rd such that supx∈S ‖x‖∗ <∞. Assume the following

conditions hold:

1. For any a ∈ S, there exists a constant H > 0 such that P(u ≤ aTXt ≤ u+ v) ≤ Hv holds for

any u ∈ R and v > 0.

2. limt→∞ δp(I, t, g) = 0 for I = {0,−1,−2, . . .}.

Then {Xt}t∈Z is (S,Ψ, ρ)-Kolmogorov dependent with

Ψ(u, v)ρ(n) =
(

4H +
3

2
sup
x∈S
‖x‖∗

)
(u+ v)

√
δp(I, n, g).

For brevity, we denote δp(t, g) := δp({0}, t, g). Although Theorem 2.5 only considers I =

{0,−1,−2, . . .}, the following theorem relates δp(I, t, g) to δp(t, g).

Theorem 2.6 (Wu (2005)). Let p > 1, Cp := 18p3/2(p− 1)−1/2 if 1 < p < 2, Cp :=
√

2p if p ≥ 2.

We have

δp
′
p (I, n, g) ≤ 2p

′
Cp
′
p

∑
i∈I

δp(n− i, g)p
′
,

where p′ := min(p, 2) and I ⊆ Z.

Theorem 2.6 shows that the physical dependence of g(Ft) on {εt : t ∈ I} can be upper bounded

by the physical dependence of g(Ft) on each εt for t ∈ I individually. In fact, a number of physical

dependence conditions in the literature are given under δp(t, g) alone. For example, Xiao and Wu

(2012) and Chen et al. (2013) considered the short-range dependence condition:
∑∞

n=m δp(m, g) <

∞ with `∞ norm. According to Theorem 2.6, Condition 2 in Theorem 2.5 is satisfied by the

short-range dependence condition.

Although VAR models, Doukhan’s weak dependence, and physical dependence appear to be of

dramatically different forms, the derivations of their relations to Kolmogorov dependence are based

on the same technique. They commonly rely on a smooth approximation of the indicator function,

which connects the Kolmogorove dependence measure with the covariance between the “past” and

the “future”. We refer to Section A in the supplementary material for the detailed proof.
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3 QUANTILE-BASED SCATTER MATRICES

In this section, we demonstrate the usefulness of the Kolmogorov dependence theory by deriving

the rate of convergence for a family of quantile-based scatter matrices under high dimensional time

series.

Let Z ∈ R be a random variable and q ∈ [0, 1] be a constant. We define the q-quantile of Z as

Q(Z; q) := inf{z : P(Z ≤ z) ≥ q}.

Q(Z; q) is unique if there exists a unique z such that P(Z ≤ z) = q. If F is the distribution

function of Z, we also use Q(F ; q) exchangeably with Q(Z; q). Correspondingly, we define the

empirical q-quantile of a sample, {zt}Tt=1, as

Q̂({zt}Tt=1; q) :=z(k), where k=min
{
t :
t

T
≥q
}
. (3.1)

Here z(1) ≤ z(2) ≤ · · · ≤ z(T ) are the order statistics of z1, . . . , zT . Built on quantiles, the median

absolute deviation (MAD) (Hampel, 1974) provides a robust measure of scale. The population and

sample MADs are defined as4

σM(Z; q) := Q
({∣∣∣Z −Q(Z;

1

2

)∣∣∣}; q
)
,

σ̂M({zt}Tt=1; q) := Q̂
({∣∣∣zt − Q̂({zs}Ts=1;

1

2

)∣∣∣}T
t=1

; q
)
.

In the rest of the paper, we suppress the parameter q and write σM(Z) and σ̂M({zt}Tt=1) for nota-

tional brevity. Let {Xt}Tt=1 be a stationary sequence of random vectors, whereXt = (Xt1, . . . , Xtd)
T.

As a generalization of MAD to the multivariate scenario, the population and sample MAD scatter

matrices can be defined as R := [Rjk] and R̂ := [R̂jk], where the entries of R and R̂ are given by

Rjj =σM(X1j)
2, R̂jj = σ̂M({Xtj}Tt=1)2,

Rjk=
1

4

[
σM(X1j+X1k)

2−σM(X1j−X1k)
2
]

for j 6=k,

R̂jk=
1

4

[
σ̂M({Xtj+Xtk}Tt=1)2−σ̂M({Xtj−Xtk}Tt=1)2

]
for j 6= k.

In Han et al. (2014), R and R̂ have been studied under independent data for elliptical distributions

and beyond, which have been deeply studied in Liu et al. (2012), Han and Liu (2012), Han and Liu

(2013b), Han and Liu (2014), Zhou et al. (2019), Han and Liu (2017), Han and Liu (2018), among

many others. However, their properties under dependent data is unknown. Now, we investigate

the consistency of R̂ under Kolmogorov dependence. We begin by introducing two conditions on

the sample {Xt}Tt=1.

Condition 3.1. {Xt}Tt=1 is a sample from a (S,Ψ, ρ)-Kolmogorov dependent time series {Xt}t∈Z
such that

1. S = Se := {ej , ej + ek, ej − ek : j 6= k ∈ {1, . . . , d}};
4In Hampel (1974), q was set to 1/2 to achieve the best possible 50% breakdown point (i.e., the maximum

proportion of outliers that the estimate can safely tolerate) and the most sharply bounded influence function (Hampel

et al., 1986).

10



2. Ψ is one of the following functions:

(a) Ψ(u, v) = 2v,

(b) Ψ(u, v) = β(u+ v) + (1− β)uv, for some β ∈ [0, 1];

3. {ρ(n)}n≥0 satisfies
∞∑
n=0

(n+ 1)kρ(n) ≤ L1L
k(k!)a, for any k ∈ Z+, (3.2)

where L1 > 0 and a ≥ 0 are constants and L may scale with (T, d) such that

L = L(T, d) ≤

√
L1T

27a+11(log d)2a+3
. (3.3)

Equation (3.2) specifies the desired rate of decay in ρ(n). The upper bound in (3.2) is adaptive

to the sample size T and dimension d, in the sense that L is allowed to scale with (T, d) by the rate√
T/(log d)a+3/2. Intuitively, larger sample size provides more information, which in turn allows for

stronger dependence among the sample. On the other hand, larger dimension of the data entails

weaker dependence. Overall, d is allowed to scale in the rate exp{T 1/(2a+3)} without collapsing L

to 0.

The next condition is about the identifiability of the quantiles.

Condition 3.2. X1 is absolutely continuous and for any a ∈ Se, we have
inf

|x−Q(Fa;q)|<κ

d

dx
Fa(x) ≥ η,

inf
|x−Q(F̄a;q)|<κ

d

dx
F̄a(x) ≥ η

(3.4)

for some constants κ, η > 0, where Fa and F̄a are the distribution functions of aTX1 and |aTX1−
Q(aTX1; q)|, respectively.

Condition 3.2 guarantees the identifiability of the quantiles of the distribution functions. This

condition is standard in the literature on quantile statistics (Han et al., 2014; Belloni and Cher-

nozhukov, 2011; Wang et al., 2012). With Conditions 3.1 and 3.2, we can obtain the rate of

convergence for R̂.

