clang  3.8.0
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  assert(
70  isa<clang::sema::LambdaScopeInfo>(
71  FunctionScopes[FunctionScopes.size() - 1]) &&
72  "The function on the top of sema's function-info stack must be a lambda");
73 
74  // If VarToCapture is null, we are attempting to capture 'this'.
75  const bool IsCapturingThis = !VarToCapture;
76  const bool IsCapturingVariable = !IsCapturingThis;
77 
78  // Start with the current lambda at the top of the stack (highest index).
79  unsigned CurScopeIndex = FunctionScopes.size() - 1;
80  DeclContext *EnclosingDC =
81  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82 
83  do {
84  const clang::sema::LambdaScopeInfo *LSI =
85  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86  // IF we have climbed down to an intervening enclosing lambda that contains
87  // the variable declaration - it obviously can/must not capture the
88  // variable.
89  // Since its enclosing DC is dependent, all the lambdas between it and the
90  // innermost nested lambda are dependent (otherwise we wouldn't have
91  // arrived here) - so we don't yet have a lambda that can capture the
92  // variable.
93  if (IsCapturingVariable &&
94  VarToCapture->getDeclContext()->Equals(EnclosingDC))
95  return NoLambdaIsCaptureReady;
96 
97  // For an enclosing lambda to be capture ready for an entity, all
98  // intervening lambda's have to be able to capture that entity. If even
99  // one of the intervening lambda's is not capable of capturing the entity
100  // then no enclosing lambda can ever capture that entity.
101  // For e.g.
102  // const int x = 10;
103  // [=](auto a) { #1
104  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
105  // [=](auto c) { #3
106  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
107  // }; }; };
108  // If they do not have a default implicit capture, check to see
109  // if the entity has already been explicitly captured.
110  // If even a single dependent enclosing lambda lacks the capability
111  // to ever capture this variable, there is no further enclosing
112  // non-dependent lambda that can capture this variable.
114  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115  return NoLambdaIsCaptureReady;
116  if (IsCapturingThis && !LSI->isCXXThisCaptured())
117  return NoLambdaIsCaptureReady;
118  }
119  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120 
121  assert(CurScopeIndex);
122  --CurScopeIndex;
123  } while (!EnclosingDC->isTranslationUnit() &&
124  EnclosingDC->isDependentContext() &&
125  isLambdaCallOperator(EnclosingDC));
126 
127  assert(CurScopeIndex < (FunctionScopes.size() - 1));
128  // If the enclosingDC is not dependent, then the immediately nested lambda
129  // (one index above) is capture-ready.
130  if (!EnclosingDC->isDependentContext())
131  return CurScopeIndex + 1;
132  return NoLambdaIsCaptureReady;
133 }
134 
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 /// - climb down the stack (i.e. starting from the innermost and examining
147 /// each outer lambda step by step) checking if each enclosing
148 /// lambda can either implicitly or explicitly capture the variable.
149 /// Record the first such lambda that is enclosed in a non-dependent
150 /// context. If no such lambda currently exists return failure.
151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 /// capture the variable by checking all its enclosing lambdas:
153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
154 /// identified above in 'a' can also capture the variable (this is done
155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
156 /// 'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable. If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169 
172  VarDecl *VarToCapture, Sema &S) {
173 
174  const Optional<unsigned> NoLambdaIsCaptureCapable;
175 
176  const Optional<unsigned> OptionalStackIndex =
178  VarToCapture);
179  if (!OptionalStackIndex)
180  return NoLambdaIsCaptureCapable;
181 
182  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184  S.getCurGenericLambda()) &&
185  "The capture ready lambda for a potential capture can only be the "
186  "current lambda if it is a generic lambda");
187 
188  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190 
191  // If VarToCapture is null, we are attempting to capture 'this'
192  const bool IsCapturingThis = !VarToCapture;
193  const bool IsCapturingVariable = !IsCapturingThis;
194 
195  if (IsCapturingVariable) {
196  // Check if the capture-ready lambda can truly capture the variable, by
197  // checking whether all enclosing lambdas of the capture-ready lambda allow
198  // the capture - i.e. make sure it is capture-capable.
199  QualType CaptureType, DeclRefType;
200  const bool CanCaptureVariable =
201  !S.tryCaptureVariable(VarToCapture,
202  /*ExprVarIsUsedInLoc*/ SourceLocation(),
204  /*EllipsisLoc*/ SourceLocation(),
205  /*BuildAndDiagnose*/ false, CaptureType,
206  DeclRefType, &IndexOfCaptureReadyLambda);
207  if (!CanCaptureVariable)
208  return NoLambdaIsCaptureCapable;
209  } else {
210  // Check if the capture-ready lambda can truly capture 'this' by checking
211  // whether all enclosing lambdas of the capture-ready lambda can capture
212  // 'this'.
213  const bool CanCaptureThis =
215  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217  &IndexOfCaptureReadyLambda);
218  if (!CanCaptureThis)
219  return NoLambdaIsCaptureCapable;
220  }
221  return IndexOfCaptureReadyLambda;
222 }
223 
224 static inline TemplateParameterList *
226  if (LSI->GLTemplateParameterList)
227  return LSI->GLTemplateParameterList;
228 
229  if (!LSI->AutoTemplateParams.empty()) {
230  SourceRange IntroRange = LSI->IntroducerRange;
231  SourceLocation LAngleLoc = IntroRange.getBegin();
232  SourceLocation RAngleLoc = IntroRange.getEnd();
234  SemaRef.Context,
235  /*Template kw loc*/ SourceLocation(), LAngleLoc,
236  llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
237  LSI->AutoTemplateParams.size()),
238  RAngleLoc);
239  }
240  return LSI->GLTemplateParameterList;
241 }
242 
244  TypeSourceInfo *Info,
245  bool KnownDependent,
246  LambdaCaptureDefault CaptureDefault) {
247  DeclContext *DC = CurContext;
248  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
249  DC = DC->getParent();
250  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
251  *this);
252  // Start constructing the lambda class.
254  IntroducerRange.getBegin(),
255  KnownDependent,
256  IsGenericLambda,
257  CaptureDefault);
258  DC->addDecl(Class);
259 
260  return Class;
261 }
262 
263 /// \brief Determine whether the given context is or is enclosed in an inline
264 /// function.
265 static bool isInInlineFunction(const DeclContext *DC) {
266  while (!DC->isFileContext()) {
267  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
268  if (FD->isInlined())
269  return true;
270 
271  DC = DC->getLexicalParent();
272  }
273 
274  return false;
275 }
276 
279  Decl *&ManglingContextDecl) {
280  // Compute the context for allocating mangling numbers in the current
281  // expression, if the ABI requires them.
282  ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
283 
284  enum ContextKind {
285  Normal,
286  DefaultArgument,
287  DataMember,
288  StaticDataMember
289  } Kind = Normal;
290 
291  // Default arguments of member function parameters that appear in a class
292  // definition, as well as the initializers of data members, receive special
293  // treatment. Identify them.
294  if (ManglingContextDecl) {
295  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
296  if (const DeclContext *LexicalDC
297  = Param->getDeclContext()->getLexicalParent())
298  if (LexicalDC->isRecord())
299  Kind = DefaultArgument;
300  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
301  if (Var->getDeclContext()->isRecord())
302  Kind = StaticDataMember;
303  } else if (isa<FieldDecl>(ManglingContextDecl)) {
304  Kind = DataMember;
305  }
306  }
307 
308  // Itanium ABI [5.1.7]:
309  // In the following contexts [...] the one-definition rule requires closure
310  // types in different translation units to "correspond":
311  bool IsInNonspecializedTemplate =
312  !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
313  switch (Kind) {
314  case Normal:
315  // -- the bodies of non-exported nonspecialized template functions
316  // -- the bodies of inline functions
317  if ((IsInNonspecializedTemplate &&
318  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
319  isInInlineFunction(CurContext)) {
320  ManglingContextDecl = nullptr;
321  return &Context.getManglingNumberContext(DC);
322  }
323 
324  ManglingContextDecl = nullptr;
325  return nullptr;
326 
327  case StaticDataMember:
328  // -- the initializers of nonspecialized static members of template classes
329  if (!IsInNonspecializedTemplate) {
330  ManglingContextDecl = nullptr;
331  return nullptr;
332  }
333  // Fall through to get the current context.
