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This supplementary material provides notation introduction, additional results, technical challenges

of the analysis, and all the technical proofs. For almost all proof subsections in Section A4, we first

restate the target theorem or lemma with more explicit dependence among all relevant constants,

and then provide the details of its proof.

A1 Notation

Throughout the paper, we define R, Z, and Z+ to be sets of real numbers, integers, and positive

integers. For n ∈ Z+, write [n] =
{

1, . . . , n
}

. Let 1I(·) stand for the indicator function. For arbitrary

vectors v, v′ ∈ Rp and 0 < q < ∞, we define ‖v‖0 =
∑p

j=1 1I(vj 6= 0), ‖v‖qq =
∑p

j=1 |vj |q, and

〈v, v′〉 =
∑p

j=1 vjv
′
j . For an arbitrary matrix Ω = (Ωij) ∈ Rp×q, write ‖Ω‖∞ = maxi∈[p]

∑q
j=1 |Ωij |.

For a symmetric real matrix Ω, let λmin(Ω) denote its smallest eigenvalue. For a set S, we denote |S|
to be its cardinality and Sc to be its complement. For a vector v ∈ Rp and an index set S, we write

vS ∈ R|S| to be the sub-vector of v of components indexed by S. For a real function f : X → R,

let ‖f‖∞ = supf∈X f(x). For an arbitrary function f : Rk → R, we use ∇f = (∇1f, . . . ,∇kf)T to

denote its gradient. For some absolutely continuous random vectorX ∈ Rp, let fX denote its density

function, FX denote its distribution function, and ΣX denote its covariance matrix. For some joint

continuous random vector (XT,W )T ∈ Rp+1 and some measurable function ψ(·) : Rp → Rm, let

fW |ψ(X)(w, z) denote the value of the conditional density of W = w given ψ(X) = z. For any two

numbers a, b ∈ R, we define a ∨ b = max(a, b) and a ∧ b = min(a, b). For any two real sequences

{an} and {bn}, we write an . bn, or equivalently bn & an, if there exists an absolute constant C

such that |an| ≤ C|bn| for any large enough n. We write an � bn if an . bn and bn . an. We

denote Ip to be the p×p identity matrix for p ∈ Z+. Let c, c′, C, C ′ > 0 be generic constants, whose

actual values may vary from place to place.

In addition, we write Bp2 =
{
x ∈ Rp : ‖x‖2 ≤ 1

}
and Sp−1

2 =
{
x ∈ Rp : ‖x‖2 = 1

}
. Let ej ∈ Rp

be a vector that has 1 at the j-th position, and 0 elsewhere.
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A2 Additional Results

A2.1 Examples satisfying Assumption 5

Example A2.1. Suppose function g : R→ R is piecewise (ML, α)-Hölder for some α ∈ (0, 1], and

have discontinuity points a1, . . . , aJ with jump size bounded in absolute value by Cg, for positive

absolute constants ML and Cg. Also suppose |fW (w)| ≤M for some positive absolute constant M .

Consider set

A =
J⋃
j=1

{{
(−∞, aj ]× [aj ,+∞)

}
∪
{

[aj ,+∞)× (−∞, aj ]
}}
,

and consider box kernel function K(w) = 1I(|w| ≤ 1/2). Then

|g(w1)− g(w2)| ≤ (J + 1)ML · |w1 − w2|α + JCg 1I
{

(w1, w2) ∈ A
}
,

for any w1, w2 ∈ R, and that

E
[1

h
K
(W̃ij

h

)
1I
{

(Wi,Wj) ∈ A
}]

=
2

h

J∑
j=1

∫ aj

−∞

∫ +∞

aj

1I
{
|w1 − w2| ≤ h/2

}
fW (w1)fW (w2) dw1 dw2 ≤

JM2

4
h.

Thus we have verified two equations in Assumption 5 with Mg = (J + 1)ML, Md = JCg, and

Ma = JM2/4.

Example A2.2. Suppose W ∼ Unif[0, 1], kernel function K(w) = 1I(w ∈ [−1/2, 1/2]), and

g(w) =

{
w, w ∈ [0, 1/2),

w + 1, w ∈ [1/2, 1].

Suppose h ≤ 1/2 and consider a slightly different set A =
{

[1/4, 1/2] × [1/2, 3/4]
}
∪
{

[1/2, 3/4] ×
[1/4, 1/2]

}
than that in Example A2.1. One can easily check that |g(w1)− g(w2)| ≤ 3|w1 − w2|+

1I{(w1, w2) ∈ A}, and

E
[1

h
K
(W̃ij

h

)
1I
{

(Wi,Wj) ∈ A
}]

= h/4.

Thus we have verified two equations in Assumption 5 with Mg = 3, Md = 1, and Ma = 1/4.

A2.2 Extending results to heavy-tailed noise

Corollary A2.1. Assume that there exist some absolute constants K1, C0 > 0 and 1/(2 + ε) <

ξ < 3/4, such that

hn ∈ [K1(log p/n)1/2, C0) and

n ≥ C
{

(log p)5/(3−4ξ) ∨ (log p)3 ∨ q4/3(log p)1/3 ∨ q(log p)2
}
,

where K1(log p/n)1/2 < C0, and the quantity q and the dependence of constant C will be specified

case by case below. Denote ηn =
∣∣‖E[X̃X̃T

∣∣W̃ = 0
]
‖∞. We then have, replacing Assumption

12 with Assumption 17 in corresponding results, the following assertions are still true. Also all
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three positive constants C ′, c, c′ that have different values in specific cases, but only depend on

M,MK , C0, κx, κ`,M`, ξ, C.

(1) Analogue of Theorem 3.1: Assume Assumption 14 holds with γ = 1. Set q = s. Assume

further that λn ≥ C
{
hn + (log p/n)1/2

}
, where C only depends on M,MK , C0, κx,Mu, κ`,

M`, ξ, ε, ζ,K1. Then under Assumptions 6-11, 14, 15, and 17, we have

P(‖β̂hn − β∗‖22 ≤ C ′sλ2
n) ≥ 1− c exp(−c′ log p)− c exp(−c′ log n)− εn.

(2) Analogue of Theorem 3.2: Assume Assumption 14 holds with a general γ ∈ (0, 1].

Set q = s. Assume further that λn ≥ C
{

(log p/n)1/2 + hγn
}

, where C only depends on

M,MK , C0, κx,Mu, κ`,M`, ξ, ε, ζ, γ,K1. Then under Assumptions 6-11, 14, 15, and 17, we

have

P(‖β̂hn − β∗‖22 ≤ C ′sλ2
n) ≥ 1− c exp(−c′ log p)− c exp(−c′ log n)− εn.

(3) Analogue of Theorem 3.3: Assume Assumption 14 holds with a general γ ∈ [1/4, 1]. Set

q = s+nh2γ
n / log p. Assume further that λn ≥ C

{
hn+ηn(log p/n)1/2

}
, where C only depends

on M,MK , C0, κx,Mu, κ`,M`, ξ, ε, ζ, γ,K1. Then under Assumptions 6-8, 10-11, 14-16, and

17, we have

P
{
‖β̂hn − β∗‖22 ≤ C ′

(
sλ2

n +
s log p

n
+
nλ2

nh
2γ
n

log p

)}
≥ 1− c exp(−c′ log p)− c exp(−c′ log n)− εn.

(4) Analogue of Theorem 2.3:

a. Assume that g(·) is α-Hölder for α ≥ 1, and g(·) has compact support when α > 1.

Set q = s. Assume further that λn ≥ C
{
hn + (log p/n)1/2

}
and n ≥ (log p)4, where

C only depends on M,MK , C0, κx,Mu, κ`,M`, ξ, ε,K1, and Hölder parameters of g(·).
Then under Assumptions 6-8, 9′, 10-11, 13, and 17, we have

P(‖β̂hn − β∗‖22 ≤ C ′sλ2
n) ≥ 1− c exp(−c′ log p)− c exp(−c′ log n).

b. Assumption 5 holds with α ∈ (0, 1]. Set q = s. Assume further that λn ≥
C
{

(log p/n)1/2+hγn
}

and n ≥ C(log p)4, where C only depends onM,MK , C0, κx,Mu, κ`,

M`, ξ, ε,K1,Mg,Md, Ma, and γ = α if MdMa = 0, γ = α∧ 1/2 if otherwise. Then under

Assumptions 6-8, 9′, 10-11, 13 and 17, we have

P(‖β̂hn − β∗‖22 ≤ C ′sλ2
n) ≥ 1− c exp(−c′ log p)− c exp(−c′ log n).

c. Assume Assumption 5 holds with α ∈ [1/4, 1]. Set q = s + nh2γ
n / log p. Assume

further that λn ≥ C
{
hn + ηn(log p/n)1/2

}
and n ≥ C(log p)4, where C only depends on

M,MK , C0, κx,Mu, κ`, M`, ξ, ε, K1,Mg,Md,Ma and γ = α if MdMa = 0, γ = α ∧ 1/2 if

otherwise. Then under Assumptions 6-8, 9′, 10-11, 13 and 17,

P
{
‖β̂hn − β∗‖22 ≤ C ′

(
sλ2

n +
s log p

n
+
nλ2

nh
2γ
n

log p

)}
≥ 1−c exp(−c′ log p)− c exp(−c′ log n).

(5) Analogue of Theorem 2.2: Set q = s. Assume that λn ≥ C
{
hn + (log p/n)1/2

}
and

n ≥ C(log p)4, where C depends only on M,MK , C0, κx,Mu, κ`,M`, ξ, ε,K1,Mg. Then under
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Assumptions 6-11, 4, and 17, we have

P(‖β̂hn − β∗‖22 ≤ C ′sλ2
n) ≥ 1− c exp(−c′ log p)− c exp(−c′ log n).

A3 Technical challenges of the analysis

The main results of the paper, including Theorems 3.1, 3.2, 3.3, 2.2, as well as Theorem 2.3, are all

based on the general framework introduced in Section 2.1. For this, one major object of interest

is to verify the empirical RE condition (Assumption 3 in Section 2.1) based on the population RE

conditions such as Assumption 9 and its variant Assumption 16. This result is formally stated in

Corollary A3.1 at the end of this section. The proof follows the standard reduction principle in

Rudelson and Zhou (2013) applied to Theorem A3.1, the proof of which rests on several advanced

U-statistics exponential inequalities (Giné et al., 2000; Houdré and Reynaud-Bouret, 2003) and

nonasymptotic random matrix analysis tools specifically tailored for U-matrices (Vershynin, 2012;

Mitra and Zhang, 2014), and thus deserves a discussion.

We start with a definition of the restricted spectral norm (Han and Liu, 2016). For an arbitrary

p by p real matrix M and an integer q ∈ [p], the q-restricted spectral norm ‖M‖2,q of M is defined

to be

‖M‖2,q := max
v∈Rp,‖v‖0≤q

∣∣∣vTMv

vTv

∣∣∣.
As pointed in the seminal paper Rudelson and Zhou (2013), the empirical RE condition, i.e.,

Assumption 3, is closely related to the q-restricted spectral norm of Hessian matrix for the loss

function regarding a special choice of q. Our proof relies on a study of this q-restricted spectral

norm.

In Assumption 3, letting Γ̂n(θ, hn) = L̂n(β, hn), simple algebra yields

δL̂n(∆, hn) = ∆T
{(n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijX̃

T
ij

}
∆ = ∆TT̂n∆.

Note that T̂n is a random U-matrix, namely, a random matrix formulated as a matrix-valued

U-statistic. As was discussed in the previous sections, hn is usually picked to be of the order

(log p/n)1/2, rendering a large bump as W̃ij is close to zero. Consequently, when hn is set in the

regime of interest, the variance of the kernel g∆(Di, Dj) = h−1
n K(W̃ij/hn)(X̃T

ij∆)2 will explode at

the rate of (n/ log p)1/2, leading to a loose and sub-optimal bound when using Bernstein inequality

for non-degenerate U-statistics (see, e.g., Proposition 2.3(a) in Arcones and Gine (1993)). Thus a

more careful study of this random U-matrix T̂n is need.

The next theorem gives a concentration inequality for T̂n under the q-restricted spectral norm.

Theorem A3.1. For some q ∈ [p], suppose there exists some absolute constant C > 0 such that

n ≥ C ·
[{
q4/3(log p)1/3 ∨ q(log p)2

}
+ log(1/α)

]
.

Then under Assumptions 7, 8, and 11, with probability at least 1− α,

‖T̂n − ET̂n‖2,q ≤ C ′ ·
[q(log p)1/4

n3/4
+
q(log p)2

n
+

log(1/α)

n

]1/2
,
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where C ′ is a positive constant only depending on M,MK , C0, κx, C.

The proof of Theorem A3.1 follows the celebrated Hoeffding’s decomposition. However, there

are two major challenges. On one hand, different from most existing investigations on nonasymp-

totic random matrix theory, the first order term of δL̂n(∆, hn), after decomposition, does not have

a natural product structure, namely, it cannot be written as n−1
∑n

i=1 UiU
T
i for some independent

random vectors {Ui ∈ Rp, i ∈ [n]}. Hence, we cannot directly follow those well-established argu-

ments based on a natural product structure, but have to resort to properties of the kernel. To this

end, we state the following two auxiliary lemmas, which are repeatedly used in the proofs, and can

be regarded as extensions to the classic results in, for example, Robinson (1988).

Lemma A3.2. Assume random variables W ∈ R and Z ∈ Z, such that∣∣∣∂fW |Z(w, z)

∂w

∣∣∣ ≤M1,

for some positive constant M1 with any z in the range of Z and any w in the range of W . Also, let

K(·) be a kernel function such that
∫ +∞
−∞ |w|K(w) dw ≤ M2 for some constant M2 > 0. Then we

have for any h > 0, ∣∣∣E[1

h
K
(W
h

)
Z
]
− E[Z|W = 0]fW (0)

∣∣∣ ≤M1M2E[|Z|]h.

Lemma A3.3. Let (W1, Z1), (W2, Z2) ∈ R×Z be i.i.d.. Assume∣∣∣∂fW1|Z1
(w, z)

∂w

∣∣∣ ≤M1

holds for some positive constant M1 with any z in the range of Z1 and any w in the range of W .