Theorem 3.3. Let {Xt}Tt=1 be a sample from a stationary Kolmogorov dependence time series,

{Xt ∈ Rd}t∈Z, such that Conditions 3.1 and 3.2 hold. Suppose (log d)2a+3/T → 0 as (T, d) go to

infinity. Then, for (T, d) large enough and any α ∈ (0, 1), with probability no smaller than 1−24α2,

we have

‖R̂−R‖max ≤

max
{ 8

η2

{
16

√
2aL1(log d+log(1/α))

T
+

1

T

}2
,

8σM
max

η

{
16

√
2aL1(log d+log(1/α))

T
+

1

T

}}
, (3.5)

where σM
max := max{σM(aTXt) : a ∈ Se}, a and L1 are defined in (3.2), and η is defined in (3.4).
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The implications of Theorem 3.3 are as follows:

1. In Condition 3.1, the decaying rate of ρ(n) is controlled by a and L1, which capture the

strength of serial dependence. Theorem 3.3 quantifies that these parameters affect the accu-

racy of the estimator R̂ by modifying the upper bound of its estimation error.

2. When a, L1, η, and σM
max are fixed, the rate of convergence for R̂ reduces to OP (

√
log d/T ).

Han et al. (2014) derived similar rates of convergence for R̂ under independent data, and

showed that the rate leads to optimal rates of convergence for various covariance estimators

induced from R̂.

Theorem 3.3 establishes the rate of convergence for R̂ using the language of the Kolmogorov

dependence. The proof of the theorem relies on the fact that both the Kolmogorov dependence

measure and the quantile function are closely related to non-smooth transformations of the data.

We refer to Lemma C.1 for technical details.

As is established by Theorems 2.1, 2.3, 2.4, and 2.5, the Kolmogorov dependence condition is a

necessary condition for VAR models, mixing conditions, various weak dependence conditions, and

physical dependence conditions. Therefore, Theorem 3.3 immediately implies rates of convergence

for R̂ under these other dependence conditions. Below we present the results for VAR models and

α-mixing conditions as two examples.

Corollary 2 (VAR model). Let {Xt ∈ Rd}Tt=1 be a sample from a VAR process satisfying the

conditions in Theorem 2.1 with S = Se. Assume that Condition 3.2 holds and (log d)2a+3/T → 0

as (T, d) go to infinity. Then we have

‖R̂−R‖max =

OP

[σM
max

η

{√(
4H+

3C

1−‖A‖2

) 1

1−
√
‖A‖2

log d

T
+

1

T

}]
.

Here A is the transition matrix of the VAR process, σM
max = max{σM(aTXt) : a ∈ Se}, η is defined

in Condition 3.2, and H,C are constants defined in Theorem 2.1.

Corollary 2 shows that for VAR models, the effect of serial dependence on the consistency of R̂

essentially reduces to the spectral norm of the transition matrix. Similar findings have been noted

for Pearson covariance matrix estimation in a number of literature (Loh and Wainwright, 2012;

Han and Liu, 2013c; Qiu et al., 2016).

Corollary 3 (α-mixing). Let {Xt ∈ Rd}Tt=1 be a sample from an α-mixing time series satisfying

α(n) ≤ C1 exp
(
−C2n

r
)
, (3.6)
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where C1, C2 and r are positive constants. Assume that Condition 3.2 holds. Then we have

‖R̂−R‖max =

OP

{σM
max

η

(√ C1

1−e−C2

log d

T
+

1

T

)}
, if r ≥ 1; (3.7)

‖R̂−R‖max =

OP

(σM
max

η

[√
21/rC1

{
1+

√
2πe

r

( 1

2C2r

)1/r}log d

T
+

1

T

])
,

if 0 < r < 1. (3.8)

Here σM
max = max{σM(aTXt) : a ∈ Se} and η is defined in Condition 3.2.

Condition (3.6) has been widely exploited in modeling dependence in financial time series. See,

for example, Fan et al. (2011), Fan et al. (2012), Fan et al. (2013), Fan et al. (2015), Bai and Liao

(2016), and Bai and Liao (2013).

In addition to VAR models and mixing conditions, rates of convergence under the weak depen-

dence conditions and the physical dependence conditions can be easily obtained using Theorems

2.4, 2.5, and 3.3. For conciseness, we omit further discussions herein. Prior to this work, compara-

ble rates were only derived under φ-mixing conditions for quantile statistics under high dimensions

(Qiu et al., 2015a).

4 DISCUSSION

In this section, we discuss the uniqueness and the generality of the Kolmogorov dependence condi-

tion. The Kolmogorov dependence condition is closely related to the Doukhan’s weak dependence

conditions (Doukhan and Louhichi, 1999; Kallabis and Neumann, 2006; Doukhan and Neumann,

2007, 2008) developed for concentration inequalities. However, these conditions are not directly

applicable to analyzing quantile-based statistics, since they are not invariant to non-smooth trans-

formations of the data. In comparison, the Kolmogorov dependence condition is readily adapted to

the non-smooth structure of quantile statistics. The Kolmogorov dependence condition also resem-

bles the α-mixing conditions (Dedecker and Prieur, 2004; Kontorovich et al., 2008; Merlevède et al.,

2009, 2011) in terms of the dependence measures. The key difference is that the dependence measure

in α-mixing requires bounding the total variation distance, which makes the α-mixing conditions

difficult to verify. In comparison, the Kolmogorov dependence condition relaxes the requirement for

σ-fields, and therefore can be relatively easily verified under many popular dependence conditions,

including the α-mixing conditions themselves.

The Kolmogorov dependence condition provides us a fairly general understanding of depen-

dence. It serves as a common necessary condition unifying a number of dependence conditions.

Thus, the theoretical results obtained under the Kolmogorov dependence condition shed light on

the properties of other dependence conditions as well. As an example, we established the rate

of convergence for the MAD scatter matrix estimators under the Kolmogorov dependence condi-

tion, and demonstrated that the corresponding rates under other dependence conditions can be

immediately obtained as well.
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A PROOF OF MAIN RESULTS

In this section, we present the proofs of the main theorems.

Lemma A.1. Let {Yt}t∈Z be a stationary univariate time series. Assume that there exists a

constant H > 0 such that P(u ≤ Yt ≤ u+ v) ≤ Hv for any u ∈ R and v > 0. Given any u ∈ R and

ε > 0, let h(x) := I(x ≤ u) and hε(x) be a smoothed version of h:

hε(x) :=


h(x), if x < u− ε or x > u+ ε;

1

4ε3
{x3 − 3ux2 + 3(u2 − ε2)x− u3 + 3uε2+

2ε3}, if u− ε ≤ x ≤ u+ ε.

(A.1)

Then we have ∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤ 4H(|S|+ |T |)ε+

∣∣∣Cov
{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣

for any finite non-empty sets S, T ⊆ Z.

Proof. hε(x) is continuous with first order derivative

d

dx
hε(x) =

0, if x < u− ε or x > u+ ε;

3

4ε2
{(x− u)2 − ε2}, if u− ε ≤ x ≤ u+ ε.

Thus, hε(x) is Lipschitz continuous with Lip(hε) = supx |dhε(x)/dx| = 3/(4ε). By the definition of

covariance and the triangle inequality, we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
=
∣∣∣Cov

{∏
t∈S

h(Yt),
∏
t∈T

h(Yt)
}∣∣∣

≤
∣∣∣Cov

{∏
t∈S

h(Yt),
∏
t∈T

h(Yt)
}
−Cov

{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

A

+
∣∣∣Cov

{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣. (A.2)

We now derive the upper bound for A. By the triangle inequality, we have

A ≤
∣∣∣Cov

{∏
t∈S

h(Yt),
∏
t∈T

h(Yt)−
∏
t∈T

hε(Yt)
}∣∣∣+∣∣∣Cov

{∏
t∈S

h(Yt)−
∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣. (A.3)
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For two random variables X and Y with |X| ≤ 1, we have

|Cov(X,Y )| =|EXY − EXEY |
≤E|X||Y |+ E|X|E|Y | ≤ 2E|Y |. (A.4)

Now, setting X =
∏
t∈S h(Yt) and Y =

∏
t∈T h(Yt)−

∏
t∈T hε(Yt), we have∣∣∣Cov

{∏
t∈S

h(Yt),
∏
t∈T

h(Yt)−
∏
t∈T

hε(Yt)
}∣∣∣

≤ 2E
∣∣∣∏
t∈T

h(Yt)−
∏
t∈T

hε(Yt)
∣∣∣.