334 
335  case DataMember:
336  // -- the in-class initializers of class members
337  case DefaultArgument:
338  // -- default arguments appearing in class definitions
339  return &ExprEvalContexts.back().getMangleNumberingContext(Context);
340  }
341 
342  llvm_unreachable("unexpected context");
343 }
344 
347  ASTContext &Ctx) {
348  assert(ManglingContextDecl && "Need to have a context declaration");
349  if (!MangleNumbering)
350  MangleNumbering = Ctx.createMangleNumberingContext();
351  return *MangleNumbering;
352 }
353 
355  SourceRange IntroducerRange,
356  TypeSourceInfo *MethodTypeInfo,
357  SourceLocation EndLoc,
358  ArrayRef<ParmVarDecl *> Params) {
359  QualType MethodType = MethodTypeInfo->getType();
360  TemplateParameterList *TemplateParams =
361  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
362  // If a lambda appears in a dependent context or is a generic lambda (has
363  // template parameters) and has an 'auto' return type, deduce it to a
364  // dependent type.
365  if (Class->isDependentContext() || TemplateParams) {
366  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
367  QualType Result = FPT->getReturnType();
368  if (Result->isUndeducedType()) {
369  Result = SubstAutoType(Result, Context.DependentTy);
370  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
371  FPT->getExtProtoInfo());
372  }
373  }
374 
375  // C++11 [expr.prim.lambda]p5:
376  // The closure type for a lambda-expression has a public inline function
377  // call operator (13.5.4) whose parameters and return type are described by
378  // the lambda-expression's parameter-declaration-clause and
379  // trailing-return-type respectively.
380  DeclarationName MethodName
382  DeclarationNameLoc MethodNameLoc;
383  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
384  = IntroducerRange.getBegin().getRawEncoding();
385  MethodNameLoc.CXXOperatorName.EndOpNameLoc
386  = IntroducerRange.getEnd().getRawEncoding();
387  CXXMethodDecl *Method
388  = CXXMethodDecl::Create(Context, Class, EndLoc,
389  DeclarationNameInfo(MethodName,
390  IntroducerRange.getBegin(),
391  MethodNameLoc),
392  MethodType, MethodTypeInfo,
393  SC_None,
394  /*isInline=*/true,
395  /*isConstExpr=*/false,
396  EndLoc);
397  Method->setAccess(AS_public);
398 
399  // Temporarily set the lexical declaration context to the current
400  // context, so that the Scope stack matches the lexical nesting.
401  Method->setLexicalDeclContext(CurContext);
402  // Create a function template if we have a template parameter list
403  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
405  Method->getLocation(), MethodName,
406  TemplateParams,
407  Method) : nullptr;
408  if (TemplateMethod) {
409  TemplateMethod->setLexicalDeclContext(CurContext);
410  TemplateMethod->setAccess(AS_public);
411  Method->setDescribedFunctionTemplate(TemplateMethod);
412  }
413 
414  // Add parameters.
415  if (!Params.empty()) {
416  Method->setParams(Params);
417  CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
418  const_cast<ParmVarDecl **>(Params.end()),
419  /*CheckParameterNames=*/false);
420 
421  for (auto P : Method->params())
422  P->setOwningFunction(Method);
423  }
424 
425  Decl *ManglingContextDecl;
426  if (MangleNumberingContext *MCtx =
427  getCurrentMangleNumberContext(Class->getDeclContext(),
428  ManglingContextDecl)) {
429  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
430  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
431  }
432 
433  return Method;
434 }
435 
437  CXXMethodDecl *CallOperator,
438  SourceRange IntroducerRange,
439  LambdaCaptureDefault CaptureDefault,
440  SourceLocation CaptureDefaultLoc,
441  bool ExplicitParams,
442  bool ExplicitResultType,
443  bool Mutable) {
444  LSI->CallOperator = CallOperator;
445  CXXRecordDecl *LambdaClass = CallOperator->getParent();
446  LSI->Lambda = LambdaClass;
447  if (CaptureDefault == LCD_ByCopy)
449  else if (CaptureDefault == LCD_ByRef)
451  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
452  LSI->IntroducerRange = IntroducerRange;
453  LSI->ExplicitParams = ExplicitParams;
454  LSI->Mutable = Mutable;
455 
456  if (ExplicitResultType) {
457  LSI->ReturnType = CallOperator->getReturnType();
458 
459  if (!LSI->ReturnType->isDependentType() &&
460  !LSI->ReturnType->isVoidType()) {
461  if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
462  diag::err_lambda_incomplete_result)) {
463  // Do nothing.
464  }
465  }
466  } else {
467  LSI->HasImplicitReturnType = true;
468  }
469 }
470 
473 }
474 
475 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
476  // Introduce our parameters into the function scope
477  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
478  p < NumParams; ++p) {
479  ParmVarDecl *Param = CallOperator->getParamDecl(p);
480 
481  // If this has an identifier, add it to the scope stack.
482  if (CurScope && Param->getIdentifier()) {
483  CheckShadow(CurScope, Param);
484 
485  PushOnScopeChains(Param, CurScope);
486  }
487  }
488 }
489 
490 /// If this expression is an enumerator-like expression of some type
491 /// T, return the type T; otherwise, return null.
492 ///
493 /// Pointer comparisons on the result here should always work because
494 /// it's derived from either the parent of an EnumConstantDecl
495 /// (i.e. the definition) or the declaration returned by
496 /// EnumType::getDecl() (i.e. the definition).
498  // An expression is an enumerator-like expression of type T if,
499  // ignoring parens and parens-like expressions:
500  E = E->IgnoreParens();
501 
502  // - it is an enumerator whose enum type is T or
503  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
504  if (EnumConstantDecl *D
505  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
506  return cast<EnumDecl>(D->getDeclContext());
507  }
508  return nullptr;
509  }
510 
511  // - it is a comma expression whose RHS is an enumerator-like
512  // expression of type T or
513  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
514  if (BO->getOpcode() == BO_Comma)
515  return findEnumForBlockReturn(BO->getRHS());
516  return nullptr;
517  }
518 
519  // - it is a statement-expression whose value expression is an
520  // enumerator-like expression of type T or
521  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
522  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
523  return findEnumForBlockReturn(last);
524  return nullptr;
525  }
526 
527  // - it is a ternary conditional operator (not the GNU ?:
528  // extension) whose second and third operands are
529  // enumerator-like expressions of type T or
530  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
531  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
532  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
533  return ED;
534  return nullptr;
535  }
536 
537  // (implicitly:)
538  // - it is an implicit integral conversion applied to an
539  // enumerator-like expression of type T or
540  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
541  // We can sometimes see integral conversions in valid
542  // enumerator-like expressions.
543  if (ICE->getCastKind() == CK_IntegralCast)
544  return findEnumForBlockReturn(ICE->getSubExpr());
545 
546  // Otherwise, just rely on the type.
547  }
548 
549  // - it is an expression of that formal enum type.
550  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
551  return ET->getDecl();
552  }
553 
554  // Otherwise, nope.
555  return nullptr;
556 }
557 
558 /// Attempt to find a type T for which the returned expression of the
559 /// given statement is an enumerator-like expression of that type.
561  if (Expr *retValue = ret->getRetValue())
562  return findEnumForBlockReturn(retValue);
563  return nullptr;
564 }
565 
566 /// Attempt to find a common type T for which all of the returned
567 /// expressions in a block are enumerator-like expressions of that
568 /// type.
570  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
571 
572  // Try to find one for the first return.
574  if (!ED) return nullptr;
575 
576  // Check that the rest of the returns have the same enum.
577  for (++i; i != e; ++i) {
578  if (findEnumForBlockReturn(*i) != ED)
579  return nullptr;
580  }
581 
582  // Never infer an anonymous enum type.
583  if (!ED->hasNameForLinkage()) return nullptr;
584 
585  return ED;
586 }
587 
588 /// Adjust the given return statements so that they formally return
589 /// the given type. It should require, at most, an IntegralCast.
591  QualType returnType) {
593  i = returns.begin(), e = returns.end(); i != e; ++i) {
594  ReturnStmt *ret = *i;
595  Expr *retValue = ret->getRetValue();
596  if (S.Context.hasSameType(retValue->getType(), returnType))
597  continue;
598 
599  // Right now we only support integral fixup casts.