Let K(·) be a kernel function such that
∫ +∞
−∞ |w|K(w) dw ≤ M2 for some constant M2 > 0. Let

ϕ : Z2 → R be a measurable function. Then we have for any h > 0,∣∣∣E[ϕ(Z1,Z2)

h
K
(W1−W2

h

)∣∣W2, Z2

]
−E
[
ϕ(Z1,Z2)

∣∣W1 =W2,W2, Z2

]
fW1(W2)

∣∣∣
≤M1M2E

[
|ϕ(Z1, Z2)|

∣∣Z2

]
h.

On the other hand, the second order term of δL̂n(∆, hn), after decomposition, forms a degenerate

U-statistic, and requires further study. To control this term, one might consider using the two-term

Bernstein inequality for degenerate U-statistics (see, e.g., Proposition 2.3(c) in Arcones and Gine

(1993) or Theorem 4.1.2 in de la Peña and Giné (2012)). But it will add an additional polynomial

log p multiplicity term in the upper bound. Instead, we adopt the sharpest four-term Bernstein

inequality discovered by Giné et al. (2000), get rid of several inexplicit terms (e.g., the `2 → `2
norm), and formulate it into the following user-friendly tail inequality. We state this result in the

following auxiliary lemma. The constants here are able to be explicitly calculated thanks to Houdré

and Reynaud-Bouret (2003).

Lemma A3.4. Let Z1, . . . , Zn, Z ∈ Z be i.i.d., and g : Z2 → R be a symmetric measurable

function with E
[
g(Z1, Z2)

]
<∞. Write Un(g) =

∑
i<j g(Zi, Zj) and f(z) = E

[
g(Z, z)

]
. Let

Bg = ‖g‖∞, Bf = sup
Z2

E
[
|g(Z1, Z2)|

∣∣Z2

]
, and σ2 = E

[
g(Z1, Z2)2

]
.
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In addition, denote B2 = n supZ2
E
[
g(Z1, Z2)2

∣∣Z2

]
. We then have

P
(
|Un(g)−E[Un(g)]| ≥ t+C1nσu

1/2+C2Bfu+C3Bu
3/2+C4Bgu

2
)

(A3.1)

≤2 exp
( −t2/n2

8nE
[
f(Z2)2

]
+ 4Bf · t/n

)
+ C5e

−u,

where we take positive absolute constants

C1 = 2(1 + ε)3/2, (A3.2)

C2 = 8
√

2(2 + ε+ ε−1),

C3 = e(1+ε−1)2(5/2+32ε−1)+
[
{2
√

2(2+ε+ε−1)} ∨ (1+ε)2/
√

2
]
,

C4 =
{

4e(1 + ε−1)2(5/2 + 32ε−1)
}
∨ 4(1 + ε)2/3,

C5 = 2.77,

for any ε > 0. For cases that f(z) = 0 (corresponding to the degenerate case), t can be set as zero

and the first term on the second line of (A3.1) can be eliminated.

Combining Theorem A3.1 with Theorem 10 and the follow-up arguments in Rudelson and

Zhou (2013), we immediately have the following corollary, which verifies the desired empirical RE

condition corresponding to different situations. Note that Assumption 9′ is stronger than both

Assumption 9 and its variant Assumption 16. Thus the results below still hold when Assumption

9′ is imposed in Section 2.2.2.

Corollary A3.1. Suppose Assumptions 6-8 and 10-11 are satisfied.

(1) Assume Assumption 9 holds, and that

n ≥ C
{
s4/3(log p)1/3 ∨ s(log p)2

}
,

for some constant C > 0 only depending on M,MK , C0, κx, κ`,M`. Then we have

P
[
δL̂n(∆, hn) ≥ κ`M`

4
‖∆‖22 for all ∆ ∈

{
∆′ ∈ Rp : ‖∆Sc‖1 ≤ 3‖∆S‖1

}]
≥1− c exp(−c′ log p)− c exp(−c′n),

where c, c′ are positive constants only depending on M,MK , C0, κx, κ`,M`, C.

(2) Assume Assumption 16 holds, and that

n ≥ C
[
{s+ nh2γ

n / log p}4/3(log p)1/3 ∨ {s+ nh2γ
n / log p}(log p)2

]
,

for some constant C > 0 only depending on M,MK , C0, κx, κ`,M`, ζ, γ. Then we have

P
{
δL̂n(∆, hn) ≥ κ`M`

4
‖∆‖22 for all ∆ ∈ CS̃′n

}
≥1− c exp(−c′ log p)− c exp(−c′n),

where CS̃′n :=
{
v ∈ Rp : ‖vJ c‖1 ≤ 3‖vJ ‖1 for some J ⊂ [p] and |J | ≤ s + ζ2nh2γ

n / log p)
}

,

and c, c′ are positive constants only depending on M,MK , C0, κx, κ`,M`, C.
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A4 Technical proofs

A4.1 Proof of Theorem 2.1

Proof. By (2.3), we have

‖θ̃∗hn − θ
∗‖22 ≤ ρ2

n.

So it suffices to show that

‖θ̂hn − θ̃∗hn‖
2
2 ≤ 9s̃nλ

2
n/κ

2
1

holds with probability at least 1 − ε1,n − ε2,n whenever λn ≤ κ1r/3s̃
1/2
n . We split the rest of the

proof into two main steps.

Step I. Denote ∆̂ = θ̂hn − θ̃∗hn . Recall definition of sets S̃n and CS̃n , and further define function

F(∆) = Γ̂n(θ̃∗hn + ∆, hn)− Γ̂n(θ̃∗hn , hn) + λn
(
‖θ̃∗hn + ∆‖1 − ‖θ̃∗hn‖1

)
.

For the first step, we show that if F(∆) > 0 for all ∆ ∈ CS̃n ∩
{

∆′ ∈ Rp : ‖∆′‖2 = η
}

, then

‖∆̂‖2 ≤ η. To this end, we first show that

∆̂ ∈ CS̃n . (A4.1)

Applying triangle inequality and some algebra, we obtain

‖θ̃∗hn + ∆‖1 − ‖θ̃∗hn‖1 ≥ ‖∆S̃cn‖1 − ‖∆S̃n‖1. (A4.2)

We also have, with probability at least 1− ε1,n,

Γ̂n(θ̃∗hn + ∆, hn)− Γ̂n(θ̃∗hn , hn) ≥ 〈∇Γ̂n(θ̃∗hn , hn),∆〉

≥ −‖∇Γ̂n(θ̃∗hn , hn)‖∞ · ‖∆‖1

≥ −λn
2

(
‖∆S̃n‖1 + ‖∆S̃cn‖1

)
,

(A4.3)

where the first inequality is by convexity of Γ̂n(θ, h) in θ as assumed in Assumption 3, the second is

by Hölder’s inequality, and the last is by Assumption 2. Combining (A4.2) and (A4.3), and using

the fact that F(∆̂) ≤ 0, we have

0 ≥ λn
2

(
‖∆̂S̃cn‖1 − 3‖∆̂S̃n‖1

)
,

thus proving (A4.1).

Next, we assume that ‖∆̂‖2 > η. Then, because ∆̂ ∈ CS̃n and CS̃n is star-shaped, there exists

some t ∈ (0, 1), such that t∆̂ ∈ CS̃n ∩
{

∆′ ∈ Rp : ‖∆′‖2 = η
}

. However, by convexity of F(·),

F(t∆̂) ≤ tF(∆̂) + (1− t)F(0) = tF(∆̂) ≤ 0.

By contradiction, we complete the proof of the first step.

Step II. For the second step, we show that under Assumptions 1-3, we have F(∆) > 0 for all

∆ ∈ CS̃n ∩
{

∆′ ∈ Rp : ‖∆′‖2 = η
}

, for some appropriately chosen η, and then complete the proof.

Combining Assumptions 2, 3, and (A4.2), for any ∆ ∈ CS̃n ∩
{

∆′ ∈ Rp : ‖∆′‖2 = η
}

, where we

take η = 3s̃
1/2
n λn/κ1, and λn ≤ κ1r/(3s̃

1/2
n ) so that η ≤ r, we have that with probability at least
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1− ε1,n − ε2,n,

F(∆) ≥ 〈∇Γ̂n(θ̃∗hn , hn),∆〉+ κ1‖∆‖22 + λn(‖θ̃∗hn + ∆‖1 − ‖θ̃∗hn‖1)

≥ −‖∇Γ̂n(θ̃∗hn , hn)‖∞ · ‖∆‖1 + κ1‖∆‖22 + λn(‖∆S̃cn‖1 − ‖∆S̃n‖1)

≥ −λn‖∆‖1/2 + κ1‖∆‖22 + λn(‖∆S̃cn‖1 − ‖∆S̃n‖1)

≥ κ1‖∆‖22 − 3λns̃
1/2
n ‖∆‖2/2,

where the first inequality is by Assumption 3, the second is by Hölder’s inequality and (A4.2), the

third is by Assumption 2, and the last is due to the fact that ‖∆S̃n‖1 ≤ s̃
1/2
n ‖∆S̃n‖2 ≤ s̃

1/2
n ‖∆‖2.

Then we have

F(∆) ≥ κ1η
2 − 3s̃1/2

n λnη/2 = 9s̃nλ
2
n/(2κ1) > 0,

which, using result from Step I, implies that ‖∆̂‖22 ≤ η2 = 9s̃nλ
2
n/κ

2
1.

Combining with Assumption 2, we have

‖θ̂hn − θ∗‖22 ≤
18s̃nλ

2
n

κ2
1

+ 2ρ2
n,

with probability at least 1− ε1,n − ε2,n. This completes the proof of Theorem 2.1.

A4.2 Proof of Theorem 3.1

In the sequel, with a slight abuse of notation, we use an equivalent representation of Assumption

15 for writing

P
{∣∣Uk − E[Uk]

∣∣ ≤ A{log(np)/n}1/2, for all k ∈ [p]
}
≥ 1− εn

to replace (3.3), noting that we assume p > n. Hereafter we also slight abuse of notation and do

not distinguish log(np)/n from log p/n.

Theorem A4.1 (Theorem 3.1). Assume Assumption 14 holds with γ = 1. Further assume hn ≥
K1{log(np)/n}1/2 for positive absolute constant K1, and assume hn ≤ C0 for positive constant C0.

We also take λn ≥ 4(A+A′){log(np)/n}1/2 + 8κ2
xMfζhn, where

A′ ={16
√

3(1 + c)1/2Mf + 4
√

3C1(1 + c)1/2M
1/2
f K

−1/2
1 + 8C2(1 + c)

+ 8C3(1 + c)3/2M
1/2
K M

1/2
f K

−1/2
1 + 8C4(1 + c)2MKK

−1
1 + 8Mf (c+ 2)}κxκu.

for positive absolute constant c, Mf = M+MMKC0, and C1, . . . , C4 as defined in (A3.2). Suppose

8



we have

n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),[28 · 6(c+ 2)3/2C3{144(2 + c)2MKMfκ
4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}1/2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
,

,

where q = 2305s. Then under Assumptions 6-12, 14-15, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1 − 12.54 exp(−c log p) − 2 exp(−c′n) − εn · p, where c′ = (κ2
`M

2
` ∧

64κ`M`)/[2
16{(3M2κ2

x + 2M2M2
KC

2
0κ

2
x) ∨ 2M}κ2

x].

Proof. See Proof of Theorem 3.2.

A4.3 Proof of Theorem 3.2

Theorem A4.2 (Theorem 3.2). Assume Assumption 14 holds with a general γ ∈ (0, 1]. Further

assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1, and assume hn ≤ C0 for positive

constant C0. We also take λn ≥ 4(A+A′){log(np)/n}1/2 + 8κ2
xMfζh

γ
n, where

A′ ={16
√

3(1 + c)1/2Mf + 4
√

3C1(1 + c)1/2M
1/2
f K

−1/2
1 + 8C2(1 + c)

+ 8C3(1 + c)3/2M
1/2
K M

1/2
f K

−1/2
1 + 8C4(1 + c)2MKK

−1
1 + 8Mf (c+ 2)}κxκu.

9



for positive absolute constant c, Mf = M+MMKC0, and C1, . . . , C4 as defined in (A3.2). Suppose

we have

n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),[28 · 6(c+ 2)3/2C3{144(2 + c)2MKMfκ
4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}1/2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
,

where q = 2305s. Then under Assumptions 6-12, 14-15, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1 − 12.54 exp(−c log p) − 2 exp(−c′n) − εn · p, where c′ = (κ2
`M

2
` ∧

64κ`M`)/[2
16{(3M2κ2

x + 2M2M2
KC

2
0κ

2
x) ∨ 2M}κ2

x].

Proof. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) = L0(β), Γ̂n(θ, h) =

L̂n(β, h), Γh(θ) = EL̂n(β, h) , and take θ̃∗hn = β∗, which yields sn ≤ s and ρn = 0.

In addition to (3.2), denote

U1k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkũij ,

U2k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkX̃

T
ij(β

∗
hn − β

∗),

and observe that ∣∣∇kL̂n(β∗)
∣∣ ≤ 2

{
|U1k − E[U1k]|+ |Uk − E[Uk]|+ |E[U2k]|

}
, (A4.4)

where Uk is defined in (3.2). Apply Lemma A4.21 on Di = (Xik, ui,Wi), with conditions of lemma

satisfied by Assumptions 7, 8, 11 and 12, and then we have

P{|U1k − E[U1k]| ≥ A′{log(np)/n}1/2} ≤ 6.77 exp{−(c+ 1) log p}, (A4.5)

10



for positive absolute constant c, and A′ as defined in (A4.48), and when n > max
{

16(c + 2)2(c +

1){log(np)}3/3, 3
}

.

Apply Lemma A3.2 on Z = |X̃ijkX̃
T
ij(β

∗
hn
−β∗)|, with conditions of lemma satisfied by Assump-

tions 7, 8, 11, and 14, and then we have

|E[U2k]| ≤ E
[
|X̃ijkX̃

T
ij(β

∗
hn − β

∗)|
∣∣W̃ = 0

]
M +MMKC0E

[
|X̃ijkX̃

T
ij(β

∗
hn − β

∗)|
]

≤ 2κ2
x(M +MMKC0)ζhγn.

(A4.6)

Combining (A4.4)-(A4.6), and Assumption 15, we have

P
{

for any k ∈ [p],
∣∣∇kL̂n(β∗)

∣∣ ≤ (2A+ 2A′){log(np)/n}1/2 + 4κ2
x(M +MMKC0)ζhγn

}
≥1− 6.77 exp(−c log p)− p · εn,

for positive absolute constant c, and when we appropriately take n bounded from below. Assume

λn ≥ 4(A+A′){log(np)/n}1/2 + 8κ2
x(M +MMKC0)ζhγn, which verifies Assumption 2.