Setting X =
∏
t∈T hε(Yt) and Y =

∏
t∈S h(Yt)−

∏
t∈S hε(Yt) in (A.4), we have∣∣∣Cov

{∏
t∈S

h(Yt)−
∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣

≤ 2E
∣∣∣∏
t∈S

h(Yt)−
∏
t∈S

hε(Yt)
∣∣∣.

Plugging the above two inequalities into (A.3), we have

A ≤2E
∣∣∣∏
t∈T

h(Yt)−
∏
t∈T

hε(Yt)
∣∣∣+2E

∣∣∣∏
t∈S

h(Yt)−
∏
t∈S

hε(Yt)
∣∣∣

≤2(|S|+ |T |)E
∣∣∣h(Yt)− hε(Yt)

∣∣∣.
The last inequality is due to the fact that∣∣∣ m∏

t=1

at −
m∏
t=1

bt

∣∣∣ ≤ m∑
t=1

|at − bt| (A.5)

for 0 ≤ at, bt ≤ 1. Noting that |h(Yt) − hε(Yt)| ≤ 1 and h(Yt) − hε(Yt) is non-zero only when

u− ε ≤ Yt ≤ u+ ε, we have

A ≤2(|S|+ |T |)P(u− ε ≤ Yt ≤ u+ ε)

≤4H(|S|+ |T |)ε. (A.6)

Plugging (A.6) into (A.2) completes the proof.

A.1 Proof of Theorem 2.1

Proof. Applying Lemma A.1 with Yt = aTXt, we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤ 4H(|S|+ |T |)ε+

∣∣∣Cov
{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

B

, (A.7)

where hε is defined in (A.1). Now we derive an upper bound of B. Since ‖A‖2 < 1, the process

{Xt}t∈Z has moving average representation Xt =
∑∞

`=0 A`εt−`. Define X
[n]
t to be a finite order
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moving average process: X
[n]
t :=

∑n−1
`=0 A`εt−` where n = d(S, T ). Define Y

[n]
t := aTX

[n]
t . Using

Y
[n]
t , we can upper bound B in (A.2) by

B≤
∣∣∣Cov

{∏
t∈S

hε(Yt)−
∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

B1

+

∣∣∣Cov
{∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Yt)−
∏
t∈T

hε(Y
[n]
t )
}∣∣∣︸ ︷︷ ︸

B2

+

∣∣∣Cov
{∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Y
[n]
t )
}∣∣∣︸ ︷︷ ︸

B3

.

Note that {Y [n]
t : t ∈ S} only depends on {εt : min(S)− n < t ≤ max(S)} and {Y [n]

t : t ∈ T } only

depends on {εt : min(T )−n < t ≤ max(T )}. Since n = d(S, T ) = min(T )−max(S), we have that∏
t∈S hε(Y

[n]
t ) and

∏
t∈T hε(Y

[n]
t ) are independent. Thus, we have B3 = 0. Regarding B1, using

(A.4) and (A.5), we have

B1 ≤2E
∣∣∣∏
t∈S

hε(Yt)−
∏
t∈S

hε(Y
[n]
t )
∣∣∣

≤2|S|E|hε(Yt)− hε(Y [n]
t )|

≤2|S|Lip(hε)E|Yt − Y [n]
t |. (A.8)

Plugging in Lip(hε) = 3/(4ε), Yt = aTXt =
∑∞

`=0 a
TA`εt−` and Y

[n]
t = aTX

[n]
t =

∑n−1
`=0 a

TA`εt−`,

we obtain

B1 ≤
3

2ε
|S|E

∣∣∣ ∞∑
`=n

aTA`εt−`

∣∣∣
≤ 3

2ε
|S|

∞∑
`=n

E
∣∣∣aTA`εt−`

∣∣∣ ≤ 3C|S|‖a‖2‖A‖n2
2ε(1− ‖A‖2)

.

The last inequality is due to Conditions 1 and 2 on the VAR process. Applying similar arguments

to B2, we have B2 ≤ 3C|T |‖a‖2‖A‖n2/{2ε(1− ‖A‖2)}. Thus, we have

B ≤ B1 +B2 ≤
3C(|S|+ |T |)‖a‖2‖A‖n2

2ε(1− ‖A‖2)
. (A.9)

Plugging (A.9) into (A.7), we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤ (|S|+ |T |)

{
4Hε+

3C‖a‖2‖A‖n2
2ε(1− ‖A‖2)

}
.
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Now setting ε = ‖A‖n/22 and taking supremum over u ∈ R, we have

κ({Yt}t∈S , {Yt}t∈T )

≤
{

4H +
3C‖a‖2

2(1− ‖A‖2)

}
(|S|+ |T |)‖A‖n/22 .

Since ‖A‖2 < 1, {Yt}t∈Z is Kolmogorov dependent. This completes the proof.

A.2 Proof of Theorem 2.4

Proof. Applying Lemma A.1 with Yt = aTXt, again we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤ 4H(|S|+ |T |)ε+

∣∣∣Cov
{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

B

, (A.10)

where hε be defined in (A.1). It remains to derive an upper bound for B. Since {Xt}t∈Z is

(Λ(1), ψ, ζ)-weakly dependent, we have

B =
∣∣∣Cov

{
g({Xt : t ∈ S}), g({Xt : t ∈ T })

}∣∣∣
≤ψ(Lip(g),Lip(g), |S|, |T |)ζ{d(S, T )}, (A.11)

where g(xt : t ∈ S) :=
∏
t∈S hε(a

Txt). Since Lip(hε) = 3/(4ε), using (A.5), we have that for any

{xt,yt : t ∈ S}, we have∣∣∣∏
t∈S

hε(a
Txt)−

∏
t∈S

hε(a
Tyt)

∣∣∣ ≤ 3

4ε

∑
t∈S
|aT(xt − yt)|

≤3‖a‖∗
4ε

∑
t∈S
‖xt − yt‖,
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This implies that the function g is Lipschitz with Lip(g) ≤ 3‖a‖∗/(4ε). Now, replacing ψ in (A.11)

by the various specifications in Table 1, and combining the resulting inequality with (A.10), we get∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣

≤



4H(|S|+ |T |)ε+
3‖a‖∗

4ε
|T |ζ{d(S, T )}

if {Xt}t∈Z is θ-dependent;

(|S|+ |T |)
{

4Hε+
3‖a‖∗

4ε
ζ{d(S, T )}

}
if {Xt}t∈Z is η-dependent;

4H(|S|+ |T |)ε+
9‖a‖2∗
16ε2

|S||T |ζ{d(S, T )}

if {Xt}t∈Z is κ-dependent;

4H(|S|+ |T |)ε+
{3‖a‖∗

4ε
(|S|+ |T |) +

9‖a‖2∗
16ε2

|S||T |
}
ζ{d(S, T )} if {Xt}t∈Z is λ-dependent.

