Supplement to “Pairwise Difference Estimation of High
Dimensional Partially Linear Model”

Fang Han? Zhao Ren! and Yuxin Zhu!

This supplementary material provides notation introduction, additional results, technical challenges
of the analysis, and all the technical proofs. For almost all proof subsections in Section A4, we first
restate the target theorem or lemma with more explicit dependence among all relevant constants,
and then provide the details of its proof.

A1 Notation

Throughout the paper, we define R, Z, and Z™ to be sets of real numbers, integers, and positive

integers. Forn € ZT, write [n] = {1,...,n}. Let I(-) stand for the indicator function. For arbitrary
vectors v, v’ € RP and 0 < ¢ < oo, we define |v]lo = >-7_; W(v; # 0), [lollg = >7F_; |7, and
(v,0") = 37F_; vjvi. For an arbitrary matrix Q = (Q;5) € RP*9, write [|Q|oo = maxep,) D1 Q).

For a symmetric real matrix €, let Apin(€2) denote its smallest eigenvalue. For a set S, we denote |S|
to be its cardinality and S€ to be its complement. For a vector v € RP and an index set S, we write
vs € RISl to be the sub-vector of v of components indexed by S. For a real function f : X — R,
let || flloc = supsey f(z). For an arbitrary function f : RF - R, we use Vf = (Vif,...,Vif)T to
denote its gradient. For some absolutely continuous random vector X € R?, let fx denote its density
function, F'x denote its distribution function, and ¥ x denote its covariance matrix. For some joint
continuous random vector (X7, W)T € RPT! and some measurable function () : R? — R™ let
Jwiw(x)(w, 2) denote the value of the conditional density of W = w given 1(X) = z. For any two
numbers a,b € R, we define a V b = max(a,b) and a A b = min(a,b). For any two real sequences
{an} and {b,}, we write a, < by, or equivalently b, = a, if there exists an absolute constant C'
such that |a,| < C|b,| for any large enough n. We write a,, < b, if a, < b, and b, < a,. We
denote I, to be the p x p identity matrix for p € ZT. Let ¢,/,C,C” > 0 be generic constants, whose
actual values may vary from place to place.

In addition, we write BS = {z € RP : ||z]|2 < 1} and 85_1 ={z eRP:|z|s=1}. Let ¢; € R?
be a vector that has 1 at the j-th position, and 0 elsewhere.
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A2 Additional Results

A2.1 Examples satisfying Assumption 5

Example A2.1. Suppose function g : R — R is piecewise (M}, «)-Holder for some « € (0, 1], and
have discontinuity points ai,...,a; with jump size bounded in absolute value by C,, for positive
absolute constants My, and Cy. Also suppose |fw (w)| < M for some positive absolute constant M.
Consider set

4= U{ —00,05]  [a5,+00)} U {laj, +00) x (o0, 0,1} },

and consider box kernel function K(w) = I(|Jw| < 1/2). Then
lg(w) — g(w2)] < (J + 1)My - [wy — wa|* + JCy W{(w1,w2) € A},
for any wy,ws € R, and that

1 Wi
B[ (52) 1{owm) € )]

J a; +o00 ,
=,§Z /. / T s = wal < 2} o () o () o o < .

Thus we have verified two equations in Assumption 5 with M, = (J + 1)My, My = JC,, and
M, = JM?/4.

Example A2.2. Suppose W ~ Unif[0, 1], kernel function K(w) = I(w € [-1/2,1/2]), and

{w, w e [0,1/2),

9= Vwr1,  wepy21]

Suppose h < 1/2 and consider a slightly different set A = {[1/4,1/2] x [1/2,3/4]} U {[1/2,3/4] x
[1/4,1/2]} than that in Example A2.1. One can easily check that |g(w1) — g(w2)| < 3|wy — wo| +
I{(w1,ws) € A}, and

E[iK(WhJ) T{(Wi, W;) € A}| = /4.

Thus we have verified two equations in Assumption 5 with My, =3, My =1, and M, = 1/4.

A2.2 Extending results to heavy-tailed noise

Corollary A2.1. Assume that there exist some absolute constants K1,Cy > 0 and 1/(2 +¢€) <
€ < 3/4, such that

hn € [K1(logp/n)'/?,Cy)  and

n > C{(logp)* P19 v (log p)® v ¢*3(log p)'/* v q(log p)*},

1/2 < Cy, and the quantity ¢ and the dependence of constant C' will be specified

where K (logp/n) i
case by case below. Denote 1, = }||E[X X T‘W = 0][loc. We then have, replacing Assumption

12 with Assumption 17 in corresponding results, the following assertions are still true. Also all



three positive constants C’, ¢, ¢ that have different values in specific cases, but only depend on
M, Mg, Co, Kz, ke, My, &, C.

(1) Analogue of Theorem 3.1: Assume Assumption 14 holds with v = 1. Set ¢ = s. Assume
further that A\, > C’{hn + (logp/n)l/Q}, where C only depends on M, Mg, Cy, ke, My, k¢,
My, € e,¢, K1. Then under Assumptions 6-11, 14, 15, and 17, we have

P(thn — B*H% < C’s)\i) > 1 — cexp(—clogp) — cexp(—c logn) — €.

(2) Analogue of Theorem 3.2: Assume Assumption 14 holds with a general v € (0,1].
Set ¢ = s. Assume further that A, > C'{(logp/n)l/2 + h%}, where C' only depends on
M, My, Co, Kgy My, ke, My, & €,(,y, K1. Then under Assumptions 6-11, 14, 15, and 17, we
have

P(|Bn, — B°[3 < C'sA2) > 1 — cexp(— log p) — cexp(—c' logn) — en.

(3) Analogue of Theorem 3.3: Assume Assumption 14 holds with a general v € [1/4,1]. Set
q= 5—|—nh?ﬂ/ log p. Assume further that A\, > C’{hn + 1, (log p/n)l/Q}, where C only depends
on M, Mg, Co, kg, My, ke, My, &, €,(,v, K1. Then under Assumptions 6-8, 10-11, 14-16, and
17, we have

~ 1 A2ha?
PLIB, — 813 < C' (22 + 22 4 Ko

)} > 1 —cexp(—clogp) — cexp(—c logn) — €.
n log p

(4) Analogue of Theorem 2.3:

a. Assume that g(-) is a-Holder for o > 1, and g(-) has compact support when a > 1.
Set ¢ = s. Assume further that \, > C{h, + (logp/n)'/?} and n > (logp)*, where
C only depends on M, My, Cy, g, My, ke, My, &, €, K1, and Holder parameters of g(-).
Then under Assumptions 6-8, 9, 10-11, 13, and 17, we have

P(||Br, — B[I3 < C'sA2) > 1 — cexp(—c logp) — cexp(—c logn).

b. Assumption 5 holds with o € (0,1]. Set ¢ = s. Assume further that A\, >
C{(logp/n)l/z—i—h%} and n > C(log p)?, where C only depends on M, My, Co, Kz, My, ke,
My, € e, K1, My, My, My, and v = o if MgM, =0, v = aA1/2 if otherwise. Then under
Assumptions 6-8, 9’, 10-11, 13 and 17, we have

P(|Bn, — B*13 < C'sA7) > 1 — cexp(—c log p) — cexp(—c’ logn).

c. Assume Assumption 5 holds with o € [1/4,1]. Set ¢ = s 4+ nh2'/logp. Assume
further that A\, > C{hn + nn(logp/n)l/Z} and n > C(logp)?*, where C only depends on
M, Mg, Co, ke, My, kg, My, & €, Ky, Mg, Mg, M, and v = « if MgM, =0,v=aAN1/2if
otherwise. Then under Assumptions 6-8, 9, 10-11, 13 and 17,

~ slo nAZh2
P{IB, — 81} < €' (22 + 2B 4 T
n log p

)} > 1—cexp(—c logp) — cexp(—c logn).

(5) Analogue of Theorem 2.2: Set ¢ = s. Assume that A, > C{h, + (logp/n)l/Q} and
n > C(log p)*, where C depends only on M, Mk, Cy, kg, My, ke, My, &, €, K1, My. Then under



Assumptions 6-11, 4, and 17, we have
]P’(thn — B*H% < C's/\%) > 1 — cexp(—c logp) — cexp(—c logn).

A3 Technical challenges of the analysis

The main results of the paper, including Theorems 3.1, 3.2, 3.3, 2.2, as well as Theorem 2.3, are all
based on the general framework introduced in Section 2.1. For this, one major object of interest
is to verify the empirical RE condition (Assumption 3 in Section 2.1) based on the population RE
conditions such as Assumption 9 and its variant Assumption 16. This result is formally stated in
Corollary A3.1 at the end of this section. The proof follows the standard reduction principle in
Rudelson and Zhou (2013) applied to Theorem A3.1, the proof of which rests on several advanced
U-statistics exponential inequalities (Giné et al., 2000; Houdré and Reynaud-Bouret, 2003) and
nonasymptotic random matrix analysis tools specifically tailored for U-matrices (Vershynin, 2012;
Mitra and Zhang, 2014), and thus deserves a discussion.

We start with a definition of the restricted spectral norm (Han and Liu, 2016). For an arbitrary
p by p real matrix M and an integer g € [p], the g-restricted spectral norm || M||24 of M is defined
to be

’UTM’U‘
vTo |

[ M |2

l2,g == max ‘
vERP ||v]jo<gq

As pointed in the seminal paper Rudelson and Zhou (2013), the empirical RE condition, i.e.,
Assumption 3, is closely related to the g-restricted spectral norm of Hessian matrix for the loss
function regarding a special choice of q. Our proof relies on a study of this g-restricted spectral
norm.
In Assumption 3, letting fn(e, hn) = En(ﬁ , hn), simple algebra yields
7 T (T - 1 Wij .. ¥T T
STn(A, hy) = A {(2) > han(ﬁ>XﬁX¢j}A — ATTLA.
1<)

Note that fn is a random U-matrix, namely, a random matrix formulated as a matrix-valued
U-statistic. As was discussed in the previous sections, h, is usually picked to be of the order
(log p/n)l/ 2 rendering a large bump as Wij is close to zero. Consequently, when h,, is set in the
regime of interest, the variance of the kernel ga(D;, D;) = hglK(WN/ij/hn)()?%A)Q will explode at
the rate of (n/logp)'/?, leading to a loose and sub-optimal bound when using Bernstein inequality
for non-degenerate U-statistics (see, e.g., Proposition 2.3(a) in Arcones and Gine (1993)). Thus a

more careful study of this random U-matrix T, is need.
The next theorem gives a concentration inequality for 7}, under the g-restricted spectral norm.

Theorem A3.1. For some g € [p], suppose there exists some absolute constant C' > 0 such that
n>C-[{¢"*(logp)!/* v q(logp)*} +log(1/a)].
Then under Assumptions 7, 8, and 11, with probability at least 1 — «,

q(logp)/*  q(logp)? Jrlog(l/a)}l/2
n3/4 n n

1T~ ETullag < €' |

)



where C” is a positive constant only depending on M, My, Cy, ks, C.

The proof of Theorem A3.1 follows the celebrated Hoeffding’s decomposition. However, there
are two major challenges. On one hand, different from most existing investigations on nonasymp-
totic random matrix theory, the first order term of 5En(A, hy), after decomposition, does not have
a natural product structure, namely, it cannot be written as n ! Sy UZ'U,L»T for some independent
random vectors {U; € RP,i € [n]}. Hence, we cannot directly follow those well-established argu-
ments based on a natural product structure, but have to resort to properties of the kernel. To this
end, we state the following two auxiliary lemmas, which are repeatedly used in the proofs, and can
be regarded as extensions to the classic results in, for example, Robinson (1988).

Lemma A3.2. Assume random variables W € R and Z € Z, such that

‘3fwz(w, z) <

ow -

for some positive constant M; with any z in the range of Z and any w in the range of W. Also, let

K(-) be a kernel function such that fjozo |w|K (w) dw < Mj for some constant My > 0. Then we
have for any h > 0,

M17

1 /W
‘E[EK(F)Z] _E[Z|W = o]fW(o)( < My ME[|Z[]h.
Lemma A3.3. Let (W3, Z2;), (Wa, Z2) € R x Z be i.i.d.. Assume

’afW1Z1 (w7 Z)

ow

holds for some positive constant M; with any z in the range of Z; and any w in the range of W.
Let K(-) be a kernel function such that fj;o |lw| K (w) dw < My for some constant My > 0. Let
¢ : Z?2 — R be a measurable function. Then we have for any h > 0,

[ P2) (Moo v, 7] (20, 20) Wi = W W 2] v, (W2)|

< MiMyE[|p( 21, Z2)|| Z2] h.

‘SMI

On the other hand, the second order term of 5En(A, hy), after decomposition, forms a degenerate
U-statistic, and requires further study. To control this term, one might consider using the two-term
Bernstein inequality for degenerate U-statistics (see, e.g., Proposition 2.3(c) in Arcones and Gine
(1993) or Theorem 4.1.2 in de la Pena and Giné (2012)). But it will add an additional polynomial
log p multiplicity term in the upper bound. Instead, we adopt the sharpest four-term Bernstein
inequality discovered by Giné et al. (2000), get rid of several inexplicit terms (e.g., the o — /5
norm), and formulate it into the following user-friendly tail inequality. We state this result in the
following auxiliary lemma. The constants here are able to be explicitly calculated thanks to Houdré
and Reynaud-Bouret (2003).

Lemma A3.4. Let Zy,...,Z,,Z € Z be iid., and g : 22 — R be a symmetric measurable
function with E[g(Z1, Z5)] < oo. Write Uy (g) = >ic; 9(Ziy Zj) and f(z) = Elg(Z,z)]. Let

By = ll9llee: Bf = S;PEUQ(Zl; Z3)||Z2], and o* = E[g(Z1, Z2)?].
2



In addition, denote B? = nsup, E[g(Z1, ZQ)Q‘ZQ]. We then have

P(|Un(9)—E[Un(9)]| > t+01nau1/2+Cngu+C3Bu3/2+C’4Bgu2) (A3.1)

—12 /n?

8nE[f(Z2)?] + 4By - t/n
where we take positive absolute constants

C1=2(1+€)*2, (A3.2)

Oy =8V2(2+e+e ),

Cs = e(1+e 1)?(5/2+32¢ )+ [{2v2(2+e+e )}V (1+€)%/V2],

Cy={de(1+€e 1)?(5/2+32¢7 )} v4(l +€)?/3,

Cs =2.77,

<2exp ( ) + Cse™,

for any € > 0. For cases that f(z) = 0 (corresponding to the degenerate case), t can be set as zero
and the first term on the second line of (A3.1) can be eliminated.

Combining Theorem A3.1 with Theorem 10 and the follow-up arguments in Rudelson and
Zhou (2013), we immediately have the following corollary, which verifies the desired empirical RE
condition corresponding to different situations. Note that Assumption 9’ is stronger than both
Assumption 9 and its variant Assumption 16. Thus the results below still hold when Assumption
9’ is imposed in Section 2.2.2.