600  assert(returnType->isIntegralOrUnscopedEnumerationType());
601  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
602 
603  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
604 
605  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
607  E, /*base path*/ nullptr, VK_RValue);
608  if (cleanups) {
609  cleanups->setSubExpr(E);
610  } else {
611  ret->setRetValue(E);
612  }
613  }
614 }
615 
617  assert(CSI.HasImplicitReturnType);
618  // If it was ever a placeholder, it had to been deduced to DependentTy.
619  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
620 
621  // C++ core issue 975:
622  // If a lambda-expression does not include a trailing-return-type,
623  // it is as if the trailing-return-type denotes the following type:
624  // - if there are no return statements in the compound-statement,
625  // or all return statements return either an expression of type
626  // void or no expression or braced-init-list, the type void;
627  // - otherwise, if all return statements return an expression
628  // and the types of the returned expressions after
629  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
630  // array-to-pointer conversion (4.2 [conv.array]), and
631  // function-to-pointer conversion (4.3 [conv.func]) are the
632  // same, that common type;
633  // - otherwise, the program is ill-formed.
634  //
635  // C++ core issue 1048 additionally removes top-level cv-qualifiers
636  // from the types of returned expressions to match the C++14 auto
637  // deduction rules.
638  //
639  // In addition, in blocks in non-C++ modes, if all of the return
640  // statements are enumerator-like expressions of some type T, where
641  // T has a name for linkage, then we infer the return type of the
642  // block to be that type.
643 
644  // First case: no return statements, implicit void return type.
645  ASTContext &Ctx = getASTContext();
646  if (CSI.Returns.empty()) {
647  // It's possible there were simply no /valid/ return statements.
648  // In this case, the first one we found may have at least given us a type.
649  if (CSI.ReturnType.isNull())
650  CSI.ReturnType = Ctx.VoidTy;
651  return;
652  }
653 
654  // Second case: at least one return statement has dependent type.
655  // Delay type checking until instantiation.
656  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
657  if (CSI.ReturnType->isDependentType())
658  return;
659 
660  // Try to apply the enum-fuzz rule.
661  if (!getLangOpts().CPlusPlus) {
662  assert(isa<BlockScopeInfo>(CSI));
664  if (ED) {
667  return;
668  }
669  }
670 
671  // Third case: only one return statement. Don't bother doing extra work!
673  E = CSI.Returns.end();
674  if (I+1 == E)
675  return;
676 
677  // General case: many return statements.
678  // Check that they all have compatible return types.
679 
680  // We require the return types to strictly match here.
681  // Note that we've already done the required promotions as part of
682  // processing the return statement.
683  for (; I != E; ++I) {
684  const ReturnStmt *RS = *I;
685  const Expr *RetE = RS->getRetValue();
686 
687  QualType ReturnType =
688  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
689  if (Context.getCanonicalFunctionResultType(ReturnType) ==
691  continue;
692 
693  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
694  // TODO: It's possible that the *first* return is the divergent one.
695  Diag(RS->getLocStart(),
696  diag::err_typecheck_missing_return_type_incompatible)
697  << ReturnType << CSI.ReturnType
698  << isa<LambdaScopeInfo>(CSI);
699  // Continue iterating so that we keep emitting diagnostics.
700  }
701 }
702 
704  bool ByRef,
705  IdentifierInfo *Id,
706  bool IsDirectInit,
707  Expr *&Init) {
708  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
709  // deduce against.
710  QualType DeductType = Context.getAutoDeductType();
711  TypeLocBuilder TLB;
712  TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
713  if (ByRef) {
714  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
715  assert(!DeductType.isNull() && "can't build reference to auto");
716  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
717  }
718  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
719 
720  // Deduce the type of the init capture.
721  QualType DeducedType = deduceVarTypeFromInitializer(
722  /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
723  SourceRange(Loc, Loc), IsDirectInit, Init);
724  if (DeducedType.isNull())
725  return QualType();
726 
727  // Are we a non-list direct initialization?
728  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
729 
730  // Perform initialization analysis and ensure any implicit conversions
731  // (such as lvalue-to-rvalue) are enforced.
732  InitializedEntity Entity =
733  InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
735  IsDirectInit
736  ? (CXXDirectInit ? InitializationKind::CreateDirect(
737  Loc, Init->getLocStart(), Init->getLocEnd())
739  : InitializationKind::CreateCopy(Loc, Init->getLocStart());
740 
741  MultiExprArg Args = Init;
742  if (CXXDirectInit)
743  Args =
744  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
745  QualType DclT;
746  InitializationSequence InitSeq(*this, Entity, Kind, Args);
747  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
748 
749  if (Result.isInvalid())
750  return QualType();
751  Init = Result.getAs<Expr>();
752 
753  // The init-capture initialization is a full-expression that must be
754  // processed as one before we enter the declcontext of the lambda's
755  // call-operator.
756  Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
757  /*IsConstexpr*/ false,
758  /*IsLambdaInitCaptureInitalizer*/ true);
759  if (Result.isInvalid())
760  return QualType();
761 
762  Init = Result.getAs<Expr>();
763  return DeducedType;
764 }
765 
767  QualType InitCaptureType,
768  IdentifierInfo *Id,
769  unsigned InitStyle, Expr *Init) {
770  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
771  Loc);
772  // Create a dummy variable representing the init-capture. This is not actually
773  // used as a variable, and only exists as a way to name and refer to the
774  // init-capture.
775  // FIXME: Pass in separate source locations for '&' and identifier.
776  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
777  Loc, Id, InitCaptureType, TSI, SC_Auto);
778  NewVD->setInitCapture(true);
779  NewVD->setReferenced(true);
780  // FIXME: Pass in a VarDecl::InitializationStyle.
781  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
782  NewVD->markUsed(Context);
783  NewVD->setInit(Init);
784  return NewVD;
785 }
786 
788  FieldDecl *Field = FieldDecl::Create(
789  Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
790  nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
791  ICIS_NoInit);
792  Field->setImplicit(true);
793  Field->setAccess(AS_private);
794  LSI->Lambda->addDecl(Field);
795 
796  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
797  /*isNested*/false, Var->getLocation(), SourceLocation(),
798  Var->getType(), Var->getInit());
799  return Field;
800 }
801 
803  Declarator &ParamInfo,
804  Scope *CurScope) {
805  // Determine if we're within a context where we know that the lambda will
806  // be dependent, because there are template parameters in scope.
807  bool KnownDependent = false;
808  LambdaScopeInfo *const LSI = getCurLambda();
809  assert(LSI && "LambdaScopeInfo should be on stack!");
810  TemplateParameterList *TemplateParams =
812 
813  if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
814  // Since we have our own TemplateParams, so check if an outer scope
815  // has template params, only then are we in a dependent scope.
816  if (TemplateParams) {
817  TmplScope = TmplScope->getParent();
818  TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
819  }
820  if (TmplScope && !TmplScope->decl_empty())
821  KnownDependent = true;
822  }
823  // Determine the signature of the call operator.
824  TypeSourceInfo *MethodTyInfo;
825  bool ExplicitParams = true;
826  bool ExplicitResultType = true;
827  bool ContainsUnexpandedParameterPack = false;
828  SourceLocation EndLoc;
830  if (ParamInfo.getNumTypeObjects() == 0) {
831  // C++11 [expr.prim.lambda]p4:
832  // If a lambda-expression does not include a lambda-declarator, it is as
833  // if the lambda-declarator were ().
835  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
836  EPI.HasTrailingReturn = true;
837  EPI.TypeQuals |= DeclSpec::TQ_const;
838  // C++1y [expr.prim.lambda]:
839  // The lambda return type is 'auto', which is replaced by the
840  // trailing-return type if provided and/or deduced from 'return'
841  // statements
842  // We don't do this before C++1y, because we don't support deduced return
843  // types there.
