clang  3.8.0
SemaStmt.cpp
Go to the documentation of this file.
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/SmallVector.h"
40 using namespace clang;
41 using namespace sema;
42 
44  if (FE.isInvalid())
45  return StmtError();
46 
47  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
48  /*DiscardedValue*/ true);
49  if (FE.isInvalid())
50  return StmtError();
51 
52  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
53  // void expression for its side effects. Conversion to void allows any
54  // operand, even incomplete types.
55 
56  // Same thing in for stmt first clause (when expr) and third clause.
57  return StmtResult(FE.getAs<Stmt>());
58 }
59 
60 
62  DiscardCleanupsInEvaluationContext();
63  return StmtError();
64 }
65 
67  bool HasLeadingEmptyMacro) {
68  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
69 }
70 
72  SourceLocation EndLoc) {
73  DeclGroupRef DG = dg.get();
74 
75  // If we have an invalid decl, just return an error.
76  if (DG.isNull()) return StmtError();
77 
78  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
79 }
80 
82  DeclGroupRef DG = dg.get();
83 
84  // If we don't have a declaration, or we have an invalid declaration,
85  // just return.
86  if (DG.isNull() || !DG.isSingleDecl())
87  return;
88 
89  Decl *decl = DG.getSingleDecl();
90  if (!decl || decl->isInvalidDecl())
91  return;
92 
93  // Only variable declarations are permitted.
94  VarDecl *var = dyn_cast<VarDecl>(decl);
95  if (!var) {
96  Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
97  decl->setInvalidDecl();
98  return;
99  }
100 
101  // foreach variables are never actually initialized in the way that
102  // the parser came up with.
103  var->setInit(nullptr);
104 
105  // In ARC, we don't need to retain the iteration variable of a fast
106  // enumeration loop. Rather than actually trying to catch that
107  // during declaration processing, we remove the consequences here.
108  if (getLangOpts().ObjCAutoRefCount) {
109  QualType type = var->getType();
110 
111  // Only do this if we inferred the lifetime. Inferred lifetime
112  // will show up as a local qualifier because explicit lifetime
113  // should have shown up as an AttributedType instead.
115  // Add 'const' and mark the variable as pseudo-strong.
116  var->setType(type.withConst());
117  var->setARCPseudoStrong(true);
118  }
119  }
120 }
121 
122 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
123 /// For '==' and '!=', suggest fixits for '=' or '|='.
124 ///
125 /// Adding a cast to void (or other expression wrappers) will prevent the
126 /// warning from firing.
127 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
128  SourceLocation Loc;
129  bool IsNotEqual, CanAssign, IsRelational;
130 
131  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
132  if (!Op->isComparisonOp())
133  return false;
134 
135  IsRelational = Op->isRelationalOp();
136  Loc = Op->getOperatorLoc();
137  IsNotEqual = Op->getOpcode() == BO_NE;
138  CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
139  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
140  switch (Op->getOperator()) {
141  default:
142  return false;
143  case OO_EqualEqual:
144  case OO_ExclaimEqual:
145  IsRelational = false;
146  break;
147  case OO_Less:
148  case OO_Greater:
149  case OO_GreaterEqual:
150  case OO_LessEqual:
151  IsRelational = true;
152  break;
153  }
154 
155  Loc = Op->getOperatorLoc();
156  IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
157  CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
158  } else {
159  // Not a typo-prone comparison.
160  return false;
161  }
162 
163  // Suppress warnings when the operator, suspicious as it may be, comes from
164  // a macro expansion.
165  if (S.SourceMgr.isMacroBodyExpansion(Loc))
166  return false;
167 
168  S.Diag(Loc, diag::warn_unused_comparison)
169  << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
170 
171  // If the LHS is a plausible entity to assign to, provide a fixit hint to
172  // correct common typos.
173  if (!IsRelational && CanAssign) {
174  if (IsNotEqual)
175  S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
176  << FixItHint::CreateReplacement(Loc, "|=");
177  else
178  S.Diag(Loc, diag::note_equality_comparison_to_assign)
179  << FixItHint::CreateReplacement(Loc, "=");
180  }
181 
182  return true;
183 }
184 
186  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
187  return DiagnoseUnusedExprResult(Label->getSubStmt());
188 
189  const Expr *E = dyn_cast_or_null<Expr>(S);
190  if (!E)
191  return;
192 
193  // If we are in an unevaluated expression context, then there can be no unused
194  // results because the results aren't expected to be used in the first place.