Corollary A3.1. Suppose Assumptions 6-8 and 10-11 are satisfied.

(1) Assume Assumption 9 holds, and that
n > C{s(logp)'/* v s(logp)*},
for some constant C' > 0 only depending on M, My, Co, Kz, ke, My. Then we have
/igMg
4
>1 — cexp(—clogp) — cexp(—c'n),

P[6Zn(A, ha) = " AIR for all A € {A" € RP: [ Aselly < 3l|As]1}]

where ¢, ¢’ are positive constants only depending on M, My, Cy, Kz, ke, My, C.

(2) Assume Assumption 16 holds, and that
n > C[{s+nhy!/logp}**(logp)'/* v {s + nh2) /log p}(log p)°],

for some constant C' > 0 only depending on M, My, Co, Kz, ke, My, ,y. Then we have
ke

- M
P{éLn(A, ha) > ZERLIAYR for all A € Cga}

4
>1 — cexp(—clogp) — cexp(—c'n),

2
where C§7,1 = {v € R : [Juge|1 < 3|lvglls for some J C [p] and [J| < s + (*nhy’/logp)},
and ¢, ¢’ are positive constants only depending on M, My, Co, Ky, ke, My, C.



A4 Technical proofs

A4.1 Proof of Theorem 2.1
Proof. By (2.3), we have

167, — %113 < pp.-
So it suffices to show that
10n,, — 0, 115 < 95,75 /K1
holds with probability at least 1 — €1, — €2, whenever A, < K7/ 3§}/ 2 We split the rest of the

proof into two main steps.
Step I. Denote A =6, — 971”. Recall definition of sets S, and C S and further define function

F(A) = Tul@, + Asha) = Tu@ 1) + M(185, + Al — 185, 11)-
For the first step, we show that if 7(A) > 0 for all A € Cz N {A" € RP : ||A'||lz = n}, then
|A]l2 < 7. To this end, we first show that
AeCs . (A4.1)
Applying triangle inequality and some algebra, we obtain
185, + Al 185,11 = 1Ag | — 1Ag, |1 (Ad.2)
We also have, with probability at least 1 — €1 5,
To(05, + A hy) = To(65  ha) > (VEA(65 b)), A)
> —|IVTa @, h)loo - 18] (AL3)
An
~Z2(Iag, I+ 145 1),

Y

where the first inequality is by convexity of fn(g, h) in 6 as assumed in Assumption 3, the second is
by Hoélder’s inequality, and the last is by Assumption 2. Combining (A4.2) and (A4.3), and using

~

the fact that F(A) <0, we have

An pa -
0> Z=(1Ag1h —31Ag,1Ih),

thus proving (A4.1).
Next, we assume that [|All2 > n. Then, because A € C5 and Cg is star-shaped, there exists
some t € (0,1), such that tA € Csz N{A"eRP:||A||ly =n}. However, by convexity of F(-),

F(tA) < tF(A) + (1 —t)F(0) = tF(A) < 0.

By contradiction, we complete the proof of the first step.
Step II. For the second step, we show that under Assumptions 1-3, we have F(A) > 0 for all
AeCs N {A’ ERP: ||A|]2 = n}, for some appropriately chosen 7, and then complete the proof.
Combining Assumptions 2, 3, and (A4.2), for any A € Cz N {A" € RP: ||A'llz = n}, where we

take n = 3§%L/2)\n/m, and A\, < /{17“/(3§}/2) so that n < r, we have that with probability at least



1 —e€1n— e,
F(A) = (VT (65, hn), A) + £1 | Al5 + X165, + Al = 1165, 1)
> —[|VT(6;,, hn)lloo - 1AL + w1l AL + (A [ — [Ag, 1)
“AallAll/2 + w1 Al + A A5 N = 145, 11)
> k1| A3 = 3Ma5y 2 All2/2,
where the first inequality is by Assumption 3, the second is by Hélder’s inequality and (A4.2), the

third is by Assumption 2, and the last is due to the fact that ||Ag [l1 < §711/2|]A§n||2 < §711/2HA||2.
Then we have

v

F(A) > kin? =352 0m/2 = 95,02/ (2k1) > 0,

which, using result from Step I, implies that ||3H% <n? = 95,2 /K.
Combining with Assumption 2, we have

~ . 185,\2
101, — 07113 < =572 + 202,
1
with probability at least 1 — €1, — €2,,. This completes the proof of Theorem 2.1. O

A4.2 Proof of Theorem 3.1

In the sequel, with a slight abuse of notation, we use an equivalent representation of Assumption
15 for writing

P{|Uy, — E[U]| < A{log(np)/n}'/?, forallk € [p]} >1— e,

to replace (3.3), noting that we assume p > n. Hereafter we also slight abuse of notation and do
not distinguish log(np)/n from log p/n.

Theorem A4.1 (Theorem 3.1). Assume Assumption 14 holds with v = 1. Further assume h,, >
K {log(np)/n}'/? for positive absolute constant K7, and assume h,, < Cy for positive constant Cj.
We also take A, > 4(A + A'){log(np)/n}*/? + 8k2MCh,,, where

A" ={16v3(1 + ¢)2 My + 4V3C1 (1 + ¢)V2M 2K 2 480 (1 + ¢)
+8C3(1+ > M MP KTV 4 8Cu(1 + )2 Mg K7 + 8My(c + 2) bk
for positive absolute constant ¢, My = M 4+ MMgCyp, and C1, ..., Cy as defined in (A3.2). Suppose



we have
n > max {64(c +2)%(c + 1){log(np)}3/3, 3,
48v/6 My K2q (210 -6 - \/6Mff<a%q)2/3 144k%

Kip{log(np)}1/?’ Ko Myp " Kip?log(np)’
U632+ ) V20 MM Y2 s
172 L2 g tog(np) } 2,
1 /QgMg
1286 - (20 4 7.5¢) (2 + ¢)Ca M 52 } V2
= g7 log(np),
L KoMy
125 6(c +2)%2C5{144(2 + )2 Mg Mprd Kt + 192M 3k + 8M il }1/2 4 4
I keMy
_210 .6 - \/6(2 4 C)SC4H2 2/3 2/3
T 1 5/3
e eean | loa(m)y,
2116 (20 + 7.5¢)(c + 2) Myr2 9 26 . 3¢
q{log(np)}*, > ’
oMy (20 + 7.5¢) M K2 k¢ Mylog(np)

220{(3M?K2 + 2M2 M2 C2r2) Vv 2M}n§qlog <6ﬁ>
(/igMg)Q A (16/%@Mg)2 ’
22 K2 M2 M2 k2 log(np) }

(ke M)
where ¢ = 2305s. Then under Assumptions 6-12, 14-15, we have
~ 2885\2
_ a*)2 < 25527
1B, = 518 < 23

with probability at least 1 — 12.54exp(—clogp) — 2exp(—c'n) — €, - p, where ¢
64k My)/[29{(3M?K2 + 2M? M2 CZr2) V 2M }K2].

Proof. See Proof of Theorem 3.2.

A4.3 Proof of Theorem 3.2

g5 {log(np)}3

(KZMZ A

Theorem A4.2 (Theorem 3.2). Assume Assumption 14 holds with a general v € (0, 1]. Further
assume hy,, > K1{log(np)/n}'/? for positive absolute constant K, and assume h,, < Cq for positive

constant Cp. We also take ), > 4(A + A’){log(np)/n}'/? + 82 MChy, where
AT ={16V3(1+ )2 My + 4V3C1 (1 + ) V2M K2 4805 (1 + ¢)

+8C3(1+ > M MP KT 4 8Cu(1 + )2 My K + 8My(c + 2) bk



for positive absolute constant ¢, My = M 4+ MMgCp, and C1, ..., Cy as defined in (A3.2). Suppose
we have

n > max {64(c +2)%(c + 1){log(np)}3/3, 3,
48v/6 My k2q <210 -6 - \/6Mf/-€?cq)2/3 144k4

Kip{log(np) }1/2’ ke Mp " Kip? log(np)’
216 /32 + )20 My P MY k243
7 T 1 log(aup)} 1,
K" "k¢M,

r28.6- (20 4 7.5¢)(2 + ¢)Ca M K2 11/2

2 BT @ T OO ) 2 log(p),

128 6(c + 2)3/2C3{144(2 + )2 Mg Myrd K" + 192M 3kt + 8Mpri}l /24, B
g5 {log(np)}3,

L vy,

12106 v/6(2 + ¢)3Cyr272/3

e ] e toa(nn)y,

2116+ (20 + 7.5¢)(c + 2) M k2 o{log(np))? 26 . 3¢

IQ[MZ ’ (20 + 7.56)Mf/€%/€gMg log(np) ’

220{(3M?K2 + 2M2 M2 C2r2) V 2M } K2 Jlo (66p>
(KgMg)Q A (16/@@M5) ’
2 K2M2 M2 K2 log(np)}

(kg My)?
where ¢ = 2305s. Then under Assumptions 6-12, 14-15, we have
~ 2885\?
_ A*)2 < 25527
Hﬁhn B ||2 = Mg”% )

with probability at least 1 — 12.54exp(—clogp) — 2exp(—cn) — €, - p, where ¢ = (kZMZ A
64k M) /[29{(8M?K2 + 2M>MZCZr2) V 2M }K2].

Proof. We adopt the framework as described in Section 2.1 for 6" = 5%, I'¢(0) = Lo(B), fn(H, h) =
Ln(B,h), Tn(0) = EL, (B, h) , and take 0 = B, which yields s, < s and p, = 0.
In addition to (3.2), denote

= (3) S ()

1<j
n
Ugp = <2> ; h ( ) zgk (/Bhn 6 )
and observe that
ViLn(8)| < 2{|Usk — E[Us]| + |Ux — E[U]| + [E[Ua4]|}, (A4.4)

where Uy, is defined in (3.2). Apply Lemma A4.21 on D; = (X, u;, W;), with conditions of lemma
satisfied by Assumptions 7, 8, 11 and 12, and then we have

P{|Us. — E[U1x]| > A'{log(np)/n}'/*} < 6.77 exp{—(c + 1) log p}, (A4.5)

10



for positive absolute constant ¢, and A’ as defined in (A4.48), and when n > max {16(c + 2)*(c +
1) {log(np)}3/3, 3}. o

Apply Lemma A3.2 on Z = |XiijiE (B — B%)|, with conditions of lemma satisfied by Assump-
tions 7, 8, 11, and 14, and then we have

IE[Usk]| < E[|Xiju X585, — B)|[W = 0] M + MMk CoE[| XX (85, — 87)]]
< 2k2(M + M Mg Co)Ch].
Combining (A4.4)-(A4.6), and Assumption 15, we have
P{for any k € [p], |ViLn(5*)| < (24 + 24"){log(np) /n}*/? + 4k2(M + MM Co)Ch} }
>1—6.77exp(—clogp) — p - €y,

(A4.6)

for positive absolute constant ¢, and when we appropriately take n bounded from below. Assume
A > 4(A + AN {log(np) /n}/? 4+ 8k2(M + M Mg Co)Chyy, which verifies Assumption 2.

We verify Assumption 3 by applying Corollary A3.1, and complete the proof by Theorem
2.1. O

A4.4 Proof of Theorem 3.3

Theorem A4.3 (Theorem 3.3). Assume Assumption 14 holds with a general v € [1/4, 1]. Further
assume h,, > K1{log(np)/n}'/? for positive absolute constant K7, and assume h,, < Cy for positive
constant Cp. We also take A, > 4(A” + A + Mn,){log(np)/n}/? + 8M Mg C'/?k2h,,, where
_1 111
A" ={16v3M (1 + ¢)% + 4VBC1MP K (14 ¢)2 +8Ca(1+¢) + 8CsMEMP K, * (1 +¢)2
+8C, MK (1 +¢)* +8Ms(c+2)} - (Kyky + CK2)
i =[[E[XXT|W =0]

loo-
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Here, C1,...,Cy are as defined in (A3.2), C' > CQCg7 and ¢ > 0 are some absolute constants, and
My =M + MMy Cp. Suppose we have

n > max {(C - CZCgW)slog(np), 64(c + 2)%(c + 1){log(np)}3/3, 3,
48v/6 My r2q <210 -6 - \/éangq)Q/s 144r2

Kip{log(np)}/?’ reMyp " Kip?log(np)’
216 \/3(2 + )20 MY M K2 a3
72 E ] og(np)y
1 TReMy
1286 (20 + 7.5¢)(2 4 ¢)CoM k2 ] 2
=1 g/ log(np),
L KoMy
128 6(c+2)%2C3{144(2 + ¢)* Mg My K"+ 192M 7k} + 8Mprg /214 0
q5 {log(np)}5,

L KoMy
12196 V6(2+ ¢)Cur22/3 55

x 1 5/3
] e toa(nn)y,
2116+ (20 + 7.5¢)(c + 2) M k2 5 26 . 3¢

q{log(np)}~, 5 ;
KoMy (20 + 7.5¢) M yr2 k¢ My log(np)

2200(3M2Kk2 + 2M2M2C23k2) v 2M } K2 6ep
(ke M)2 A (168, M,)?2 alog (*)

22 K2 M2 M2 k2 log(np) }

(reMy)? ’

where ¢ = 2305{s + Cznhgﬂ/log(np)}. Then under Assumptions 6-8, 10-12, 14-16, we have
288s5A2  2slog(np) 28812
M3 + n {MZQH% log(np)
with probability at least 1 — 19.31exp(—clogp) — 2exp(—cn) — €, - p, where ¢ = (kZMZ A
64k My)/[29{(3M?K2 + 2M? M2 C2r2) V 2M }£2].

1Bn, — 87113 < +2} -,

Proof. We adopt the framework as described in Section 2.1 for 6* = 8*, To(6) = Lo(8), Tn(6,h) =
LB, h), Tu(6) = EL(8, h).
We take 0, = 3;; such that, for each j € [p],

* : * 1/2.
B = Bin» 185, ;1 > {log(np)/n} /2 (A4.7)
" 0, if otherwise.
Then under Assumption 14, we have
pa < slog(np)/n+ ¢*hy,
Cnhy (A4.8)
Sp < s+ .
log(np)

We verify Assumption 2 by applying Lemma A4.4 below with A” = A’ + A", verify Assumption 3
by applying Corollary A3.1 (2) under Assumption 16, and complete the proof by Theorem 2.1.
O
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Lemma A4.4. Assume h, > Ki{log(np)/n}'/? for positive absolute constant K, and assume
hy, < Cy for positive constant Cy. Denote n, = HE[XXT‘W = O]HOO. We also take A, >
4(A" + A" + A + Mn,){log(np)/n}'/? + 8M My C'/?k2h,,, where A’ and A” are as specified in
(A4.48), and C' > ¢ 2037 is some positive absolute constants. Suppose we have

n > max {(C — (2037)5 log(np), 64(c + 2)*(c + 1){log(np)}*/3, 3},
for positive absolute constant ¢ > 0. Then under Assumptions Assumptions 6-8, 10-12, 14-15, we
have

P(Q’kan(g,’:n, hn)| < An for all k € [p]) > 1— 13.54exp(—clogp) — €, - p.
Proof of Lemma Aj.4. In addition to (3.2), denote
—1 o
n 1 Wij S~
Ui, = <2> Z]: h7nK<ﬁ>kauzja

—1 LN - ~

n

i<j
-1 17
n 1 Wi\ & ST, 0% S
Usp, = <2> ; h—nK< ™ >Xiijij(/8hn — Bhn)s
and observe that
VLB, )| < 201 — E[Uw]| + Ui — EUai]] + |Ux — E[U]] + [EUs])),  (A49)

where in decomposing the left hand side, we have utilized the fact that E[kan(ﬁ;';n,hn)] = 0.
Result of (A4.44) holds, thus bounding |Uyx — E[U1x]], i.e.,

P{|U1x — E[U1]| > A”{log(np)/n}lﬂ} < 6.77exp{—(c+ 1) logp}. (A4.10)
We bound the rest~of the components on the right hand side of the last display.