844  QualType DefaultTypeForNoTrailingReturn =
845  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
847  QualType MethodTy =
848  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
849  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
850  ExplicitParams = false;
851  ExplicitResultType = false;
852  EndLoc = Intro.Range.getEnd();
853  } else {
854  assert(ParamInfo.isFunctionDeclarator() &&
855  "lambda-declarator is a function");
857 
858  // C++11 [expr.prim.lambda]p5:
859  // This function call operator is declared const (9.3.1) if and only if
860  // the lambda-expression's parameter-declaration-clause is not followed
861  // by mutable. It is neither virtual nor declared volatile. [...]
862  if (!FTI.hasMutableQualifier())
864 
865  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
866  assert(MethodTyInfo && "no type from lambda-declarator");
867  EndLoc = ParamInfo.getSourceRange().getEnd();
868 
869  ExplicitResultType = FTI.hasTrailingReturnType();
870 
871  if (FTIHasNonVoidParameters(FTI)) {
872  Params.reserve(FTI.NumParams);
873  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
874  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
875  }
876 
877  // Check for unexpanded parameter packs in the method type.
878  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
879  ContainsUnexpandedParameterPack = true;
880  }
881 
882  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
883  KnownDependent, Intro.Default);
884 
885  CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
886  MethodTyInfo, EndLoc, Params);
887  if (ExplicitParams)
888  CheckCXXDefaultArguments(Method);
889 
890  // Attributes on the lambda apply to the method.
891  ProcessDeclAttributes(CurScope, Method, ParamInfo);
892 
893  // Introduce the function call operator as the current declaration context.
894  PushDeclContext(CurScope, Method);
895 
896  // Build the lambda scope.
897  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
898  ExplicitParams, ExplicitResultType, !Method->isConst());
899 
900  // C++11 [expr.prim.lambda]p9:
901  // A lambda-expression whose smallest enclosing scope is a block scope is a
902  // local lambda expression; any other lambda expression shall not have a
903  // capture-default or simple-capture in its lambda-introducer.
904  //
905  // For simple-captures, this is covered by the check below that any named
906  // entity is a variable that can be captured.
907  //
908  // For DR1632, we also allow a capture-default in any context where we can
909  // odr-use 'this' (in particular, in a default initializer for a non-static
910  // data member).
911  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
912  (getCurrentThisType().isNull() ||
913  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
914  /*BuildAndDiagnose*/false)))
915  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
916 
917  // Distinct capture names, for diagnostics.
918  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
919 
920  // Handle explicit captures.
921  SourceLocation PrevCaptureLoc
922  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
923  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
924  PrevCaptureLoc = C->Loc, ++C) {
925  if (C->Kind == LCK_This) {
926  // C++11 [expr.prim.lambda]p8:
927  // An identifier or this shall not appear more than once in a
928  // lambda-capture.
929  if (LSI->isCXXThisCaptured()) {
930  Diag(C->Loc, diag::err_capture_more_than_once)
931  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
933  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
934  continue;
935  }
936 
937  // C++11 [expr.prim.lambda]p8:
938  // If a lambda-capture includes a capture-default that is =, the
939  // lambda-capture shall not contain this [...].
940  if (Intro.Default == LCD_ByCopy) {
941  Diag(C->Loc, diag::err_this_capture_with_copy_default)
943  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
944  continue;
945  }
946 
947  // C++11 [expr.prim.lambda]p12:
948  // If this is captured by a local lambda expression, its nearest
949  // enclosing function shall be a non-static member function.
950  QualType ThisCaptureType = getCurrentThisType();
951  if (ThisCaptureType.isNull()) {
952  Diag(C->Loc, diag::err_this_capture) << true;
953  continue;
954  }
955 
956  CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
957  continue;
958  }
959 
960  assert(C->Id && "missing identifier for capture");
961 
962  if (C->Init.isInvalid())
963  continue;
964 
965  VarDecl *Var = nullptr;
966  if (C->Init.isUsable()) {
967  Diag(C->Loc, getLangOpts().CPlusPlus14
968  ? diag::warn_cxx11_compat_init_capture
969  : diag::ext_init_capture);
970 
971  if (C->Init.get()->containsUnexpandedParameterPack())
972  ContainsUnexpandedParameterPack = true;
973  // If the initializer expression is usable, but the InitCaptureType
974  // is not, then an error has occurred - so ignore the capture for now.
975  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
976  // FIXME: we should create the init capture variable and mark it invalid
977  // in this case.
978  if (C->InitCaptureType.get().isNull())
979  continue;
980 
981  unsigned InitStyle;
982  switch (C->InitKind) {
984  llvm_unreachable("not an init-capture?");
986  InitStyle = VarDecl::CInit;
987  break;
989  InitStyle = VarDecl::CallInit;
990  break;
992  InitStyle = VarDecl::ListInit;
993  break;
994  }
995  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
996  C->Id, InitStyle, C->Init.get());
997  // C++1y [expr.prim.lambda]p11:
998  // An init-capture behaves as if it declares and explicitly
999  // captures a variable [...] whose declarative region is the
1000  // lambda-expression's compound-statement
1001  if (Var)
1002  PushOnScopeChains(Var, CurScope, false);
1003  } else {
1004  assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1005  "init capture has valid but null init?");
1006 
1007  // C++11 [expr.prim.lambda]p8:
1008  // If a lambda-capture includes a capture-default that is &, the
1009  // identifiers in the lambda-capture shall not be preceded by &.
1010  // If a lambda-capture includes a capture-default that is =, [...]
1011  // each identifier it contains shall be preceded by &.
1012  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1013  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1015  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1016  continue;
1017  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1018  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1020  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1021  continue;
1022  }
1023 
1024  // C++11 [expr.prim.lambda]p10:
1025  // The identifiers in a capture-list are looked up using the usual
1026  // rules for unqualified name lookup (3.4.1)
1027  DeclarationNameInfo Name(C->Id, C->Loc);
1028  LookupResult R(*this, Name, LookupOrdinaryName);
1029  LookupName(R, CurScope);
1030  if (R.isAmbiguous())
1031  continue;
1032  if (R.empty()) {
1033  // FIXME: Disable corrections that would add qualification?
1034  CXXScopeSpec ScopeSpec;
1035  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1036  llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1037  continue;
1038  }
1039 
1040  Var = R.getAsSingle<VarDecl>();
1041  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1042  continue;
1043  }
1044 
1045  // C++11 [expr.prim.lambda]p8:
1046  // An identifier or this shall not appear more than once in a
1047  // lambda-capture.
1048  if (!CaptureNames.insert(C->Id).second) {
1049  if (Var && LSI->isCaptured(Var)) {
1050  Diag(C->Loc, diag::err_capture_more_than_once)
1051  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1053  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1054  } else
1055  // Previous capture captured something different (one or both was
1056  // an init-cpature): no fixit.
1057  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1058  continue;
1059  }
1060 
1061  // C++11 [expr.prim.lambda]p10:
1062  // [...] each such lookup shall find a variable with automatic storage
1063  // duration declared in the reaching scope of the local lambda expression.
1064  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1065  if (!Var) {
1066  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1067  continue;
1068  }
1069 
1070  // Ignore invalid decls; they'll just confuse the code later.
1071  if (Var->isInvalidDecl())
1072  continue;
1073 
1074  if (!Var->hasLocalStorage()) {
1075  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1076  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1077  continue;
1078  }
1079 
1080  // C++11 [expr.prim.lambda]p23:
1081  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1082  SourceLocation EllipsisLoc;
1083  if (C->EllipsisLoc.isValid()) {
1084  if (Var->isParameterPack()) {
1085  EllipsisLoc = C->EllipsisLoc;
1086  } else {
1087  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1088  << SourceRange(C->Loc);
1089 
1090  // Just ignore the ellipsis.
1091  }
1092  } else if (Var->isParameterPack()) {
1093  ContainsUnexpandedParameterPack = true;
1094  }
1095 
1096  if (C->Init.isUsable()) {
1097  buildInitCaptureField(LSI, Var);
1098  } else {
1099  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1100  TryCapture_ExplicitByVal;
1101  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1102  }
1103  }
1104  finishLambdaExplicitCaptures(LSI);
1105 
1106  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1107 
1108  // Add lambda parameters into scope.
1109  addLambdaParameters(Method, CurScope);
1110 
1111  // Enter a new evaluation context to insulate the lambda from any
1112  // cleanups from the enclosing full-expression.