195  if (isUnevaluatedContext())
196  return;
197 
198  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
199  // In most cases, we don't want to warn if the expression is written in a
200  // macro body, or if the macro comes from a system header. If the offending
201  // expression is a call to a function with the warn_unused_result attribute,
202  // we warn no matter the location. Because of the order in which the various
203  // checks need to happen, we factor out the macro-related test here.
204  bool ShouldSuppress =
205  SourceMgr.isMacroBodyExpansion(ExprLoc) ||
206  SourceMgr.isInSystemMacro(ExprLoc);
207 
208  const Expr *WarnExpr;
209  SourceLocation Loc;
210  SourceRange R1, R2;
211  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
212  return;
213 
214  // If this is a GNU statement expression expanded from a macro, it is probably
215  // unused because it is a function-like macro that can be used as either an
216  // expression or statement. Don't warn, because it is almost certainly a
217  // false positive.
218  if (isa<StmtExpr>(E) && Loc.isMacroID())
219  return;
220 
221  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
222  // That macro is frequently used to suppress "unused parameter" warnings,
223  // but its implementation makes clang's -Wunused-value fire. Prevent this.
224  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
225  SourceLocation SpellLoc = Loc;
226  if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
227  return;
228  }
229 
230  // Okay, we have an unused result. Depending on what the base expression is,
231  // we might want to make a more specific diagnostic. Check for one of these
232  // cases now.
233  unsigned DiagID = diag::warn_unused_expr;
234  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
235  E = Temps->getSubExpr();
236  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
237  E = TempExpr->getSubExpr();
238 
239  if (DiagnoseUnusedComparison(*this, E))
240  return;
241 
242  E = WarnExpr;
243  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
244  if (E->getType()->isVoidType())
245  return;
246 
247  // If the callee has attribute pure, const, or warn_unused_result, warn with
248  // a more specific message to make it clear what is happening. If the call
249  // is written in a macro body, only warn if it has the warn_unused_result
250  // attribute.
251  if (const Decl *FD = CE->getCalleeDecl()) {
252  const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
253  if (Func ? Func->hasUnusedResultAttr()
254  : FD->hasAttr<WarnUnusedResultAttr>()) {
255  Diag(Loc, diag::warn_unused_result) << R1 << R2;
256  return;
257  }
258  if (ShouldSuppress)
259  return;
260  if (FD->hasAttr<PureAttr>()) {
261  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
262  return;
263  }
264  if (FD->hasAttr<ConstAttr>()) {
265  Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
266  return;
267  }
268  }
269  } else if (ShouldSuppress)
270  return;
271 
272  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
273  if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
274  Diag(Loc, diag::err_arc_unused_init_message) << R1;
275  return;
276  }
277  const ObjCMethodDecl *MD = ME->getMethodDecl();
278  if (MD) {
279  if (MD->hasAttr<WarnUnusedResultAttr>()) {
280  Diag(Loc, diag::warn_unused_result) << R1 << R2;
281  return;
282  }
283  }
284  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
285  const Expr *Source = POE->getSyntacticForm();
286  if (isa<ObjCSubscriptRefExpr>(Source))
287  DiagID = diag::warn_unused_container_subscript_expr;
288  else
289  DiagID = diag::warn_unused_property_expr;
290  } else if (const CXXFunctionalCastExpr *FC
291  = dyn_cast<CXXFunctionalCastExpr>(E)) {
292  if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
293  isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
294  return;
295  }
296  // Diagnose "(void*) blah" as a typo for "(void) blah".
297  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
298  TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
299  QualType T = TI->getType();
300 
301  // We really do want to use the non-canonical type here.
302  if (T == Context.VoidPtrTy) {
304 
305  Diag(Loc, diag::warn_unused_voidptr)
307  return;
308  }
309  }
310 
311  if (E->isGLValue() && E->getType().isVolatileQualified()) {
312  Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
313  return;
314  }
315 
316  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
317 }
318 
320  PushCompoundScope();
321 }
322 
324  PopCompoundScope();
325 }
326 
328  return getCurFunction()->CompoundScopes.back();
329 }
330 
332  ArrayRef<Stmt *> Elts, bool isStmtExpr) {
333  const unsigned NumElts = Elts.size();
334 
335  // If we're in C89 mode, check that we don't have any decls after stmts. If
336  // so, emit an extension diagnostic.