We have ||* -3 12 < slog(np)/n+§2h%ﬂ < C for some positive absolute constant C' > CQCS'Y,
when n > (C — C2C§7)slog(np). Apply Lemma A4.21 on D; = (Xu, X (8" — 5};),%), with
conditions of lemma satisfied by Assumptions 7, 8, 11, and that ||3* — B;_;n |2 < C, and we have

P{|Uar, — E[Un]| > A'{log(np)/n}'/?} < 6.77 exp{—(c+ 1)logp}, (A4.11)
for positive constants A’ and ¢, and when we assume n > max {64(c + 2)?(c + 1){log(np)}?/3, 3}.
Here, A’ is as specified in (A4.48).

Apply Lemma A3.3 with conditions of lemma satisfied by Assumptions 7 (Lemma A4.15) and

8 (Lemma A4.16), and we have
[E[Usk]| < ME[|Xiju X555, — 57l [Wij = 0] + MMichnE[| Xin X5(57, = B, )]
< M, {log(np)/n}*? + MMgC'V? . 2k%h,,

where the second inequality is due to Cauchy-Schwarz and Assumption 11 (Lemmas A4.17 and
A4.18).

(A4.12)

13



Combining (A4.9)-(A4.12) and Assumption 15, we have

P{for any k € [p], |ViLn(B, . hn)| < {2(4"+ A" + A+ Mnn){w}l/2 +AMMgCY?K2h,)

n
>1—13.54pexp{—(c+ 1) logp} — €, - p,

for positive absolute constant ¢, and when we appropriately take n bounded from below. Here A" and
A" are as specified in (A4.48). Assume )\, > 4(A'+A"+A+Mn,){log(np) /n}/?+8M M C'/?K2h,,.
This completes the proof. O

A4.5 Proof of Theorem 3.4

Theorem A4.5 (Theorem 3.4). Assume h < Cj for positive constant Cp, and that h? < rxyMp -
(4M My k%)=, Under Assumptions 6-8, 9, 10-11, and 13, and when g is (L, a)-Hélder for a > 1
(g has bounded support when o > 1), we have

18 = B%[l2 < Ch,

where

¢ {4 (LgMMK + MMKEa2/2) 12 16k,(M + MMgC2)Y/? - L2M M }
= Imax .
koM, ’ koM ’

where L, is the Lipschitz constant for g (L, = L when a = 1).

Proof. Refer to Proof of Theorem 3.5 when g is (L, 1)-Holder, taking My, = L and My = M, = 0,
in which case Assumption 5 is not needed. Note that higher-order Holder with compact support
implies (L, 1)-Holder. Thus we complete the proof. O

A4.6 Proof of Theorem 3.5

Theorem A4.6. Assume h < Cj for positive constant Cp, and that h? < kM, - (4MMgk2)~ .
Under Assumptions 5, 6-8, 9’, 10-11, and 13, we have

18 — B7[l2 < CR7,

where

¢ — max {4 . (Jw;zw]wkcga—27 + M2M,Cy~ > + MMgEw?Cy /2)1/2
KoMy ’
16%, (M + MMk C3)V? - (MZMMgCy* ™ + M2M,Cy~ )12
KoMy ’
v =« if MgM, =0, and v = min {a, 1/2} if otherwise.

Proof of Theorem 3.5. We prove the lemma in three steps. s
Step L. We show that |Lo(8};) — Lo(8)] is lower bounded for Lo(8) = E[(Y — XT3)?|W =
0] f37(0). By Assumptions 10 and 9’, we have

9°Lo(B)

Amm(w) — D\in (E[XXT|[W = 0]) £:(0) > 260 M.

14



Therefore, for some f; = 8}, +t(8* — B} ), t € [0,1], we have

1 O%L
Lo(B3) = Lo(B%) = 5(8; = 877 aggﬂ ) |, (B = 8% = meM| ;= 81,

Step II. We show that |Lj, (8) — Lo()| is upper bounded. Observe that

L1 (8) = Lo(B) g\m[;K(f){f(ﬁ — 8] —E[{(XT(8 - 5P W = 0] f7:(0)
VE[E(52) (W) — o)) ity
+ ]E{%K(%)#] ~E[#[W = 0] f(0)

cof[Lie (W) X705 - 5y tgm) - o)

And we bound each component on the right hand side of above inequality.

By Taylor’s expansion, we have
1E[1K(W){)?T 5—ﬂ*)}2} ~E[{XT(8 - )W = 0] f7.(0)
= / / ) i r(5 ey (020 dw APy (0)
/Oo” v =) (0:0) AFr s_y ()]
‘/00/ K)o { 17 (- 0y (0o 0) = Fi () (0 0)} A dF g (0)

//K 6fW\XT5 g (W) )‘ wh
ow (0,)

Pty WI)?T(Bfﬁ*)(w’ v)
+ Ow?

where because (W, XT(8 — ) and (=W, —XT(8 — 8*)) are identically distributed, we have

fWIXT(ﬁ g (W v)
/ / K(w ow ’(o,v)wh} dwdFgr(_ ()

8fW T( (w,v) Of= w1 w(w,v)

|XT(8-5%) W|XT(8—5%)

K(w -

/ / ow ‘<0v>+ ow ’(o,fm}whd“’d % (a-pn) (V)

w2h2} dw dF
(Twh,v)

T(5-p (V)]

Therefore, using Assumptions 7, 8 (Lemmas A4.15 and A4.16), and 13, we further have
1
[ Lr (Y ){XT B8] ~E{XT(68 -89 W = 0] f5(0)

fWIXT,B ﬂ*)( v) 2,2 (A4.14)
_‘/ / K(w w2 [y J 07 dw dFsr 5 (0)

SMMKIE[{XT(ﬂ — B )}2] h* < 2MMgr3 |8 — B*|5h>.
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Using an identical argument, by Assumptions 7, 8 (Lemmas A4.15 and A4.16), and finite second
moment assumption E[u?] < co, we have

‘E[%K(%)qf] CE[@W = 0] fW(O)‘ < MMyE[i2]h2. (A4.15)

By Assumption 5, we have

E[;K(W};J Howa) — 9wy}

<onge[ ()] s g e (5

) I{(W;, W;) € A}]

SZMEE[E (%)Wvﬁﬂ 4 2M2M,h,

where

E[%K(%)\Wﬁﬂ - /Oo K (w)|w]? W2 f (wh) dw < M Mch?.

Therefore, we have

E[iK(W];J) {g(W;) — g(Wj)}Q] < 2MZM Mych®® + 2M3Myh. (A4.16)
By (A4.14), (A4.16), and applying Holder’s inequality, we also have
[ <W“>f (5= #am) a7}
<e[Lre (W) (xr09 - 1) -E[%K(ijj) (o) — 9wy (Ad17)

<(2MMgr2|8 - B* ||2h2 + 26218 — B713M)"? x (2M2MMgch®® + 2M3M,h)'?

<a1||8 — B*|]2R7,
where v = « if MgM, = 0, and v = min {a, 1/2} if otherwise, and a; = 2k, (M + MMK03)1/2 .
(M2ZMMgCF* ™ + M2M,Cy~ )12,
Combining (A4.13)-(A4.17), we have
|Ln(B) = Lo(B)] < 2a1]|8 — B*[l2h” + azh® + as]| 8 — (|30,

where ay = 2M2M My Cy®™ > + 2M3M,Cy ™" + MMyEC) ™", and a3 = 2M Mg 2.
Step III. We combine Step I and Step II, and verify Assumption 14. Using results from Step
I and Step II, we have

keMill B, — 8113 < Lo(B;) — Lo(8”)
= Lo(B) = Ln(Bp) + Lu(6") — Lo(B%) + La(By) — Ln(87)
< [Lo(Bh) = Ln(Bp)| + [Ln(B%) — Lo(B7)
< 2a1(|8; — B*ll2h” + 2021 + as|B; — B*(I3h°.
When h? < kyMy;/(2a3), we have
keMe|| By — 87113 < danl|B; — B*[l2h7 + dazh™,
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which further implies that
8as \1/2  8ay
* _ * < . h'y.
185 = B2 < maX{<wMZ) ’ wMg}
This completes the proof. ]

A4.7 Proof of Theorem 2.3

Theorem A4.7 (Theorem 2.3). Assume h,, > Ki{log(np)/n}'/? for positive absolute constant
K1, and assume h,, < Cj for positive constant Cy. We denote ¢ to be some positive absolute
constant, ¢ = (kZMZ A 64k My)/[2'{(3BM?K2 + 2M?*MEC3k2) V 2M }k2], My = M + M Mg Cy,
and C1,...,Cy as defined in (A3.2) Also denote

T = V2(2+ ¢)" 2k, KT (BMC§ + DMy),

79 = V2(2 4 &)Yk {BMy M(1 4 Co)C8 + DM},

T3 = 4MjM? - (BC§ + D)* - (14 Cf) - k2,

74 = {AB2M Mg r2(1+ Co)C2 ™" 4 2D2 - (12Mk2) Y% - EV2Cy P77} - MK,

75 = 4(2 4+ c)k2{ BM Mg (1 + Co)Ca* + D*M;} My K,
and

A

~

—{16V3M (1 +c)2 + 4\/§ClMJ§K;%(1 +¢)2 +8CH(1+¢) + 803M§(MJ§K;%(1 +0)?
+8C, MK (1 +¢)* +8Ms(c+2)} - (Kpku + CK2)

A :47'31/2(1 +e)/? 4 2ClTi/2(1 + )2 420y (1 4 ¢) + 203751/2(1 +¢)3/?

+ 20471 (14 ¢)? + 4M; - (BC§ + D) - (¢ + 2) ki,
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where y; = min {2a -1, —1/2}. Consider lower bound on n,
n > max {64(6 +2)%(c + 1){log(np)}*/3, 64(c + 2)*(c + V)33 ' {log(np)}*, {log(np)}*?, 3,
48vV6 M k2q (210 -6 - \/6Mf/<;§q)2/3 144k

Kip{log(np)}1/?’ ke Myp " K?p?log(np)’
216 v/3(2 + )20 My P M P K2 4
K12 ! } : q4/3{log(np)}1/3,
- 1 KMy
12% 6 (20 + 7.5¢)(2 + ) CoaMykz /2 )9
_ oM, } g/~ log(np),
2% 6(c +2)2C3{144(2 + )2 M Mpr KT + 192M3k% + 8Myrt}2 12 .
|4 f1og(np)},
. keMy
12106 - V6(2 + )2 Cyr212/3
_ KlfwMg P 5 log(np)
2116 (20 + 7.5¢)(c + 2) M K2 Jlog(np)}? 26 . 3¢
koM " (20 4 7.5¢) M K2k My log(np)’

2200 (3M?%k2 + 2M>*M2C23K2) Vv 2M } k2 o < @)
(H[MZ)Q A (16/‘1@M5)2 7708 ’
22 K2 M? M2 k2 log(np) }
(KeMp)?

(A4.18)

Here, q, B, D, E and a are to be specified in different cases. Suppose that Assumptions 6-8, 9’,
10-12, and 13 hold.

(1) Assume that g is (L, «)-Holder for o > 1, and g has bounded support when o > 1. Also
suppose (A4.18) holds with ¢ = 2305s. We take B = L, where L,, is the Lipschitz constant
for g (Lo = L when = 1), D = E =0, a = 1, and assume \,, > 4(A” 4+ A"){log(np)/n}"/? +
8/1%Mfghn, where

¢ {4 (LgMMK + MMKEa2/2) 1/2 16k, (M + MMy C2)'/? . LgMMK}

= max<4- .
KoM, ’ KoMy

Then we have

~ 28852

Hﬁhn ﬁ ”2 = Mg”? s

with probability at least 1 — 17.81 exp(—clogp) — 2exp(—c'n).

(2) Assume that Assumption 5 holds with a € (0,1]. Suppose that (A4.18) holds with
q = 2305s, and we take B = My, D = My, E = M, and a = «. Further assume that

18



An > 4(A" + A" {log(np)/n}'/? + 8Kk2MChy, where
M2M M C* ™ + M3M,Cy > + MMyEGCE 7 /2172

= 4 . < s
¢ = max { Py
16k, (M + MM C)V? - (MZM My C3™ % + M3M,Cy~2)1/?
KoMy }’
where v = a if MyM, =0, and v = min {a, 1/2} if otherwise. Then we have
~ 2885)2
_ a¥)2 < 25527
1B, 818 <

with probability at least 1 — 17.81 exp(—clogp) — 2exp(—c'n).

(3) Assume that Assumption 5 holds with a € [1/4,1]. Suppose that (A4.18) holds with
q = 2305{s + ¢2nh2 /log(np)}, and take B = My, D = My, E = M, and a = . Denote C
to be some positive absolute constant C' > C2Czw, and suppose n > (C' — C2C§7)slog(np) ,
where

¢ = max {4 . (1\451\41\4;(0(?27 + M2M,Cy~ " + MMgEW?Cy ™ /2)1/2
koM ’
16k, (M + MMC)V? - (MEM My C3™ % + M3M,Cy~27)1/?
/igMg ’
where v = « if MgM, = 0, and v = min {a, 1/2} if otherwise. Further assume A\, >
4(A" + A" 4+ Mny){log(np)/n}/? + 8M My C'/?k2h,,. Then we have
28852 2slog(np) 288n\2
M?r3 + n {Mgnz log(np)
with probability at least 1 — 24.58 exp(—clogp) — 2 exp(—c'n).

1Bh, = 87113 < +2} -,

Proof. We prove the theorem for the case when ¢ is Lipschitz. We verify Assumptions 14 and 15,
and then apply Theorem 3.1. Assumption 14 is verified by applying Theorem 3.4, and Assumption
15 is verified by applying Lemma A4.22. We complete the proof by Theorem 3.1.