1113  PushExpressionEvaluationContext(PotentiallyEvaluated);
1114 }
1115 
1117  bool IsInstantiation) {
1118  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1119 
1120  // Leave the expression-evaluation context.
1121  DiscardCleanupsInEvaluationContext();
1122  PopExpressionEvaluationContext();
1123 
1124  // Leave the context of the lambda.
1125  if (!IsInstantiation)
1126  PopDeclContext();
1127 
1128  // Finalize the lambda.
1129  CXXRecordDecl *Class = LSI->Lambda;
1130  Class->setInvalidDecl();
1131  SmallVector<Decl*, 4> Fields(Class->fields());
1132  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1133  SourceLocation(), nullptr);
1134  CheckCompletedCXXClass(Class);
1135 
1136  PopFunctionScopeInfo();
1137 }
1138 
1139 /// \brief Add a lambda's conversion to function pointer, as described in
1140 /// C++11 [expr.prim.lambda]p6.
1142  SourceRange IntroducerRange,
1143  CXXRecordDecl *Class,
1144  CXXMethodDecl *CallOperator) {
1145  // This conversion is explicitly disabled if the lambda's function has
1146  // pass_object_size attributes on any of its parameters.
1147  if (std::any_of(CallOperator->param_begin(), CallOperator->param_end(),
1148  std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
1149  return;
1150 
1151  // Add the conversion to function pointer.
1152  const FunctionProtoType *CallOpProto =
1153  CallOperator->getType()->getAs<FunctionProtoType>();
1154  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1155  CallOpProto->getExtProtoInfo();
1156  QualType PtrToFunctionTy;
1157  QualType InvokerFunctionTy;
1158  {
1159  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1161  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1162  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1163  InvokerExtInfo.TypeQuals = 0;
1164  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1165  "Lambda's call operator should not have a reference qualifier");
1166  InvokerFunctionTy =
1167  S.Context.getFunctionType(CallOpProto->getReturnType(),
1168  CallOpProto->getParamTypes(), InvokerExtInfo);
1169  PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1170  }
1171 
1172  // Create the type of the conversion function.
1173  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1175  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1176  // The conversion function is always const.
1177  ConvExtInfo.TypeQuals = Qualifiers::Const;
1178  QualType ConvTy =
1179  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1180 
1181  SourceLocation Loc = IntroducerRange.getBegin();
1182  DeclarationName ConversionName
1184  S.Context.getCanonicalType(PtrToFunctionTy));
1185  DeclarationNameLoc ConvNameLoc;
1186  // Construct a TypeSourceInfo for the conversion function, and wire
1187  // all the parameters appropriately for the FunctionProtoTypeLoc
1188  // so that everything works during transformation/instantiation of
1189  // generic lambdas.
1190  // The main reason for wiring up the parameters of the conversion
1191  // function with that of the call operator is so that constructs
1192  // like the following work:
1193  // auto L = [](auto b) { <-- 1
1194  // return [](auto a) -> decltype(a) { <-- 2
1195  // return a;
1196  // };
1197  // };
1198  // int (*fp)(int) = L(5);
1199  // Because the trailing return type can contain DeclRefExprs that refer
1200  // to the original call operator's variables, we hijack the call
1201  // operators ParmVarDecls below.
1202  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1203  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1204  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1205 
1206  // The conversion function is a conversion to a pointer-to-function.
1207  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1208  FunctionProtoTypeLoc ConvTL =
1209  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1210  // Get the result of the conversion function which is a pointer-to-function.
1211  PointerTypeLoc PtrToFunctionTL =
1212  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1213  // Do the same for the TypeSourceInfo that is used to name the conversion
1214  // operator.
1215  PointerTypeLoc ConvNamePtrToFunctionTL =
1216  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1217 
1218  // Get the underlying function types that the conversion function will
1219  // be converting to (should match the type of the call operator).
1220  FunctionProtoTypeLoc CallOpConvTL =
1221  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1222  FunctionProtoTypeLoc CallOpConvNameTL =
1223  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1224 
1225  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1226  // These parameter's are essentially used to transform the name and
1227  // the type of the conversion operator. By using the same parameters
1228  // as the call operator's we don't have to fix any back references that
1229  // the trailing return type of the call operator's uses (such as
1230  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1231  // - we can simply use the return type of the call operator, and
1232  // everything should work.
1233  SmallVector<ParmVarDecl *, 4> InvokerParams;
1234  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1235  ParmVarDecl *From = CallOperator->getParamDecl(I);
1236 
1237  InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1238  // Temporarily add to the TU. This is set to the invoker below.
1240  From->getLocStart(),
1241  From->getLocation(),
1242  From->getIdentifier(),
1243  From->getType(),
1244  From->getTypeSourceInfo(),
1245  From->getStorageClass(),
1246  /*DefaultArg=*/nullptr));
1247  CallOpConvTL.setParam(I, From);
1248  CallOpConvNameTL.setParam(I, From);
1249  }
1250 
1251  CXXConversionDecl *Conversion
1252  = CXXConversionDecl::Create(S.Context, Class, Loc,
1253  DeclarationNameInfo(ConversionName,
1254  Loc, ConvNameLoc),
1255  ConvTy,
1256  ConvTSI,
1257  /*isInline=*/true, /*isExplicit=*/false,
1258  /*isConstexpr=*/false,
1259  CallOperator->getBody()->getLocEnd());
1260  Conversion->setAccess(AS_public);
1261  Conversion->setImplicit(true);
1262 
1263  if (Class->isGenericLambda()) {
1264  // Create a template version of the conversion operator, using the template
1265  // parameter list of the function call operator.
1266  FunctionTemplateDecl *TemplateCallOperator =
1267  CallOperator->getDescribedFunctionTemplate();
1268  FunctionTemplateDecl *ConversionTemplate =
1270  Loc, ConversionName,
1271  TemplateCallOperator->getTemplateParameters(),
1272  Conversion);
1273  ConversionTemplate->setAccess(AS_public);
1274  ConversionTemplate->setImplicit(true);
1275  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1276  Class->addDecl(ConversionTemplate);
1277  } else
1278  Class->addDecl(Conversion);
1279  // Add a non-static member function that will be the result of
1280  // the conversion with a certain unique ID.
1281  DeclarationName InvokerName = &S.Context.Idents.get(
1283  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1284  // we should get a prebuilt TrivialTypeSourceInfo from Context
1285  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1286  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1287  // loop below and then use its Params to set Invoke->setParams(...) below.
1288  // This would avoid the 'const' qualifier of the calloperator from
1289  // contaminating the type of the invoker, which is currently adjusted
1290  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1291  // trailing return type of the invoker would require a visitor to rebuild
1292  // the trailing return type and adjusting all back DeclRefExpr's to refer
1293  // to the new static invoker parameters - not the call operator's.
1294  CXXMethodDecl *Invoke
1295  = CXXMethodDecl::Create(S.Context, Class, Loc,
1296  DeclarationNameInfo(InvokerName, Loc),
1297  InvokerFunctionTy,
1298  CallOperator->getTypeSourceInfo(),
1299  SC_Static, /*IsInline=*/true,
1300  /*IsConstexpr=*/false,
1301  CallOperator->getBody()->getLocEnd());
1302  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1303  InvokerParams[I]->setOwningFunction(Invoke);
1304  Invoke->setParams(InvokerParams);
1305  Invoke->setAccess(AS_private);
1306  Invoke->setImplicit(true);
1307  if (Class->isGenericLambda()) {
1308  FunctionTemplateDecl *TemplateCallOperator =
1309  CallOperator->getDescribedFunctionTemplate();
1310  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1311  S.Context, Class, Loc, InvokerName,
1312  TemplateCallOperator->getTemplateParameters(),
1313  Invoke);
1314  StaticInvokerTemplate->setAccess(AS_private);
1315  StaticInvokerTemplate->setImplicit(true);
1316  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1317  Class->addDecl(StaticInvokerTemplate);
1318  } else
1319  Class->addDecl(Invoke);
1320 }
1321 
1322 /// \brief Add a lambda's conversion to block pointer.
1324  SourceRange IntroducerRange,
1325  CXXRecordDecl *Class,
1326  CXXMethodDecl *CallOperator) {
1327  const FunctionProtoType *Proto =
1328  CallOperator->getType()->getAs<FunctionProtoType>();
1329 
1330  // The function type inside the block pointer type is the same as the call
1331  // operator with some tweaks. The calling convention is the default free
1332  // function convention, and the type qualifications are lost.