We verify Assumption 3 by applying Corollary A3.1, and complete the proof by Theorem

2.1.

A4.4 Proof of Theorem 3.3

Theorem A4.3 (Theorem 3.3). Assume Assumption 14 holds with a general γ ∈ [1/4, 1]. Further

assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1, and assume hn ≤ C0 for positive

constant C0. We also take λn ≥ 4(A′′′ +A+Mηn){log(np)/n}1/2 + 8MMKC
1/2κ2

xhn, where

A′′′ ={16
√

3Mf (1 + c)
1
2 + 4

√
3C1M

1/2
f K

− 1
2

1 (1 + c)
1
2 + 8C2(1 + c) + 8C3M

1
2
KM

1
2
f K

− 1
2

1 (1 + c)
3
2

+ 8C4MKK
−1
1 (1 + c)2 + 8Mf (c+ 2)} · (κxκu + Cκ2

x)

ηn =
∥∥E[X̃X̃T

∣∣W̃ = 0
]∥∥
∞.

11



Here, C1, . . . , C4 are as defined in (A3.2), C > ζ2C2γ
0 and c > 0 are some absolute constants, and

Mf = M +MMKC0. Suppose we have

n > max
{

(C − ζ2C2γ
0 )s log(np), 64(c+ 2)2(c+ 1){log(np)}3/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),[28 · 6(c+ 2)3/2C3{144(2 + c)2MKMfκ
4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}1/2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
,

where q = 2305{s+ ζ2nh2γ
n / log(np)}. Then under Assumptions 6-8, 10-12, 14-16, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

+
2s log(np)

n
+
{ 288nλ2

n

M2
` κ

2
` log(np)

+ 2
}
· ζ2h2γ

n ,

with probability at least 1 − 19.31 exp(−c log p) − 2 exp(−c′n) − εn · p, where c′ = (κ2
`M

2
` ∧

64κ`M`)/[2
16{(3M2κ2

x + 2M2M2
KC

2
0κ

2
x) ∨ 2M}κ2

x].

Proof. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) = L0(β), Γ̂n(θ, h) =

L̂n(β, h), Γh(θ) = EL̂n(β, h).

We take θ̃hn = β̃∗hn such that, for each j ∈ [p],

β̃∗hn,j =

{
β∗hn,j , if |β∗hn,j | > {log(np)/n}1/2;

0, if otherwise.
(A4.7)

Then under Assumption 14, we have

ρ2
n ≤ s log(np)/n+ ζ2h2γ

n ,

sn ≤ s+
ζ2nh2γ

n

log(np)
.

(A4.8)

We verify Assumption 2 by applying Lemma A4.4 below with A′′′ = A′ +A′′, verify Assumption 3

by applying Corollary A3.1 (2) under Assumption 16, and complete the proof by Theorem 2.1.
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Lemma A4.4. Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1, and assume

hn ≤ C0 for positive constant C0. Denote ηn =
∥∥E[X̃X̃T

∣∣W̃ = 0
]∥∥
∞. We also take λn ≥

4(A′ + A′′ + A + Mηn){log(np)/n}1/2 + 8MMKC
1/2κ2

xhn, where A′ and A′′ are as specified in

(A4.48), and C > ζ2C2γ
0 is some positive absolute constants. Suppose we have

n > max
{

(C − ζ2C2γ
0 )s log(np), 64(c+ 2)2(c+ 1){log(np)}3/3, 3

}
,

for positive absolute constant c > 0. Then under Assumptions Assumptions 6-8, 10-12, 14-15, we

have

P
(
2
∣∣∇kL̂n(β̃∗hn , hn)

∣∣ ≤ λn for all k ∈ [p]
)
≥ 1− 13.54 exp(−c log p)− εn · p.

Proof of Lemma A4.4. In addition to (3.2), denote

U1k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkũij ,

U2k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkX̃

T
ij(β

∗ − β̃∗hn),

U3k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkX̃

T
ij(β

∗
hn − β̃

∗
hn),

and observe that∣∣∇kL̂n(β̃∗hn , hn)
∣∣ ≤ 2(|U1k − E[U1k]|+ |U2k − E[U2k]|+ |Uk − E[Uk]|+ |E[U3k]|), (A4.9)

where in decomposing the left hand side, we have utilized the fact that E[∇kL̂n(β∗hn , hn)] = 0.

Result of (A4.44) holds, thus bounding |U1k − E[U1k]|, i.e.,

P
{
|U1k − E[U1k]| ≥ A′′{log(np)/n}1/2

}
≤ 6.77 exp{−(c+ 1) log p}. (A4.10)

We bound the rest of the components on the right hand side of the last display.

We have ‖β∗− β̃∗hn‖
2
2 ≤ s log(np)/n+ζ2h2γ

n < C for some positive absolute constant C > ζ2C2γ
0 ,

when n > (C − ζ2C2γ
0 )s log(np). Apply Lemma A4.21 on Di = (Xik, X

T
i (β∗ − β̃∗hn),Wi), with

conditions of lemma satisfied by Assumptions 7, 8, 11, and that ‖β∗ − β̃∗hn‖
2
2 < C, and we have

P
{
|U2k − E[U2k]| ≥ A′{log(np)/n}1/2

}
≤ 6.77 exp{−(c+ 1) log p}, (A4.11)

for positive constants A′ and c, and when we assume n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 3
}

.

Here, A′ is as specified in (A4.48).

Apply Lemma A3.3 with conditions of lemma satisfied by Assumptions 7 (Lemma A4.15) and

8 (Lemma A4.16), and we have∣∣E[U3k]
∣∣ ≤ME

[
|X̃ijkX̃

T
ij(β

∗
hn − β̃

∗
hn)|

∣∣W̃ij = 0
]

+MMKhnE
[
|X̃ijkX̃

T
ij(β

∗
hn − β̃

∗
hn)|

]
≤Mηn{log(np)/n}1/2 +MMKC

1/2 · 2κ2
xhn

(A4.12)

where the second inequality is due to Cauchy-Schwarz and Assumption 11 (Lemmas A4.17 and

A4.18).

13



Combining (A4.9)-(A4.12) and Assumption 15, we have

P
{

for any k ∈ [p],
∣∣∇kL̂n(β̃∗hn , hn)

∣∣ ≤ {2(A′ +A′′ +A+Mηn){ log(np)

n
}1/2 + 4MMKC

1/2κ2
xhn
}

≥1− 13.54p exp{−(c+ 1) log p} − εn · p,

for positive absolute constant c, and when we appropriately take n bounded from below. HereA′ and

A′′ are as specified in (A4.48). Assume λn ≥ 4(A′+A′′+A+Mηn){log(np)/n}1/2+8MMKC
1/2κ2

xhn.

This completes the proof.

A4.5 Proof of Theorem 3.4

Theorem A4.5 (Theorem 3.4). Assume h ≤ C0 for positive constant C0, and that h2 ≤ κ`M` ·
(4MMKκ

2
x)−1. Under Assumptions 6-8, 9′, 10-11, and 13, and when g is (L,α)-Hölder for α ≥ 1

(g has bounded support when α > 1), we have

‖β∗h − β∗‖2 ≤ ζh,

where

ζ = max
{

4 ·
(L2

αMMK +MMKEũ2/2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · L2

αMMK

κ`M`

}
,

where Lα is the Lipschitz constant for g (Lα = L when α = 1).

Proof. Refer to Proof of Theorem 3.5 when g is (L, 1)-Hölder, taking Mg = L and Md = Ma = 0,

in which case Assumption 5 is not needed. Note that higher-order Hölder with compact support

implies (L, 1)-Hölder. Thus we complete the proof.

A4.6 Proof of Theorem 3.5

Theorem A4.6. Assume h ≤ C0 for positive constant C0, and that h2 ≤ κ`M` · (4MMKκ
2
x)−1.

Under Assumptions 5, 6-8, 9′, 10-11, and 13, we have

‖β∗h − β∗‖2 ≤ ζhγ ,

where

ζ = max
{

4 ·
(M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 /2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · (M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2

κ`M`

}
,

γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise.

Proof of Theorem 3.5. We prove the lemma in three steps.

Step I. We show that |L0(β∗h) − L0(β∗)| is lower bounded for L0(β) = E
[
(Ỹ − X̃Tβ)2

∣∣W̃ =

0
]
f
W̃

(0). By Assumptions 10 and 9′, we have

λmin

(∂2L0(β)

∂β2

)
= 2λmin

(
E
[
X̃X̃T

∣∣W̃ = 0
])
f
W̃

(0) ≥ 2κ`M`.

14



Therefore, for some βt = β∗hn + t(β∗ − β∗hn), t ∈ [0, 1], we have

L0(β∗h)− L0(β∗) =
1

2
(β∗h − β∗)T

∂2L0(β)

∂β2

∣∣∣
β=βt

(β∗h − β∗) ≥ κ`M`‖β∗h − β∗‖22.

Step II. We show that |Lhn(β)− L0(β)| is upper bounded. Observe that

|Lh(β)− L0(β)| ≤
∣∣∣E[1

h
K
(W̃
h

)
{X̃T(β − β∗)}2

]
− E

[
{X̃T(β − β∗)}2

∣∣W̃ = 0
]
f
W̃

(0)
∣∣∣

+ E
[1

h
K
(W̃ij

h

){
g(Wi)− g(Wj)

}2
]

+
∣∣∣E[1

h
K
(W̃
h

)
ũ2
]
− E

[
ũ2
∣∣W̃ = 0

]
f
W̃

(0)
∣∣∣

+ 2
∣∣∣E[1

h
K
(W̃ij

h

)
X̃T(β − β∗)

{
g(Wi)− g(Wj)

}]∣∣∣.
(A4.13)

And we bound each component on the right hand side of above inequality.

By Taylor’s expansion, we have∣∣∣E[1

h
K
(W̃
h

)
{X̃T(β − β∗)}2

]
− E

[
{X̃T(β − β∗)}2

∣∣W̃ = 0
]
f
W̃

(0)
∣∣∣

=
∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

1

h
K
(w
h

)
v2f

W̃ |X̃T(β−β∗)(w, v) dw dF
X̃T(β−β∗)(v)

−
∫ ∞
−∞

v2f
W̃ |X̃T(β−β∗)(0, v) dF

X̃T(β−β∗)(v)
∣∣∣

=
∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

K(w)v2
{
f
W̃ |X̃T(β−β∗)(wh, v)− f

W̃ |X̃T(β−β∗)(0, v)
}
dw dF

X̃T(β−β∗)(v)
∣∣∣

=
∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

K(w)v2
{∂f

W̃ |X̃T(β−β∗)(w, v)

∂w

∣∣∣
(0,v)

wh

+
∂2f

W̃ |X̃T(β−β∗)(w, v)

∂w2

∣∣∣
(τwh,v)

w2h2
}
dw dF

X̃T(β−β∗)(v)
∣∣∣,

where because (W̃ , X̃T(β − β∗)) and (−W̃ ,−X̃T(β − β∗)) are identically distributed, we have∫ ∞
−∞

∫ ∞
−∞

K(w)v2
{∂f

W̃ |X̃T(β−β∗)(w, v)

∂w

∣∣∣
(0,v)

wh
}
dw dF

X̃T(β−β∗)(v)

=

∫ ∞
0

∫ ∞
−∞

K(w)v2
{∂f

W̃ |X̃T(β−β∗)(w, v)

∂w

∣∣∣
(0,v)

+
∂f

W̃ |X̃T(β−β∗)(w, v)

∂w

∣∣∣
(0,−v)

}
whdw dF

X̃T(β−β∗)(v)

=0.

Therefore, using Assumptions 7, 8 (Lemmas A4.15 and A4.16), and 13, we further have∣∣∣E[1

h
K
(W̃
h

){
X̃T(β − β∗)

}2
]
− E

[{
X̃T(β − β∗)

}2|W̃ = 0
]
f
W̃

(0)
∣∣∣

=
∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

K(w)v2
{∂2f

W̃ |X̃T(β−β∗)(w, v)

∂w2

∣∣
(τwh,v)

}
w2h2 dw dF

X̃T(β−β∗)(v)
∣∣∣

≤MMKE
[
{X̃T(β − β∗)}2

]
h2 ≤ 2MMKκ

2
x‖β − β∗‖22h2.

(A4.14)
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Using an identical argument, by Assumptions 7, 8 (Lemmas A4.15 and A4.16), and finite second

moment assumption E[ũ2] <∞, we have∣∣∣E[1

h
K
(W̃
h

)
ũ2
]
− E[ũ2|W̃ = 0]f

W̃
(0)
∣∣∣ ≤MMKE[ũ2]h2. (A4.15)

By Assumption 5, we have

E
[1

h
K
(W̃ij

h

){
g(Wi)− g(Wj)

}2
]

≤2M2
g E
[1

h
K
(W̃
h

)
|W̃ |2α

]
+ 2M2

d E
[1

h
K
(W̃ij

h

)
1I
{

(Wi,Wj) ∈ A
}]

≤2M2
g E
[1

h
K
(W̃
h

)
|W̃ |2α

]
+ 2M2

dMah,

where

E
[1

h
K
(W̃
h

)
|W̃ |2α

]
=

∫ ∞
−∞

K(w)|w|2αh2αf
W̃

(wh) dw ≤MMKh
2α.

Therefore, we have

E
[1

h
K
(W̃ij

h

){
g(Wi)− g(Wj)

}2
]
≤ 2M2

gMMKh
2α + 2M2

dMah. (A4.16)

By (A4.14), (A4.16), and applying Hölder’s inequality, we also have∣∣∣E[1

h
K
(W̃ij

h

)
X̃T
ij(β − β∗)

{
g(Wi)− g(Wj)

}]∣∣∣
≤E
[1

h
K
(W̃ij

h

){
X̃T
ij(β − β∗)

}2
]1/2
· E
[1

h
K
(W̃ij

h

){
g(Wi)− g(Wj)

}2
]1/2

≤
(
2MMKκ

2
x‖β − β∗‖22h2 + 2κ2

x‖β − β∗‖22M
)1/2 × (2M2

gMMKh
2α + 2M2

dMah
)1/2

≤a1‖β − β∗‖2hγ ,

(A4.17)

where γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise, and a1 = 2κx(M + MMKC

2
0 )1/2 ·

(M2
gMMKC

2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2.