The rest of the theorem can be proved based on similar arguments. O

A4.8 Proof of Theorem 2.2

Theorem A4.8 (Theorem 2.2). Assume h,, > K;{log(np)/n}'/? for positive absolute constant K1,
and assume that h,, < Cy for positive constant Cy. Further assume X, > 4(A+ A’)-{log(np) /n}*/>+
4\/§MQMKM/%(1 + Co)hy, where

A={16V3Mp(1+ )Y/ + 4301 MY KTV (14 )2 4+ 8Co(1 + )
+8Cs My MP KTV (14 03 4 8CuMc KT (1 + ¢)2 + 8Mj (¢ + 2) gk,

A =8M M MyCo(1 + Co)a(1 + )% + 201 My M 2 M2 512 (1 4 Co) 2 KT VA (1 + )/

+ 220, MM My(1 + Co)rp K1 (1 + )% + 4Cs MM MY (1 + Co)'2Cy P kp(1 + ¢)?
+ 220 My M, Corp KT (1 + ¢)%/2 4 2v/2M My My (1 + Cy)C,
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for positive absolute constant ¢, My = M 4+ MMgCp, and C1, ..., Cy as defined in (A3.2). Suppose
we have

n > max {64(0 +2)%(c + 1){log(np)}*/3, 64(c + 2)*(c + 1){log(np)}*, {log(np)}*’*, 3,
486 M k2q (210 -6 - %angq)z/z’» 144k4

Kip{log(np)}1/2’ keMep " Kip?log(np)’
216 /3(2 4+ c)l/QCIM}{ﬂMl/Qm% 4/3
72 L2 g og(np) } 2,
K" kM,
1286 (20 + 7.5¢)(2 4 ¢)Co M K2

1/2
|- ¢/ 10g(nm),

L ke My
o8 3 2 4 g-—1 2 4 i oy
2%-6(c+2)2C3{144(2 + ¢)* M My K1 ' +192M7ky + 8Mypry}2 4 4 9
| a f1og(nm)}3,
L KoMy
12106 v/6(2 + ¢)3Cyr212/3
2 S 213 g ()
L KllﬁgMg
211 .6 - (20 4 7.5¢)(c + 2) M k2 26 . 3¢
22 4 {log(np) }?, : :
IigMg (20 + 7.5C)Mfl<axl-€gMg log(np)

220{(3M?K2 + 2M2 M2 C2r2) V 2M}n§qlog <6ﬁ>
(/igMg)z A (16/%@Mg)2 ’
22 K2 M? M3 k2 log(np) }

(ke My)?
(A4.19)
where ¢ = 2305s. Then under Assumptions 6-12, and 4, we have
~ 2885\2
_ a*)2 < 25527
1B, = 518 < S

with probability at least 1 — 17.81 exp(—clogp) — 2exp(—c'n), where

¢ = (kIMZ A 64k M) /[2'{(3M?K2 + 2M> M3 C2k2) vV 2M } 2.
Proof of Theorem 2.2. We adopt the framework as described in Section 2.1 for 0* = g%, I'p(0) =
Lo(8), Tn(0,h) = Ln(B, h), Tn(0) = EL,(B, h) , and take 6} = %, which yields s, < s and p,, = 0.

We verify Assumption 2 by applying Lemma A4.20, and verify Assumption 3 by applying Corollary
A3.1. We complete the proof by Theorem 2.1. O
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A4.9 Proof of Theorem A3.1

Theorem A4.9 (Theorem A3.1). For ¢ € [p], suppose that
48v/6 MK q (384\/6]\@%%(])2/3 144k2
Kip{log(np)}1/2’ tp " K2p?log(np)’
ST68v/3(2 + c)1/2clM}(/2M}/%§r/3
1/2
K1/t
r96(20 + 7.5¢)(2 + ¢)CoM k2 11/2
( )(t ) S/ } . q1/2 log(np),

F96(c +2)2 C3{144(2 + ¢) 2 Mg Mywi KT ' + 192M3k% + 8an§}§]4/5 4

4 9
_ : q5 {log(np)}s,
13841/6(2 + ¢)3Cyr272/3
™ 213 g (),

1

768(20 + 7.5¢)(c + 2) M pr2 ) 12¢g
{1
¢ a{log(np)}*, (20 + 7.5¢) M2t log(np)”
212{(3M?K2 + 2M2M2.C2r2) V 2M } K2 | (@>
12 A (161) 7708 ’

210 K2M2 M2 k2 log(np)}

t2 ’

n>max{

- q*/*{log(np)}'/*,

(A4.20)

for positive absolute constant ¢ and ¢ > 1. Under Assumptions 7, 8, and 11, we have
HT\n - ET\TLHZQ <t
with probability at least 1 — 5.77 exp(—clogp) — 2exp(—c'n), where ¢ = (12 A 4t)/[28{(3M?%K2 +
2M2MZC3k2) vV 2M }K2).
Proof. We denote

(L e (Wi ot n :
th = (WK <hn>X”)(g)><P to be a 9 X p matrix,

1 Wy s
S, = B[ K (- ) XXT].
fin o' \h,
And we aim to show that with high probability

-1
‘ <Z> v Xy Xp,v— vTZhnv‘ < 0'||v]|3 for all v € RP, ||v||o < ¢ simultaneously

holds for some 6’ > 0 under conditions of Theorem A3.1. We split the proof into three steps.

Step I. For set J C [p], consider Es N Sg_l, where E 7 = span{ej 1 j € J}. Construct e-net
I17, such that Iy C E7 N 8571 and |II7] < (1 + 2e71)9. The existence of II; can be guaranteed
by Lemma 23 of Rudelson and Zhou (2013). Define II = U|7/—,Il7, then for 0 < € < 1 to be
determined later, we have

< (2)"(7) < (32)" = exp {aros (22) ).
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For any v € E7 N Sg_l, let II(v) be the closest point in e-net II 7. Then we have
v —II(v)

[o = TI(v)]2

Step II. Denote D; = (W;, X;,V;) for i € [n], and D = (W, X, V) to be an i.i.d copy. We upper

bound
}20).

€ EzNSY! and [[v—TI(v)]|z < e.

(o{(3) Zooop0 s

i<j

for some 6 > 0, where

9o(Di, D;) = EK( -

Also, denote f,(D;) = E[gv(Di, Dj)‘Di]. Observe that

’ (Z) B > 9u(Di, D) — o

1<j

1

)()A(/igv)Q, and p, = Elg,(D;, Dj)].

71 "
" 2
§’<2> Z{gv(Di,Dj)_fv(Di)_fv(Dj)—{—uv} +’ﬁz{fU(Di)_Mv}
i<j g
We bound two components on the right hand side of inequality above separately, and then combine

the result.
Step II.1. We bound

> t), (A4.21)

P23 D) - )

for ¢ > 0 to be determined, and for each v € E7 N Sg_l. Apply Lemma A3.3 with conditions of
lemma satisfied by Assumptions 7 (Lemma A4.15) and 8 (Lemma A4.16), and we have

|fo(Di) = fr(Di)| < |M Mrchy f2(Ds)], (A4.22)
where fi(D;) = E[(X]v)2|Wi; = 0, D;] fw(W;), and fo(D;) = E[(X]v)?|X;]. Also, we have
o — pa| < |M Mg hnpol, (A4.23)

where 11 = E[()?EU)Q\WZ] = 0]f77(0), and p2 = E[f2(D;)] = E[()Z?;v)z] And we bound (A4.21) as
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below. We have
1 n
P(. ; {oDi) =} = )
:P(ea{ >t fv(Di)_Mv} > enat)
—nat - E {ZZ 1va) l/«v}]

[
“natg[eo a(xr, [thmo)- m}+MMKhn{f2(Di)—u2}})] . 2MMgcnhppza
le

LI o) 2a 37" {f1(Dy) u1}] 1/2 E|:€2MMKC()CLZ?:l{fQ(Di)—/LQ}] /2 64N§MMKnhna

Se—ant,E[ezMazﬂ E[(X Uv)QWijzo,Di]—E[()?;v)?W-jzm\}1/2_E[eaaanzx o w (Wo)=Elfw (W)l /2

E[€2MMKCoaZ?:l{fg(Di)—ug}] 1/2 oArEMMgnhna
<emant .E[e2aMZ L (X=X Toy2—E[(X]0)2|Wi;=0]] Wi = W]1/2 . (62a2n§M2n)1/2
E[€2MMKCOaZ?:1 }{(Xi—xi,)Tv}Z—ug\]lﬂ . MR MMicnhna

<e—ant 62M2nia2n . €M2H§a2 . 2M2M2 2 C2kta’n 4MMK/i:2Enhna
— )

for 0 < a < (4Mx2)~!, where the first inequality is by Markov’s, the second is an application of
(A4.22) and (A4.23), the third is by Cauchy-Schwarz and the result that py < 2x2 (Assumption 11,
Lemma A4.17, and Lemma A4.18). The fourth inequality is by noting that fi:(0) = E[fw (W;)],
and applying the following inequality

[ViVa = EI]E[V2]| < [Vi — E[VA]| - [Vo| + [E[VA]] - [V2 — E[V2]],

where V} = IE[()A(J;EU)QlfWVU = 0,D;], |E[V4]| < 2x2 by Assumption 11, Lemma A4.17, and Lemma
A4.18, and Vo = fyw(W;) € [0, M]. For the fifth inequality, the second component in product is
bounded due to Jensen’s inequality, where (X!, W/), i = 1,...,n are independent copies of (X;, W;);
the third is bounded because fy (W;) € [0, M] and E[(XZE ) |Ww = 0] < 2x2 by Assumption 11,
Lemma A4.17, and Lemma A4.18. The sixth inequality is again an application of Assumption 11,
Lemma A4.17, and Lemma A4.18.

Take a = (1At)- (2a1)_ and hy, < t-(4a2)71, where a1 = (2M?k2 + 2M?* M2 CZrk + M?k1) v
2M k2 and as = 4M Mg k2. Then we further have

n a2
P(n; {fo(Di) = po} > t) < exp{(;alm}-

By the same argument, we have

PSS (D)~ o} < ) < exp { LD
=1

8@1

We take t = 6/4, and have

P(1 S (500 - )
=1

0 —n(62 A 46)
> 7)< 7 2L :
= 4) = QGXP{ 1284, } (Ad.24)
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Step II.2. Observe that

| (g)l > {9u(Di, D)) = fo(Di) = fulD) + po}| < (Z) 7lsmax {12 @u(Di D)}

i<j i<j
where
~ 1 WZ =~ = 1 Wz ~ o~
B(Di, Dj) =3~ K (72 ) Xige Xt — B3 K (52 ) X Xz Di|
1 Wi\ = = 1 Wi\ =
() alo)] o () )

We then bound |>_;_; ¢ri(Di, Dj)| for each k,1 € [p].
Apply truncation | X;,—E[X;]| < 7,/2 foreach i € [n], k € [p], and 7, = \@(2+c)%mx{log(np)}%,
for positive absolute constant c. Define events

Tn
Ai = {| X, — E[Xu]| < 5 kelpl}, Ap = {|Xi—E[Xu] < 5 i€ [n], ke lpl}.
Consider truncated U-statistic >, ; ¢ (D;, Dj), where

w1 (Dj, Dy) :;K<%>i}jjk)~(ijl I(A; N Aj) — E[;K(%)fmkizgl‘Dz] I(A;)
_E [;K(V}f:);zijk;zijl D] 1A +E [;KUmmzﬂ] .

First, we bound ‘E[cpkl(Di, Dj)”' We have
|E[ori(Di, D)

= ‘E{};K(VZ}QXWXW (A7 UA;)} - QE{ {h ( ) XijXiji| Dy } Az)” (A4.25)
K

)} )

g‘E[han( ;)kaXUl]I(ACUACHJrﬂE[ {
We have

S
o

o1 (2) R s 0 | <ht BI04 2

n
<Mic BLRSVELTh) Y POAF U AV
1 s iy (A4.26)
SMKE(H’%) : (217”37293)
2v/6 Mg k2 o0
= Kinp{log(np) |72 = 24g°
where the first and second inequalities are by Cauchy-Schwarz, the third is by subgaussianity of
X, X, the fourth is by choice of h;,, and the last holds true when we have

48v/6 Mgk q
~ K10{log(np) }1/2p’
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We also have

B () ol wa] ool e () R ]

hy,
1
< 2,.41/2
<{24(M + MyCo)’ry } i
0
<77
~48¢q

(A4.27)

where the first ineuglity is by Cauchy-Schwarz, the second is by (A4.51) and subgaussianity of X;
(Assumption 11), and the last holds true when we have

- {96\/6(M + M MgCo)r2q }2/3

Op
Combining (A4.25), (A4.26), and (A4.27), we have

|Elew(D;, D;)]| <

when we appropriately choose n bounded from below.

Next, we bound ‘ Ziq ok (D;, Dj)} by applying Lemma A3.4. We bound constants in Lemma
A3.4 as follows.