Therefore, if {Xt}t∈Z is θ- or η-dependent, setting ε =
√
ζ{d(S, T )} gives the desired result. If

{Xt}t∈Z is κ- or λ-dependent, setting ε = ζ{d(S, T )}1/3 gives the desired result.

A.3 Proof of Theorem 2.5

Proof. Applying Lemma A.1 with Yt = aTXt, we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−
P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤ 4H(|S|+ |T |)ε+

∣∣∣Cov
{∏
t∈S

hε(Yt),
∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

B

, (A.12)

To derive an upper bound on B, let {ε′t}t∈Z and {ε′′t }t∈Z be two i.i.d. copies of {εt}t∈Z . Let

n = d(S, T ). Define J(t, n) := {t− n, t− n− 1, t− n− 2, . . .} and

Gt := (. . . , ε′t−n−1, ε
′
t−n, εt−n+1, . . . , εt),

Ht := (. . . , ε′′t−n−1, ε
′′
t−n, εt−n+1, . . . , εt).

Gt and Ht are coupled versions of Ft with εj replaced by ε′j and ε′′j if j ∈ J(t, n). Now define the

process {X [n]
t }t∈Z by

X
[n]
t :=

{
g(Gt) if t ∈ S;

g(Ht) if t ∈ T .
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Again we upper bound B by

B≤
∣∣∣Cov

{∏
t∈S

hε(Yt)−
∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Yt)
}∣∣∣︸ ︷︷ ︸

B1

+

∣∣∣Cov
{∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Yt)−
∏
t∈T

hε(Y
[n]
t )
}∣∣∣︸ ︷︷ ︸

B2

+

∣∣∣Cov
{∏
t∈S

hε(Y
[n]
t ),

∏
t∈T

hε(Y
[n]
t )
}∣∣∣︸ ︷︷ ︸

B3

.

Note that by the definition of X
[n]
t , {X [n]

t : t ∈ S} and {X [n]
t : t ∈ T } are independent. Thus, we

still have B3 = 0. Using the same technique as in (A.8), we have

B1 ≤
3

2ε
|S|E

∣∣∣Yt − Y [n]
t

∣∣∣ ≤ 3

2ε
|S|‖a‖∗E‖Xt −X [n]

t ‖

≤ 3

2ε
|S|‖a‖∗δp(I, t, g).

The last equality is due to the fact that {E‖Xt −X [n]
t ‖p}1/p in an increasing function of p. Using

similar arguments, we can also obtain B2 ≤ 3|T |‖a‖∗δp(I, t, g)/(2ε). Thus, we have

B ≤ B1 +B2 ≤
3

2ε
(|S|+ |T |)‖a‖∗δp(I, t, g).

Plugging the above inequality into (A.12) and setting ε =
√
δp(I, t, g), we have∣∣∣P(Yt ≤ u,∀ t ∈ S ∪ T )−

P
(
Yt ≤ u,∀ t ∈ S

)
P
(
Yt′ ≤ u,∀ t′ ∈ T

)∣∣∣
≤
(

4H +
3

2
‖a‖∗

)
(|S|+ |T |)

√
δp(I, t, g).

This completes the proof.

A.4 Proof of Theorem 3.3

Proof. Equation (3.4) implies that

F
{
F−1

(1

2

)
+
x

2

}
− 1

2

= F
{
F−1

(1

2

)
+
x

2

}
− F

{
F−1

(1

2

)}
≥ ηx

2
,

1

2
− F

{
F−1

(1

2

)
− x

2

}
= F

{
F−1

(1

2

)}
− F

{
F−1

(1

2

)
− x

2

}
≥ ηx

2
,
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for 0 < x/2 ≤ κ and F ∈ {Fa, F̄a : a ∈ Se}. We allow D2 in (C.2) to depend on T . Specifically, we

define

D2,T = 2
{

4L(T, d)
}1/(a+2)

, (A.13)

and correspondingly, let

ϕT (x) :=
Tx2

D1+D2,TT (a+1)/(a+2)x(2a+3)/(a+2)
(A.14)

for x > 0. It’s easy to check that ϕT is non-decreasing on (0,∞) by investigating the derivative of

logϕT (x). Thus, using Lemma C.2, we have, for any j ∈ {1, . . . , d},

P
{∣∣∣σ̂M({Xtj}Tt=1)− σM(Xj)

∣∣∣ > x
}

≤ 3 exp
{
−ϕT

(ηx
2
− 1

T

)}
+ 3 exp

{
−ϕT

(ηx
2

)}
≤ 6 exp

{
−ϕT

(ηx
2
− 1

T

)}
, (A.15)

when 0 < x/2 < κ and ηx/2 > 1/T . Now, by the definitions of R̂jj and Rjj , we have

P
(
|R̂jj −Rjj | > x

)
= P

[∣∣∣σ̂M({Xtj}Tt=1)2 − σM(Xj)
2
∣∣∣ > x

]
≤ P

[{
σ̂M({Xtj}Tt=1)− σM(Xj)

}2
+

2
∣∣∣σM(Xj)

{
σ̂M({Xtj}Tt=1)− σM(Xj)

}∣∣∣ > x
]

≤ P
{∣∣∣σ̂M({Xtj}Tt=1)− σM(Xj)

∣∣∣ >√x

2

}
+

P
{∣∣∣σ̂M({Xtj}Tt=1)− σM(Xj)

∣∣∣ > x

4σM(Xj)

}
. (A.16)

Applying (A.15), we have

P
(
|R̂jj −Rjj | > x

)
≤ 6 exp

{
−ϕT

(η
2

√
x

2
− 1

T

)}
+

6 exp
[
−ϕT

{ ηx

8σM(Xj)
− 1

T

}]
≤ 12 max

{
exp
{
−ϕT

(η
2

√
x

2
− 1

T

)}
,

exp
{
−ϕT

( ηx

8σM
max

− 1

T

)}}
. (A.17)
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Next, we derive the concentration inequality about R̂jk for j 6= k. Again, using Lemma C.2, we

have, for j 6= k,

P
{∣∣∣σ̂M({Xtj +Xtk}Tt=1)− σM(Xj +Xk)

∣∣∣ > x
}

≤ 6 exp
{
−ϕT

(ηx
2
− 1

T

)}
, (A.18)

P
{∣∣∣σ̂M({Xtj −Xtk}Tt=1)− σM(Xj −Xk)

∣∣∣ > x
}

≤ 6 exp
{
−ϕT

(ηx
2
− 1

T

)}
. (A.19)

By the definitions of R̂jk and Rjk, we have

P
(
|R̂jk −Rjk| > x

)
=
([
σ̂M
(
{Xtj +Xtk}Tt=1

)2
− σM(Xj +Xk)

2
]
+[

σ̂M
(
{Xtj −Xtk}Tt=1

)2
− σM(Xj −Xk)

2
]
> 4x

)
≤P
{∣∣∣σ̂M

(
{Xtj+Xtk}Tt=1

)2
−σM(Xj+Xk)

2
∣∣∣>2x

}
︸ ︷︷ ︸

P1

+

P
{∣∣∣σ̂M

(
{Xtj−Xtk}Tt=1

)2
−σM(Xj−Xk)

2
∣∣∣>2x

}
︸ ︷︷ ︸

P2

. (A.20)

Using the same technique as in (A.16), we have

P1 ≤P
[{
σ̂M
(
{Xtj +Xtk}Tt=1

)
− σM(Xj +Xk)

}2
+

2
∣∣∣σM(Xj +Xk)