Combining (A4.13)-(A4.17), we have

|Lh(β)− L0(β)| ≤ 2a1‖β − β∗‖2hγ + a2h
2γ + a3‖β − β∗‖22h2,

where a2 = 2M2
gMMKC

2α−2γ
0 + 2M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 , and a3 = 2MMKκ
2
x.

Step III. We combine Step I and Step II, and verify Assumption 14. Using results from Step

I and Step II, we have

κ`M`‖β∗h − β∗‖22 ≤ L0(β∗h)− L0(β∗)

= L0(β∗h)− Lh(β∗h) + Lh(β∗)− L0(β∗) + Lh(β∗h)− Lh(β∗)

≤ |L0(β∗h)− Lh(β∗h)|+ |Lh(β∗)− L0(β∗)|
≤ 2a1‖β∗h − β∗‖2hγ + 2a2h

2γ + a3‖β∗h − β∗‖22h2.

When h2 ≤ κ`M`/(2a3), we have

κ`M`‖β∗h − β∗‖22 ≤ 4a1‖β∗h − β∗‖2hγ + 4a2h
2γ ,
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which further implies that

‖β∗h − β∗‖2 ≤ max
{( 8a2

κ`M`

)1/2
,

8a1

κ`M`

}
· hγ .

This completes the proof.

A4.7 Proof of Theorem 2.3

Theorem A4.7 (Theorem 2.3). Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant

K1, and assume hn ≤ C0 for positive constant C0. We denote c to be some positive absolute

constant, c′ = (κ2
`M

2
` ∧ 64κ`M`)/[2

16{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x], Mf = M + MMKC0,

and C1, . . . , C4 as defined in (A3.2) Also denote

τ1 =
√

2(2 + c)1/2κxK
−1
1 (BMKC

a
0 +DMK),

τ2 =
√

2(2 + c)1/2κx{BMKM(1 + C0)Ca0 +DMf},
τ3 = 4M2

KM
2 · (BCa0 +D)2 · (1 + C2

0 ) · κ2
x,

τ4 =
{

4B2MMKκ
2
x(1 + C0)C2a−γ1

0 + 2D2 · (12Mfκ
4
x)1/2 · E1/2C

−1/2−γ1
0

}
·MKK

γ1
1 ,

τ5 = 4(2 + c)κ2
x{BMMK(1 + C0)C2a

0 +D2Mf}MKK
−1
1 ,

and

A′ ={16
√

3Mf (1 + c)
1
2 + 4

√
3C1M

1
2
f K

− 1
2

1 (1 + c)
1
2 + 8C2(1 + c) + 8C3M

1
2
KM

1
2
f K

− 1
2

1 (1 + c)
3
2

+ 8C4MKK
−1
1 (1 + c)2 + 8Mf (c+ 2)} · (κxκu + Cκ2

x)

A′′ =4τ
1/2
3 (1 + c)1/2 + 2C1τ

1/2
4 (1 + c)1/2 + 2C2τ2(1 + c) + 2C3τ

1/2
5 (1 + c)3/2

+ 2C4τ1(1 + c)2 + 4Mf · (BCa0 +D) · (c+ 2)κx,
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where γ1 = min
{

2a− 1,−1/2
}

. Consider lower bound on n,

n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 64(c+ 2)2(c+ 1)τ2
2 τ
−1
3 {log(np)}4, {log(np)}5/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),

[28 · 6(c+ 2)
3
2C3{144(2 + c)2MKMfκ

4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}

1
2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
.

(A4.18)

Here, q, B, D, E and a are to be specified in different cases. Suppose that Assumptions 6-8, 9′,

10-12, and 13 hold.

(1) Assume that g is (L,α)-Hölder for α ≥ 1, and g has bounded support when α > 1. Also

suppose (A4.18) holds with q = 2305s. We take B = Lα, where Lα is the Lipschitz constant

for g (Lα = L when = 1), D = E = 0, a = 1, and assume λn ≥ 4(A′′ + A′){log(np)/n}1/2 +

8κ2
xMfζhn, where

ζ = max
{

4 ·
(L2

αMMK +MMKEũ2/2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · L2

αMMK

κ`M`

}
.

Then we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 17.81 exp(−c log p)− 2 exp(−c′n).

(2) Assume that Assumption 5 holds with α ∈ (0, 1]. Suppose that (A4.18) holds with

q = 2305s, and we take B = Mg, D = Md, E = Ma and a = α. Further assume that

18



λn ≥ 4(A′′ +A′){log(np)/n}1/2 + 8κ2
xMfζh

γ
n, where

ζ = max
{

4 ·
(M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 /2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · (M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2

κ`M`

}
,

where γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise. Then we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 17.81 exp(−c log p)− 2 exp(−c′n).

(3) Assume that Assumption 5 holds with α ∈ [1/4, 1]. Suppose that (A4.18) holds with

q = 2305{s + ζ2nh2γ
n / log(np)}, and take B = Mg, D = Md, E = Ma and a = α. Denote C

to be some positive absolute constant C > ζ2C2γ
0 , and suppose n ≥ (C − ζ2C2γ

0 )s log(np) ,

where

ζ = max
{

4 ·
(M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 /2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · (M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2

κ`M`

}
,

where γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise. Further assume λn ≥

4(A′ +A′′ +Mηn){log(np)/n}1/2 + 8MMKC
1/2κ2

xhn. Then we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

+
2s log(np)

n
+
{ 288nλ2

n

M2
` κ

2
` log(np)

+ 2
}
· ζ2h2γ

n ,

with probability at least 1− 24.58 exp(−c log p)− 2 exp(−c′n).

Proof. We prove the theorem for the case when g is Lipschitz. We verify Assumptions 14 and 15,

and then apply Theorem 3.1. Assumption 14 is verified by applying Theorem 3.4, and Assumption

15 is verified by applying Lemma A4.22. We complete the proof by Theorem 3.1.

The rest of the theorem can be proved based on similar arguments.

A4.8 Proof of Theorem 2.2

Theorem A4.8 (Theorem 2.2). Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1,

and assume that hn ≤ C0 for positive constant C0. Further assume λn ≥ 4(A+A′)·{log(np)/n}1/2+

4
√

2MgMKMκx(1 + C0)hn, where

A ={16
√

3Mf (1 + c)1/2 + 4
√

3C1M
1/2
f K

−1/2
1 (1 + c)1/2 + 8C2(1 + c)

+ 8C3M
1/2
K M

1/2
f K

−1/2
1 (1 + c)3/2 + 8C4MKK

−1
1 (1 + c)2 + 8Mf (c+ 2)}κxκu,

A′ =8MMKMgC0(1 + C0)κx(1 + c)1/2 + 2C1MgM
1/2M

3/2
K κ1/2

x (1 + C0)1/2C
5/4
0 K

−1/4
1 (1 + c)1/2

+ 2
√

2C2MMKMg(1 + C0)κxK1(1 + c)3/2 + 4C3MM
3/2
K M1/2

g (1 + C0)1/2C
1/2
0 κx(1 + c)2

+ 2
√

2C4MKMgC0κxK
−1
1 (1 + c)5/2 + 2

√
2MMKMg(1 + C0)C0,
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for positive absolute constant c, Mf = M+MMKC0, and C1, . . . , C4 as defined in (A3.2). Suppose

we have

n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 64(c+ 2)3(c+ 1){log(np)}4, {log(np)}5/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),

[28 · 6(c+ 2)
3
2C3{144(2 + c)2MKMfκ

4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}

1
2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
.

(A4.19)

where q = 2305s. Then under Assumptions 6-12, and 4, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 17.81 exp(−c log p)− 2 exp(−c′n), where

c′ = (κ2
`M

2
` ∧ 64κ`M`)/[2

16{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x].

Proof of Theorem 2.2. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) =

L0(β), Γ̂n(θ, h) = L̂n(β, h), Γh(θ) = EL̂n(β, h) , and take θ̃∗hn = β∗, which yields sn ≤ s and ρn = 0.

We verify Assumption 2 by applying Lemma A4.20, and verify Assumption 3 by applying Corollary

A3.1. We complete the proof by Theorem 2.1.
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A4.9 Proof of Theorem A3.1

Theorem A4.9 (Theorem A3.1). For q ∈ [p], suppose that

n > max
{ 48

√
6MKκ

2
xq

K1p{log(np)}1/2
,
(384

√
6Mfκ

2
xq

tp

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[768
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 t

]4/3
· q4/3{log(np)}1/3,

[96(20 + 7.5c)(2 + c)C2Mfκ
2
x

t

]1/2
· q1/2 log(np),[96(c+ 2)

3
2C3{144(2 + c)2MKMfκ

4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}

1
2

t

]4/5
q

4
5 {log(np)}

9
5 ,[384

√
6(2 + c)3C4κ

2
x

K1t

]2/3
q2/3{log(np)}5/3,

768(20 + 7.5c)(c+ 2)Mfκ
2
x

t
q{log(np)}2, 12q

(20 + 7.5c)Mfκ2
xt log(np)

,

212{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

t2 ∧ (16t)
q log

(6ep

q

)
,

216K2
1M

2M2
Kκ

2
x log(np)

t2

}
,

(A4.20)

for positive absolute constant t and c > 1. Under Assumptions 7, 8, and 11, we have

‖T̂n − ET̂n‖2,q ≤ t

with probability at least 1 − 5.77 exp(−c log p) − 2 exp(−c′n), where c′ = (t2 ∧ 4t)/[28{(3M2κ2
x +

2M2M2
KC

2
0κ

2
x) ∨ 2M}κ2

x].

Proof. We denote

Xhn =
( 1

h
1/2
n

K1/2
(W̃ij

hn

)
X̃T
ij

)
(n2)×p

to be a

(
n

2

)
× p matrix,

Σhn = E
[ 1

hn
K
(W̃
hn

)
X̃X̃T

]
.

And we aim to show that with high probability∣∣∣(n
2

)−1

vTXT
hnXhnv − vTΣhnv

∣∣∣ ≤ θ′‖v‖22 for all v ∈ Rp, ‖v‖0 ≤ q simultaneously

holds for some θ′ > 0 under conditions of Theorem A3.1. We split the proof into three steps.

Step I. For set J ⊂ [p], consider EJ ∩ Sp−1
2 , where EJ = span

{
ej : j ∈ J

}
. Construct ε-net

ΠJ , such that ΠJ ⊂ EJ ∩ Sp−1
2 and |ΠJ | ≤ (1 + 2ε−1)q. The existence of ΠJ can be guaranteed

by Lemma 23 of Rudelson and Zhou (2013). Define Π = ∪|J |=qΠJ , then for 0 < ε < 1 to be

determined later, we have

|Π| ≤
(3

ε

)q(p
q

)
≤
(3ep

qε

)q
= exp

{
q log

(6ep

q

)}
.
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For any v ∈ EJ ∩ Sp−1
2 , let Π(v) be the closest point in ε-net ΠJ . Then we have

v −Π(v)

‖v −Π(v)‖2
∈ EJ ∩ Sp−1

2 , and ‖v −Π(v)‖2 ≤ ε.

Step II. Denote Di = (Wi, Xi, Vi) for i ∈ [n], and D = (W,X, V ) to be an i.i.d copy. We upper

bound

P
(

max
v∈Π

{∣∣∣(n
2

)−1∑
i<j

gv(Di, Dj)− µv
∣∣∣} ≥ θ),

for some θ > 0, where

gv(Di, Dj) =
1

hn
K
(W̃ij

hn

)
(X̃T

ijv)2, and µv = E[gv(Di, Dj)].

Also, denote fv(Di) = E
[
gv(Di, Dj)

∣∣Di

]
. Observe that∣∣∣(n

2

)−1∑
i<j

gv(Di, Dj)− µv
∣∣∣

≤
∣∣∣(n

2

)−1∑
i<j

{
gv(Di, Dj)− fv(Di)− fv(Dj) + µv

}∣∣∣+
∣∣∣ 2
n

n∑
i=1

{
fv(Di)− µv

}∣∣∣.
We bound two components on the right hand side of inequality above separately, and then combine

the result.

Step II.1. We bound

P
(∣∣∣ 1
n

n∑
i=1

{
fv(Di)− µv

}∣∣∣ ≥ t), (A4.21)

for t > 0 to be determined, and for each v ∈ EJ ∩ Sp−1
2 . Apply Lemma A3.3 with conditions of

lemma satisfied by Assumptions 7 (Lemma A4.15) and 8 (Lemma A4.16), and we have

|fv(Di)− f1(Di)| ≤ |MMKhnf2(Di)|, (A4.22)

where f1(Di) = E
[
(X̃T

ijv)2
∣∣W̃ij = 0, Di

]
fW (Wi), and f2(Di) = E

[
(X̃T

ijv)2
∣∣Xi

]
. Also, we have

|µv − µ1| ≤ |MMKhnµ2|, (A4.23)

where µ1 = E[(X̃T
ijv)2|W̃ij = 0]f

W̃
(0), and µ2 = E[f2(Di)] = E[(X̃T

ijv)2]. And we bound (A4.21) as
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below. We have

P
( 1

n

n∑
i=1

{
fv(Di)− µv

}
≥ t
)

=P
(
ea
{∑n

i=1 fv(Di)−µv
}
≥ enat

)
≤e−nat · E

[
ea
{∑n

i=1 fv(Di)−µv
}]

≤e−nat · E
[
ea
(∑n

i=1

[
{f1(Di)−µ1}+MMKhn{f2(Di)−µ2}

])]
· e2MMKnhnµ2a

≤e−nat · E
[
e2a

∑n
i=1{f1(Di)−µ1}

]1/2 · E[e2MMKC0a
∑n

i=1{f2(Di)−µ2}
]1/2 · e4κ2xMMKnhna

≤e−ant · E
[
e2Ma

∑n
i1

∣∣E[(X̃T
ijv)2|W̃ij=0,Di]−E[(X̃T

ijv)2|W̃ij=0]
∣∣]1/2 · E[e2a·2κ2x

∑n
i=1 |fW (Wi)−E[fW (Wi)]|

]1/2
E
[
e2MMKC0a

∑n
i=1{f2(Di)−µ2}

]1/2 · e4κ2xMMKnhna

≤e−ant · E
[
e2aM

∑n
i=1

[
{(X̃i−X̃′i)Tv}2−E[(X̃T

ijv)2|W̃ij=0]
]∣∣Wi = W ′i

]1/2 · (e2a2κ4xM
2n
)1/2

E
[
e2MMKC0a

∑n
i=1

∣∣{(Xi−Xi′ )
Tv}2−µ2

∣∣]1/2 · e4κ2xMMKnhna

≤e−ant · e2M2κ4xa
2n · eM2κ4xa

2n · e2M2M2
KC

2
0κ

4
xa

2n · e4MMKκ
2
xnhna,

for 0 < a ≤ (4Mκ2
x)−1, where the first inequality is by Markov’s, the second is an application of

(A4.22) and (A4.23), the third is by Cauchy-Schwarz and the result that µ2 ≤ 2κ2
x (Assumption 11,

Lemma A4.17, and Lemma A4.18). The fourth inequality is by noting that f
W̃

(0) = E[fW (Wi)],

and applying the following inequality

|V1V2 − E[V1]E[V2]| ≤ |V1 − E[V1]| · |V2|+ |E[V1]| · |V2 − E[V2]|,

where V1 = E[(X̃T
ijv)2|W̃ij = 0, Di], |E[V1]| ≤ 2κ2

x by Assumption 11, Lemma A4.17, and Lemma

A4.18, and V2 = fW (Wi) ∈ [0,M ]. For the fifth inequality, the second component in product is

bounded due to Jensen’s inequality, where (X ′i,W
′
i ), i = 1, . . . , n are independent copies of (Xi,Wi);

the third is bounded because fW (Wi) ∈ [0,M ] and E[(X̃T
ijv)2|W̃ij = 0] ≤ 2κ2

x by Assumption 11,

Lemma A4.17, and Lemma A4.18. The sixth inequality is again an application of Assumption 11,

Lemma A4.17, and Lemma A4.18.

