rproxy: apractical HTTP delta
compression system

Andrew Tridgell
tridge@samba.org



Thersync algorithm

* Thersync algorithm is aremote differencing and
update algorithm. It allows you to efficiently
update afile on one machine with the contents of
afile on another machine while taking advantage
of the common content between the old and new
file.

— signatur e generation A signature block is generated
for the old file

- signatur e sear ch The differences between the old
and new data are computed using a checksum search

— reconstruction The new fileis reconstructed



rsync properties

* Low latency due to single pass update

 Handles arbitrary byte-level insertions, deletions
and movements

* Pipelined for single pass operation on multiple
files
e Two signatures per block

- arolling hash for very efficient match generation
- astrong hash for verification



rdiff example

Create a signature of the old file
- rdiff signature OLDFILE > sig. dat

Create a delta using the signature and new file
- rdiff delta sig.dat NEWFI LE > delta. dat

Apply the deltato the old file

- rdiff patch delta.dat OLDFI LE > new. dat

Check the result
- cnp NEWFI LE new. dat



rsyncin HTTP

* | arge parts of the web are moving to dynamic
content. Traditional web caches can't cache
dynamic content. Integrating rsync in http solves
this problem.

- builds on existing web infrastructure
- al content is cacheable
— No extraround trips



Integrating rsync iIn HTTP

* A choice of elther server generated or client
generated signatures.

e Client signatures use one extraHT TP header and
anew HTTP Content-Encoding type.

— The client generates a signature from the cached file
and adds it to the request as a Rsync-Signature
header. It Is base64 encoded.

- The server generates the page as usual then performs
a checksum search to generate the differences.

- The client recaeives a " Content-Encoded: rsync" reply
and decodes it to give the new page.



Server generated signatures

- The client generates a null signature block and adds it
to the request as a Rsync-Signature header.

- The server generates the page then performs arsync
differencing run to generate a rsync-encoded page.
Thisleadsto a set of deflate compressed literal data
In areply marked as " Content-Encoding: rsync"

— The server also sends arsync signature for the new
page and appends this to the rsync-encoded reply.

— The client receives the reply and decodes it to give
the new page.

- The next time the client requests that URL it provides
the signature back to the server.



Which 1s better?

* The client doesn't need to know the signature
format. This allowsthe server alot of flexibility.
It also allows the server to use a signature-token
Instead of afull signature if it wants to.

* The signature only passes over the wire between
clients and servers that both know about rsync.

* There are possible patent problems with the
client-generated signatures. There are no patent
problems with server generated signatures.



Disadvantages

* The main disadvantage is the higher
computational load on the server.

- Without the deflate compression the rsync algorithm
can run at 15-25 Mbyte/sec on acheap PC. Very few
web servers are on links that fast.

- With deflate compression this reduces to about 6
MB/sec on my laptop, which is still quite acceptable
for most servers.

— In d@ther case, it 1s often much easier to add more
CPU power than it isto add network bandwidth.



Proxy servers

* There can be alot of benefit to implementing
rsync in web proxy servers. The proxy has 4
scenarios to deal with:

- The downstream client supplied arsync header and
we got arsync reply. We send on thereply asis.

- The client didn't supply arsync header and we didn't
get arsync reply. We send on thereply asis.

- Theclient didn't supply arsync header but we got an
rsync reply. We decode it before sending it on.

- The client gave a rsync header and we got a non-
encoded reply. We need to rsync encode the reply and
send it on to the client.



Failure probability

* Thersync algorithm is probabilistic, as all
algorithms of this kind must be. That means there
IS a non-zero chance of failure. The probability of
failure can be reduced to arbitrarily small levels
by the choice of appropriate signature lengths.

* With the signature algorithm and sizes currently
In use in rsync and arate of one million transfers

per second we should see afailure in about 10"
years. The universe is thought to be about 10™
years old.



Cache file selection

* Aninteresting property of arsync based web
cache is that you can choose a cached page that
doesn't exactly match a URL.

* The most obvious thing to do isto truncate the
URL at thefirst "7, removing CGI parameters. An
alternative beto try an exact URL then
progressively trim until a match is found.

* Theresult isthat you get the speedup If thereis
any common content between the page you want
and a previous page from the same site.



A working prototype

* rproxy is asimple fork-per-connection web proxy
written in C. It implements both the client and
server sideof rsync InHTTP.

— can be chained with other proxy servers.

- uses a maximum signature size of 512 bytes.

- cachefiles URLs are truncated at the first '?.

- all requests are pipeined for minimum latency

- Implemented on top of librsync, asimple rsync
library implementation.

- Zlib is used for deflate compression of the encoded
data.



Initial results

e Overdl, rproxy reduced the repeat URL traffic on
my link by 76%

Site Saving %
linuxtoday 81
slashdot 82
l[inux.com 93

excite.corr o3