337  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
338  // Note that __extension__ can be around a decl.
339  unsigned i = 0;
340  // Skip over all declarations.
341  for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
342  /*empty*/;
343 
344  // We found the end of the list or a statement. Scan for another declstmt.
345  for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
346  /*empty*/;
347 
348  if (i != NumElts) {
349  Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
350  Diag(D->getLocation(), diag::ext_mixed_decls_code);
351  }
352  }
353  // Warn about unused expressions in statements.
354  for (unsigned i = 0; i != NumElts; ++i) {
355  // Ignore statements that are last in a statement expression.
356  if (isStmtExpr && i == NumElts - 1)
357  continue;
358 
359  DiagnoseUnusedExprResult(Elts[i]);
360  }
361 
362  // Check for suspicious empty body (null statement) in `for' and `while'
363  // statements. Don't do anything for template instantiations, this just adds
364  // noise.
365  if (NumElts != 0 && !CurrentInstantiationScope &&
366  getCurCompoundScope().HasEmptyLoopBodies) {
367  for (unsigned i = 0; i != NumElts - 1; ++i)
368  DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
369  }
370 
371  return new (Context) CompoundStmt(Context, Elts, L, R);
372 }
373 
376  SourceLocation DotDotDotLoc, Expr *RHSVal,
378  assert(LHSVal && "missing expression in case statement");
379 
380  if (getCurFunction()->SwitchStack.empty()) {
381  Diag(CaseLoc, diag::err_case_not_in_switch);
382  return StmtError();
383  }
384 
385  ExprResult LHS =
386  CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
387  if (!getLangOpts().CPlusPlus11)
388  return VerifyIntegerConstantExpression(E);
389  if (Expr *CondExpr =
390  getCurFunction()->SwitchStack.back()->getCond()) {
391  QualType CondType = CondExpr->getType();
392  llvm::APSInt TempVal;
393  return CheckConvertedConstantExpression(E, CondType, TempVal,
394  CCEK_CaseValue);
395  }
396  return ExprError();
397  });
398  if (LHS.isInvalid())
399  return StmtError();
400  LHSVal = LHS.get();
401 
402  if (!getLangOpts().CPlusPlus11) {
403  // C99 6.8.4.2p3: The expression shall be an integer constant.
404  // However, GCC allows any evaluatable integer expression.
405  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
406  LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
407  if (!LHSVal)
408  return StmtError();
409  }
410 
411  // GCC extension: The expression shall be an integer constant.
412 
413  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
414  RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
415  // Recover from an error by just forgetting about it.
416  }
417  }
418 
419  LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
420  getLangOpts().CPlusPlus11);
421  if (LHS.isInvalid())
422  return StmtError();
423 
424  auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
425  getLangOpts().CPlusPlus11)
426  : ExprResult();
427  if (RHS.isInvalid())
428  return StmtError();
429 
430  CaseStmt *CS = new (Context)
431  CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
432  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
433  return CS;
434 }
435 
436 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
438  DiagnoseUnusedExprResult(SubStmt);
439 
440  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
441  CS->setSubStmt(SubStmt);
442 }
443 
446  Stmt *SubStmt, Scope *CurScope) {
447  DiagnoseUnusedExprResult(SubStmt);
448 
449  if (getCurFunction()->SwitchStack.empty()) {
450  Diag(DefaultLoc, diag::err_default_not_in_switch);
451  return SubStmt;
452  }
453 
454  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
455  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
456  return DS;
457 }
458 
461  SourceLocation ColonLoc, Stmt *SubStmt) {
462  // If the label was multiply defined, reject it now.
463  if (TheDecl->getStmt()) {
464  Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
465  Diag(TheDecl->getLocation(), diag::note_previous_definition);
466  return SubStmt;
467  }
468 
469  // Otherwise, things are good. Fill in the declaration and return it.
470  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
471  TheDecl->setStmt(LS);
472  if (!TheDecl->isGnuLocal()) {
473  TheDecl->setLocStart(IdentLoc);
474  if (!TheDecl->isMSAsmLabel()) {
475  // Don't update the location of MS ASM labels. These will result in
476  // a diagnostic, and changing the location here will mess that up.
477  TheDecl->setLocation(IdentLoc);
478  }
479  }
480  return LS;
481 }
482 
484  ArrayRef<const Attr*> Attrs,
485  Stmt *SubStmt) {
486  // Fill in the declaration and return it.