Take a = (1∧ t) · (2a1)−1, and hn ≤ t · (4a2)−1, where a1 = (2M2κ4
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By the same argument, we have
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We take t = θ/4, and have

P
(∣∣∣ 1
n

n∑
i=1

{
fv(Di)− µv

}∣∣∣ ≥ θ

4

)
≤ 2 exp

{−n(θ2 ∧ 4θ)

128a1

}
. (A4.24)
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Step II.2. Observe that∣∣∣(n
2

)−1∑
i<j

{
gv(Di, Dj)− fv(Di)− fv(Dj) + µv

}∣∣∣ ≤ (n
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where
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.

We then bound |
∑

i<j ϕ̃kl(Di, Dj)| for each k, l ∈ [p].

Apply truncation |Xik−E[Xik]| ≤ τn/2 for each i ∈ [n], k ∈ [p], and τn =
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1
2κx{log(np)}

1
2 ,

for positive absolute constant c. Define events
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2
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}
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.
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First, we bound
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(A4.25)

We have∣∣∣E[ 1
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24q
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(A4.26)

where the first and second inequalities are by Cauchy-Schwarz, the third is by subgaussianity of

Xi, Xj , the fourth is by choice of hn, and the last holds true when we have

n ≥ 48
√

6MKκ
2
xq

K1θ{log(np)}1/2p
.
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We also have∣∣∣E[E{ 1
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K
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(A4.27)

where the first ineuqlity is by Cauchy-Schwarz, the second is by (A4.51) and subgaussianity of Xi

(Assumption 11), and the last holds true when we have

n ≥
{96
√

6(M +MMKC0)κ2
xq

θp

}2/3
.

Combining (A4.25), (A4.26), and (A4.27), we have∣∣E[ϕkl(Di, Dj)]
∣∣ ≤ θ

12q
, (A4.28)

when we appropriately choose n bounded from below.

Next, we bound
∣∣∑

i<j ϕkl(Di, Dj)
∣∣ by applying Lemma A3.4. We bound constants in Lemma

A3.4 as follows.

For bounding Bg, we have Bg ≤ 4MKτ
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bounding Bf , we have
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(A4.29)

Apply Lemma A3.3 on ϕ = 1, with M1 = M and M2 = MK as given by Assumptions 8 (Lemma

A4.16) and 7 (Lemma A4.15), we have

E
[ 1
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K
(W̃ij
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)
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x log(np).

(A4.30)

Apply Lemma A3.3 on ϕ = |X̃ijkX̃ijl|
∣∣, with M1 = M and M2 = MK as given by Assumptions
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8 (Lemma A4.16) and 7 (Lemma A4.15), we have
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(A4.31)

where the second inequality is by Cauchy Schwarz, and the last is due to

E[X̃2
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∣∣Dj ] 1I(Aj) =
{
E[(Xik − E[Xik])

2] + (Xik − E[Xjk])
2
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and based on an identical argument
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x log(np),

for any k ∈ [p].

Apply Lemma A3.2 on Z = |X̃ijkX̃ijl|, and with M1 = M , M2 = MK as given by Assumptions

8 (Lemma A4.16) and 7 (Lemma A4.15), we have
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Combining (A4.29)-(A4.32), we have Bf ≤ (20 + 7.5c) · (M +MMKC0) · κ2
x · log(np).
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Therefore we have
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where the first inequality is due to the fact that K(·) ∈ [0, 1] and by Jensen’s inequality, the second

is by Cauchy-Schwarz, the third by subgaussianity of Xi, Xj and X̃ij , and last holds true when we

have

n ≥ 144κ4
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For bounding σ2, apply Lemma A3.2 on Z = X̃2
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2
ijl with M1 = M and M2 = MK as given

by Assumptions 8 (Lemma A4.16) and 7 (Lemma A4.15), we have
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where the third inequality is by Cauchy-Schwarz, and the last is by subgaussianity of X̃ and choice

of hn.
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where Mf = M +MMKC0.

We take
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(A4.33)

for some positive absolute constant c, and C1, . . . , C4 as defined in (A3.2). Then by Lemma A3.4,

we have
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Combined with (A4.25), the last display further implies that
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for positive absolute constant c.
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Step II.3 Combining results of Step II.1, Step II.2 and Step I, when we have (A4.33), and that
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Step III. Denote

Γ =

(
n

2

)−1/2

Xhn − Σ
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From Step II.2, we have that, with probability at least 1− 5.77 exp{−(c+ 1) log p} − 2 exp(−c′n),

simultaneously for all v0 ∈ Π,

‖Γv0‖22 ≤ θ,

which further implies that

‖Γv0‖2 ≤ θ1/2.

Then we obtain bounds on entire EJ ∩ Sp−1
2 by approximation.

For any v ∈ EJ ∩ Sp−1
2 for some |J | = q, denote v0 = Π(v). We have
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We take θ′ = 4θ. This completes the proof.

A4.10 Proof of Lemma A3.4

Proof. Denote µ = E
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]
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Hoeffding decomposition gives us
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(A4.35)

when n ≥ 3. By Theorem 3.4 in Houdré and Reynaud-Bouret (2003), for any u > 0, we have
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where positive absolute constants C1, . . . , C5 are as defined in (A3.2). Combining (A4.35) and

(A4.36), we have
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1/2 + C2D̃u/4 + C3B̃u
3/2 + C4B̃gu

2
)

≤P
(∣∣ n∑

i=1

f̃(Zi)
∣∣ ≥ t

2(n− 1)

)
+ P

(
|Dn(g̃)| ≥ C1nσ̃u

1/2 + C2D̃u/4 + C3B̃u
3/2 + C4B̃gu

2/4
)

≤2 exp
( −t2/n2

8nE
[
f̃(X)2

]
+ 2B̃f · t/n

)
+ C5e

−u.

(A4.37)

It is easy to see that B̃g ≤ Bg + 3Bf ≤ 4Bg, B̃f ≤ 2Bf , and E
[
f̃(Z)2

]
≤ E

[
f(Z)2

]
. It remains

to bound σ̃2, B̃, and D̃.

By some algebra, we have

E
[
g̃(X1, X2)2

∣∣X2

]
≤ E

[
g(X1, X2)2

∣∣X2

]
,

which implies that

σ̃2 = E
[
g̃(X1, X2)2

]
= E

[
E
{
g̃(X1, X2)2

∣∣X2

}]
≤ E

[
E
{
g(X1, X2)2

∣∣X2

}]
= E

[
g(X1, X2)2

]
= σ2,

and that

B̃2 ≤ n sup
X2

E
[
g̃(X1, X2)2

∣∣X2

]
≤ n sup

X2

E
[
g(X1, X2)2

∣∣X2

]
= B2.

Meanwhile, we have

E
[
|g̃(Xi, Xj)|

∣∣Xj

]
≤ 4Bf .
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By Hölder’s inequality, and combining with the last display, we have

E
[
|g̃(Xi, Xj)|ai(Xi)bj(Xj)

]
=E
[
bj(Xj)E

{
|g̃(Xi, Xj)|ai(Xi)

∣∣Xj

}]
≤E
[
bj(Xj)E

{
|g̃(Xi, Xj)|

∣∣Xj

}1/2E
{
|g̃(Xi, Xj)|ai(Xi)

2
∣∣Xj

}1/2]
≤(4Bf )1/2E

[
bj(Xj)E

{
|g̃(Xi, Xj)|ai(Xi)

2
∣∣Xj

}1/2]
≤(4Bf )1/2E

[
bj(Xj)

2
]1/2E[|g̃(Xi, Xj)|ai(Xi)

2
]1/2

=(4Bf )1/2E
[
bj(Xj)

2
]1/2E[ai(Xi)

2E
{
|g̃(Xi, Xj)|

∣∣Xi

}]1/2
≤4BfE

[
ai(Xi)

2
]1/2E[bj(Xj)

2
]1/2

.

Therefore, we further have

D̃ ≤ 4Bf

n∑
i=2

i−1∑
j=1

{
E
[
ai(Xi)

2
]1/2E[bj(Xj)

2
]1/2}

≤ 4Bf

n∑
i=2

i−1∑
j=1

1

2

{
E
[
ai(Xi)

2
]

+ E
[
bj(Xj)

2
]}

≤ 4Bf .

Combining these upper bounds on constants with (A4.37), we complete the proof.

A4.11 Proof of Corollary A3.1

Corollary A4.1 (Corollary A3.1). Suppose Assumptions 6-8 and 10-11 are satisfied.

(1) Assume Assumption 9 holds, and that (A4.20) is satisfied with q = 2305s and t = κ`M`/16.

Then we have

P
(
δL̂n(∆, hn) ≥ κ`M`

4
‖∆‖22 for all ∆ ∈

{
∆′ ∈ Rp : ‖∆Sc‖1 ≤ 3‖∆S‖1

})
≥1− 5.77 exp(−c log p)− 2 exp(−c′n),

where c > 1 is an absolute constant, and c′ = (κ2
`M

2
` ∧64κ`M`)/[2

16{(3M2κ2
x+2M2M2

KC
2
0κ

2
x)∨

2M}κ2
x].

(2) Assume Assumption 16 holds, and that (A4.20) holds with q = 2305{s+ζ2nh2γ
n / log(np)}

and t = κ`M`/16. Then we have

P
(
δL̂n(∆, hn) ≥ κ`M`

4
‖∆‖22 for all ∆ ∈ CS̃′n

)
≥1− 5.77 exp(−c log p)− 2 exp(−c′n),

where CS̃′n =
{
v ∈ Rp : ‖vJ c‖1 ≤ 3‖vJ ‖1 for some J ⊂ [p] and |J | ≤ s + ζ2nh2γ

n / log(np)
}

,

c > 1 is an absolute constant, and c′ = (κ2
`M

2
` ∧ 64κ`M`)/[2

16{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨

2M}κ2
x].

Proof. (1) Denote CS =
{
v ∈ Rp : ‖vSc‖1 ≤ 3‖vS‖1

}
. By Lemma 13 in Rudelson and Zhou (2013),

CS ∩ Sp−1
2 ⊂ 2conv

(
∪|J |≤d EJ ∩ S

p−1
2

)
, where conv(·) means convex hull of a set, EJ = span

{
ej :
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j ∈ J
}

, and d = 2305s. Denote

Σhn = E
[ 1

hn
K
(W̃
hn

)
X̃X̃T

]
,

Γ =

(
n

2

)−1∑
i<j

{ 1

hn
K
(W̃ij

hn

)
X̃ijX̃

T
ij

}
− Σhn ,

Σ0 = E
[
X̃X̃T

∣∣W̃ = 0
]
· f
W̃

(0).

For any v ∈ CS ∩ Sp−1
2 , we have

|vTΓv| ≤ 4 max
v′∈conv(∪|J |≤dEJ∩S

p−1
2 )

v′TΓv′

= 4 max
v′∈∪|J |≤dEJ∩S

p−1
2

v′TΓv′

= 4‖Γ‖2,d,

where the second line is because maximum of v′TΓv′ occurs at extreme points of set conv
(
∪|J |≤d

EJ ∩Sp−1
2

)
. Apply Theorem A3.1 with q = d = 2305s and t = κ`M`/16, when (A4.20) is satisfied,

we have

|vTΓv| ≤ κ`M`

4
(A4.38)

holds simultaneously for all v ∈ CS ∩ Sp−1
2 with probability at least 1 − 5.77 exp(−c log p) −

2 exp(−c′n), where c > 1 is some absolute constant and c′ = (κ2
`M

2
` ∧ 64κ`M`)/[65536{(2M2κ2

x +

2M2M2
KC

2
0κ

2
x +M2κ2

x) ∨ 2M}κ2
x].

(A4.38) further implies that δL̂n(v, hn) ≥ vTΣhnv − κ`M`/4, where

vTΣhnv ≥ vTΣ0v −MMKE
[
(X̃Tv)2

]
hn

≥ κ`M`‖v‖22 −MMK · 2κ2
x‖v‖22 · hn

≥ κ`M`‖v‖22/2 = κ`M`/2.

(A4.39)

Therefore δL̂n(v, hn) ≥ κ`M`/4 holds simultaneously for all v ∈ CS ∩Sp−1
2 with probability at least

1− 5.77 exp(−c log p)− 2 exp(−c′n). By linearity of δL̂n(v, hn), this completes the proof for (1).

(2) Using an identical argument as used in (1), replacing CS by set{
v ∈ Rp : ‖vJ c‖1 ≤ 3‖vJ ‖1 for some J ⊂ [p] and |J | ≤ s+ ζ2nh2γ

n / log(np)
}
,

and using d = 2305{s+ ζ2nh2γ
n / log(np)} instead, we complete the proof for (2).