1334  BlockEPI.ExtInfo =
1335  BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1336  Proto->isVariadic(), /*IsCXXMethod=*/false));
1337  BlockEPI.TypeQuals = 0;
1338  QualType FunctionTy = S.Context.getFunctionType(
1339  Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1340  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1341 
1342  FunctionProtoType::ExtProtoInfo ConversionEPI(
1344  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1345  ConversionEPI.TypeQuals = Qualifiers::Const;
1346  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1347 
1348  SourceLocation Loc = IntroducerRange.getBegin();
1351  S.Context.getCanonicalType(BlockPtrTy));
1352  DeclarationNameLoc NameLoc;
1353  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1354  CXXConversionDecl *Conversion
1355  = CXXConversionDecl::Create(S.Context, Class, Loc,
1356  DeclarationNameInfo(Name, Loc, NameLoc),
1357  ConvTy,
1358  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1359  /*isInline=*/true, /*isExplicit=*/false,
1360  /*isConstexpr=*/false,
1361  CallOperator->getBody()->getLocEnd());
1362  Conversion->setAccess(AS_public);
1363  Conversion->setImplicit(true);
1364  Class->addDecl(Conversion);
1365 }
1366 
1368  Sema &S, LambdaScopeInfo::Capture &Capture,
1369  FieldDecl *Field,
1370  SmallVectorImpl<VarDecl *> &ArrayIndexVars,
1371  SmallVectorImpl<unsigned> &ArrayIndexStarts) {
1372  assert(Capture.isVariableCapture() && "not a variable capture");
1373 
1374  auto *Var = Capture.getVariable();
1375  SourceLocation Loc = Capture.getLocation();
1376 
1377  // C++11 [expr.prim.lambda]p21:
1378  // When the lambda-expression is evaluated, the entities that
1379  // are captured by copy are used to direct-initialize each
1380  // corresponding non-static data member of the resulting closure
1381  // object. (For array members, the array elements are
1382  // direct-initialized in increasing subscript order.) These
1383  // initializations are performed in the (unspecified) order in
1384  // which the non-static data members are declared.
1385 
1386  // C++ [expr.prim.lambda]p12:
1387  // An entity captured by a lambda-expression is odr-used (3.2) in
1388  // the scope containing the lambda-expression.
1389  ExprResult RefResult = S.BuildDeclarationNameExpr(
1390  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1391  if (RefResult.isInvalid())
1392  return ExprError();
1393  Expr *Ref = RefResult.get();
1394 
1395  QualType FieldType = Field->getType();
1396 
1397  // When the variable has array type, create index variables for each
1398  // dimension of the array. We use these index variables to subscript
1399  // the source array, and other clients (e.g., CodeGen) will perform
1400  // the necessary iteration with these index variables.
1401  //
1402  // FIXME: This is dumb. Add a proper AST representation for array
1403  // copy-construction and use it here.
1404  SmallVector<VarDecl *, 4> IndexVariables;
1405  QualType BaseType = FieldType;
1406  QualType SizeType = S.Context.getSizeType();
1407  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1408  while (const ConstantArrayType *Array
1409  = S.Context.getAsConstantArrayType(BaseType)) {
1410  // Create the iteration variable for this array index.
1411  IdentifierInfo *IterationVarName = nullptr;
1412  {
1413  SmallString<8> Str;
1414  llvm::raw_svector_ostream OS(Str);
1415  OS << "__i" << IndexVariables.size();
1416  IterationVarName = &S.Context.Idents.get(OS.str());
1417  }
1418  VarDecl *IterationVar = VarDecl::Create(
1419  S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
1420  S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
1421  IterationVar->setImplicit();
1422  IndexVariables.push_back(IterationVar);
1423  ArrayIndexVars.push_back(IterationVar);
1424 
1425  // Create a reference to the iteration variable.
1426  ExprResult IterationVarRef =
1427  S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
1428  assert(!IterationVarRef.isInvalid() &&
1429  "Reference to invented variable cannot fail!");
1430  IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
1431  assert(!IterationVarRef.isInvalid() &&
1432  "Conversion of invented variable cannot fail!");
1433 
1434  // Subscript the array with this iteration variable.
1435  ExprResult Subscript =
1436  S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
1437  if (Subscript.isInvalid())
1438  return ExprError();
1439 
1440  Ref = Subscript.get();
1441  BaseType = Array->getElementType();
1442  }
1443 
1444  // Construct the entity that we will be initializing. For an array, this
1445  // will be first element in the array, which may require several levels
1446  // of array-subscript entities.
1448  Entities.reserve(1 + IndexVariables.size());
1449  Entities.push_back(InitializedEntity::InitializeLambdaCapture(
1450  Var->getIdentifier(), FieldType, Loc));
1451  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1452  Entities.push_back(
1453  InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
1454 
1455  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1456  InitializationSequence Init(S, Entities.back(), InitKind, Ref);
1457  return Init.Perform(S, Entities.back(), InitKind, Ref);
1458 }
1459 
1461  Scope *CurScope) {
1462  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1463  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1464  return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1465 }
1466 
1467 static LambdaCaptureDefault
1469  switch (ICS) {
1471  return LCD_None;
1473  return LCD_ByCopy;
1476  return LCD_ByRef;
1478  llvm_unreachable("block capture in lambda");
1479  }
1480  llvm_unreachable("Unknown implicit capture style");
1481 }
1482 
1484  LambdaScopeInfo *LSI) {
1485  // Collect information from the lambda scope.
1487  SmallVector<Expr *, 4> CaptureInits;
1488  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1489  LambdaCaptureDefault CaptureDefault =
1491  CXXRecordDecl *Class;
1492  CXXMethodDecl *CallOperator;
1493  SourceRange IntroducerRange;
1494  bool ExplicitParams;
1495  bool ExplicitResultType;
1496  bool LambdaExprNeedsCleanups;
1497  bool ContainsUnexpandedParameterPack;
1498  SmallVector<VarDecl *, 4> ArrayIndexVars;
1499  SmallVector<unsigned, 4> ArrayIndexStarts;
1500  {
1501  CallOperator = LSI->CallOperator;
1502  Class = LSI->Lambda;
1503  IntroducerRange = LSI->IntroducerRange;
1504  ExplicitParams = LSI->ExplicitParams;
1505  ExplicitResultType = !LSI->HasImplicitReturnType;
1506  LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1507  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1508 
1509  CallOperator->setLexicalDeclContext(Class);
1510  Decl *TemplateOrNonTemplateCallOperatorDecl =
1511  CallOperator->getDescribedFunctionTemplate()
1512  ? CallOperator->getDescribedFunctionTemplate()
1513  : cast<Decl>(CallOperator);
1514 
1515  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1516  Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1517 
1518  PopExpressionEvaluationContext();
1519 
1520  // Translate captures.
1521  auto CurField = Class->field_begin();
1522  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1523  LambdaScopeInfo::Capture From = LSI->Captures[I];
1524  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1525  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1526 
1527  // Handle 'this' capture.
1528  if (From.isThisCapture()) {
1529  Captures.push_back(
1530  LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1531  CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1532  getCurrentThisType(),
1533  /*isImplicit=*/true));
1534  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1535  continue;
1536  }
1537  if (From.isVLATypeCapture()) {
1538  Captures.push_back(
1539  LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1540  CaptureInits.push_back(nullptr);
1541  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1542  continue;
1543  }
1544 
1545  VarDecl *Var = From.getVariable();
1546  LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1547  Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1548  Var, From.getEllipsisLoc()));
1549  Expr *Init = From.getInitExpr();
1550  if (!Init) {
1551  auto InitResult = performLambdaVarCaptureInitialization(
1552  *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
1553  if (InitResult.isInvalid())
1554  return ExprError();
1555  Init = InitResult.get();
1556  } else {
1557  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1558  }
1559  CaptureInits.push_back(Init);
1560  }
1561 
1562  // C++11 [expr.prim.lambda]p6:
1563  // The closure type for a lambda-expression with no lambda-capture
1564  // has a public non-virtual non-explicit const conversion function
1565  // to pointer to function having the same parameter and return
1566  // types as the closure type's function call operator.