{
σ̂M
(
{Xtj +Xtk}Tt=1

)
−

σM(Xj +Xk)
}∣∣∣ > 2x

]
≤P
{∣∣∣σ̂M

(
{Xtj+Xtk}Tt=1

)
−σM(Xj+Xk)

∣∣∣>√x}+
P
[∣∣∣σ̂M

(
{Xtj +Xtk}Tt=1

)
− σM(Xj +Xk)

∣∣∣ >
x

2σM(Xj +Xk)

]
, (A.21)
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and similarly

P2 ≤P
[{
σ̂M
(
{Xtj −Xtk}Tt=1

)
− σM(Xj −Xk)

}2
+

2
∣∣∣σM(Xj −Xk)

{
σ̂M
(
{Xtj −Xtk}Tt=1

)
−

σM(Xj −Xk)
}∣∣∣ > 2x

]
≤P
{∣∣∣σ̂M

(
{Xtj−Xtk}Tt=1

)
−σM(Xj−Xk)

∣∣∣>√x}+
P
[∣∣∣σ̂M

(
{Xtj−Xtk}Tt=1

)
−σM(Xj−Xk)

∣∣∣
>

x

2σM(Xj−Xk)

]
. (A.22)

Applying (A.18) and (A.19) to the above two inequalities and noting that σM(Xj + Xk) ≤ σM
max,

σM(Xj −Xk) ≤ σM
max, we obtain

P1≤6 exp
{
−ϕT

(η√x
2
− 1

T

)}
+6 exp

{
−ϕT

( ηx

4σM
max

− 1

T

)}
,

P2 ≤6 exp
{
−ϕT

(η√x
2
− 1

T

)}
+6 exp

{
−ϕT

( ηx

4σM
max

− 1

T

)}
.

Plugging the above two inequalities into (A.20), we have

P
(
|R̂jk −Rjk| > x

)
≤ 12 exp

{
−ϕT

(η√x
2
− 1

T

)}
+12 exp

{
−ϕT

( ηx

8σM
max

− 1

T

)}
≤ 24 max

{
exp
{
−ϕT

(η√x
2
− 1

T

)}
,

exp
{
−ϕT

( ηx

8σM
max

− 1

T

)}}
. (A.23)

Combining (A.17) and (A.23), we have

P
(∥∥∥R̂−R

∥∥∥
max

> x
)

≤ 24 max
{

exp
{

2 log d−ϕT
(η

2

√
x

2
− 1

T

)}
,

exp
{

2 log d−ϕT
( ηx

8σM
max

− 1

T

)}}
. (A.24)

Next, we simplify the above concentration bound using the special structure of function ϕT . Let

b1(x) := exp
{

2 log d− ϕT
(η

2

√
x

2
− 1

T

)}
,

b2(x) := exp
{

2 log d− ϕT
( ηx

8σM
max

− 1

T

)}
.

We discuss the form of the concentration bound in two scenarios:
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(i) If b1(x) ≥ b2(x), we focus on b1(x). We remind that by the definition of function ϕT , we have

ϕT

(η
2

√
x

2
− 1

T

)
=

T
(
η
2

√
x
2 −

1
T

)2

D1+D2,TT (a+1)/(a+2)
(
η
2

√
x
2−

1
T

)(2a+3)/(a+2)
,

where D1 and D2,T are defined in (C.3) and (A.13). To simplify the denominator on the

right-hand side of the above equation, we require that

D1 ≥ D2,TT
(a+1)/(a+2)

(η
2

√
x

2
− 1

T

)(2a+3)/(a+2)
. (A.25)

Then we have ϕT {η
√
x/(2
√

2)− 1/T} ≥ T{η
√
x/(2
√

2)− 1/T}2/(2D1). By the definition of

b1(x), we have

b1(x) ≤ exp
{

2 log d− T

2D1

(η
2

√
x

2
− 1

T

)2}
.

Setting exp
[
2 log d− T

{
η
√
x/(2
√

2)− 1/T
}2
/(2D1)

]
= α2 for some α ∈ (0, 1), we obtain

x =
8

η2

{√4D1(log d− logα)

T
+

1

T

}2

:= x1(T, d). (A.26)

Under (A.26), for d > 1/α, we have η
√
x/(2
√

2)− 1/T ≤
√

8D1 log d/T . Thus, (A.25) holds

if we require

D1 ≥ D2,TT
(a+1)/(a+2)(8D1 log d/T )(a+3/2)/(a+2).

Plugging the definitions of D1 and D2,T into the above inequality, it follows that (A.25) holds

when we have

L(T, d) ≤

√
L1T

27a+11(log d)2a+3
. (A.27)

(ii) If b1(x) < b2(x), we follow a similar argument as in (i) and require that

D1 ≥ D2,TT
(a+1)/(a+2)

( ηx

8σM
max

− 1

T

)(2a+3)/(a+2)
. (A.28)

This leads to ϕT {ηx/(8σM
max) − 1/T} ≥ T{ηx/(8σM

max) − 1/T}2/(2D1). By the definition of

b2(x), we have

b2(x) ≤ exp
{

2 log d− T

2D1

( ηx

8σM
max

− 1

T

)2}
.
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Setting exp
[
2 log d− T

{
ηx/(8σM

max)− 1/T
}2
/(2D1)

]
= α2, we obtain

x =
8σM

max

η

{√4D1(log d− logα)

T
+

1

T

}
:= x2(T, d). (A.29)

Under (A.29), we have ηx/(8σM
max)− 1/T ≤

√
8D1 log d/T if d > 1/α. Thus, (A.28) holds if

we again require

D1 ≥ D2,TT
(a+1)/(a+2)(8D1 log d/T )(a+3/2)/(a+2).

Now, using the definitions of D1 and D2,T , we obtain that (A.28) is also guaranteed by (A.27).

Now we summarize the discussion above and derive the final rate of convergence. In (A.24), we

set x = max
{
x1(T, d), x2(T, d)

}
and require that (A.27) holds. When x1(T, d) ≥ x2(T, d), we have

x = x1(T, d). Thus, together with (A.27), we have b1(x) ≤ α2. Since b2(x) is non-increasing in

x, we have b2{x1(T, d)} ≤ b2{x2(T, d)} ≤ α2. The last inequality is ensured by (A.27). Thus, we

obtain

P
(
‖R̂−R‖max > x

)
≤ 24 max

{
b1(x), b2(x)

}
≤ 24α2. (A.30)

On the other hand, when x1(T, d) < x2(T, d), we have x = x2(T, d). Thus, together with (A.27),

we have b2(x) ≤ α2. Since b1(x) is non-increasing in x, we have b1{x2(T, d)} ≤ b1{x1(T, d)} ≤ α2,

where the last inequality is ensured by (A.27). Thus, again, we can obtain (A.30). So, in either

case, we have

P
(
‖R̂−R‖max > max

{
x1(T, d), x2(T, d)

})
≤ 24α2,

when T and d are large enough. This completes the proof of (3.5).

A.5 Proof of Theorem 2

Proof. Using Theorem 3.3, to derive the rate of convergence for R̂, we only need to verify Condition

3.1 for the VAR time series {Xt}Tt=1. Theorem 2.1 shows that {Xt}t∈Z is (Se,Ψ, ρ)-Kolmogorov

dependent with Ψ(u, v) = u + v and ρ(n) = {4H + 3C/(1 − ‖A‖2)}‖A‖n/22 . To verify (3.2), note

that for any k ≥ 0, we have
∞∑
n=0

(n+ 1)k‖A‖n/22 ≤
∞∑
n=0

(n+ 1) · · · (n+ k)‖A‖n/22

=
dk

dxk

( 1

1− x

)∣∣∣
x=
√
‖A‖2

=
k!