A4.12 Proof of Lemma 3.1

Lemma A4.10 (Lemma 3.1). Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1,

and assume hn ≤ C0 for positive constant C0. We further assume that u satisfies Assumption 17,

and take c and c′ < 3ε/4 + 1/2 to be positive absolute constants. We take ξ = (1 + c′)/(2 + ε), and

suppose we have

n > max
{[{

16(c+ 2)3(c+ 1)C2
0M

2/(2+ε)
u κ2

x

}1/(3−2ξ) ∨ 1
]
· (log p)2/(3−2ξ), {log(np)}5/(3−4ξ)

}
,
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Then under Assumptions 7, 8, 11, and 17, we have

P
(

max
k∈[p]

{
|Uk − E[Uk]|

}
≥ C{log(np)/n}1/2

)
≤ 4.77 exp(−c log p) + exp(−c′ log n),

where C =
√

2C1M
1/2
K M

1/2
f M

1/(2+ε)
u κxc

1/2K
−1/2
1 + 2C2Mf (c + 1/2)1/2c + 8MfM

1/(2+ε)
u κxc

1/2 +

2C3M
1/2
K M

1/2
f (c + 2)1/2c3/2K

−1/2
1 + 2C4MK(c + 2)1/2c2K−1

1 . Here Mf = M + MMKC0, and

C1, . . . , C4 are as defined in (A3.2).

Proof. We apply truncation on X̃ijk and ũi at levels τn and θn/2 respectively, and first focus on

U-statistic

Ũk =

(
n

2

)−1 1

hn
K
(W̃ij

hn

)
X̃ijkũij 1I(Ak,ij ∩ Bi ∩ Bj),

where we denote events

Ak,ij =
{
|X̃ijk| ≤ τn

}
, Bi =

{
|ui − E[u]| ≤ θn/2

}
.

We also denote events

Ak,[n] =
{
|X̃ijk| ≤ τn, i < j ∈ [n]

}
, B[n] =

{
|ui − E[u]| ≤ θn/2, i ∈ [n]

}
.

Denote

g(Di, Dj) =
1

hn
K
(W̃ij

hn

)
X̃ijkũij 1I(Ak,ij ∩ Bi ∩ Bj), and f(Di) = E

[
g(Di, Dj)

∣∣Di

]
.

We complete the proof in two steps.

Step I. We bound Bg, Bf , E
[
f(D2)2

]
, σ2, and B2 as in Lemma A3.4, and apply Lemma A3.4.

For bounding Bg, we have Bg ≤ MKτnθn/hn. For bounding Bf , apply Lemma A3.3 on ϕ = 1

with lemma conditions satisfied by 7 and 8, and we have

Bf ≤ τnθn
∥∥∥E[ 1

hn
K
(W1 −W2

hn

)∣∣W1

]∥∥∥
∞
≤Mfτnθn,

where Mf = M +MMKC0.

For bounding σ2, we have

σ2 = E
[
g(D1, D2)2

]
≤ MK

hn
E
[ 1

hn
K
(W̃ij

hn

)
X̃ijkũij

]
≤ MK

hn

(
E
[
X̃2
ijkũ

2
ij

∣∣W̃ij = 0
]
·M +MMKC0E

[
X̃2
ijkũ

2
ij

])
≤ 2MKMfM

2/(2+ε)
u κ2

x/hn,

where the first inequality is due to K(·) ∈ [0, 1], the second inequality is by applying Lemma A3.2

on Z = X̃ijkũij with lemma assumptions satisfied by Assumptions 7 and 8, and the last inequality

is by Assumptions 11, 12, and independence of X̃ijk and ũij .

For bounding E
[
f(D2)2

]
, apply Lemma A3.3 on ϕ = X̃ijkũij 1I(Ak,ij ∩ Bi ∩ Bj), with lemma

assumptions satisfied by Assumptions 7 and 8, and we have |f(D2) − f1(D2)| ≤ MMKC0f2(D2),
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where

f1(D2) = E
[
X̃12kũ12 1I(Ak,12 ∩ B1 ∩ B2)

∣∣W1 = W2, D2

]
· fW1(W2),

f2(D2) = E
[
|X̃12kũ12| 1I(Ak,12 ∩ B1 ∩ B2)

∣∣D2

]
.

We have, by Assumptions 11, 12, and independence of X̃ijk and ũij ,

E
[
f1(D2)2

]
≤ E

[
X̃2

12kũ
2
12

∣∣W1 = W2

]
M2 ≤ 2MM2/(2+ε)

u κ2
x,

E
[
f2(D2)2

]
≤ E[X̃2

12kũ
2
12] ≤ 2M2/(2+ε)

u κ2
x.

This further implies that

E[f(D2)2] ≤ 2E[f1(D2)2] + 2M2M2
KC

2
0E[f2(D2)2] ≤ 4M2

fM
2/(2+ε)
u κ2

x.

For bounding B2, we have

B2 = n sup
D2

E
[
g(D1, D2)2

∣∣D2

]
≤ nMK

hn
sup
D2

E
[ 1

hn
K
(W1 −W2

hn

)
(X1k −X2k)

2(u1 − u2)2 1I(Ak,12 ∩ B1 ∩ B2)
∣∣D2

]
≤MKMf

nτ2
nθ

2
n

hn
.

We take for some positive absolute constant c > 1,

t = 8MfM
1/(2+ε)
u κxc

1/2 ·
(
n

2

)
{log(np)/n}1/2,

τn = max
{
c, 2
}1/2 · {log(np)}1/2, θn = nα, 0 < α < 3/4,

cu = c log p,

and we have that

n > max
{[{

16c3(c+ 1)C2
0M

2/(2+ε)
u κ2

x

}1/(3−2α) ∨ 1
]
· (log p)2/(3−2α), {log(np)}5/(3−4α)

}
.

Then by Lemma A3.4, we have

P
{(n

2

)−1∣∣Ũk − E[Ũk]
∣∣ ≥ A{log(np)/n}1/2

}
≤ 2 exp(−c log(np)) + 2.77 exp(−c log p)

≤ 4.77 exp(−c log p),

where with C1, . . . , C4 defined in (A3.2),

A =2
√

2C1M
1/2
K M

1/2
f M1/(2+ε)

u κxc
1/2K

−1/2
1 + 2C2Mf (c+ 1/2)1/2c

+2C3M
1/2
K M

1/2
f (c+ 2)1/2c3/2K

−1/2
1 + 2C4MK(c+ 2)1/2c2K−1

1 + 8MfM
1/(2+ε)
u κxc

1/2.
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Step II. We have E[Ũk] = 0, and thus we have

P
(

max
k∈[p]

{
|Uk − E[Uk]|

}
≥ A{log(np)/n}1/2

)
≤P
(

max
k∈[p]

{
|Uk − E[Uk]|

}
≥ A{log(np)/n}1/2 ∩ B[n]

)
+ P(Bc[n])

≤
p∑

k=1

{
P
(
|Uk| > A{log(np)/n}1/2 ∩ Ak,[n] ∩ B[n]

)
+ P(Ac

k,[n])
}

+ P(Bc[n])

≤
p∑

k=1

{
P
(
|Ũ | > A{log(np)/n}1/2 ∩ Ak,[n] ∩ B[n]

)
+ P(Ac

k,[n])
}

+ P(Bc[n])

≤4.77 exp(−c log p+ log p) + n
E[|ũ|2+ε]

nα(2+ε)

≤4.77 exp(−c log p+ log p) + exp(−c′ log n).

The last inequality holds if we take (c′ + 1)/(2 + ε) < 3/4 and we take α = (c′ + 1)/(2 + ε). This

completes the proof.

A4.13 Proof of Corollary A2.1

Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1, and assume hn ≤ C0 for positive

constant C0. We further assume that u satisfies Assumption 17, and take c and c′ < 3ε/4 + 1/2 to

be positive absolute constants. We take ξ = (1 + c′)/(2 + ε), and suppose we have

n > max
{[{

16(c+ 2)3(c+ 1)C2
0M

2/(2+ε)
u κ2

x

}1/(3−2ξ) ∨ 1
]
· (log p)2/(3−2ξ), {log(np)}5/(3−4ξ),

64(c+ 2)2(c+ 1){log(np)}3/3, 3,

48
√

6MKκ
2
xq

K1p{log(np)}1/2
,
(210 · 6 ·

√
6Mfκ

2
xq

κ`M`p

)2/3
,

144κ4
x

K2
1p

2 log(np)
,

[211 · 6 ·
√

3(2 + c)1/2C1M
1/2
K M

1/2
f κ2

x

K
1/2
1 κ`M`

]4/3
· q4/3{log(np)}1/3,

[28 · 6 · (20 + 7.5c)(2 + c)C2Mfκ
2
x

κ`M`

]1/2
· q1/2 log(np),[28 · 6(c+ 2)3/2C3{144(2 + c)2MKMfκ
4
xK
−1
1 + 192M2

fκ
4
x + 8Mfκ

4
x}1/2

κ`M`

] 4
5
q

4
5 {log(np)}

9
5 ,[210 · 6 ·

√
6(2 + c)3C4κ

2
x

K1κ`M`

]2/3
q2/3{log(np)}5/3,

211 · 6 · (20 + 7.5c)(c+ 2)Mfκ
2
x

κ`M`
q{log(np)}2, 26 · 3q

(20 + 7.5c)Mfκ2
xκ`M` log(np)

,

220{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x

(κ`M`)2 ∧ (16κ`M`)2
q log

(6ep

q

)
,

224K2
1M

2M2
Kκ

2
x log(np)

(κ`M`)2

}
,

(A4.40)
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where q is to be determined in specific cases. Denote Mf = M + MMKC0, and C1, . . . , C4 are as

defined in (A3.2). Also denote c to be some positive absolute constant, and

A′ =
√

2C1M
1/2
K M

1/2
f M1/(2+ε)

u κxc
1/2K

−1/2
1 + 2C2Mf (c+ 1/2)1/2c+

2C3M
1/2
K M

1/2
f (c+ 2)1/2c3/2K

−1/2
1 + 2C4MK(c+ 2)1/2c2K−1

1 + 8MfM
1/(2+ε)
u κxc

1/2,

c′′ =(κ2
`M

2
` ∧ 64κ`M`)/[2

16{(3M2κ2
x + 2M2M2

KC
2
0κ

2
x) ∨ 2M}κ2

x].

Theorem A4.11 (Corollary A2.1(1)). Assume λn ≥ 4(A+A′){log(np)/n}1/2+8κ2
xMfζhn. Further

assume (A4.40) holds with q = 2305s. Then under Assumptions 6-11, 14, 15, and 17, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 10.54 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n)− εn · p.

Proof. See Proof of Theorem A4.12.

Theorem A4.12. [Corollary A2.1(2)] Assume that λn ≥ 4(A + A){log(np)/n}1/2 + 8κ2
xMfζh

γ
n.

Further assume (A4.40) holds with q = 2305s. Then under Assumptions 6-11, 14, 15, and 17, we

have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 10.54 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n)− εn · p.

Proof. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) = L0(β), Γ̂n(θ, h) =

L̂n(β, h), Γh(θ) = EL̂n(β, h) , and take θ̃∗hn = β∗, which yields sn ≤ s and ρn = 0.

We verify Assumption 2, by using results (A4.4), (A4.6), and applying Lemma 3.1. We verify

Assumption 3 by applying Corollary A3.1. We complete the proof by Theorem 2.1.

Theorem A4.13 (Corollary A2.1(3)). Denote C to be some positive absolute constant C > ζ2C2γ
0 ,

and suppose n ≥ (C − ζ2C2γ
0 )s log(np). Assume that λn ≥ 4(A′ + A + Mηn){log(np)/n}1/2 +

8MMKC
1/2κ2

xhn. Further assume that (A4.40) holds with q = 2305{s + ζ2nh2γ
n / log(np)}. Then

under Assumptions 6-8, 10-11, 14-16 and 17, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

+
2s log(np)

n
+
{ 288nλ2

n

M2
` κ

2
` log(np)

+ 2
}
· ζ2h2γ

n ,

with probability at least 1− 17.31 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n)− εn · p.

Proof. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) = L0(β), Γ̂n(θ, h) =

L̂n(β, h), Γh(θ) = EL̂n(β, h), and take θ∗hn = β∗, which yields sn ≤ s and ρn = 0.

We verify Assumption 2, by using results (A4.4), (A4.6), and applying Lemma 3.1. We verify

Assumption 3 by applying Corollary A3.1. We complete the proof by Theorem 2.1.
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Corollary A4.2 (Corollary A2.1(4)). Denote

τ1 =
√

2(2 + c)1/2κxK
−1
1 (BMKC

a
0 +DMK),

τ2 =
√

2(2 + c)1/2κx{BMKM(1 + C0)Ca0 +DMf},
τ3 = 4M2

KM
2 · (BCa0 +D)2 · (1 + C2

0 ) · κ2
x,

τ4 =
{

4B2MMKκ
2
x(1 + C0)C2a−γ1

0 + 2D2 · (12Mfκ
4
x)1/2 · E1/2C

−1/2−γ1
0

}
·MKK

γ1
1 ,

τ5 = 4(2 + c)κ2
x{BMMK(1 + C0)C2a

0 +D2Mf}MKK
−1
1 ,

and

A′′ =4τ
1/2
3 (1 + c)1/2 + 2C1τ

1/2
4 (1 + c)1/2 + 2C2τ2(1 + c) + 2C3τ

1/2
5 (1 + c)3/2

+ 2C4τ1(1 + c)2 + 4Mf · (BCa0 +D) · (c+ 2)κx,

where γ1 = min
{

2a− 1,−1/2
}

. Consider lower bound on n,

n > max
{

64(c+ 2)2(c+ 1)τ2
2 τ
−1
3 {log(np)}4, {log(np)}5/3

}
. (A4.41)

Here, B, D, E and a are to be specified in different cases.

(1) Assume that g is (L,α)-Hölder for α ≥ 1, and g has bounded support when α > 1.

Suppose (A4.40) holds with q = 2305s, and that (A4.41) holds with B = Lα, where Lα is

the Lipschitz constant for g (Lα = L when = 1), D = E = 0, a = 1. Further assume that

λn ≥ 4(A′′ +A′){log(np)/n}1/2 + 8κ2
xMfζhn, where

ζ = max
{

4 ·
(L2

αMMK +MMKEũ2/2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · L2

αMMK

κ`M`

}
.