487  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
488  return LS;
489 }
490 
493  Stmt *thenStmt, SourceLocation ElseLoc,
494  Stmt *elseStmt) {
495  ExprResult CondResult(CondVal.release());
496 
497  VarDecl *ConditionVar = nullptr;
498  if (CondVar) {
499  ConditionVar = cast<VarDecl>(CondVar);
500  CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
501  CondResult = ActOnFinishFullExpr(CondResult.get(), IfLoc);
502  }
503  Expr *ConditionExpr = CondResult.getAs<Expr>();
504  if (ConditionExpr) {
505  DiagnoseUnusedExprResult(thenStmt);
506 
507  if (!elseStmt) {
508  DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
509  diag::warn_empty_if_body);
510  }
511 
512  DiagnoseUnusedExprResult(elseStmt);
513  } else {
514  // Create a dummy Expr for the condition for error recovery
515  ConditionExpr = new (Context) OpaqueValueExpr(SourceLocation(),
517  }
518 
519  return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
520  thenStmt, ElseLoc, elseStmt);
521 }
522 
523 namespace {
524  struct CaseCompareFunctor {
525  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
526  const llvm::APSInt &RHS) {
527  return LHS.first < RHS;
528  }
529  bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
530  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
531  return LHS.first < RHS.first;
532  }
533  bool operator()(const llvm::APSInt &LHS,
534  const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
535  return LHS < RHS.first;
536  }
537  };
538 }
539 
540 /// CmpCaseVals - Comparison predicate for sorting case values.
541 ///
542 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
543  const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
544  if (lhs.first < rhs.first)
545  return true;
546 
547  if (lhs.first == rhs.first &&
548  lhs.second->getCaseLoc().getRawEncoding()
549  < rhs.second->getCaseLoc().getRawEncoding())
550  return true;
551  return false;
552 }
553 
554 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
555 ///
556 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
557  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
558 {
559  return lhs.first < rhs.first;
560 }
561 
562 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
563 ///
564 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
565  const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
566 {
567  return lhs.first == rhs.first;
568 }
569 
570 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
571 /// potentially integral-promoted expression @p expr.
573  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
574  expr = cleanups->getSubExpr();
575  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
576  if (impcast->getCastKind() != CK_IntegralCast) break;
577  expr = impcast->getSubExpr();
578  }
579  return expr->getType();
580 }
581 
584  Decl *CondVar) {
585  ExprResult CondResult;
586 
587  VarDecl *ConditionVar = nullptr;
588  if (CondVar) {
589  ConditionVar = cast<VarDecl>(CondVar);
590  CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
591  if (CondResult.isInvalid())
592  return StmtError();
593 
594  Cond = CondResult.get();
595  }
596 
597  if (!Cond)
598  return StmtError();
599 
600  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
601  Expr *Cond;
602 
603  public:
604  SwitchConvertDiagnoser(Expr *Cond)
605  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
606  Cond(Cond) {}
607 
608  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
609  QualType T) override {
610  return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
611  }
612 
613  SemaDiagnosticBuilder diagnoseIncomplete(
614  Sema &S, SourceLocation Loc, QualType T) override {
615  return S.Diag(Loc, diag::err_switch_incomplete_class_type)
616  << T << Cond->getSourceRange();
617  }
618 
619  SemaDiagnosticBuilder diagnoseExplicitConv(
620  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
621  return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
622  }
623 
624  SemaDiagnosticBuilder noteExplicitConv(
625  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
626  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
627  << ConvTy->isEnumeralType() << ConvTy;
628  }
629 
630  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
631  QualType T) override {
632  return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
633  }
634 
635  SemaDiagnosticBuilder noteAmbiguous(
636  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
637  return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
638  << ConvTy->isEnumeralType() << ConvTy;
639  }
640 
641  SemaDiagnosticBuilder diagnoseConversion(
642  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
643  llvm_unreachable("conversion functions are permitted");
644  }
645  } SwitchDiagnoser(Cond);
646 
647  CondResult =
648  PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
649  if (CondResult.isInvalid()) return StmtError();
650  Cond = CondResult.get();
651 
652  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
653  CondResult = UsualUnaryConversions(Cond);
654  if (CondResult.isInvalid()) return StmtError();
655  Cond = CondResult.get();
656 
657  CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
658  if (CondResult.isInvalid())
659  return StmtError();
660  Cond = CondResult.get();
661 
662  getCurFunction()->setHasBranchIntoScope();
663 
664  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
665  getCurFunction()->SwitchStack.push_back(SS);
666  return SS;
667 }
668 
669 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
670  Val = Val.extOrTrunc(BitWidth);
671  Val.setIsSigned(IsSigned);
672 }
673 
674 /// Check the specified case value is in range for the given unpromoted switch
675 /// type.