1567  if (Captures.empty() && CaptureDefault == LCD_None)
1568  addFunctionPointerConversion(*this, IntroducerRange, Class,
1569  CallOperator);
1570 
1571  // Objective-C++:
1572  // The closure type for a lambda-expression has a public non-virtual
1573  // non-explicit const conversion function to a block pointer having the
1574  // same parameter and return types as the closure type's function call
1575  // operator.
1576  // FIXME: Fix generic lambda to block conversions.
1577  if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1578  !Class->isGenericLambda())
1579  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1580 
1581  // Finalize the lambda class.
1582  SmallVector<Decl*, 4> Fields(Class->fields());
1583  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1584  SourceLocation(), nullptr);
1585  CheckCompletedCXXClass(Class);
1586  }
1587 
1588  if (LambdaExprNeedsCleanups)
1589  ExprNeedsCleanups = true;
1590 
1591  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1592  CaptureDefault, CaptureDefaultLoc,
1593  Captures,
1594  ExplicitParams, ExplicitResultType,
1595  CaptureInits, ArrayIndexVars,
1596  ArrayIndexStarts, EndLoc,
1597  ContainsUnexpandedParameterPack);
1598 
1599  if (!CurContext->isDependentContext()) {
1600  switch (ExprEvalContexts.back().Context) {
1601  // C++11 [expr.prim.lambda]p2:
1602  // A lambda-expression shall not appear in an unevaluated operand
1603  // (Clause 5).
1604  case Unevaluated:
1605  case UnevaluatedAbstract:
1606  // C++1y [expr.const]p2:
1607  // A conditional-expression e is a core constant expression unless the
1608  // evaluation of e, following the rules of the abstract machine, would
1609  // evaluate [...] a lambda-expression.
1610  //
1611  // This is technically incorrect, there are some constant evaluated contexts
1612  // where this should be allowed. We should probably fix this when DR1607 is
1613  // ratified, it lays out the exact set of conditions where we shouldn't
1614  // allow a lambda-expression.
1615  case ConstantEvaluated:
1616  // We don't actually diagnose this case immediately, because we
1617  // could be within a context where we might find out later that
1618  // the expression is potentially evaluated (e.g., for typeid).
1619  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1620  break;
1621 
1622  case PotentiallyEvaluated:
1623  case PotentiallyEvaluatedIfUsed:
1624  break;
1625  }
1626  }
1627 
1628  return MaybeBindToTemporary(Lambda);
1629 }
1630 
1632  SourceLocation ConvLocation,
1633  CXXConversionDecl *Conv,
1634  Expr *Src) {
1635  // Make sure that the lambda call operator is marked used.
1636  CXXRecordDecl *Lambda = Conv->getParent();
1637  CXXMethodDecl *CallOperator
1638  = cast<CXXMethodDecl>(
1639  Lambda->lookup(
1640  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1641  CallOperator->setReferenced();
1642  CallOperator->markUsed(Context);
1643 
1644  ExprResult Init = PerformCopyInitialization(
1645  InitializedEntity::InitializeBlock(ConvLocation,
1646  Src->getType(),
1647  /*NRVO=*/false),
1648  CurrentLocation, Src);
1649  if (!Init.isInvalid())
1650  Init = ActOnFinishFullExpr(Init.get());
1651 
1652  if (Init.isInvalid())
1653  return ExprError();
1654 
1655  // Create the new block to be returned.
1656  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1657 
1658  // Set the type information.
1659  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1660  Block->setIsVariadic(CallOperator->isVariadic());
1661  Block->setBlockMissingReturnType(false);
1662 
1663  // Add parameters.
1664  SmallVector<ParmVarDecl *, 4> BlockParams;
1665  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1666  ParmVarDecl *From = CallOperator->getParamDecl(I);
1667  BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1668  From->getLocStart(),
1669  From->getLocation(),
1670  From->getIdentifier(),
1671  From->getType(),
1672  From->getTypeSourceInfo(),
1673  From->getStorageClass(),
1674  /*DefaultArg=*/nullptr));
1675  }
1676  Block->setParams(BlockParams);
1677 
1678  Block->setIsConversionFromLambda(true);
1679 
1680  // Add capture. The capture uses a fake variable, which doesn't correspond
1681  // to any actual memory location. However, the initializer copy-initializes
1682  // the lambda object.
1683  TypeSourceInfo *CapVarTSI =
1685  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1686  ConvLocation, nullptr,
1687  Src->getType(), CapVarTSI,
1688  SC_None);
1689  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1690  /*Nested=*/false, /*Copy=*/Init.get());
1691  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1692 
1693  // Add a fake function body to the block. IR generation is responsible
1694  // for filling in the actual body, which cannot be expressed as an AST.
1695  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1696 
1697  // Create the block literal expression.
1698  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1699  ExprCleanupObjects.push_back(Block);
1700  ExprNeedsCleanups = true;
1701 
1702  return BuildBlock;
1703 }
SourceLocation getEnd() const
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:64
void setImplicit(bool I=true)
Definition: DeclBase.h:515
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1483
bool isVariadic() const
Definition: Type.h:3255
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:646
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
getFunctionTypeInfo - Retrieves the function type info object (looking through parentheses).
Definition: DeclSpec.h:2076
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
A class which contains all the information about a particular captured value.
Definition: Decl.h:3373
A (possibly-)qualified type.
Definition: Type.h:575
bool isInvalid() const
Definition: Ownership.h:159
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:660
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:2954
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2432
TemplateParameterList * GLTemplateParameterList
If this is a generic lambda, and the template parameter list has been created (from the AutoTemplateP...
Definition: ScopeInfo.h:682
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:164
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, IdentifierInfo *Id, unsigned InitStyle, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:766
DeclClass * getAsSingle() const
Definition: Sema/Lookup.h:448
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Attempt to find a common type T for which all of the returned expressions in a block are enumerator-l...
Definition: SemaLambda.cpp:569
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
EnumConstantDecl - An instance of this object exists for each enum constant that is defined...
Definition: Decl.h:2397
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:511
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
getCXXConversionFunctionName - Returns the name of a C++ conversion function for the given Type...
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:77
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:23
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
PtrTy get() const
Definition: Ownership.h:163
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc)
Definition: SemaExpr.cpp:4262
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:884
const Expr * getInit() const
Definition: Decl.h:1070
A container of type source information.
Definition: Decl.h:61
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:1374
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
void setInitStyle(InitializationStyle Style)
Definition: Decl.h:1115
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:26
This file provides some common utility functions for processing Lambda related AST Constructs...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:699
CK_IntegralCast - A cast between integral types (other than to boolean).
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1940
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1608
Extra information about a function prototype.
Definition: Type.h:3067
field_iterator field_begin() const
Definition: Decl.cpp:3746
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.cpp:3856
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:48
MangleNumberingContext & getMangleNumberingContext(ASTContext &Ctx)
Retrieve the mangling numbering context, used to consistently number constructs like lambdas for mang...
Definition: SemaLambda.cpp:346
static InitializationKind CreateDirectList(SourceLocation InitLoc)
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:13182
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2847
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1521
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1299
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:243
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:532
bool isVoidType() const
Definition: Type.h:5546
tok::TokenKind ContextKind
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:37
Scope * getTemplateParamParent()
Definition: Scope.h:250
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3082
bool isConst() const
Definition: DeclCXX.h:1742
One of these records is kept for each identifier that is lexed.
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4381
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:1223
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:91
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3165
bool isReferenceType() const
Definition: Type.h:5314
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getReturnType() const
Definition: Decl.h:1956
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:34
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2209
void setBlockMissingReturnType(bool val)
Definition: Decl.h:3523
unsigned TypeQuals
The type qualifiers: const/volatile/restrict.
Definition: DeclSpec.h:1210
bool isTranslationUnit() const
Definition: DeclBase.h:1269
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:1962
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:111
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:666
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1191
IdentifierTable & Idents
Definition: ASTContext.h:451
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:875
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:102
static InitializedEntity InitializeBlock(SourceLocation BlockVarLoc, QualType Type, bool NRVO)
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1633
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:496
Represents the results of name lookup.