For bounding By, we have By < 4M72 - hy! < {4v6(2+ ¢)Mgr?2 - K '} - {nlog(np)}'/2. For
bounding By, we have

EH%Z(DuD' |D;]

A4.28
19 (A4.28)

S]E[han( ZJ>|X,]kXZ]l|]I(A n4;)|D;| +E[E {hl K(Vg”)|)~(,~jk)?m|!Di}H(Ai)]
+E[;K<%)|Xﬁk;}iﬂupﬁ I(A;) + [ (h )IkaXm} (A4.29)
SE[han( ”)\XMXU”I[(A N A, \D]JrE[hiK( ”)\XukXWHD] (A))

+2. E{h—nK( h:)‘)?z‘jk)?ij”]'

Apply Lemma A3.3 on ¢ = 1, with M; = M and My = My as given by Assumptions 8 (Lemma
A4.16) and 7 (Lemma A4.15), we have

1
E[h—nK(
<72t(M + MMy Co) = 6(c + 2)(M + M Mg Co)r2 log(np).

Apply Lemma A3.3 on ¢ = |)~(ij)~(

Wi\ = <
2 ) Xige Xzl T(A; 0 4)| D]

(A4.30)

= M and M> = My as given by Assumptions
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8 (Lemma A4.16) and 7 (Lemma A4.15), we have

1 Wi\ = =
E[EK( hn])|XiijileDj} I(A;)
<M - E[‘Xijk)?ileDj, Wij = 0] (.A) + MMKCOE[|XZJI<)XI]Z’|D]] ]I(.Aj)
<ME[X2,|D;, W;; = 0)Y2E[X2,|D;, Wy; = 0]V 1(A;)
+ MMy CoE[ X2, | Dj|V2E[XE, | D]/ T(A;)
<(1.5¢+4) - (M 4+ MMgCy) - 2 log(np),
where the second inequality is by Cauchy Schwarz, and the last is due to
E[X7| D (A;) = {E[(Xir — B[Xu])’] + (Xix — B[Xj])*} T(A;)
< K2+ 712/4 < (1.5¢ + 4)K2 log(np),

and based on an identical argument

E[X74|Dj, Wiy = 0] T(A;) < (15c + 4)x3 log(np),

(A4.31)

for any k € [p].
Apply Lemma A3.2 on Z = |X;;,X;j|, and with My = M, My = Mg as given by Assumptions
8 (Lemma A4.16) and 7 (Lemma A4.15), we have

1 Wi\ = =
E[*K< J>|Xiijijlq < 2(M + MMgCo)r2 (A4.32)
hy hn

Combining (A4.29)-(A4.32), we have By < (20 + 7.5¢) - (M + M MgCy) - K2 - log(np).
For bounding E[E{gpkl(Di, Dj)’Dj}Q], we observe that

pu(Ds, D) =K () Ko WA A [ K V;;J) KXt (A 0 Ay)| D]
[ (W) % R )0 + B[ () £, 04
B[R () £ %10 0 1] B[k () Ry B0 10
B[R () 880100 )1 — B[ K (F2) %00 104,
B[R () %% - B[k () £y 1040 4]

which further implies that
|E [ (D, D;)| Dyl |

<[e [;K(f@fﬁkfiﬂ 109 | + B (5 K K 00
+E {};K<%>§Uk§m I(AF U A;)}
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Therefore we have
2
E[E{¢u(Di, D;)|D;}]
3 .. Y c .. Y c Y. Y c c
Shﬁ{E[Xiijijl W(AS)]* + E[XijrXijt TAS)]? + E[X 50 X T(AF U A5}
< 3n
K2 log(np)
3n
<
~ K7 log(np)
where the first inequality is due to the fact that K(-) € [0,1] and by Jensen’s inequality, the second

is by Cauchy-Schwarz, the third by subgaussianity of X;, X; and Xj;, and last holds true when we
have

{2H'3X4 JVPEIX )P PAS) + ELX ] PELXSP(AS U A5) )

)<+

1
4
(2-12x + 1262 — ey =

ff32

n> 144%
Kip*log(np)

For bounding o2, apply Lemma A3.2 on Z = ijkfg.ﬂ with M; = M and My = Mg as given

by Assumptions 8 (Lemma A4.16) and 7 (Lemma A4.15), we have
16 M 1 W; >

2< —Kp| K (52) X2 X

M T VS

< 16MK

{M-E[XZ,X7%|Wi = 0] + MM CoE[ X7, X%}

16M K
h’I’L
192MK(M -+ MMKC())/ix n 1/2
K, {log(np) } ’
where the third inequality is by Cauchy-Schwarz, and the last is by subgaussianity of X and choice
of hy,.
For bounding B?, we have

B2 —p sgp]E[sDil(Dia Dj)‘DJ'}
J

<

{MIE (X5l Wis = O]'2B[XE, Wiy = 0]'/2 + MM CoB[X 8] X ] /2|

<

<AMpgnh; supE[hiKC: )X X2 1A 0 A)| D; ]
+4n SB?E{E{};K(?:)X'zjk)?ijlwi}z I[(Ai):|
+4n SBFE[E{};K(%>fijk§ijl|l7j}2 H(Aj)}
+ 4nE[;K(%>)~(¢jk9~ler

SW + 192M?/€in + 8Myk2n

<{144(2 + ¢)* My My K+ 192M?/<:i + 8Myri} {nlog(np)}*?,
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where Mf =M+ MMKC().
We take

()0
- \2/12¢’
u= (24 c)logp,
and require that
48\@MK/<;§q (96\/6Mf/<a§q>2/3 14453
Kip{log(np)}/2’ Op " K2p?log(np)’
192v/3(2 + o)V2C MY M2 k2 a3
K f x}
1/2
K10

r24(20 + 7.5¢)(2 + ¢)Ca M pr271/2
( )(9 ) 24 f } _q1/2 log(np),

-24(c+ 2)2Cs{144(2 4 )2 Mg M2 K + 192M7 kg + 8Mpry /2

4
5 3 9
_ ; | "4 f10g(np)}3,
- 3 2-.9/3
K0

192(20 + 7.5¢)(c + 2) M k2

12¢q
9 a{log(np)}, (20 + 7.5¢) M ;20 log (np) }}

n>max{

- q**{log(np)}'/*,

(A4.33)

for some positive absolute constant ¢, and C,...,Cy as defined in (A3.2). Then by Lemma A3.4,
we have

-1
n 50
IP’(‘ Dy, D;) — Elow](Di, D ‘>—)
(5) 3 oulD1, D)~ Blpul(D, D)) > 1
<2exp{—(2+c)logp} + 2.77exp{—(2 + ¢) log p}
Combined with (A4.25), the last display further implies that

P( <Z> _1;@%@%17]‘)‘ > 26;)
<p( (75)_1;%1(%1)].)‘ > ;{IOAMD B(AS,)
i<j
SIF’< (Z)_lgjcpkz(Di,Dj)—E[gokl(Di,Dj)]‘ > %) FR(A)

<2exp{—(2+ ¢)logp} + 2.77exp{—(2 + ¢) log p} + npexp{—(2 + ¢) log(np)}
<5.77exp{—(1 + ¢) log p},

for positive absolute constant c.
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Step I1.3 Combining results of Step II.1, Step I1.2 and Step I, when we have (A4.33), and that
> max { 256{(3M?%k2 + 2M2M2.C2K2) v 2M}n§qlog (gﬁ> 4096 K7 M2 M3 k2 log(np) }
62 N 46 qe 62

we have
—1
P(?eaﬁc{’ <Z> ;gv(Dia Dj) — Mo

where ¢/ = (62 A 40)/[256{(3M?k2 + 2M?>M2C2r2) V 2M }K2].

Step III. Denote
o\ /2
r— <2> Xp, — %,

From Step I1.2, we have that, with probability at least 1 — 5.77exp{—(c+ 1) logp} — 2 exp(—c'n),
simultaneously for all vy € 11,

} > 0) < 5.77exp{—(c+ 1)logp} + 2exp(—c'n),

[Twoll3 < 6,
which further implies that
Twoll2 < 62,

Then we obtain bounds on entire £7 N SY -1 by approximation.
For any v € E7 N Sgil for some | 7| = ¢, denote vy = I1(v). We have

ITolj2 < [TTI(v)[|2 + [[T{v — II(v)} |2 (A4.34)
Define ||I'[|2,z, = L ITy|l2. Then by (A4.34), we have
2
ITll2,5, < 6" + €llTl2,,,

which further implies that

2
||F||2,Ej < (1 —6)2
Take € = 1/2, then we have

2
ITll2,, < 49.

We take 6’ = 40. This completes the proof. O

A4.10 Proof of Lemma A3.4

Proof. Denote p = E[g(Z1, Z)], f(2) = f(2) — m. §(Zi, Z;) = 9(Zi, Z;) — f(Z:) — £(Z;) + p, and
Dn(9) = 352 9(Zi, Zj). Also, denote ||glloo = By, || fllc = By, o2 =E[g(Z1, Z3)?], and

B? = nsupE[ﬁ(Z, 2)2] ,
4

n n—1
D = sup {E[Z 9(Zi, Z)|ai(Z:)b;(Z;)] - E[ D ai(Z:)?] < LE[D b;(Z))%] < 1}.
i<j i=2 =1
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Hoeffding decomposition gives us
Un(9) = E[Un(9)] = 2(n = 1) Y F(Z:) + Dn(9)
i=1

where D,,(g) is a degenerate U-statistic of bounded kernel. By Bernstein inequality, we have

—12/8(n —1)?
f(Z)] > —) <2ex = =
(\Z )l = 2(n — 1)) p(mE[f(Zi)z] + By - t/6(n — 1)) (A4.35)

a7y
exp = = :
8nE[f(Z;)?] + 2By -t/n
when n > 3. By Theorem 3.4 in Houdré and Reynaud-Bouret (2003), for any u > 0, we have
P(|Dn(3)| > Cineul/? + CoDu/4 + C3Bu’? + CyByu? /4) < Cse™, (A4.36)

where positive absolute constants C1,...,C5 are as defined in (A3.2). Combining (A4.35) and
(A4.36), we have

(|U( ) —E[Un(9)]| >t + Cingu'/? + CyDu/4 + C3Bu®? + C4 Byu?)
<P(y Zf )| > 271)) +P(|D(3)] > Crndu'/? 4+ CoDu/4 + C3Bu/? + CyByu?/4)

—t2/n?
2exp <8nE[~(X)2] +2B;-t/n

> + C5e_“.
(A4.37)

It is easy to see that By < By + 3By < 4By, By < 2By, and E[f(Z)?] < E[f(Z)?]. It remains
to bound 52, B, and D.
By some algebra, we have

E[g(X1, X2)*| Xo] < E[g(X1, X2)?|Xa],
which implies that

5° = E[g(X1, X5)?]
= E[E{g(X1, X2)*| X2 }]
< E[E{g(X1, Xo)|X,)]
=E[g(X1, X5)?] =0,
and that

B% < nsupE[§(X1, X2)?| X2]

Xo
< nsupE[g(X), Xo)?|Xs] = B
2

Meanwhile, we have

E[|g(Xi, X;)||X;] < 4By.
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By Holder’s inequality, and combining with the last display, we have

[|§(XiaX'>‘ai( Xi)bj(X;)]
—]E[ E{|g Xi, Xj)|ai (X ‘X }]

< [b; (X;)B{ [5(X:, X;)|| X; }1/2E{|g X, X;)ai(X0)?| X1
<(4B) V2R [b; (X; B 3(Xi, X;)las( X:)*| X, /7]
<(4By)'*E[b;(X;)*]'*E Ug(Xi,Xjﬂai(Xaﬂ i
=(4B)V2E [b;(X;)*) B [a:(X0)2E{ [5(X0, X;)[| X, }]
<4B/E[a;(X:)?] B [b;(X;)2] .

1/2

Therefore, we further have

n i—1

D <4B; 3" S {E[ai(X:)?] PE[;(X;)7]) )
=2 j=1

n i—1

<4szz {E[ai(X:)?] + E[b;(X;)°] }

=2 j=1
<4B f-
Combining these upper bounds on constants with (A4.37), we complete the proof. ]

A4.11 Proof of Corollary A3.1

Corollary A4.1 (Corollary A3.1). Suppose Assumptions 6-8 and 10-11 are satisfied.

(1) Assume Assumption 9 holds, and that (A4.20) is satisfied with ¢ = 2305s and t = ;M /16.
Then we have

P(éfn(A, hy) > “‘MZ

JAJ3 for all A € {A" € RP: [|Ase]ly < 3Aslli})

>1— 5.77exp(—clogp) — 2exp(—c'n),
where ¢ > 1 is an absolute constant, and ¢ = (k2 MZN64kMy)/[2'{(3M?K2+2M2 M2 CZr2)V
2M k2.

(2) Assume Assumption 16 holds, and that (A4.20) holds with ¢ = 2305{s+ (2nh2'/log(np)}
and t = kyMy/16. Then we have

FczMe

]P’(éfn(A, hn) >
>1— 5.77exp(—clogp) — 2exp(—c'n),

IA|2 for all A € Cg )

where Cg, = {v eRP: |lugelli < 3|lvglls for some J C [p] and |T| < s+ Cznh?/log(np)},
¢ > 1 is an absolute constant, and ¢ = (kZM7 A 64r,M;)/[2'0{(3M?k2 + 2M2M3-C3r2) Vv
2M }K2].

Proof. (1) Denote Cs = {v € R? : |jusc1 < 3||lvs|l1}. By Lemma 13 in Rudelson and Zhou (2013),
CsN 8571 C 2conv< Uig1<a E7 N Sgil>, where conv(-) means convex hull of a set, E; = span{e; :
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j € J}, and d = 2305s. Denote

=i = B[ 5 (5) X547,

P (n _12{1K(%>)~(~)~(T}—E
2) = h, \h, )RS T
1<)
o :E[}?)?TW - 0} - f:(0).
For any v € Cs NSY™!, we have

lwTTo| < 4 max VT
v/ €CONV (U] 7|<aE7NS5 )

=4 max VT
U/€U|j‘§dEJm5§71

= 4[Tl2.4,
where the second line is because maximum of v'TT'v’ occurs at extreme points of set conv( Uj71<d

Es 08571). Apply Theorem A3.1 with ¢ = d = 2305s and t = kyM,/16, when (A4.20) is satisfied,
we have
ke My

lwTTw| < (A4.38)

holds simultaneously for all v € Cs N Sg_l with probability at least 1 — 5.77 exp(—clogp) —
2exp(—c'n), where ¢ > 1 is some absolute constant and ¢ = (kM7 A 64k,M;)/[65536{(2M*k2 +
2M2M7-C3k2 + M?K2) V 2M }K2).
(A4.38) further implies that 6L, (v, hy) > v' 3, v — KkeMy/4, where
UTEhnU >0 Ygv — MMKIE[(XTU)Q] hn,
> eMyllol3 — MM - 262/Joll3 - b (A4.39)
> HgMgHUH%/Q = keMy/2.
Therefore 5En(v, hy) > KeMy/4 holds simultaneously for all v € Cs NS ~! with probability at least

1 —5.77exp(—clogp) — 2exp(—c'n). By linearity of 5En(v, hy,), this completes the proof for (1).
(2) Using an identical argument as used in (1), replacing Cs by set

{veRP: luge|l1 < 3|lvg| for some J C [p] and |T| < s + C2nh3ﬂ/log(np)},
and using d = 2305{s + C2nh2/ log(np)} instead, we complete the proof for (2). O

A4.12 Proof of Lemma 3.1

Lemma A4.10 (Lemma 3.1). Assume h,, > K;{log(np)/n}'/? for positive absolute constant K7,
and assume h,, < Cy for positive constant Cy. We further assume that u satisfies Assumption 17,
and take ¢ and ¢ < 3e¢/4+1/2 to be positive absolute constants. We take £ = (14 ¢)/(2+¢€), and
suppose we have

n > max { [{16(c + 2)(c + CFM 2}/ 20 v 1] - (log p)/ =2, {1og(np)}*/ =0 |,
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Then under Assumptions 7, 8, 11, and 17, we have

P(??’T{’Uk —E[U:]|} > C{log(np)/n}'/?) < 4.7Texp(—clogp) + exp(—c'logn),
€lp

where C = \/501M}(/QM}/QM;/(2+E)/§$01/2K1_1/2 + 2Co My (c + 1/2)1/20 + 8MfM5/(2+e)f<czcl/2 +
203 M* M % (c + 2)23 2K Y? + 205 Mic(c + 2)/*KY. Here My = M + MMgCo, and

Cy,...,Cy are as defined in (A3.2).