676 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
677  unsigned UnpromotedWidth, bool UnpromotedSign) {
678  // If the case value was signed and negative and the switch expression is
679  // unsigned, don't bother to warn: this is implementation-defined behavior.
680  // FIXME: Introduce a second, default-ignored warning for this case?
681  if (UnpromotedWidth < Val.getBitWidth()) {
682  llvm::APSInt ConvVal(Val);
683  AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
684  AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
685  // FIXME: Use different diagnostics for overflow in conversion to promoted
686  // type versus "switch expression cannot have this value". Use proper
687  // IntRange checking rather than just looking at the unpromoted type here.
688  if (ConvVal != Val)
689  S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
690  << ConvVal.toString(10);
691  }
692 }
693 
695 
696 /// Returns true if we should emit a diagnostic about this case expression not
697 /// being a part of the enum used in the switch controlling expression.
699  const EnumDecl *ED,
700  const Expr *CaseExpr,
702  EnumValsTy::iterator &EIEnd,
703  const llvm::APSInt &Val) {
704  if (const DeclRefExpr *DRE =
705  dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
706  if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
707  QualType VarType = VD->getType();
709  if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
710  S.Context.hasSameUnqualifiedType(EnumType, VarType))
711  return false;
712  }
713  }
714 
715  if (ED->hasAttr<FlagEnumAttr>()) {
716  return !S.IsValueInFlagEnum(ED, Val, false);
717  } else {
718  while (EI != EIEnd && EI->first < Val)
719  EI++;
720 
721  if (EI != EIEnd && EI->first == Val)
722  return false;
723  }
724 
725  return true;
726 }
727 
730  Stmt *BodyStmt) {
731  SwitchStmt *SS = cast<SwitchStmt>(Switch);
732  assert(SS == getCurFunction()->SwitchStack.back() &&
733  "switch stack missing push/pop!");
734 
735  getCurFunction()->SwitchStack.pop_back();
736 
737  if (!BodyStmt) return StmtError();
738  SS->setBody(BodyStmt, SwitchLoc);
739 
740  Expr *CondExpr = SS->getCond();
741  if (!CondExpr) return StmtError();
742 
743  QualType CondType = CondExpr->getType();
744 
745  Expr *CondExprBeforePromotion = CondExpr;
746  QualType CondTypeBeforePromotion =
747  GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
748 
749  // C++ 6.4.2.p2:
750  // Integral promotions are performed (on the switch condition).
751  //
752  // A case value unrepresentable by the original switch condition
753  // type (before the promotion) doesn't make sense, even when it can
754  // be represented by the promoted type. Therefore we need to find
755  // the pre-promotion type of the switch condition.
756  if (!CondExpr->isTypeDependent()) {
757  // We have already converted the expression to an integral or enumeration
758  // type, when we started the switch statement. If we don't have an
759  // appropriate type now, just return an error.
760  if (!CondType->isIntegralOrEnumerationType())
761  return StmtError();
762 
763  if (CondExpr->isKnownToHaveBooleanValue()) {
764  // switch(bool_expr) {...} is often a programmer error, e.g.
765  // switch(n && mask) { ... } // Doh - should be "n & mask".
766  // One can always use an if statement instead of switch(bool_expr).
767  Diag(SwitchLoc, diag::warn_bool_switch_condition)
768  << CondExpr->getSourceRange();
769  }
770  }
771 
772  // Get the bitwidth of the switched-on value after promotions. We must
773  // convert the integer case values to this width before comparison.
774  bool HasDependentValue
775  = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
776  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
777  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
778 
779  // Get the width and signedness that the condition might actually have, for
780  // warning purposes.
781  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
782  // type.
783  unsigned CondWidthBeforePromotion
784  = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
785  bool CondIsSignedBeforePromotion
786  = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
787 
788  // Accumulate all of the case values in a vector so that we can sort them
789  // and detect duplicates. This vector contains the APInt for the case after
790  // it has been converted to the condition type.