(1−
√
‖A‖2)k+1

.

Thus, (3.2) holds with

L1 =
(

4H +
3C

1− ‖A‖2

) 1

1−
√
‖A‖2

,

L =
1

1−
√
‖A‖2

, and a = 1.
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Plugging the above parameters into (3.5) leads to the desired result.

A.6 Proof of Theorem 3

Proof. Using Theorem 3.3, to derive the rate of convergence for R̂, we only need to verify Condition

3.1 for the α-mixing time series {Xt}Tt=1. Theorem 2.3 shows that {Xt}t∈Z is (Se,Ψ, ρ)-Kolmogorov

dependent with ρ(n) = C1 exp(−C2n
r) and any of the Ψ functions required by Theorem 3.3.

When r ≥ 1, for any k ≤ 0, we have
∞∑
n=0

(n+ 1)k exp(−C2n
r) ≤

∞∑
n=0

(n+ 1)k exp(−C2n)

≤
∞∑
n=0

(n+ 1) · · · (n+ k) exp(−C2n)

=
dk

dxk

( 1

1− x

)∣∣∣
x=e−C2

=
k!

(1− e−C2)k+1
.

Thus, (3.2) holds with L1 = C1/(1−c−C2), L = 1/(1−c−C2), and a = 1. Plugging these parameters

into (3.5) leads to (3.7).

When 0 < r < 1 and k = 0, we have
∞∑
n=0

(n+ 1)kρ(n) = C1

∞∑
n=0

exp(−C2n
r)

≤ C1

{
1+

∫ ∞
0

exp(−C2u
r)du

}
=C1

{
1+

1

rC
1/r
2

Γ
(1

r

)}
,

where Γ(x) =
∫∞

0 ux−1e−udu is the Gamma function. By Lemma C.3, we can upper bound Γ(1/r)

by

Γ
(1

r

)
≤
√

2π
(1/r − 1/2

e

)1/r−1/2
≤
√

2π
( 1

er

)1/r−1/2
.

Thus, we have
∞∑
n=0

(n+1)kρ(n)≤C1

{
1+

√
2πe

r

( 1

eC2r

)1/r}
. (A.31)

Now we consider 0 < r < 1 and k ≥ 1. Denote f(u) := (u + 1)k exp(−C2u
r) and g(u) :=

(u + 2)k exp(−C2u
r). For any n ∈ Z+, we have f(n + 1) ≤ g(u) for all u ∈ [n, n + 1], and thus,

f(n+ 1) ≤
∫ n+1
n g(u)du. Therefore, we have

∞∑
n=0

(n+ 1)kρ(n) = C1

{
1 + 2ke−C2 +

∞∑
n=1

f(n+ 1)
}

≤ C1

{
1 + 2ke−C2 +

∫ ∞
1

g(u)du
}

(A.32)
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Next we derive an upper bound for
∫∞

1 g(u)du. We have∫ ∞
1

g(u)du ≤ 3k
∫ ∞

0
uk exp(−C2u

r)du

=
3k

rC
(k+1)/r
2

Γ
(k + 1

r

)
. (A.33)

Using Lemma C.3, we can upper bound Γ{(k + 1)/r} by

Γ
(k + 1

r

)
≤
√

2π
{(k + 1)/r − 1/2

e

}(k+1)/r−1/2

≤
√

2π
(k + 1

er

)(k+1)/r−1/2

=
√

2π
(1

r

)(k+1)/r−1/2( e

k+1

)1/(2r)+1/2[(k+1

e

)k+3/2]1/r
≤
√

2π
(1

r

)(k+1)/r−1/2(e
2

)1/(2r)+1/2[(k+3/2

e

)k+3/2]1/r
. (A.34)

Using Lemma C.3 again, we can upper bound the last term in the product by[(k + 3/2

e

)k+3/2]1/r
≤
{(k + 1)!√

2e

}1/r
≤
(2kk!√

2e

)1/r
. (A.35)

Putting together (A.32), (A.34), and (A.35), we obtain∫ ∞
1

g(u)du ≤
√
πe

r

( 1

2C2r

)1/r{
3
( 2

C2r

)1/r}k
(k!)1/r.

Plugging the above equation into (A.32), we obtain
∞∑
n=0

(n+ 1)kρ(n)

≤C1

[
1+2ke−C2 +

√
πe

r

( 1

2C2r

)1/r{
3
( 2

C2r

)1/r}k
(k!)1/r

]
≤C1

{
1+

√
πe

r

( 1

2C2r

)1/r}
max

{
3, 3
( 2

C2r

)1/r}k
(k!)1/r,

where the last equation uses 1 + 2ke−C2 ≤ 3k for k ≥ 1. Now, combining the above equation with

(A.31), we obtain
∑∞

n=0(n+ 1)kρ(n) ≤ L1L
k(k!)a with

L1 = C1

{
1 +

√
2πe

r

( 1

2C2r

)1/r}
,

L = max
{

3, 3
( 2

C2r

)1/r}
, and a =

1

r
.

Plugging these parameters into (3.5) leads to (3.8). This completes the proof.

26



B CONCENTRATION INEQUALITIES UNDER WEAK DE-

PENDENCE

In this section, we develop a concentration inequality for sums of weakly dependent random vari-

ables. We first reformulate Theorem 1 in Doukhan and Neumann (2007).

Lemma B.1. Suppose {Xt}Tt=1 is a sequence of random variables with mean 0, defined on a

common probability space (Ω,A,P). Let Ψ : Z+ × Z+ → R be one of the following functions:

(a) Ψ(u, v) = 2v;

(b) Ψ(u, v) = β(u+ v) + (1− β)uv, for some β ∈ [0, 1].

Assume that there exist constants M,L1, L2 > 0, a, b ≥ 0, and a non-increasing sequence of real

coefficients {ρ(n)}n≥0 such that for any u-tuple (s1, . . . , su) and v-tuple (t1, . . . , tv) with 1 ≤ s1 ≤
· · · ≤ su < t1 ≤ · · · ≤ tv ≤ T , we have∣∣∣Cov

( u∏
i=1

Xsi ,

v∏
j=1

Xtj

)∣∣∣
≤Mu+v{(u+ v)!}bΨ(u, v)ρ(t1 − su), (B.1)

where the sequence {ρ(n)}n≥0 satisfies
∞∑
n=0

(n+1)kρ(n)≤L1L
k
2(k!)a, for any k ∈ Z+. (B.2)

Moreover, we require that the following moment condition holds:

E|Xt|k≤(k!)bMk, for any t=1, . . . , T, k∈Z+. (B.3)

Then, for ST :=
∑T

t=1Xt and any x > 0, we have

P(ST ≥ x) ≤ exp
{
− x2

C1T + C2x(2a+2b+3)/(a+b+2)

}
,

where C1 and C2 are constants given by

C1 = 2a+b+4M2L1 and C2 = 2(2ML2)1/(a+b+2).

Proof. The proof follows that of Theorem 1 in Doukhan and Neumann (2007) with minor mod-

ifications, as listed below. We inherit the notations in Doukhan and Neumann (2007), and set

K = 1.

Equation (30) in Doukhan and Neumann (2007) can be strengthened to

E|Yj | ≤ 2k−j−1{(k − j + 1)!}bMkρ(tt+1 − tt).