Proof. We apply truncation on X}jk and wu; at levels 7, and 6,,/2 respectively, and first focus on
U-statistic
-1 =
~ 1 Wi\ =~
U= (" 7K<J)Xijkuij I(Ayi5 0 Bi N B;),
2 hn hnp, ’

where we denote events
Apii = {]X”k\ < Tn} B; = {|uZ Elu]| < 6?”/2}
We also denote events
A = {IXijpl Sy i<j €}, By = {Jui —Elu]| < 6,/2,i € [n]}.

Denote

1 Wiy s -
9(Di, D) = K (5 ) Xijuiis; WAvs; 11 Bi1By), and (D) = E[g(D;, D;)|Dy].

We complete the proof in two steps.
Step I. We bound By, By, E[f(D2)?], 0%, and B? as in Lemma A3.4, and apply Lemma A3.4.
For bounding By, we have By < Mg7,0,/h,. For bounding By, apply Lemma A3.3 on ¢ =1
with lemma conditions satisfied by 7 and 8, and we have

By < 7ubh [%K(@) wa]|_ < Mymab,

where My = M + MMy Cy.
For bounding o2, we have

o® =E[g(D1, D2)?]

M 1 Wi\ ~
< T Bl K () Ko
M ~
< T (BLXGT Wy = O] - M+ MM GO [ ]

< 2Mp My M2/ *+9K2 /by,

where the first inequality is due to K(-) € [0, 1], the second inequality is by applying Lemma A3.2
on /Z = )Z'ijkﬂij with lemma assumptions satisfied by Assumptions 7 and 8, and the last inequality
is by Assumptions 11, 12, and independence of )Zijk and ;.

For bounding E[f(D2)2], apply Lemma A3.3 on ¢ = )Z,-jkﬂij I(Ag,; N B; N Bj), with lemma
assumptions satisfied by Assumptions 7 and 8, and we have |f(D2) — fi(D2)| < M MgkCyfa(D2),
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where
fi(D2) = E[)?l%am W(Ap 12 N By N By)|[Wi = Wy, Do - fu, (Wa),
fo(D2) = E[| Xyoptinz| L( Ay, 10 N B1 N Ba) | Da).
We have, by Assumptions 11, 12, and independence of )A(/ijk and 5,
E[f1(D2)?] < E[X}, 0%, |Wi = Wo] M? < 2M M2/ )52,
E[f2(D2)?] < E[Xfyits] < 2M3/CTk3.
This further implies that
E[f(D2)?] < 2E[f1(D2)?] + 2M* ME CFE[f(D2)*] < AMFM/ )3
For bounding B?, we have

B?=n SBPE [g(Dl, D2)2|D2]
2

<

M 1
YK supE[—K
n Do hn
202
< My M; ”T;e".

n

<W1 — W2

N )(Xlk — Xok)?(ur — ug)® WA 12N Br N 52)‘172}

We take for some positive absolute constant ¢ > 1,
t = 8M M/, (Z) {log(np)/n}'/?,

7o = max {c, 2}1/2 {log(np)}/?, 0, =n% 0<a<3/4,
¢y = clogp,
and we have that

n > max { [{1663(6 + 1)002M5/(2+6)/@i}1/(372a) vi]- (log p)?/ (320 {log(np)}B/(3_4O‘)}.

Then by Lemma A3.4, we have

P{ (Z) R Uk — E[UL]| > A{log(np)/n}1/2} < 2exp(—clog(np)) + 2.77 exp(—clog p)
< 4.77exp(—clogp),
where with C1,...,Cy defined in (A3.2),
A =2V201MP M MY O g ARV 4 205 My (e +1/2) e
+2C3 M2 My (e + 2) V22 RT? 4 20, Mg (e + 2) V2R + 8MpMY 9 12,
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Step II. We have E[U;] = 0, and thus we have
P(géa[;]( {lUx —E[U:]|} > A{log(np)/n}'/?)
<P(max {|Uk ~ E[ULI} 2 A{log(np)/n}'/* N Byy) + P(BE,)

p
< Z { (|Uk| > A{log(np)/n}l/ N Ak [n] N B[n]) + IP) ‘Ak } + P n])

k=1

p

<> _{P(U] > A{log(np)/n}'/* 1 Aoy 0 Bpay) + BCAT )} + B(BE)

k=1
E ~|24-€
<4.77exp(—clogp + log p) + nM

no(2+e)
<4.77 exp(—clogp + log p) + exp(—c logn).

The last inequality holds if we take (¢ +1)/(2+€) < 3/4 and we take a = (¢/ +1)/(2 4+ €). This
completes the proof. ]

A4.13 Proof of Corollary A2.1

Assume h,, > K {log(np)/n}/? for positive absolute constant K7, and assume h,, < Cy for positive
constant Cy. We further assume that u satisfies Assumption 17, and take ¢ and ¢/ < 3¢/4+1/2 to
be positive absolute constants. We take £ = (1 4+ ¢)/(2 + ¢€), and suppose we have

n > max { [{16(0 + 2)3(0 + 1)C§Mg/(2+e)/{§}l/(3_2§) V 1] . (10gp)2/ (3-2¢) {10g(np)}5/(3_45),

64(c + 2)*(c+ 1){log(np)}*/3, 3,
48V6 My K2q <210 -6 - \/éMfmgq)wa 144k2

Kip{log(np)}1/?’ KeMyp " Kip? log(np)’
911 6. \/5(2 + C)l/chMIl(/lepﬁ;% 4/3
72 L2270 g tog(np) 2,
Kl /ﬁ:gMg
28.6-(20+ 7.5¢)(2 + c)C2Mf/<;§] /2 4 1og(np)
L koM, ’
125 6(c +2)%2C5{144(2 + )2 Mg MprA K" + 192M 3kl + 8Mpri}t/2 8 0
q5{log(np)}5,

I keMy
2106 - V6(2 + ¢)3Cyr272/3

x /341 5/3
e ()},
2116 - (20 + 7.5¢)(c + 2) M k2 Jlog(np))? 20 -3¢

KoMy " (20 + 7.5¢) MyrZ kM log(np)’

2200(3M?k2 + 2M2M2C23k2) v 2M } K2 oo (6ep>
(keMy)? A (161, M,)?
22 K2 M2 M2 k2 log(np) }
(kg My)? ’

(A4.40)
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where ¢ is to be determined in specific cases. Denote My = M + MMy Cy, and Cy,...,Cy are as
defined in (A3.2). Also denote ¢ to be some positive absolute constant, and

A =20 MM P MY O kMR 20, My (e + 1/2) e
203 M P M2 (e + 2) V22K 4 20, Mg (e + 2) V2R + 8MpMY 9, 12,
" =(kEME A 64k My) /(2" {(3M? K2 + 2M> M3 C2K2) V 2M } 2.
Theorem A4.11 (Corollary A2.1(1)). Assume \, > 4(A+A"){log(np)/n}'/2+8k2 M Chy,. Further

assume (A4.40) holds with ¢ = 2305s. Then under Assumptions 6-11, 14, 15, and 17, we have

> 28852

Hﬁhn B ||2 = Mgﬂ% )

with probability at least 1 — 10.54 exp(—clog p) — exp(—c'logn) — 2exp(—c’n) — €, - p.

Proof. See Proof of Theorem A4.12. O

Theorem A4.12. [Corollary A2.1(2)] Assume that \, > 4(A + A){log(np)/n}/? + 8x2MChy.
Further assume (A4.40) holds with ¢ = 2305s. Then under Assumptions 6-11, 14, 15, and 17, we
have

28852

Mgrj

with probability at least 1 — 10.54 exp(—clogp) — exp(—c’logn) — 2exp(—c’'n) — €, - p.

1Br,, — 8113 <

Proof. We adopt the framework as described in Section 2.1 for 6* = 8*, To(6) = Lo(8), Tn(6,h) =
Lo(8,h), Tn(0) = EL,(8,h) , and take 6} = 3*, which yields s, < s and p, = 0.

We verify Assumption 2, by using results (A4.4), (A4.6), and applying Lemma 3.1. We verify
Assumption 3 by applying Corollary A3.1. We complete the proof by Theorem 2.1. O

Theorem A4.13 (Corollary A2.1(3)). Denote C' to be some positive absolute constant C' > ¢2C37,
and suppose n > (C' — C2C§7)slog(np). Assume that A, > 4(A’ + A + Mn,){log(np)/n}/? +
8M My C'/2k2h,. Further assume that (A4.40) holds with ¢ = 2305{s + ¢2nh2’/log(np)}. Then
under Assumptions 6-8, 10-11, 14-16 and 17, we have
1B, — B2 < 2]?;;)\2% N 2slog(np) { 2282871)\%
i n M; K} log(np)
with probability at least 1 — 17.31 exp(—clogp) — exp(—c’logn) — 2exp(—c’'n) — €, - p.

+2} 22,

Proof. We adopt the framework as described in Section 2.1 for 6* = 8*, I'g(6) = Lo(B), fn(e, h) =
En(ﬁ, h), Tp(0) = Efn(ﬁ, h), and take 0} = 3%, which yields s, < s and p, = 0.

We verify Assumption 2, by using results (A4.4), (A4.6), and applying Lemma 3.1. We verify
Assumption 3 by applying Corollary A3.1. We complete the proof by Theorem 2.1. O
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Corollary A4.2 (Corollary A2.1(4)). Denote

and

1 =V22 + )2k, K7 (BMygCS + DMy),

7 = V2(2+ &)Yk {BMxg M(1 + Co)CS + DM},

T3 =AMz M? - (BC§ + D)* - (1+ CF) - K2,

74 = {AB2M M2 (1 + Co)C2 ™" 4 2D2 - (12Ms2) /2 - EV2Cy P77 ) - My K,
75 = 4(2 + ¢)k2{ BM My (1 + Co)Ca® + D* My} My Kt

A" =4n2 (14 )2 42017121 + )2 + 207 (1 + ¢) + 20572 (1 + )3/
+2Cymi (1 +¢)? +4My - (BC§ + D) - (¢ + 2)ky,

where v; = min {Qa -1, —1/2}. Consider lower bound on n,

n > max {64(c +2)2(c+ 1) Hlog(np)}, {1og(np)}5/3}. (A4.41)

Here, B, D, E and a are to be specified in different cases.

(1) Assume that g is (L, «)-Holder for « > 1, and g has bounded support when o > 1.
Suppose (A4.40) holds with ¢ = 2305s, and that (A4.41) holds with B = L,, where L, is
the Lipschitz constant for g (L, = L when = 1), D = E = 0, a = 1. Further assume that
An > 4(A” + AN {log(np)/n}'/? + 8K2 M ;Chy,, where

L2 M My + M MgEu? /2> 1/2 16k,(M + MMgC2)Y/? - L2 M Mg }

g:max{zl-(

KoMy ’ KoMy
Then under Assumptions 6-8, 9, 10-11, 13, and 17, we have
~ 288s\2
Hﬁhn ﬁ ”2 = Mg”? s

with probability at least 1 — 15.81 exp(—clogp) — exp(—c'logn) — 2 exp(—c’n).

(2) Assume that Assumption 5 holds with « € (0,1]. Suppose that (A4.40) holds with
q = 2305s, and that (A4.41) holds with B = My, D = My, E = M, and a = . Assume
An > 4(A” + AN {log(np)/n}'/? 4 8k2 M ;(hy, where

M2M MG + M3M,Cy > + MMyEG?Cy " /2172

szax{4-( ro M, )
16%5 (M + MMk C3)V? - (MZMMgCy* ™ + M2M,Cy~>)/?
/igMg 7

v =« if MgM, = 0, and v = min {a, 1/2} if otherwise. Then under Assumptions 6-8, 9/,
10-11, 13, and 17, we have

2885)\2

~ “112
B3 — 3 < — =
H hn HQ = 7‘[52,%? 5

with probability at least 1 — 15.81 exp(—clogp) — exp(—c’logn) — 2exp(—c’n).

(3) Assume that Assumption 5 holds with a € [1/4,1]. Suppose that (A4.40) holds with

37



q = 2305{s + ¢2nh2" /log(np)}, and that (A4.41) holds with B = M,, D = My, E = M, and
a = a. Further assume \, > 4(A’ + A” + Mn,){log(np)/n}*/? + 8 M Mk Cr2h,,, where
¢ = max {4 (M3 MMpCy®™™ + MMaCy~ ™ + MMgE@Cy ™ /2\1/2
ke My ’
1645, (M + MM C3)V? - (M2MMygCg® ™ + M2M,Cy~>")/?
koM ’
v =« if MgM, = 0, and v = min {a, 1/2} if otherwise. Then under Assumptions 6-8, 9/,
10-11, 13, and 17, we have

1B, — B*|13 <

288s\2  2slog(np) 288n\2
592 T {
M k3 n

with probability at least 1 — 22.58 exp(—clogp) — exp(—c’logn) — 2exp(—c’n).

2}. 2p2,
Mgmﬁlog(np) + Ch,

Proof. The result follows directly from Corollary A2.1(1)-(3). O

Theorem A4.14 (Corollary A2.1(5)). Assume that (A4.40) holds with ¢ = 2305s. Assume further
that n > 64(c + 2)2(c + 1){log(np)}* and X, > 4(A" + A"){log(np)/n}/? + 4v/2M, My Mr, (1 +
Co)hp, where

A" =8M M MyCo(1 + Co)ia (1 + €)/2 + 20, My M 2 M2 512 (1 4 Co) 2 KT VA (1 + )/
+2vV2C, M Mg My(1 + Co)roK1(1+ )%/ + 4Cs MM MY2(1 + Co) 2 Co P kp(1 + )2
+ 220y My M, Corp K (1 + ¢)%/2 4 2V/2M My My (1 + Cy)Co,
Then under Assumptions 6-11, 4, and 17 we have

R 2
1B, — 573 < 22852

2.2
My r;

with probability at least 1 — 15.81 exp(—clogp) — exp(—c’logn) — 2exp(—c’n).

Proof. We adopt the framework as described in Section 2.1 for 6* = 8*, To(6) = Lo(8), Tn(6, h) =
Lo(B,h), Tp(0) = EL,(B, h), and take §; = B*, which yields s, < s and p, = 0.