791  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
792  CaseValsTy CaseVals;
793 
794  // Keep track of any GNU case ranges we see. The APSInt is the low value.
795  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
796  CaseRangesTy CaseRanges;
797 
798  DefaultStmt *TheDefaultStmt = nullptr;
799 
800  bool CaseListIsErroneous = false;
801 
802  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
803  SC = SC->getNextSwitchCase()) {
804 
805  if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
806  if (TheDefaultStmt) {
807  Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
808  Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
809 
810  // FIXME: Remove the default statement from the switch block so that
811  // we'll return a valid AST. This requires recursing down the AST and
812  // finding it, not something we are set up to do right now. For now,
813  // just lop the entire switch stmt out of the AST.
814  CaseListIsErroneous = true;
815  }
816  TheDefaultStmt = DS;
817 
818  } else {
819  CaseStmt *CS = cast<CaseStmt>(SC);
820 
821  Expr *Lo = CS->getLHS();
822 
823  if (Lo->isTypeDependent() || Lo->isValueDependent()) {
824  HasDependentValue = true;
825  break;
826  }
827 
828  llvm::APSInt LoVal;
829 
830  if (getLangOpts().CPlusPlus11) {
831  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
832  // constant expression of the promoted type of the switch condition.
833  ExprResult ConvLo =
834  CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
835  if (ConvLo.isInvalid()) {
836  CaseListIsErroneous = true;
837  continue;
838  }
839  Lo = ConvLo.get();
840  } else {
841  // We already verified that the expression has a i-c-e value (C99
842  // 6.8.4.2p3) - get that value now.
843  LoVal = Lo->EvaluateKnownConstInt(Context);
844 
845  // If the LHS is not the same type as the condition, insert an implicit
846  // cast.
847  Lo = DefaultLvalueConversion(Lo).get();
848  Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
849  }
850 
851  // Check the unconverted value is within the range of possible values of
852  // the switch expression.
853  checkCaseValue(*this, Lo->getLocStart(), LoVal,
854  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
855 
856  // Convert the value to the same width/sign as the condition.
857  AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
858 
859  CS->setLHS(Lo);
860 
861  // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
862  if (CS->getRHS()) {
863  if (CS->getRHS()->isTypeDependent() ||
864  CS->getRHS()->isValueDependent()) {
865  HasDependentValue = true;
866  break;
867  }
868  CaseRanges.push_back(std::make_pair(LoVal, CS));
869  } else
870  CaseVals.push_back(std::make_pair(LoVal, CS));
871  }
872  }
873 
874  if (!HasDependentValue) {
875  // If we don't have a default statement, check whether the
876  // condition is constant.
877  llvm::APSInt ConstantCondValue;
878  bool HasConstantCond = false;
879  if (!HasDependentValue && !TheDefaultStmt) {
880  HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
882  assert(!HasConstantCond ||
883  (ConstantCondValue.getBitWidth() == CondWidth &&
884  ConstantCondValue.isSigned() == CondIsSigned));
885  }
886  bool ShouldCheckConstantCond = HasConstantCond;
887 
888  // Sort all the scalar case values so we can easily detect duplicates.
889  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
890 
891  if (!CaseVals.empty()) {
892  for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
893  if (ShouldCheckConstantCond &&
894  CaseVals[i].first == ConstantCondValue)
895  ShouldCheckConstantCond = false;
896 
897  if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
898  // If we have a duplicate, report it.
899  // First, determine if either case value has a name
900  StringRef PrevString, CurrString;
901  Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
902  Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
903  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
904  PrevString = DeclRef->getDecl()->getName();
905  }
906  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
907  CurrString = DeclRef->getDecl()->getName();
908  }
909  SmallString<16> CaseValStr;
910  CaseVals[i-1].first.toString(CaseValStr);
911 
912  if (PrevString == CurrString)
913  Diag(CaseVals[i].second->getLHS()->getLocStart(),
914  diag::err_duplicate_case) <<
915  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
916  else
917  Diag(CaseVals[i].second->getLHS()->getLocStart(),
918  diag::err_duplicate_case_differing_expr) <<
919  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
920  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
921  CaseValStr;
922 
923  Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
924  diag::note_duplicate_case_prev);
925  // FIXME: We really want to remove the bogus case stmt from the
926  // substmt, but we have no way to do this right now.