Definition: Sema/Lookup.h:30
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:1983
Capturing by copy (a.k.a., by value)
Definition: Lambda.h:36
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:475
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
QualType getReturnType() const
Definition: Type.h:2977
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:1801
field_range fields() const
Definition: Decl.h:3295
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2875
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl)
Set the mangling number and context declaration for a lambda class.
Definition: DeclCXX.h:1641
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:718
bool ExprNeedsCleanups
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:663
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2454
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:71
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:38
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:6046
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1422
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1800
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:28
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3063
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:23
detail::InMemoryDirectory::const_iterator I
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl=false)
Definition: SemaExpr.cpp:2739
static ExprResult performLambdaVarCaptureInitialization(Sema &S, LambdaScopeInfo::Capture &Capture, FieldDecl *Field, SmallVectorImpl< VarDecl * > &ArrayIndexVars, SmallVectorImpl< unsigned > &ArrayIndexStarts)
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda.
Definition: ScopeInfo.h:677
QualType getType() const
Definition: Decl.h:530
TypeSpecTypeLoc pushTypeSpec(QualType T)
Pushes space for a typespec TypeLoc.
param_iterator param_begin()
Definition: Decl.h:1906
Represents the this expression in C++.
Definition: ExprCXX.h:860
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:390
AnnotatingParser & P
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3148
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:259
bool isFunctionDeclarator(unsigned &idx) const
isFunctionDeclarator - This method returns true if the declarator is a function declarator (looking t...
Definition: DeclSpec.h:2045
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:539
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:657
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:146
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3041
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1759
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:454
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e.
Definition: DeclCXX.cpp:979
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:471
ASTContext * Context
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2323
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:706
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:654
unsigned getNumExprs() const
Definition: Expr.h:4363
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1216
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:643
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
BlockDecl - This represents a block literal declaration, which is like an unnamed FunctionDecl...
Definition: Decl.h:3369
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed...
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:5615
Expr - This represents one expression.
Definition: Expr.h:104
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, IdentifierInfo *Id, bool DirectInit, Expr *&Init)
Definition: SemaLambda.cpp:703
This file defines the classes used to store parsed information about declaration-specifiers and decla...
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4580
void setInit(Expr *I)
Definition: Decl.cpp:2087
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:111
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:875
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:1927
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3169
void setRetValue(Expr *E)
Definition: Stmt.h:1361
DeclContext * getDeclContext()
Definition: DeclBase.h:393
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:225
MangleNumberingContext * createMangleNumberingContext() const
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:436
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:354
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:550
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1751
Direct list-initialization (C++11)
Definition: Decl.h:711
bool isFunctionOrMethod() const
Definition: DeclBase.h:1249
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:265
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1200
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1344
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:1935
struct CXXOpName CXXOperatorName
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2392
The result type of a method or function.
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:2874
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:602
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:228
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
bool isAmbiguous() const
Definition: Sema/Lookup.h:242
FieldDecl * buildInitCaptureField(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Build the implicit field for an init-capture.
Definition: SemaLambda.cpp:787
void setIsVariadic(bool value)
Definition: Decl.h:3446
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc)
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Stmt * getBody(const FunctionDecl *&Definition) const
getBody - Retrieve the body (definition) of the function.
Definition: Decl.cpp:2497
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:215
SourceLocation DefaultLoc
Definition: DeclSpec.h:2321
Kind
void setIsConversionFromLambda(bool val)
Definition: Decl.h:3526
Encodes a location in the source.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
unsigned getNumParams() const
getNumParams - Return the number of parameters this function must have based on its FunctionType...
Definition: Decl.cpp:2743
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3570
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:640
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
void setReferenced(bool R=true)
Definition: DeclBase.h:543
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:170
static InitializedEntity InitializeElement(ASTContext &Context, unsigned Index, const InitializedEntity &Parent)
Create the initialization entity for an array element.
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1701
ExprResult DefaultLvalueConversion(Expr *E)
Definition: SemaExpr.cpp:618
No ref-qualifier was provided.
Definition: Type.h:1206
C-style initialization with assignment.
Definition: Decl.h:709
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2094
CanQualType VoidTy
Definition: ASTContext.h:881
Describes the kind of initialization being performed, along with location information for tokens rela...
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:503
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2712
SourceLocation getBegin() const
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5706
MangleNumberingContext * getCurrentMangleNumberContext(const DeclContext *DC, Decl *&ManglingContextDecl)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:278
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1309
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1368
bool isFileContext() const
Definition: DeclBase.h:1265
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:650
Expr ** getExprs()
Definition: Expr.h:4375
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3358
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:261
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:69
static EnumDecl * findEnumForBlockReturn(Expr *E)
If this expression is an enumerator-like expression of some type T, return the type T; otherwise...
Definition: SemaLambda.cpp:497
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
DeclarationNameLoc - Additional source/type location info for a declaration name. ...
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1743
param_range params()
Definition: Decl.h:1910
QualType getType() const
Definition: Expr.h:125
This file provides some common utility functions for processing Lambdas.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2334
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
void setBody(CompoundStmt *B)
Definition: Decl.h:3450
LambdaCaptureDefault Default
Definition: DeclSpec.h:2322
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1121
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body...
Definition: SemaLambda.cpp:616
static __inline__ uint32_t volatile uint32_t * p
Definition: arm_acle.h:75
bool isInvalidDecl() const
Definition: DeclBase.h:509
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:104
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
DeclarationName - The name of a declaration.
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:624
EnumDecl - Represents an enum.
Definition: Decl.h:2930
detail::InMemoryDirectory::const_iterator E
const Expr * getRetValue() const
Definition: Stmt.cpp:888
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:541
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:1946
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
param_iterator param_end()
Definition: Decl.h:1907
void setInitCapture(bool IC)
Definition: Decl.h:1210
Capturing variable-length array type.
Definition: Lambda.h:38
bool empty() const
Return true if no decls were found.
Definition: Sema/Lookup.h:280
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:802
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5675
CanQualType DependentTy
Definition: ASTContext.h:896
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1473
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1257
Capturing the this pointer.
Definition: Lambda.h:35
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:343
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:535
void setSignatureAsWritten(TypeSourceInfo *Sig)
Definition: Decl.h:3452
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:3982
Call-style initialization (C++98)
Definition: Decl.h:710
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS=nullptr)
Definition: SemaExpr.cpp:1665
Describes the sequence of initializations required to initialize a given object or reference with a s...
Represents a C++ struct/union/class.
Definition: DeclCXX.h:285
CallingConv getDefaultCallingConvention(bool isVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Capturing by reference.
Definition: Lambda.h:37
TryCaptureKind
Definition: Sema.h:3598
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:307
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:355
Defines the clang::TargetInfo interface.
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1316
Represents a complete lambda introducer.
Definition: DeclSpec.h:2302
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g.
Definition: ScopeInfo.h:507
ExprResult ExprError()
Definition: Ownership.h:267
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:3067
bool isRecord() const
Definition: DeclBase.h:1273
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:922
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:473
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy)
Definition: ScopeInfo.h:513
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:106
void setCaptures(ASTContext &Context, ArrayRef< Capture > Captures, bool CapturesCXXThis)
Definition: Decl.cpp:3867
bool isParameterPack() const
Whether this declaration is a parameter pack.
Definition: DeclBase.cpp:180
A trivial tuple used to represent a source range.
SourceLocation getLocation() const
Definition: DeclBase.h:384
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:245
ASTContext & Context
Definition: Sema.h:295
NamedDecl - This represents a decl with a name.
Definition: Decl.h:145
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:423
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:642
Describes an entity that is being initialized.
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:3438
Wrapper for source info for pointers.
Definition: TypeLoc.h:1134
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, ArrayRef< LambdaCapture > Captures, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, ArrayRef< VarDecl * > ArrayIndexVars, ArrayRef< unsigned > ArrayIndexStarts, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:975
No in-class initializer.
Definition: Specifiers.h:222
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2480
Declaration of a template function.
Definition: DeclTemplate.h:830
bool hasLocalStorage() const
hasLocalStorage - Returns true if a variable with function scope is a non-static local variable...
Definition: Decl.h:891
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2433
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Adjust the given return statements so that they formally return the given type.
Definition: SemaLambda.cpp:590
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
getCXXOperatorName - Get the name of the overloadable C++ operator corresponding to Op...