We verify Assumption 2 by using results (A4.43), (A4.45), (A4.46), (A4.47), and applying
Lemma 3.1. We verify Assumption 3 by applying Corollary A3.1. We complete the proof by
Theorem 2.1. O
A4.14 Supporting lemmas

Lemma A4.15. Assumption 7 implies that, for any 0 < a < 3 and 0 < b < 1, we have
+oo
/ jw|K (w) dw < Mg and  sup |w|’K (w) < M.
o weR

Proof of Lemma A4.15. For any 0 < a < 3, we have

—+00 —+oo a/3
/ | K (w) dw < {/ [P K (w) dw} < M <y,

—00 —00
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where the first inequality is by Holder’s inequality, the second is by Assumption 7 and that a > 0,
and the last is by the fact that 0 < a < 3 and the choice of Mg > 1.
For any 0 < b < 1 and any w € R, we have

K (w) = {Jw] K (w)}* - K (w)' ™" < Mg M~ = Mk,

where the first inequality is by Assumption 7 and that 0 < b < 1. Therefore, we have obtained
that sup,,cg |w|’K (w) < M. This completes the proof. O

Lemma A4.16. Assumption 8 implies that, for any X-measurable function () : RPF — R™
mapping to a m-dimensional real space, we have

afﬁ/w(f() (w, Z)

e (e e P e afw

(w, 2), j Fr (w } < M. (A4.42)
Proof of Lemma AJ.16. For a function F(-), we write dF (z)/dx = F(x+) — F(x—), where F(z+)
and F'(x—) are right and left limits respectively, when F'(x) is discontinuous at x. We first show
that

0 fr z (w, @)
S“p{“aiw ~(w,:c)}§M.
We have
dF
F— ~ (w) _ ffFW1|X1:a:2+:n(w2 +w) X1 |x/_x2+1, dFWQ\XQ $2(w2) dFX2($2)

Wi X= dF
e / —’;;f’” o —an e AP, (22)

By dominated convergence theorem, we have

dF'x, (z
o (wz) = fffw1|xl(w2+w7$2+x)xil(|x~zz+xdeg|X2 z(W2) dFx, (22) _
WX o dFx, (z') IF s M,
f dx’ |x’=x2+x Xz($2)
and

<M.

o] wotw,ro+T
8fW‘X(w x)’ ‘ff fw1|x1( 2+ 2+) de1 |x,_x2+x AFyy [ Xy—ay (2) dFx, (22)

dF
f )c(l;c ’x I=ayt+z AFx, (72)

Based on the same argument, we have

) = [ P (0 dFg()
which, by dominated convergence theorem, implies that
and

<M

| [ arseo

Also, for any X-measurable function ¥(+), we have
o [ (@) < 0} g, () dFg (@)=
2 [T (x) < v}dFg(2)]o—s

By )= (w) =
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By dominated convergence theorem, we have
o [ T{w(@) < o} f g (w, @) dFg ()]0

f~ X (’UJ, Z) = <M,
W 2 [y (w) < v} dFg(z)]o=-
and
Of iy x (w,)
o 2)) _ 5 ] L) < v}—W‘X AFg @)z _ -
o Z [ 1{(e) <obdFg@hs -
Therefore, Assumption 8 implies (A4.42) O

Lemma A4.17. Assumption 11 implies, conditional on W = 0 and unconditionally, (X,v) is
mean-zero subgaussian with parameter at most 2x2||v||3, for any v € RP. Assumption 12 implies
that @ is mean-zero subgaussian with parameter at most 2x2.

Proof of Lemma A4.17. Observe that XTyand —X Tv are identically distributed, and thus we have
E[X Tv] = 0. We have that the moment generating function of X Tv is

E[et)?-rv] — E[et(xirvflE[XIU])] . E[et(fXQTvHE[XQTv})] S €t2 2”2)”2
where the first inequality is because X; and X5 are i.i.d., and the second is an application of
Assumption 11. Therefore, X Tv is mean-zero subgaussian with parameter at most 2k2||v]|3.
Observe that conditional on W = 0, X Tv and —X Tv are identically distributed, and thus we
have E[X Tv|WW = 0]. We have that the moment generating function of X Tv, conditional on W = 0,
is
E[¢X W = 0] = E(E[eX Wy = Wa, Wa])

_ E[E{et(XIU—E[XMWl:WQ}) Wi = W) 'E{et(—XQTUJFE[XQTv\WQ]) W) )]

< etQHillvH%’
where the second inequality is because (X7, W7) and (Xg, Ws) are i.i.d., and the third is an appli-

cation of Assumption 11. Therefore, conditional on W = 0, X X Ty is mean-zero subgaussian with
parameter at most 2’%”””2' Apply the same argument on u, we complete the proof. ]

The following results in Lemma A4.18 can be found in Vershynin (2012).

Lemma A4.18. For mean-zero subgaussian random variable V with parameter at most k2, we
have E[V?] < k2, E[V4] < 3k, P(VZ2 - E[V? <v) > 1 —exp{—v/(2x2)} for any v > 2x2, and that
E[GSVQ_SE[VQ}] < 25°Ky for |s| < (2x2)71

Lemma A4.19. Let Z be some subgaussian random variable, with parameter at most 2. Suppose
k2 < a/4 for some a > 0. Then we have

/OO 2dFy2(2) < (a4 4K2) exp{—a/(4x2)}.

Proof of Lemma A4.19. We have Fya(z) > P(Z2 — E[Z?] < 2/2) > 1 — exp{—2/(4Kk?)} for any
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z > a > 4k% (Lemma A4.18). By integration by parts, we have

/Oozszz(z) = /Oo(—z) d{1 - Fp(2)}
—2){1 - Fp(2)}| + /OO 1— Fya(2)dz
<oexp{-a/(W)} + [ ewpl-z/(4d)} dz

a

= (a+4r37) exp{—a/(4x3)}.

This completes the proof. O

The following Lemma A4.20 is used in the proof of Theorem 2.2 to directly verify Assumption
2.

Lemma A4.20. Assume h, > K;{log(np)/n}'/? for positive absolute constant Kj, and as-
sume h, < Cy for positive constant Cp. Further assume ), > 4(A4 + A’) - {log(np)/n}'/? +
4NV2MyMp My (1 + Co)hy,. Here, A’ is as specified in (A4.48), and A” as in (A4.53). Suppose we
have

n > max {64(c + 2)*(c + 1){log(np)}*/3, 64(c + 2)*(c + 1){log(np)}*, {log(np)}*’*, 3},
for positive absolute constant ¢ > 0. Then under Assumptions 7, 8, and 11, 12, 4, we have

P(Q‘kan(ﬁ*, hn)| < Ay for all k € [p]) > 1 — 12.04 exp(—clog p).

Proof of Lemma A4.20. Denote

n 1 -
Ulk = (2> hf ( n ) ijkWij
n 1
Vae = <2> n (
and observe that

|ViLn(8*, hn)| < 2{|Usk — E[Ure]| + [E[Uss]| + [Uak — E[U2x]| + [E[Uai]| }. (A4.43)

2
Z ) Xir{g(Wy) — g(W;)},

Apply Lemma A4.21 on D; = (X;, u;, W;), with conditions of lemma satisfied by Assumptions
7,8, 11, 12, we have

P(|Uw — E[Uvx]| > A{log(np)/n}l/Q) < 6.77exp{—(c+ 1) log p}, (A4.44)

for positive absolute constant A and ¢, and when assuming n > max {64(c+2)?(c+1){log(np)}3/3, 3}.
Here A is as specified in (A4.48).

Apply Lemma A4.22 on D; = (X;, g(W;), W;), with conditions of lemma satisfied by Assump-
tions 7, 8, 11, 4, we have

P(|Uar — E[Ua]| > A’{log(np)/n}l/Z) < 5.27exp{—(c+ 1) logp}, (A4.45)

for positive constants A’ and ¢, and when assuming n > max {64(c+2)3(c+1){log(np)}*, {log(np)}% }.
Here A’ is as specified in (A4.53).
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By independence of w and (X, W), we have
E[U1x] = 0. (A4.46)

We also have
1 Wi\ = —~
e <ol ()

:Mg//K(w)|xwhn|fwijlgijk(w,:c) dwdFg (z)

ijk

=M, / / K(w)|xwhn|{fwij|)~(«ijk (0,2) + 13'31]; . whn} dw dF)zijk (x)

(twhn,x)
<My My ME[| Xijp||[Wij = 0] hy + My My ME[|X ;|12
<V2MyMyg Mk (14 Co)hy,
(A4.47)

where the first inequality is by Assumption 4, the second equality is by definition, the third equality
by Taylor’s expansion at w = 0 (¢ € [0, 1]), the third inequality is by Assumptions 7 (Lemma A4.15)
and 8 (Lemma A4.16), and the last inequality is by Assumption 11 (Lemma A4.17).

Combining (A4.43)-(A4.47), we have

P{for any k € [9], }kan(ﬁ*, ha)| < 2(A+ A)- {log(np)/n}'/? + 22 My M M (1 + Cp) - hi }
>1 — 12.04 exp(—clog p),

for positive absolute constant ¢, and when we appropriately take n bounded from below. Thus we
have completed the proof by noting that A, > 4(A + A’) - {log(np)/n}'/? + 4v/2M, Mg M, (1 +
Co)hn,. O

In the following, we collect the proofs of Lemmas A3.2-A3.3 in Section A3.

Proof of Lemma A3.2. By Taylor’s expansion, for some t,,, € [0,1], we have

E[%K(%)Z ://K(w)szz(wh,z)dwdFZ(z)

//K fW|zOz) W

wh} dw dFy(2),

Ly, nwh

which implies that

1 W
‘E[EK<?>Z] _E[Z|W = o]fW(o)( < M MoE[| Z[]h.
This completes the proof. ]
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Proof of Lemma A3.3. By Taylor’s expansion, for some t,, 5 € [0, 1], we have
Wy — Wo
h

// w W2 (z, Z3) fwy |z, (w, z) dw dFz, (2)

//K Z ZQ le\Zl(WQ‘f‘wh Z)d’wdFZl( )

//K (2,23) {fw1|Zl(W2,z)+W

which implies that

E[ K( Yo (Z1, Z3) }WQ,ZQ}

h ¢ dwdF
‘W2+tw,hw’lw } v 21(2)7

()
<M\ ME[|p(Z1, Z2)|| Za] .

21, 22)|Wa, 2] ~ E[p(Z1, Z0) | Wa, Zo, Wi = W] firs, (W)

This completes the proof. ]

Lemma A4.21. Let D; = (X;,V;,W;) be i.i.d. for i = 1,...,n, and K(-) be a positive kernel
function, such that [* K(w)dw =1 and that max { fj;o (w| K (w) dw, sup,eg K(w)} < M, for
positive absolute constant M. Assume that conditional on W; = w for any w in the range of W,
and unconditionally, X; and V; are subgaussian with parameters at most x2 and x2 respectively,
for positive absolute constants ., and k,. Assume that there exists positive absolute constant M,
such that

{ ‘ o fwx,vy(w, z,v)
max

ow
for any w,z,v € R such that the densities are defined. Take h,, > Ki{log(np)/n}/? for positive
absolute constant K7, and assume that h,, < Cj for positive constant Cy. Suppose n > max {64(c+
2)2(c + 1){log(np)}?/3,3} for positive absolute constant c. Consider U-statistic

U= Z{ K(FL) (- X0 - v

(w,z,0)} < M,

Then we have

o) o252 oo

where
C ={16V3(1 + o)V My + 4301 (1 + o) M2 Ky + 80y (1 + ¢)
+803(1+ ) 2M P MP KT 4804 (1 + €)My K+ 8My (e + 2) Y g,
with C1,...,Cy as defined in (A3.2) and My = M + M MgCy.

(A4.48)

Proof of Lemma A4.21. Denote Z;; = (X; — X;)(V; — V;). We apply truncation to (X; — X;)?
level C2log(np), and to (V; — V;)? at level CS log(np), for some positive absolute constants C, and
Cy. Denote Ap,; = {(Xl — X;)% < C%log(np), (V; — V;)? < Cylog(np), i,j € [n], i < j}, and first
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focus on U-statistic

=% [L K(Wh—Wa) Zi (X - X;)? < C2log(np), (Vi = V;)? < Cylog(np)}]

Wi — W;

1

W )2 T{(X; = X;)? < C2log(np), (Vi = Vj)? < Cy log(np)},

and
(D) = E[g(Di, D;)| Di].
Assume hy, > Klil/og(np)/n}l/2 for some positive absolute constant K. Denote X = X; — X,
V =V1—Vs,and W = W1 —W,. Note that by argument of Lemma A4.16, we have all the necessary
smooth conditions of densities. Denote C' = C, - C,, and note that (X; — X;)? < C%log(np), (V; —
V;)? < Cylog(np) implies that |Z;;| < Clog(np).
Step I. We bound By, By, E[f(D2)?], 0%, and B? as in Lemma A3.4, and apply Lemma A3.4.
We have B, < C'Mg log(np)/h, < (CMg /K1) - {nlog(np)}'/2. For By, apply Lemma A3.3 on
¢ =1 and with My = M, My = Mg, and we have
1 W; — W,
By < C'log(np) E[h—K<7h ]>}Wj}
< Clog(np){fw(Wj) + MM Co}
< CMjylog(np),
where My = M + Mg MCy, and the last inequality used the fact that fi (W;) € [0, M].
For bounding E[f(D2)?], apply Lemma A3.3 on ¢ = Z;; I1{(X; — X;)? < C2log(np), (Vi —
V}-)2 < C, log(np)} and with M7 = M, My = Mk, and then we have
|f(D2) = f1(D2)| < Mg M fo(D2)hn,
where
f1(D2)

2) <
f2(D2) <

E[Zlg H(’Zu’ S Clog(np))|W1 = WQ, DQ] le(Wg)
E[|Z12] (| Z12| < Clog(np))|D2].

Therefore, we have

E[f(D2)?] = E[{f(D2) — f1(D2) + f1(D2)}’]

A4.49
< 2M7M?C3E [ f2(D2)?] + 2E[f1(D2)?], ( :

and meanwhile,
E[fi(D2)*] < MPE[Z},] < MPE[X*]'PE[V4]/? < 12M°k2k;, and (A4.50)

E[f2(D2)?] < E[Z%,)] < E[X*Y2E[V4Y/? < 126252

T v
where the first inequalities are by Jensen’s inequality, the second are by Cauchy-Schwarz inequality,
and the third are due to the fact that E[X%] < 12x2, E[V*4] < 12x2 (Lemma A4.18). Combining
(A4.49) and (A4.50), we have

E[f(D2)?] < (M{MP?CG + M?) - 24k3k, < 24M 7KK, (A4.51)
For bounding o2, apply Lemma A3.2 on Z = ZZ-QJ- and with My = M, My = Mg, and then we
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have

E[g(D;, D;)?] < TnE[hn (WhnW )Zﬂ

M
h—f{E[zfj\Wi = W,]M + MMy CoE[Z%]}

IA

%{E[X"*W — 0]'2E[VW = 0]'/2M + M Mg CoR[X*]/2E[V]/?}

IN

M
SR 126262 M + 126262 M Mg Co}

- 12/13/112)MKMf( n )1/2
- K log(np)/
where the third inequality is by Cauchy Schwarz inequality, and the fourth is due to subgaussianity
of X and V both conditional on W = 0 and unconditionally.
For bounding B?, we have

B? = nsBpE[g(Dl, DQ)Q‘DQ]
2

IN

nMK 1
supE [—K
hn Df hn

< MMk (cmgm)%[%d@) |D2}
n n n
C’ MMy
- Ky
where the last inequality is by applying Lemma A3.3 with M} = M and Ms = My, and noticing
that fy (Ws) € [0, M].
We take

(5

. 7% W{|Z1a| < Clog(np)}}DQ]

{nlog np } /

C%2=Cy-262,C? =Cy - 22, for Cz > 4,
t = Cy - 16V3Mhyk, (Z) {log(np)/n}/?,

u = Cylogp, for C, > 1,
and require n > max {16C%C?{log(np)}*/3, 3}. Then by Lemma A3.4, we have

P{ <721> _1‘[7‘ — E[ﬁH > A1{ log(np)/n}1/2} < 2exp(—C?log(np)) + Cs exp(—Cy log p),

where

L1 1
Ay = (16V/3Ci My + 4V3C10F MK, * +8CyC), + 803(13/21\42 M
Here, C1,...,C5 are as defined in (A3.2).