927  CaseListIsErroneous = true;
928  }
929  }
930  }
931 
932  // Detect duplicate case ranges, which usually don't exist at all in
933  // the first place.
934  if (!CaseRanges.empty()) {
935  // Sort all the case ranges by their low value so we can easily detect
936  // overlaps between ranges.
937  std::stable_sort(CaseRanges.begin(), CaseRanges.end());
938 
939  // Scan the ranges, computing the high values and removing empty ranges.
940  std::vector<llvm::APSInt> HiVals;
941  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
942  llvm::APSInt &LoVal = CaseRanges[i].first;
943  CaseStmt *CR = CaseRanges[i].second;
944  Expr *Hi = CR->getRHS();
945  llvm::APSInt HiVal;
946 
947  if (getLangOpts().CPlusPlus11) {
948  // C++11 [stmt.switch]p2: the constant-expression shall be a converted
949  // constant expression of the promoted type of the switch condition.
950  ExprResult ConvHi =
951  CheckConvertedConstantExpression(Hi, CondType, HiVal,
952  CCEK_CaseValue);
953  if (ConvHi.isInvalid()) {
954  CaseListIsErroneous = true;
955  continue;
956  }
957  Hi = ConvHi.get();
958  } else {
959  HiVal = Hi->EvaluateKnownConstInt(Context);
960 
961  // If the RHS is not the same type as the condition, insert an
962  // implicit cast.
963  Hi = DefaultLvalueConversion(Hi).get();
964  Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
965  }
966 
967  // Check the unconverted value is within the range of possible values of
968  // the switch expression.
969  checkCaseValue(*this, Hi->getLocStart(), HiVal,
970  CondWidthBeforePromotion, CondIsSignedBeforePromotion);
971 
972  // Convert the value to the same width/sign as the condition.
973  AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
974 
975  CR->setRHS(Hi);
976 
977  // If the low value is bigger than the high value, the case is empty.
978  if (LoVal > HiVal) {
979  Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
980  << SourceRange(CR->getLHS()->getLocStart(),
981  Hi->getLocEnd());
982  CaseRanges.erase(CaseRanges.begin()+i);
983  --i, --e;
984  continue;
985  }
986 
987  if (ShouldCheckConstantCond &&
988  LoVal <= ConstantCondValue &&
989  ConstantCondValue <= HiVal)
990  ShouldCheckConstantCond = false;
991 
992  HiVals.push_back(HiVal);
993  }
994 
995  // Rescan the ranges, looking for overlap with singleton values and other
996  // ranges. Since the range list is sorted, we only need to compare case
997  // ranges with their neighbors.
998  for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
999  llvm::APSInt &CRLo = CaseRanges[i].first;
1000  llvm::APSInt &CRHi = HiVals[i];
1001  CaseStmt *CR = CaseRanges[i].second;
1002 
1003  // Check to see whether the case range overlaps with any
1004  // singleton cases.
1005  CaseStmt *OverlapStmt = nullptr;
1006  llvm::APSInt OverlapVal(32);
1007 
1008  // Find the smallest value >= the lower bound. If I is in the
1009  // case range, then we have overlap.
1010  CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1011  CaseVals.end(), CRLo,
1012  CaseCompareFunctor());
1013  if (I != CaseVals.end() && I->first < CRHi) {
1014  OverlapVal = I->first; // Found overlap with scalar.
1015  OverlapStmt = I->second;
1016  }
1017 
1018  // Find the smallest value bigger than the upper bound.
1019  I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1020  if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1021  OverlapVal = (I-1)->first; // Found overlap with scalar.
1022  OverlapStmt = (I-1)->second;
1023  }
1024 
1025  // Check to see if this case stmt overlaps with the subsequent
1026  // case range.
1027  if (i && CRLo <= HiVals[i-1]) {
1028  OverlapVal = HiVals[i-1]; // Found overlap with range.
1029  OverlapStmt = CaseRanges[i-1].second;
1030  }
1031 
1032  if (OverlapStmt) {
1033  // If we have a duplicate, report it.
1034  Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1035  << OverlapVal.toString(10);
1036  Diag(OverlapStmt->getLHS()->getLocStart(),
1037  diag::note_duplicate_case_prev);
1038  // FIXME: We really want to remove the bogus case stmt from the
1039  // substmt, but we have no way to do this right now.
