
rproxy: a practical HTTP delta 
compression system

Andrew Tridgell
tridge@samba.org



The rsync algorithm

� The rsync algorithm is a remote differencing and 
update algorithm. It allows you to efficiently 
update a file on one machine with the contents of 
a file on another machine while taking advantage 
of the common content between the old and new 
file.

� signature generation A signature block is generated 
for the old file

� signature search The differences between the old 
and new data are computed using a checksum search

� reconstruction The new file is reconstructed



rsync properties

� Low latency due to single pass update

� Handles arbitrary byte-level insertions, deletions 
and movements

� Pipelined for single pass operation on multiple 
files

� Two signatures per block

� a rolling hash for very efficient match generation

� a strong hash for verification



rdiff example

� Create a signature of the old file

� rdiff signature OLDFILE > sig.dat

� Create a delta using the signature and new file

� rdiff delta sig.dat NEWFILE > delta.dat

� Apply the delta to the old file

� rdiff patch delta.dat OLDFILE > new.dat

� Check the result

� cmp NEWFILE new.dat



rsync in HTTP

� Large parts of the web are moving to dynamic 
content. Traditional web caches can't cache 
dynamic content. Integrating rsync in http solves 
this problem.

� builds on existing web infrastructure

� all content is cacheable

� no extra round trips



Integrating rsync in HTTP

� A choice of either server generated or client 
generated signatures.

� Client signatures use one extra HTTP header and 
a new HTTP Content-Encoding type.

� The client generates a signature from the cached file 
and adds it to the request as a Rsync-Signature 
header. It is base64 encoded.

� The server generates the page as usual then performs 
a checksum search to generate the differences.

� The client receives a "Content-Encoded: rsync'' reply 
and decodes it to give the new page.



Server generated signatures

� The client generates a null signature block and adds it 
to the request as a Rsync-Signature header.

� The server generates the page then performs a rsync 
differencing run to generate a rsync-encoded page. 
This leads to a set of deflate compressed literal data 
in a reply marked as "Content-Encoding: rsync''

� The server also sends a rsync signature for the new 
page and appends this to the rsync-encoded reply.

� The client receives the reply and decodes it to give 
the new page. 

� The next time the client requests that URL it provides 
the signature back to the server. 



Which is better? 

� The client doesn't need to know the signature 
format. This allows the server a lot of flexibility. 
It also allows the server to use a signature-token 
instead of a full signature if it wants to.

� The signature only passes over the wire between 
clients and servers that both know about rsync.

� There are possible patent problems with the 
client-generated signatures. There are no patent 
problems with server generated signatures.



Disadvantages

� The main disadvantage is the higher 
computational load on the server.

� Without the deflate compression the rsync algorithm 
can run at 15-25 Mbyte/sec on a cheap PC. Very few 
web servers are on links that fast.

� With deflate compression this reduces to about 6 
MB/sec on my laptop, which is still quite acceptable 
for most servers.

� In either case, it is often much easier to add more 
CPU power than it is to add network bandwidth. 



Proxy servers

� There can be a lot of benefit to implementing 
rsync in web proxy servers. The proxy has 4 
scenarios to deal with:

� The downstream client supplied a rsync header and 
we got a rsync reply. We send on the reply as is.

� The client didn't supply a rsync header and we didn't 
get a rsync reply. We send on the reply as is.

� The client didn't supply a rsync header but we got an 
rsync reply. We decode it before sending it on.

� The client gave a rsync header and we got a non-
encoded reply. We need to rsync encode the reply and 
send it on to the client.



Failure probability

� The rsync algorithm is probabilistic, as all 
algorithms of this kind must be. That means there 
is a non-zero chance of failure. The probability of 
failure can be reduced to arbitrarily small levels 
by the choice of appropriate signature lengths. 

� With the signature algorithm and sizes currently 
in use in rsync and a rate of one million transfers 
per second we should see a failure in about 1011 
years. The universe is thought to be about 1010 
years old.



Cache file selection

� An interesting property of a rsync based web 
cache is that you can choose a cached page that 
doesn't exactly match a URL.

� The most obvious thing to do is to truncate the 
URL at the first '?', removing CGI parameters. An 
alternative be to try an exact URL then 
progressively trim until a match is found.

� The result is that you get the speedup if there is 
any common content between the page you want 
and a previous page from the same site.



A working prototype

� rproxy is a simple fork-per-connection web proxy 
written in C. It implements both the client and 
server side of rsync in HTTP.

� can be chained with other proxy servers.

� uses a maximum signature size of 512 bytes. 

� cache files URLs are truncated at the first '?'.

� all requests are pipelined for minimum latency

� implemented on top of librsync, a simple rsync 
library implementation.

� zlib is used for deflate compression of the encoded 
data.



Initial results

� Overall, rproxy reduced the repeat URL traffic on 
my link by 76%

Site Saving %
linuxtoday 81
slashdot 82
linux.com 93
excite.com 93