-

K, > +8C4C> My K ) kigkiy.

N

~
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Step II. We bound |E[U] — E[U]], and complete the proof. We have

@1@@ B :‘E[;K(%)Zﬁ 1{| Zi > Clog(np)}|
<E [;K<Z>X2 I{X? > 2Czx2 log(np)}} 1/2><
E[;K(Z)ﬁQ I[{ff2 > 207K2 log(np)}} 1/2,
where N
E[%K(%)f@ II{)?2 > 2CZ/€§, log(np)}]

<E[X?1{X? > 20,2 log(np)}‘w = 0]M 4+ MMy CoE[X? T{X? > 2C ;2 log(np)}]
<M;{2C7k3 log(np) + 8r3 } exp{—2C log(np)/(8x3)} < 4M;Cyri{log(np) /np}'/?,

where the first inequality is by applying Lemma A3.2 on Z = X2 I[{)~( 2 > 20zk2 log(np)} and with
M, = M, My = Mk, and the second is by the fact that X;; is subgaussian with parameter at most
k2 (Lemma A4.18), both conditional on W; = W; and unconditionally, and by applying Lemma
A4.19 with a = 2Czk2 log(np) > 4k2. By an identical argument, we have

1 W = >
IEJ[—K(—)X2 I{X? > 2CyK2 log(np)}} < 4AM;Cyzw2{log(np) /np} /2.

hn  \hy
Combining the last three displays, we have
(7;)_1\1@[&] ~E[U]| =\E[;K(V,ij)zij 1{|Z;5| > Clog(np)}|| < Ao{log(np)/mp}!/2, (A4.52)
where Ay = 4AM;Czkyky.
We have
IP’{ (Z) _1\U LR 2 (4 + Ay {logflnp) }1/2}
<{(3) 10501z 0 (P 0 4 piny
< {(3) 105wl 2 (4 - {2 0 ) s,
n\ !~ log(np) \1/2
SIP’{ <2> U —E[U]] > (A1 + A2) - { gn P } } +P(AR)
2e{(5) ez - {2) ) ey

where (i) is by (A4.52). We take Cf = Cy, = ¢ > 1, and Cz = max {2¢,4} < 2c + 2, for positive
absolute constant ¢. This completes the proof. ]
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Lemma A4.22. Let D; = (X;,V;,W;) be i.i.d. for i = 1,...,n, and K(-) be a positive kernel
function, such that f_Jr;o K(w)dw =1, and that

+oo
max{/ w2 K (w) dw, sup ] K (w) } < My,
w

—00
for positive absolute constant Mg > 1. Let V; = v(WW;) for function v(-), such that
[v(wy) — v(we)| < My|lwy — wa|® + My T {(wl,w2) € A},
for positive absolute constant M,, My, 0 < a < 1, and set A such that (w;,ws2) € A implies
(w2, w;) € A, and that

1 W
E[—K( ”) 1{(W;,W;) € A}} < Myh,,

hyp  \ hy

for positive absolute constant M,. Assume that conditional on W; = w for any w in the range
of W;, and unconditionally, X; is subgaussian with parameter at most x2, for positive absolute

constant k,. Assume that there exists positive absolute constant M such that

ma {| 2] ) <

for any w,z € R such that the densities are defined. Take h,, > Ki{log(np)/n}'/? for positive
absolute constant K7, and assume that h,, < Cj for positive constant Cy. Suppose n > max { 64(c+
2)%(c + 1)7273 {log(np)}*, {log(np)}>/3}, for positive absolute constant c. Consider U-statistics

U= Z{ K2 0 - )= V)

Then there exists positive absolute constants C', such that

p{ (Z) w2 C{log(np)/n}"/?} < 5.27 exp{~(c +1)logp},

where
c :47'3}/2(1 +e)/? 4 2ClTi/2(1 + )2 4 2Com(1 +¢) + 2037';/2(1 +¢)3/?
+2Cym1 (1 +¢)? +4(M + MMgCy) - (M,C§ + My) - (¢ + 2)ky
Here C1,...,C5 are as defined in (A3.2), and
1 =V2(2 4 )Yk, KT Y (M, Mg C§ + MyMg),
9 = V2(2 4 &)Yk {My My M(1 + Co)C§ + Myg(M + MMy Cy)},
T3 = AMEM? - (M,C§ + My)* - (14 C2) - k2
7y = {AMZM My k2 (1 + Co)C2™M 4 2M3 - (12M K% + 12M Mg Cort) /2 - M0 V> ) - Mg K}
75 = 4(2 + ¢)k2{ M, M Mg (1 + Co)CE* + M7 (M + MMk Co)} Mg K;
where 1 = min {2a — 1, -1/2}.

(A4.53)

Proof of Lemma A4.22. We apply truncation to (X; — X;)? at level Clog(np) for some positive
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absolute constant C, and first focus on U-statistic

0= 3 [ r () 0 = X (Vi = V) T{( = X < Clog(mp)}].

Denote
W; — W;

9(Ds, Dj) = hnK< B,

)(X X;) (Vi — V) T{(X; — X;)? < Clog(np)},

and
f(D;) =E[g(D;, D;)|Di].

Assume h,, > K;{log(np)/n}'/? for some positive absolute constant K. Note that by the argument
of Lemma A4.16, we have all the necessary smooth conditions of densities.
Step I. We bound By, By, E[f(D2)?], 02, and B? as in Lemma A3.4, and apply Lemma A3.4.
For bounding B, we have

By < I (Clog(oup) V2 [ K (L) [ (0%; = W)* + Ma {95, 5) € 4]

< CI/QKl_l(MUMKCS‘ + MyMp) - n'/? = ;nl/2
where the second inequality is by |w|*K(w) < Mg and K(w) < Mj.
For bounding By, we have

“)w-np,

W; —W;
b,

D {(wi, wy) eA}{D”H

By < (Clog(np))l/zuE[iK(

< (C'log(np) 1/2H{M E[h K(

W; — W;
b

)|W W|]D}

+MdE[h (

where

s - i)

://K(w)’“’hn’afwl(Wz+whn)dw
//K )|wha|* fwl(WQ) 3 fw, (w)

: hn}d
ow ’Wg+whn v v

<M M (1 + Co)he.

Therefore By < CY2{ M, MM (1 + Cy)C§ + My(M + MMgCp)} - {log(np)}1/? = m2{log(np) } /2.
For bounding E[f(D3)?], we have

|f(D2)| §MUE[|W1 ;nWQ‘:K(WW:If;m) . ’Dz} (A4.54)
ek ()0 - x|
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Apply Lemma A3.3 on ¢ = | X; — Xo| and with M} = M, My = M, we have
1 Wi — Wy
E[—K(i)X e D]
™ ™ | X1 — X3|| Dy
< E[|X1 — Xo||[W1 = Wa, Da] fw, (Wa) + MMy CoE[| X1 — Xa||D2],

(A4.55)

while using a similar argument as used in proof of Lemma A3.3, for some ¢ € [0, 1], we have

Wi = Wh|* W1 — Wy
E[ B K( B )‘Xl_XQHD?}
://K(w)|x—X2|-|whn|°‘fWX(W2—f—whn,x)dwdFX(x)

. 0 fupx(w.)
= [ [ Kl = Xl bl { e W) + D) Y dw i)

<MgMC§ -E[| X1 — Xo||[W1 = Wa, Do] + MgMC§™ - E[| X1 — Xo|| D).

(A4.56)
Combining (A4.54)-(A4.56), and by Jensen’s inequality, we have
E[f(D2)?] <E({(M,MgMC§ + MyM)E[| X1 = X3||W; = Wa, Dy]
+ (M, Mg MGG + MyMMycCo)E[| X1 — Xo|| D] })
<2(M,MgMC§ + MygM)*E[E{| X1 — Xa||W1 = W, Dy }]
+ 2(M, My MCSH + MyM M Co)*E[E{| X1 — Xa|| D2}’
<2Ma M?(M,C§ + Mg)*(1 + CHE[(X —X2) 7]
<AMZM? - (M,C8 + Mg)?- (14 C2) - k2 =73
For bounding o2, we have
o® =E[g(D1, Dy)?]
2MZWy — Wo|?* + 2M2 T { (W1, Ws) € A} — Wo )
< _
—E[ h2 ( i )(X1 XQ)}
OM2My 11 Wy — ) ) (A4.57)
<V R| - — «a —_
= h E[hnK( hn )'Wl ol (&0 = X2) ]
2MdMK Wi — Wy 2
— = — X5)?%.
- E[hnK( " ) T{W1, W) € A}(X1 — Xa)?]
Using a similar argument as used in proof of Lemma A3.2, for some t € [0, 1], we have
1 W 2a 2
//K |wh 2.z fW‘X(whn,:z) dw dFg(z)
(A4.58)

Of= %(w, )
://K(w)|whn|2“‘-x2 : {fm?(o,x) + ngiw‘(twhn , -whn}dwdF;((x)

<MMgh2E[X?|W = 0] + MMgh?*+'E[X?]
<2M MpcwZ(1 + Co)h2e.
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We also have

1 (Wi —W.
B[ K (——) T{(W1,W2) € A}(X1 - X)?|
1 (Wi —W. V2l Wy - W 1/2
o) o <] o (M
<(Mahy) 2 - (B[XY|W = 0] M + MMk CoE[X*])"/?
<(12M KL +12M Mg Cor)V2 - M2p1/2,

(A4.59)

where the first inequality is by Cauchy-Schwarz inequality, second is by applying Lemma A3.2 on

,Zv: (X1 — X2)4 with My = M, My = My, and third is by subgaussianity of X conditional on
W = 0 and unconditionally. Combining (A4.57)-(A4.59), we have

02 < {AM2MMgr2(1 4 Co)C*™ " +2M3 - (12M k2 + 12M Mg Cort) /2 - M2y > Y My
= 4n”/*{log(np)}/?,

where v1 = min {2a -1, —1/2}.
For bounding B?, we have

B% =n sBpE[g(D17D2)2‘D2]
2
2MZ Wy — Wy > + 2M3 T{(Wy, Wh) € A
gnsupE[ 2|y 2| 2d {(W, Wa) }K
Do hn

(X1 = Xe2T{(Xy — X)? < Clog(np)}| Ds

2(W1h—nW2)

(A4.60)
2CMgnlog(np) (, o[ 1 Wy — Wo 9
< _ L e _ e
hn {M“E[hnK< hn >|W1 Wl |D2]
1 Wy — W:
2 = 1 2
+ MdMKE[hnK<7hn ) {(W1, W) € A}| D, ] }.
By a similar argument as used in (A4.56), for some ¢ € [0, 1], we have
1 W1 - W2 200
Bl K (T ) Iw - e D)
_ / / K ()| wha[? fuy x (W + wh, ) dw dFx (z)
(A4.61)
O fw x (w, )
o 2a .
— [ [ K@t { g (W) + FEEED) o} b dr()
<M Mic(1 4 Co)hi®
Combining (A4.60) and (A4.61), we have
2CMgnl
p2< ¢ K;‘ og(np) {M2M M (1 + Co)h2* + M2(M + MMy Co)}

< 20 Mg { M2M M5 (1 + Co)h2* + M3(M + MMy Co) } K1 'n®?*{log(np) }*/?
= mn*/*{log(np)}'/*
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We take
C=Cy-2K2,

n
t = cuan} () (o) )
u = Cylogp, for C, > 1,

and require n > max{64c(c + 1)?727; ' {log(np)}*, {log(np)}>/®}. For simplicity, we further take
C? =C,=c>1,and Oz = max {20, 4} < 2c¢+ 2. Then by Lemma A3.4, we ha ve

-1
IP’{ <Z> U - E[U]] > A1{log(np)/n}1/2} < 2exp(—C?log(np)) + Cs exp(—Cy log p),

where A; = 2- (27'31/201/2 + 017'41/201/2 + Comoc+ 037';/203/2 +Cy71c?). Here, 71, ..., 75 are given in
equations above, and Cf, ..., C5 are as defined in (A3.2).
Step II. We bound |E[U] — E[U]|, and complete the proof.
We have
1 Wi — Wy
E[anK ( hn
<E[(X; — X2)? T{(X1 — X2)* > Clog(np) }|W1 = Wa| M
+ MMy CoB[(Xy — X2)2 T {(X1 — X2)? > Clog(np)}]
<A(M + MMy Co)Czx;, - {log(np) /n},
where the first inequality is by applying Lemma A3.2 on (X; —X5)? 1 {(Xl -X2)2>C log(np)} and
with My} = M, My = Mk, the second is by subgaussianity of (X; — X3) conditional on W; = Wy
and unconditionally, and by applying Lemma A4.19 with a = Clog(np) > 4x2.

)(X1 — X)Xy — X9)? > Clog(np)}}

Based on earlier arguments, we have

E[;K(W)(m B ‘/2)2} 1/2
SMUIE[};K(Wlf;%) Wy — W2|2a} 1/2 N MdE[han(Wl};W?)] 1/2

<(M + MMgCo)'*(M,C§ + M),

where the last inequality is by the fact that |w|*K (w) < M and by applying Lemma A3.2 on Z = 1
with M1 = ]\4'7 M2 = MK.
Combining the last two displays, and apply Cauchy-Schwarz inequality, we have

(2) 01 s

=\E[,3K(ngw2) (X1 = X2) (Vi = V) T{(X1 — X2)? > Clog(np)}|
gE[f;K(VVI};%)(Xl — X)Xy — X9)? > C’log(np)}] ;E[};K<WI};W2>(V1 - Vz)Q]%
<A, - {log(np) /n}/?,

(A4.62)

where Ay = 2(M + MMKCO) . (MUC’(‘)“ + Md)Czlim.
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Denote A, = { (X; 2 < Clog(np), i,j € [n], i < j}, and we have
P{(g) U B[] > (41 + 49) - (202N
() -0 20 () e
<P{(Z> T~ E[U]] > (A + 42) - (lognp)l/2 N Ay | + B(AT)
gP{(Z) 0~ EW)| > (41 + ) (B e
Lo} (2) -1 4 () vy

2
<2 exp(—Ct2 log(np)) + Cs exp(—Cy logp) + % exp{—2C7z log(np)/2}

1
<2exp(—Cf log(np)) + Cs exp(~Cu logp) + 5 exp{~C logp/2},
where (7) is by (A4.62). This completes the proof. O
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