Then under Assumptions 6-8, 9′, 10-11, 13, and 17, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 15.81 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n).

(2) Assume that Assumption 5 holds with α ∈ (0, 1]. Suppose that (A4.40) holds with

q = 2305s, and that (A4.41) holds with B = Mg, D = Md, E = Ma and a = α. Assume

λn ≥ 4(A′′ +A′){log(np)/n}1/2 + 8κ2
xMfζh

γ
n, where

ζ = max
{

4 ·
(M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 /2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · (M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2

κ`M`

}
,

γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise. Then under Assumptions 6-8, 9′,

10-11, 13, and 17, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 15.81 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n).

(3) Assume that Assumption 5 holds with α ∈ [1/4, 1]. Suppose that (A4.40) holds with

37



q = 2305{s+ ζ2nh2γ
n / log(np)}, and that (A4.41) holds with B = Mg, D = Md, E = Ma and

a = α. Further assume λn ≥ 4(A′ +A′′ +Mηn){log(np)/n}1/2 + 8MMKCκ
2
xhn, where

ζ = max
{

4 ·
(M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 +MMKEũ2C2−2γ

0 /2

κ`M`

)1/2
,

16κx(M +MMKC
2
0 )1/2 · (M2

gMMKC
2α−2γ
0 +M2

dMaC
1−2γ
0 )1/2

κ`M`

}
,

γ = α if MdMa = 0, and γ = min
{
α, 1/2

}
if otherwise. Then under Assumptions 6-8, 9′,

10-11, 13, and 17, we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

+
2s log(np)

n
+
{ 288nλ2

n

M2
` κ

2
` log(np)

+ 2
}
· ζ2h2γ

n ,

with probability at least 1− 22.58 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n).

Proof. The result follows directly from Corollary A2.1(1)-(3).

Theorem A4.14 (Corollary A2.1(5)). Assume that (A4.40) holds with q = 2305s. Assume further

that n > 64(c + 2)2(c + 1){log(np)}4 and λn ≥ 4(A′ + A′′′){log(np)/n}1/2 + 4
√

2MgMKMκx(1 +

C0)hn, where

A′′′ =8MMKMgC0(1 + C0)κx(1 + c)1/2 + 2C1MgM
1/2M

3/2
K κ1/2

x (1 + C0)1/2C
5/4
0 K

−1/4
1 (1 + c)1/2

+ 2
√

2C2MMKMg(1 + C0)κxK1(1 + c)3/2 + 4C3MM
3/2
K M1/2

g (1 + C0)1/2C
1/2
0 κx(1 + c)2

+ 2
√

2C4MKMgC0κxK
−1
1 (1 + c)5/2 + 2

√
2MMKMg(1 + C0)C0,

Then under Assumptions 6-11, 4, and 17 we have

‖β̂hn − β∗‖22 ≤
288sλ2

n

M2
` κ

2
`

,

with probability at least 1− 15.81 exp(−c log p)− exp(−c′ log n)− 2 exp(−c′′n).

Proof. We adopt the framework as described in Section 2.1 for θ∗ = β∗, Γ0(θ) = L0(β), Γ̂n(θ, h) =

L̂n(β, h), Γh(θ) = EL̂n(β, h), and take θ̃∗hn = β∗, which yields sn ≤ s and ρn = 0.

We verify Assumption 2 by using results (A4.43), (A4.45), (A4.46), (A4.47), and applying

Lemma 3.1. We verify Assumption 3 by applying Corollary A3.1. We complete the proof by

Theorem 2.1.

A4.14 Supporting lemmas

Lemma A4.15. Assumption 7 implies that, for any 0 < a < 3 and 0 < b < 1, we have∫ +∞

−∞
|w|aK(w) dw ≤MK and sup

w∈R
|w|bK(w) ≤MK .

Proof of Lemma A4.15. For any 0 < a < 3, we have∫ +∞

−∞
|w|aK(w) dw ≤

{∫ +∞

−∞
|w|3K(w) dw

}a/3
≤Ma/3

K ≤MK ,
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where the first inequality is by Hölder’s inequality, the second is by Assumption 7 and that a > 0,

and the last is by the fact that 0 < a < 3 and the choice of MK ≥ 1.

For any 0 < b < 1 and any w ∈ R, we have

|w|bK(w) = {|w|K(w)}b ·K(w)1−b ≤M b
KM

1−b
K = MK ,

where the first inequality is by Assumption 7 and that 0 < b < 1. Therefore, we have obtained

that supw∈R |w|bK(w) ≤MK . This completes the proof.

Lemma A4.16. Assumption 8 implies that, for any X̃-measurable function ψ(·) : Rp → Rm

mapping to a m-dimensional real space, we have

sup
w,z

{∣∣∣∂fW̃ |ψ(X̃)
(w, z)

∂w

∣∣∣, fW̃ |ψ(X̃)
(w, z),

∣∣∣∂fW̃ (w)

∂w

∣∣∣, fW̃ (w)
}
≤M. (A4.42)

Proof of Lemma A4.16. For a function F (·), we write dF (x)/dx = F (x+)− F (x−), where F (x+)

and F (x−) are right and left limits respectively, when F (x) is discontinuous at x. We first show

that

sup
w,x

{∣∣∣∂fW̃ |X̃(w, x)

∂w

∣∣∣, fW̃ |X̃(w, x)
}
≤M.

We have

F
W̃ |X̃=x

(w) =

∫ ∫
FW1|X1=x2+x(w2 + w)

dFX1
(x′)

dx′ |x′=x2+x dFW2|X2=x2(w2) dFX2(x2)∫ dFX1
(x′)

dx′ |x′=x2+x dFX2(x2)
.

By dominated convergence theorem, we have

f
W̃ |X̃(w, x) =

∫ ∫
fW1|X1

(w2 + w, x2 + x)
dFX1

(x′)

dx′ |x′=x2+x dFW2|X2=x2(w2) dFX2(x2)∫ dFX1
(x′)

dx′ |x′=x2+x dFX2(x2)
≤M,

and ∣∣∣∂fW̃ |X̃(w, x)

∂w

∣∣∣ =
∣∣∣∫ ∫ ∂fW1|X1

(w2+w,x2+x)

∂w

dFX1
(x′)

dx′ |x′=x2+x dFW2|X2=x2(w2) dFX2(x2)∫ dFX1
(x′)

dx′ |x′=x2+x dFX2(x2)

∣∣∣ ≤M.

Based on the same argument, we have

F
W̃

(w) =

∫
F
W̃ |X̃=x

(w) dF
X̃

(x),

which, by dominated convergence theorem, implies that

f
W̃

(w) =

∫
f
W̃ |X̃(w, x) dF

X̃
(x) ≤M,

and ∣∣∣∂fW̃ (w)

∂w

∣∣∣ =
∣∣∣ ∫ ∂f

W̃ |X̃(w, x)

∂w
dF

X̃
(x)
∣∣∣ ≤M

Also, for any X̃-measurable function ψ(·), we have

F
W̃ |ψ(X̃)=z

(w) =

∂
∂v

∫
1I{ψ(x) ≤ v}F

W̃ |X̃=x
(w) dF

X̃
(x)|v=z

∂
∂v

∫
1I{ψ(x) ≤ v} dF

X̃
(x)|v=z

.
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By dominated convergence theorem, we have

f
W̃ |ψ(X̃)

(w, z) =

∂
∂v

∫
1I{ψ(x) ≤ v}f

W̃ |X̃(w, x) dF
X̃

(x)|v=z

∂
∂v

∫
1I{ψ(x) ≤ v} dF

X̃
(x)|v=z

≤M,

and ∣∣∣∂fW̃ |ψ(X̃)
(w, z)

∂w

∣∣∣ =
∣∣∣ ∂∂v ∫ 1I{ψ(x) ≤ v}

∂f
W̃ |X̃(w,x)

∂w dF
X̃

(x)|v=z

∂
∂v

∫
1I{ψ(x) ≤ v} dF

X̃
(x)|v=z

∣∣∣ ≤M.

Therefore, Assumption 8 implies (A4.42)

Lemma A4.17. Assumption 11 implies, conditional on W̃ = 0 and unconditionally, 〈X̃, v〉 is

mean-zero subgaussian with parameter at most 2κ2
x‖v‖22, for any v ∈ Rp. Assumption 12 implies

that ũ is mean-zero subgaussian with parameter at most 2κ2
u.

Proof of Lemma A4.17. Observe that X̃Tv and −X̃Tv are identically distributed, and thus we have

E[X̃Tv] = 0. We have that the moment generating function of X̃Tv is

E
[
etX̃

Tv
]

= E
[
et
(
XT

1 v−E[XT
1 v]
)]
· E
[
et
(
−XT

2 v+E[XT
2 v]
)]
≤ et2κ2x‖v‖22 ,

where the first inequality is because X1 and X2 are i.i.d., and the second is an application of

Assumption 11. Therefore, X̃Tv is mean-zero subgaussian with parameter at most 2κ2
x‖v‖22.

Observe that conditional on W̃ = 0, X̃Tv and −X̃Tv are identically distributed, and thus we

have E[X̃Tv|W̃ = 0]. We have that the moment generating function of X̃Tv, conditional on W̃ = 0,

is

E
[
etX̃

Tv
∣∣W̃ = 0

]
= E

(
E
[
etX̃

Tv
∣∣W1 = W2,W2

])
= E

[
E
{
et
(
XT

1 v−E[XT
1 v|W1=W2]

)∣∣W1 = W2

}
· E
{
et
(
−XT

2 v+E[XT
2 v|W2]

)∣∣W2

}]
≤ et2κ2x‖v‖22 ,

where the second inequality is because (X1,W1) and (X2,W2) are i.i.d., and the third is an appli-

cation of Assumption 11. Therefore, conditional on W̃ = 0, X̃Tv is mean-zero subgaussian with

parameter at most 2κ2
x‖v‖22. Apply the same argument on u, we complete the proof.

The following results in Lemma A4.18 can be found in Vershynin (2012).

Lemma A4.18. For mean-zero subgaussian random variable V with parameter at most κ2
v, we

have E[V 2] ≤ κ2
v, E[V 4] ≤ 3κ4

v, P(V 2 − E[V 2] ≤ v) ≥ 1− exp{−v/(2κ2
v)} for any v ≥ 2κ2

v, and that

E[esV
2−sE[V 2]] ≤ e2s2κ4v for |s| ≤ (2κ2

v)
−1.

Lemma A4.19. Let Z be some subgaussian random variable, with parameter at most κ2
z. Suppose

κ2
z ≤ a/4 for some a > 0. Then we have∫ ∞

a
z dFZ2(z) ≤ (a+ 4κ2

z) exp{−a/(4κ2
z)}.

Proof of Lemma A4.19. We have FZ2(z) ≥ P(Z2 − E[Z2] ≤ z/2) ≥ 1 − exp{−z/(4κ2
z)} for any
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z ≥ a ≥ 4κ2
z (Lemma A4.18). By integration by parts, we have∫ ∞

a
z dFZ2(z) =

∫ ∞
a

(−z) d
{

1− FZ2(z)
}

= (−z)
{

1− FZ2(z)
}∣∣∞
a

+

∫ ∞
a

1− FZ2(z) dz

≤ a exp{−a/(4κ2
z)}+

∫ ∞
a

exp{−z/(4κ2
z)} dz

= (a+ 4κ2
z) exp{−a/(4κ2

z)}.

This completes the proof.

The following Lemma A4.20 is used in the proof of Theorem 2.2 to directly verify Assumption

2.

Lemma A4.20. Assume hn ≥ K1{log(np)/n}1/2 for positive absolute constant K1, and as-

sume hn ≤ C0 for positive constant C0. Further assume λn ≥ 4(A + A′) · {log(np)/n}1/2 +

4
√

2MgMKMκx(1 + C0)hn. Here, A′ is as specified in (A4.48), and A′′ as in (A4.53). Suppose we

have

n > max
{

64(c+ 2)2(c+ 1){log(np)}3/3, 64(c+ 2)3(c+ 1){log(np)}4, {log(np)}5/3, 3
}
,

for positive absolute constant c > 0. Then under Assumptions 7, 8, and 11, 12, 4, we have

P
(
2
∣∣∇kL̂n(β∗, hn)

∣∣ ≤ λn for all k ∈ [p]
)
≥ 1− 12.04 exp(−c log p).

Proof of Lemma A4.20. Denote

U1k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijkũij

U2k =

(
n

2

)−1∑
i<j

1

hn
K
(W̃ij

hn

)
X̃ijk

{
g(Wi)− g(Wj)

}
,

and observe that∣∣∇kL̂n(β∗, hn)
∣∣ ≤ 2

{
|U1k − E[U1k]|+ |E[U1k]|+ |U2k − E[U2k]|+ |E[U2k]|

}
. (A4.43)

Apply Lemma A4.21 on Di = (Xi, ui,Wi), with conditions of lemma satisfied by Assumptions

7, 8, 11, 12, we have

P
(∣∣U1k − E[U1k]

∣∣ ≥ A{log(np)/n}1/2
)
≤ 6.77 exp{−(c+ 1) log p}, (A4.44)

for positive absolute constantA and c, and when assuming n > max
{

64(c+2)2(c+1){log(np)}3/3, 3
}

.

Here A is as specified in (A4.48).

Apply Lemma A4.22 on Di = (Xi, g(Wi),Wi), with conditions of lemma satisfied by Assump-

tions 7, 8, 11, 4, we have

P
(∣∣U2k − E[U2k]

∣∣ ≥ A′{log(np)/n}1/2
)
≤ 5.27 exp{−(c+ 1) log p}, (A4.45)

for positive constantsA′ and c, and when assuming n > max
{

64(c+2)3(c+1){log(np)}4, {log(np)}
5
3

}
.

Here A′ is as specified in (A4.53).
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By independence of u and (X,W ), we have

E[U1k] = 0. (A4.46)

We also have

|E[U2k]| ≤MgE
[ 1

hn
K
(W̃ij

hn

)∣∣X̃ijkW̃ij

∣∣]
=Mg

∫ ∫
K(w)|xwhn|fW̃ij |X̃ijk

(w, x) dw dF
X̃ijk

(x)

=Mg

∫ ∫
K(w)|xwhn|

{
f
W̃ij |X̃ijk

(0, x) +
∂f

W̃ij |X̃ijk
(w, x)

∂w

∣∣∣
(twhn,x)

· whn
}
dw dF

X̃ijk
(x)

≤MgMKME
[
|X̃ijk|

∣∣W̃ij = 0
]
hn +MgMKME[|X̃ijk|]h2

n

≤
√

2MgMKMκx(1 + C0)hn,

(A4.47)

where the first inequality is by Assumption 4, the second equality is by definition, the third equality

by Taylor’s expansion at w = 0 (t ∈ [0, 1]), the third inequality is by Assumptions 7 (Lemma A4.15)

and 8 (Lemma A4.16), and the last inequality is by Assumption 11 (Lemma A4.17).