This leads to

|E(Xt1 · · ·Xtk)| ≤ 2k−1(k!)bk2Mkρ(tt+1 − tt), (B.4)
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which corresponds to Lemma 13 in Doukhan and Neumann (2007). Using (B.4), we obtain that∣∣∣Γ(Xt1 , . . . , Xtk)
∣∣∣

≤
k∑
ν=1

∑
⋃ν
p=1 Ip=I

Nν(I1, . . . , Iν)2k−ν(k!)bMk min
1≤t<k

ρ(tt+1−tt)

≤2k−1Mk(k!)b{(k − 1)!} min
1≤t<k

ρ(tt+1 − tt).

Thus, we have ∣∣∣Γk(ST )
∣∣∣≤n2k−1Mk(k!)b+1

T−1∑
s=0

(s+1)k−2ρ(s). (B.5)

Equation (B.5) corresponds to Lemma 14 in Doukhan and Neumann (2007). The rest follows the

same technique as in Doukhan and Neumann (2007).

Equations (B.1) and (B.2) characterize the dependence structure of the sequence {Xt}Tt=1. In

detail, the covariance between the past, {Xsi}ui=1, and the future, {Xtj}vj=1, converges to 0 as

the gap in time between them increases to infinity. (B.2) specifies the speed of the convergence.

Equation (B.3) is a moment condition. In the next lemma, we further show that these conditions

are location and scale invariant.

Lemma B.2. Let {Xt}Tt=1 be a sequence of random variables satisfying (B.1)-(B.3). Let {µt}Tt=1

and {γt}Tt=1 be uniformly bounded real sequences in the sense that |µt| ≤ µ and 0 < γt ≤ γ for

t = 1, . . . , T , where µ and γ are constants. Let {Yt}Tt=1 be a location-scale transformed sequence

defined as

Yt := γt(Xt + µt), t = 1 . . . , T.

Then (B.1)-(B.3) are satisfied by {Yt}Tt=1 with M replaced by γ(M + µ).

Proof. Equation (B.3) can be easily verified for {Yt}Tt=1:

E|Yt|k = E
∣∣∣γt(Xt + µt)

∣∣∣k ≤ γk k∑
j=0

E|Xt|j |µt|k−j

≤ (k!)b
{
γ(M + µ)

}k
.

The last inequality follows from (B.3). Next, we verify that {Yt}Tt=1 also satisfy (B.1) and (B.2).

Let S := {s1, . . . , su}, T := {t1, . . . , tv}, and R := S ∪ T . By the definition of {Yt}Tt=1, we have

E
∏
t∈R

Yt =
∏
t∈R

γtE
∏
j∈R

(Xj + µj)

=
∏
t∈R

γt
∑
U⊆R

∏
j∈R\U

µjE
∏
k∈U

Xk

=
∏
t∈R

γt
∑

U⊆S,V⊆T

∏
j∈R\(U∪V)

µjE
∏

k∈U∪V
Xk. (B.6)
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Applying the same technique to E
∏
t∈S Yt and E

∏
j∈T Yj , we obtain

E
∏
t∈S

YtE
∏
j∈T

Yj

=
∏
t∈R

γt

(∑
U⊆S

∏
j∈S\U

µjE
∏
k∈U

Xk

)(∑
V⊆T

∏
j∈T \V

µjE
∏
k∈V

Xk

)
=
∏
t∈R

γt
∑

U⊆S,V⊆T

∏
j∈R\(U∪V)

µjE
∏
k∈U

XkE
∏
`∈V

Xl. (B.7)

By the definition of covariance, we have∣∣∣Cov(
∏
t∈S

Yt,
∏
t∈T

Yt)
∣∣∣ =
∣∣∣E∏

t∈R
Yt − E

∏
j∈S

YjE
∏
k∈T

Yk

∣∣∣.
Plugging (B.6) and (B.7) into the above equation, we have∣∣∣Cov(

∏
t∈S

Yt,
∏
t∈T

Yt)
∣∣∣

=
∣∣∣∏
t∈R

γt

{ ∑
U⊆S,V⊆T

∏
j∈R\(U∪V)

µj(
E
∏

k∈U∪V
Xk−E

∏
`∈U

XlE
∏
m∈V

Xm

)}∣∣∣
≤
∏
t∈R

γt

{ ∑
U⊆S,V⊆T

∏
j∈R\(U∪V)

µj∣∣∣E ∏
k∈U∪V

Xk−E
∏
`∈U

XlE
∏
m∈V

Xm

∣∣∣}
=
∏
t∈R

γt

{ ∑
U⊆S,V⊆T

∏
j∈R\(U∪V)

µj

∣∣∣Cov(
∏
k∈U

Xk,
∏
`∈V

Xl)
∣∣∣}. (B.8)

Now, (B.1) for {Xt}Tt=1 implies that∣∣∣Cov(
∏
t∈U

Xt,
∏
t∈V

Xt)
∣∣∣

≤ K2M |U|+|V|
{

(|U|+ |V|)!
}b

Ψ(|U|, |V|)ρ
{
d(U ,V)

}
≤ K2M |U|+|V|

{
(u+ v)!

}b
Ψ(u, v)ρ(t1 − su), (B.9)
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where the last inequality is due to U ⊆ S and V ⊆ T . Plugging (B.9) into (B.8), we have∣∣∣Cov(
∏
t∈S

Yt,
∏
t∈T

Yt)
∣∣∣

≤
∏
t∈R

γt

{
K2
{

(u+v)!
}b

Ψ(u, v)ρ(t1−su)

∑
U⊆S,V⊆T

M |U|+|V|
∏

j∈R\(U∪V)

µj

}
=
∏
t∈R

γtK
2
{

(u+ v)!
}b

Ψ(u, v)ρ(t1 − su)( ∑
W⊆R

M |W|
∏

j∈R\W

µj

)
.

Noting that
∑
W⊆RM

|W|∏
j∈R\W µj =

∏
j∈R(M + µj), we further obtain∣∣∣Cov(

∏
t∈S

Yt,
∏
t∈T

Yt)
∣∣∣

≤K2
∏
t∈R

γt
∏
j∈R

(M+µj)
{

(u+v)!
}b

Ψ(u, v)ρ(t1−su)

≤K2
{
γ(M+µ)

}u+v{
(u+v)!

}b
Ψ(u, v)ρ(t1−su).

Thus, (B.1) and (B.2) are satisfied by {Yt}Tt=1 with M replaced by γ(M + µ). This completes the

proof.

Using Lemma B.2, we can remove the zero-mean requirement for {Xt}Tt=1 in Lemma B.1. The

next theorem summarizes Lemmas B.1 and B.2.

Theorem B.3. Let {Xt}Tt=1 be a sequence of random variables satisfying (B.1)-(B.3). Suppose

EXt = µt and |µt| ≤ µ for t = 1, . . . , T , where µ > 0 is a constant. Let ST :=
∑T

t=1(Xt − µt).
Then, for any x > 0, we have

P(ST ≥ x)

≤ exp
{
− x2

D1T +D2x(2a+2b+3)/(a+b+2)

}
. (B.10)

Here D1 and D2 are constants defined by

D1 = 2a+b+4(M + µ)2L1,

D2 = 2{2(M + µ)L2}1/(a+b+2),

where a, b,M,L1, L2 are constants defined in (B.1)-(B.3).

C SUPPORTING LEMMAS

Lemmas C.1 and C.2 are used in the proof of Theorem 3.3. They provide tail probabilities for

related quantile-based statistics. Lemma C.3 is a Stirling-type bound on the Gamma function, and
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is used in the proof of Theorem 3.

Lemma C.1. Let {Xt}t∈Z be a (Ψ, ρ)-Kolmogorov dependent time series, and {Xt}Tt=1 be a se-

quence of observations. Assume that the sequence {ρ(n)}n≥0 satisfies
∞∑
n=0

(n+ 1)kρ(n) ≤ L1L
k
2(k!)a, ∀ k ≥ 0, (C.1)

for some constants L1, L2 > 0 and a ≥ 0. Then, for any x > 0 and q ∈ (0, 1), we have

P(|Q̂({Xt}; q)−Q(X1; q)| ≥ x)

≤ exp
(
−ϕ
[
F
{
F−1(q) + x

}
− q − 1

T

])
+

exp
(
−ϕ
[
q − F

{
F−1(q)− x

}])
,

whenever we have F{F−1(q) + x} > q + 1/T . Here the function ϕ is defined as

ϕ(x) :=
Tx2

D1 +D2T (a+1)/(a+2)x(2a+3)/(a+2)
, for x > 0, (C.2)

where D1 and D2 are constants given by

D1 = 2a+6L1, (C.3)

D2 = 2(4L2)1/(a+2). (C.4)

Proof. Let FT be the empirical distribution function of the sample {Xt}Tt=1 and denote F−1
T (q) =

Q̂({Xt}Tt=1; q). By the definition of Q̂(·; ·) in (3.1), we have, for any ε ∈ [0, 1],

ε ≤ FT {F−1
T (ε)} ≤ ε+

1

T
. (C.5)

By definition, we have

P
{
Q̂({Xt}; q)−Q(X; q)≥x

}
=P
{
F−1
T (q)−F−1(q)≥x

}
≤ P

[
FT {F−1

T (q)} ≥ FT {F−1(q) + x}
]
,

where the last inequality is because FT is non-decreasing. By (C.5), we have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q) ≥ x

}
≤ P

[
q +

1

T
≥ FT {x+ F−1(q)}

]
.

By the definition of FT , we further have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q) ≥ x

}
≤ P

[ T∑
t=1

I{Xt ≤ F−1(q) + x} ≤ Tq + 1
]

= P
( T∑
t=1

[
−I{Xt≤F−1(q)+x}+F{F−1(q)+x}

]
≥T

[
F{F−1(q)+x}−q− 1

T

])
.
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Since {Xt}t∈Z is (Ψ, ρ)-Kolmogorov dependent, we have

Cov
[∏
t∈S

I
{
Xt≤F−1(q)+x

}
,
∏
t∈T

I
{
Xt≤F−1(q)+x

}]
≤ Ψ(|S|, |T |)ρ

{
d(S, T )

}
,

for any S, T ⊆ {1, . . . , T} with max(S) ≤ min(T ). Thus, by Theorem B.3, we have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q) ≥ x

}
≤ exp

(
−ϕ
[
F{F−1(q) + x} − q − 1

T

])
, (C.6)

where function ϕ is defined in (C.2). On the other hand, we have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q)≤−x

}
= P

{
F−1
T (q)−F−1(q)≤−x

}
≤ P

[
FT {F−1

T (q)} ≤ FT {F−1(q)−x}
]
.

Using (C.5) again, we have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q) ≤ −x

}
≤ P

[
q ≤ FT {F−1(q)− x}

]
= P

( T∑
t=1

[
I{Xt ≤ F−1(q)− x} − F{F−1(q)− x}

]
≥ T

[
q − F{F−1(q)− x}

])
.

Thus, by Theorem B.3, we have

P
{
Q̂({Xt}Tt=1; q)−Q(X; q) ≤ −x

}
≤ exp

(
−ϕ
[
q − F{F−1(q)− x}

])
, (C.7)

where function ϕ is defined in (C.2). Combining (C.6) and (C.7) completes the proof.

Lemma C.2. Under the assumptions in Lemma C.1, we have, for any x > 0,

P
(
|σ̂M({Xt}Tt=1)− σM(X)| > x

)
≤ 2 exp

(
−ϕ
[
F
{
F−1(q) +

x

2

}
− q − 1

T

])
+

2 exp
(
−ϕ
[
q − F

{
F−1(q)− x

2

}])
+

exp
(
−ϕ
[
F̄
{
F̄−1(q) +

x

2

}
− q − 1

T

])
+

exp
(
−ϕ
[
q − F̄

{
F̄−1(q)− x

2

}])
.

whenever F{F−1(q) +x/2}− q > 1/T and F̄{F̄−1(q) +x/2}− q > 1/T . Here ϕ is defined in (C.2).
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Proof. We denote m̂ := Q̂({Xt}Tt=1; q) and m := Q(X; q) to be the sample and population q

quantiles. By the definition of σ̂M(·), we have

P
{
σ̂M
(
{Xt}Tt=1

)
− σM(X) > x

}
= P

{
Q̂
({
|Xt − m̂|

}T
t=1

; q
)
−Q

(
|X −m|; q

)
> x

}
≤ P

{
Q̂
({
|Xt−m|

}T
t=1

; q
)

+|m̂−m|−Q
(
|X−m|; q

)
>x
}

≤ P
{
Q̂
({
|Xt −m|

}T
t=1

; q
)
−Q

(
|X −m|; q

)
>
x

2

}
+

P
(
|m̂−m| > x

2

)
. (C.8)

On the other hand, using the same technique, we have

P
{
σ̂M
(
{Xt}Tt=1

)
− σM(X) < −x

}
= P

{
Q̂
({
|Xt − m̂|

}T
t=1

; q
)
−Q

(
|X −m|; q

)
< −x

}
≤ P

{
Q̂
({
|Xt−m|

}T
t=1

;q
)
−|m̂−m|−Q

(
|X −m|;q

)
<−x

}
≤ P

{
Q̂
({
|Xt−m|

}T
t=1

; q
)
−Q

(
|X−m|; q

)
<−x

2

}
+

P
(
|m̂−m| > x

2

)
. (C.9)

Combining (C.8) and (C.9), we have

P
{
|σ̂M

(
{Xt}Tt=1

)
− σM(X)| > x

}
≤ P

{∣∣∣Q̂({|Xt−m|
}T
t=1

; q
)
−Q

(
|X−m|; q

)∣∣∣> x

2

}
+

2P
(
|m̂−m|> x

2

)
. (C.10)

Using Lemma C.1, we have

P
{∣∣∣Q̂({|Xt −m|

}T
t=1

; q
)
−Q

(
|X −m|; q

)∣∣∣ > x

2

}
≤ exp

(
−ϕ
[
F̄
{
F̄−1(q) +

x

2

}
− q − 1

T

])
+

exp
(
−ϕ
[
q − F̄

{
F̄−1(q)− x

2

}])
, (C.11)

P
(
|m̂−m| > x

2

)
≤ exp

(
−ϕ
[
F
{
F−1(q) +

x

2

}]
− q − 1

T

)
+

exp
(
−ϕ
[
q − F

{
F−1(q)− x

2

}])
, (C.12)

whenever F{F−1(q) +x/2}− q > 1/T and F̄{F̄−1(q) +x/2}− q > 1/T . Combining (C.10), (C.11),

and (C.12) leads to the desired result.
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Lemma C.3 (Batir (2008)). For any x > 0, the following inequalities hold:

√
2e
(x+1/2

e

)x+1/2
≤Γ(x+1)≤

√
2π
(x+1/2

e

)x+1/2
,

where Γ(x) =
∫∞

0 ux−1e−udu is the Gamma function.
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