Combining (A4.43)-(A4.47), we have

P
{

for any k ∈ [p],
∣∣∇kL̂n(β∗, hn)

∣∣ ≤ 2(A+A′) · {log(np)/n}1/2 + 2
√

2MgMKMκx(1 + C0) · hn
}

≥1− 12.04 exp(−c log p),

for positive absolute constant c, and when we appropriately take n bounded from below. Thus we

have completed the proof by noting that λn ≥ 4(A + A′) · {log(np)/n}1/2 + 4
√

2MgMKMκx(1 +

C0)hn.

In the following, we collect the proofs of Lemmas A3.2-A3.3 in Section A3.

Proof of Lemma A3.2. By Taylor’s expansion, for some tw,h ∈ [0, 1], we have

E
[1

h
K
(W
h

)
Z
]

=

∫ ∫
K(w)zfW |Z(wh, z) dw dFZ(z)

=

∫ ∫
K(w)z

{
fW |Z(0, z) +

∂fW |Z(w, z)

∂w

∣∣∣
tw,hwh

wh
}
dw dFZ(z),

which implies that ∣∣∣E[1

h
K
(W
h

)
Z
]
− E[Z|W = 0]fW (0)

∣∣∣ ≤M1M2E[|Z|]h.

This completes the proof.
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Proof of Lemma A3.3. By Taylor’s expansion, for some tw,h ∈ [0, 1], we have

E
[1

h
K(

W1 −W2

h
)ϕ(Z1, Z2)

∣∣W2, Z2

]
=

∫ ∫
1

h
K
(w −W2

h

)
ϕ(z, Z2)fW1|Z1

(w, z) dw dFZ1(z)

=

∫ ∫
K(w)ϕ(z, Z2)fW1|Z1

(W2 + wh, z) dw dFZ1(z)

=

∫ ∫
K(w)ϕ(z, Z2)

{
fW1|Z1

(W2, z) +
∂fW1|Z1

(w, z)

∂w

∣∣∣
W2+tw,hwh

wh
}
dw dFZ1(z),

which implies that∣∣∣E[1

h
K
(W1 −W2

h

)
ϕ(Z1, Z2)

∣∣W2, Z2

]
− E

[
ϕ(Z1, Z2)

∣∣W2, Z2,W1 = W2

]
fW1(W2)

∣∣∣
≤M1M2E

[
|ϕ(Z1, Z2)|

∣∣Z2

]
h.

This completes the proof.

Lemma A4.21. Let Di = (Xi, Vi,Wi) be i.i.d. for i = 1, . . . , n, and K(·) be a positive kernel

function, such that
∫∞
−∞K(w) dw = 1 and that max

{ ∫ +∞
−∞ |w|K(w) dw, supw∈RK(w)

}
≤MK , for

positive absolute constant MK . Assume that conditional on Wi = w for any w in the range of Wi,

and unconditionally, Xi and Vi are subgaussian with parameters at most κ2
x and κ2

v respectively,

for positive absolute constants κx and κv. Assume that there exists positive absolute constant M ,

such that

max
{∣∣∣∂fW |(X,V )(w, x, v)

∂w

∣∣∣, fW |(X,V )(w, x, v)
}
≤M,

for any w, x, v ∈ R such that the densities are defined. Take hn ≥ K1{log(np)/n}1/2 for positive

absolute constant K1, and assume that hn ≤ C0 for positive constant C0. Suppose n > max
{

64(c+

2)2(c+ 1){log(np)}3/3, 3
}

for positive absolute constant c. Consider U-statistic

U =
∑
i<j

{ 1

hn
K
(Wi −Wj

hn

)
(Xi −Xj)(Vi − Vj)

}
.

Then we have

P
{(n

2

)−1∣∣U − E[U ]
∣∣ ≥ C{ log(np)

n

}1/2}
≤ 6.77 exp{−(c+ 1) log p},

where

C ={16
√

3(1 + c)1/2Mf + 4
√

3C1(1 + c)1/2M
1/2
f K

−1/2
1 + 8C2(1 + c)

+ 8C3(1 + c)3/2M
1/2
K M

1/2
f K

−1/2
1 + 8C4(1 + c)2MKK

−1
1 + 8Mf (c+ 2)}κxκv,

(A4.48)

with C1, . . . , C4 as defined in (A3.2) and Mf = M +MMKC0.

Proof of Lemma A4.21. Denote Zij = (Xi −Xj)(Vi − Vj). We apply truncation to (Xi −Xj)
2 at

level C2
x log(np), and to (Vi − Vj)2 at level C2

y log(np), for some positive absolute constants Cx and

Cv. Denote A[n] =
{

(Xi −Xj)
2 ≤ C2

x log(np), (Vi − Vj)2 ≤ Cv log(np), i, j ∈ [n], i < j
}

, and first
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focus on U-statistic

Ũ =
∑
i<j

[ 1

hn
K
(Wi −Wj

hn

)
Zij 1I{(Xi −Xj)

2 ≤ C2
x log(np), (Vi − Vj)2 ≤ Cv log(np)}

]
.

Denote

g(Di, Dj) =
1

hn
K
(Wi −Wj

hn

)
Zij 1I{(Xi −Xj)

2 ≤ C2
x log(np), (Vi − Vj)2 ≤ Cv log(np)},

and

f(Di) = E
[
g(Di, Dj)

∣∣Di

]
.

Assume hn ≥ K1{log(np)/n}1/2 for some positive absolute constant K1. Denote X̃ = X1 − X2,

Ṽ = V1−V2, and W̃ = W1−W2. Note that by argument of Lemma A4.16, we have all the necessary

smooth conditions of densities. Denote C = Cx · Cv and note that (Xi −Xj)
2 ≤ C2

x log(np), (Vi −
Vj)

2 ≤ Cv log(np) implies that |Zij | ≤ C log(np).

Step I. We bound Bg, Bf , E
[
f(D2)2

]
, σ2, and B2 as in Lemma A3.4, and apply Lemma A3.4.

We have Bg ≤ CMK log(np)/hn ≤ (CMK/K1) · {n log(np)}1/2. For Bf , apply Lemma A3.3 on

ϕ = 1 and with M1 = M , M2 = MK , and we have

Bf ≤ C log(np) · E
[ 1

hn
K
(Wi −Wj

hn

)∣∣Wj

]
≤ C log(np){fW (Wj) +MMKC0}
≤ CMf log(np),

where Mf = M +MKMC0, and the last inequality used the fact that fW (Wj) ∈ [0,M ].

For bounding E
[
f(D2)2

]
, apply Lemma A3.3 on ϕ = Zij 1I

{
(Xi − Xj)

2 ≤ C2
x log(np), (Vi −

Vj)
2 ≤ Cv log(np)

}
and with M1 = M , M2 = MK , and then we have

|f(D2)− f1(D2)| ≤MKMf2(D2)hn,

where

f1(D2) ≤ E
[
Z12 1I(|Z12| ≤ C log(np))

∣∣W1 = W2, D2

]
fW1(W2)

f2(D2) ≤ E
[
|Z12| 1I(|Z12| ≤ C log(np))

∣∣D2

]
.

Therefore, we have

E
[
f(D2)2
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(A4.49)

and meanwhile,

E
[
f1(D2)2

]
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xκ

2
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12] ≤ E[X̃4]1/2E[Ṽ 4]1/2 ≤ 12κ2
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2
v.,

(A4.50)

where the first inequalities are by Jensen’s inequality, the second are by Cauchy-Schwarz inequality,

and the third are due to the fact that E[X̃4] ≤ 12κ2
x, E[Ṽ 4] ≤ 12κ2

v (Lemma A4.18). Combining

(A4.49) and (A4.50), we have

E
[
f(D2)2

]
≤ (M2

kM
2C2

0 +M2) · 24κ2
xκ

2
v < 24M2

fκ
2
xκ

2
v. (A4.51)

For bounding σ2, apply Lemma A3.2 on Z = Z2
ij and with M1 = M , M2 = MK , and then we
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have
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2
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( n
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,

where the third inequality is by Cauchy-Schwarz inequality, and the fourth is due to subgaussianity

of X̃ and Ṽ , both conditional on W̃ = 0 and unconditionally.

For bounding B2, we have
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,

where the last inequality is by applying Lemma A3.3 with M1 = M and M2 = MK , and noticing

that fW (W2) ∈ [0,M ].

We take

C2
x = CZ · 2κ2

x, C
2
v = CZ · 2κ2

v, for CZ ≥ 4,

t = Ct · 16
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3Mfκxκv

(
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2

)
{log(np)/n}1/2,

u = Cu log p, for Cu > 1,
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2
t {log(np)}3/3, 3

}
. Then by Lemma A3.4, we have
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Here, C1, . . . , C5 are as defined in (A3.2).
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Step II. We bound |E[Ũ ]− E[Ũ ]|, and complete the proof. We have(
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where
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x)} ≤ 4MfCZκ

2
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where the first inequality is by applying Lemma A3.2 on Z = X̃2 1I{X̃2 > 2CZκ
2
x log(np)} and with

M1 = M , M2 = MK , and the second is by the fact that Xij is subgaussian with parameter at most

κ2
x (Lemma A4.18), both conditional on Wi = Wj and unconditionally, and by applying Lemma

A4.19 with a = 2CZκ
2
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Combining the last three displays, we have(
n
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where A2 = 4MfCZκxκv.

We have
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where (i) is by (A4.52). We take C2
t = Cu = c > 1, and CZ = max

{
2c, 4

}
≤ 2c + 2, for positive

absolute constant c. This completes the proof.
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Lemma A4.22. Let Di = (Xi, Vi,Wi) be i.i.d. for i = 1, . . . , n, and K(·) be a positive kernel

function, such that
∫ +∞
−∞ K(w) dw = 1, and that
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absolute constant K1, and assume that hn ≤ C0 for positive constant C0. Suppose n > max
{
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(A4.53)

Here C1, . . . , C5 are as defined in (A3.2), and
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where γ1 = min
{

2α− 1,−1/2
}

.

Proof of Lemma A4.22. We apply truncation to (Xi − Xj)
2 at level C log(np) for some positive
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absolute constant C, and first focus on U-statistic
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Apply Lemma A3.3 on ϕ = |X1 −X2| and with M1 = M , M2 = MK , we have
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(A4.55)

while using a similar argument as used in proof of Lemma A3.3, for some t ∈ [0, 1], we have
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Combining (A4.54)-(A4.56), and by Jensen’s inequality, we have
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(A4.57)

Using a similar argument as used in proof of Lemma A3.2, for some t ∈ [0, 1], we have
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We also have
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(A4.59)

where the first inequality is by Cauchy-Schwarz inequality, second is by applying Lemma A3.2 on

Z = (X1 − X2)4 with M1 = M , M2 = MK , and third is by subgaussianity of X̃ conditional on

W̃ = 0 and unconditionally. Combining (A4.57)-(A4.59), we have
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(A4.60)

By a similar argument as used in (A4.56), for some t ∈ [0, 1], we have
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Combining (A4.60) and (A4.61), we have

B2 ≤ 2CMKn log(np)

hn

{
M2
vMMK(1 + C0)h2α

n +M2
d (M +MMKC0)

}
≤ 2CMK

{
M2
vMMK(1 + C0)h2α

n +M2
d (M +MMKC0)

}
K−1

1 n3/2{log(np)}1/2

= τ5n
3/2{log(np)}1/2

50



We take

C = CZ · 2κ2
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3
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)
{log(np)/n}1/2,

u = Cu log p, for Cu > 1,
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Step II. We bound |E[Ũ ]− E[U ]|, and complete the proof.
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where the last inequality is by the fact that |w|αK(w) < M and by applying Lemma A3.2 on Z = 1

with M1 = M , M2 = MK .

Combining the last two displays, and apply Cauchy-Schwarz inequality, we have(
n

2

)−1∣∣E[Ũ ]− E[U ]
∣∣

=
∣∣∣E[ 1

hn
K
(W1 −W2

hn

)
(X1 −X2)(V1 − V2) 1I

{
(X1 −X2)2 > C log(np)

}]∣∣∣
≤E
[ 1

hn
K
(W1 −W2

hn

)
(X1 −X2)2 1I

{
(X1 −X2)2 > C log(np)

}] 1
2E
[ 1

hn
K
(W1 −W2

hn

)
(V1 − V2)2

] 1
2

≤A2 · {log(np)/n}1/2,
(A4.62)

where A2 = 2(M +MMKC0) · (MvC
α
0 +Md)CZκx.

51



Denote A[n] =
{

(Xi −Xj)
2 ≤ C log(np), i, j ∈ [n], i < j

}
, and we have

P
{(n

2

)−1∣∣U − E[U ]
∣∣ ≥ (A1 +A2) ·

( log(np)

n

)1/2}
≤P
{(n

2

)−1∣∣U − E[U ]
∣∣ ≥ (A1 +A2) ·

( log(np)

n

)1/2
∩ A[n]

}
+ P(Ac

[n])

≤P
{(n

2

)−1∣∣Ũ − E[U ]
∣∣ ≥ (A1 +A2) ·

( log(np)

n

)1/2
∩ A[n]

}
+ P(Ac

[n])

≤P
{(n

2

)−1∣∣Ũ − E[U ]
∣∣ ≥ (A1 +A2) ·

( log(np)

n

)1/2}
+ P(Ac

[n])

(i)

≤P
{(n

2

)−1∣∣Ũ − E[Ũ ]
∣∣ ≥ A1 ·

( log(np)

n

)1/2}
+ P(Ac

[n])

≤2 exp(−C2
t log(np)) + C5 exp(−Cu log p) +

n2

2
exp{−2CZ log(np)/2}

≤2 exp(−C2
t log(np)) + C5 exp(−Cu log p) +

1

2
exp{−CZ log p/2},

where (i) is by (A4.62). This completes the proof.
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