1040  CaseListIsErroneous = true;
1041  }
1042  }
1043  }
1044 
1045  // Complain if we have a constant condition and we didn't find a match.
1046  if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1047  // TODO: it would be nice if we printed enums as enums, chars as
1048  // chars, etc.
1049  Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1050  << ConstantCondValue.toString(10)
1051  << CondExpr->getSourceRange();
1052  }
1053 
1054  // Check to see if switch is over an Enum and handles all of its
1055  // values. We only issue a warning if there is not 'default:', but
1056  // we still do the analysis to preserve this information in the AST
1057  // (which can be used by flow-based analyes).
1058  //
1059  const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1060 
1061  // If switch has default case, then ignore it.
1062  if (!CaseListIsErroneous && !HasConstantCond && ET) {
1063  const EnumDecl *ED = ET->getDecl();
1064  EnumValsTy EnumVals;
1065 
1066  // Gather all enum values, set their type and sort them,
1067  // allowing easier comparison with CaseVals.
1068  for (auto *EDI : ED->enumerators()) {
1069  llvm::APSInt Val = EDI->getInitVal();
1070  AdjustAPSInt(Val, CondWidth, CondIsSigned);
1071  EnumVals.push_back(std::make_pair(Val, EDI));
1072  }
1073  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1074  auto EI = EnumVals.begin(), EIEnd =
1075  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1076 
1077  // See which case values aren't in enum.
1078  for (CaseValsTy::const_iterator CI = CaseVals.begin();
1079  CI != CaseVals.end(); CI++) {
1080  Expr *CaseExpr = CI->second->getLHS();
1081  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1082  CI->first))
1083  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1084  << CondTypeBeforePromotion;
1085  }
1086 
1087  // See which of case ranges aren't in enum
1088  EI = EnumVals.begin();
1089  for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1090  RI != CaseRanges.end(); RI++) {
1091  Expr *CaseExpr = RI->second->getLHS();
1092  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1093  RI->first))
1094  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1095  << CondTypeBeforePromotion;
1096 
1097  llvm::APSInt Hi =
1098  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1099  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1100 
1101  CaseExpr = RI->second->getRHS();
1102  if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1103  Hi))
1104  Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1105  << CondTypeBeforePromotion;
1106  }
1107 
1108  // Check which enum vals aren't in switch
1109  auto CI = CaseVals.begin();
1110  auto RI = CaseRanges.begin();
1111  bool hasCasesNotInSwitch = false;
1112 
1113  SmallVector<DeclarationName,8> UnhandledNames;
1114 
1115  for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1116  // Drop unneeded case values
1117  while (CI != CaseVals.end() && CI->first < EI->first)
1118  CI++;
1119 
1120  if (CI != CaseVals.end() && CI->first == EI->first)
1121  continue;
1122 
1123  // Drop unneeded case ranges
1124  for (; RI != CaseRanges.end(); RI++) {
1125  llvm::APSInt Hi =
1126  RI->second->getRHS()->EvaluateKnownConstInt(Context);
1127  AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1128  if (EI->first <= Hi)
1129  break;
1130  }
1131 
1132  if (RI == CaseRanges.end() || EI->first < RI->first) {
1133  hasCasesNotInSwitch = true;
1134  UnhandledNames.push_back(EI->second->getDeclName());
1135  }
1136  }
1137 
1138  if (TheDefaultStmt && UnhandledNames.empty())
1139  Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1140 
1141  // Produce a nice diagnostic if multiple values aren't handled.
1142  if (!UnhandledNames.empty()) {
1143  DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1144  TheDefaultStmt ? diag::warn_def_missing_case
1145  : diag::warn_missing_case)
1146  << (int)UnhandledNames.size();
1147 
1148  for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1149  I != E; ++I)
1150  DB << UnhandledNames[I];
1151  }
1152 
1153  if (!hasCasesNotInSwitch)
1154  SS->setAllEnumCasesCovered();
1155  }
1156  }
1157 
1158  if (BodyStmt)
1159  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1160  diag::warn_empty_switch_body);
1161 
1162  // FIXME: If the case list was broken is some way, we don't have a good system
1163  // to patch it up. Instead, just return the whole substmt as broken.
1164  if (CaseListIsErroneous)
1165  return StmtError();
1166 
1167  return SS;
1168 }
1169 
1170 void
1172  Expr *SrcExpr) {
1173  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1174  return;
1175 
1176  if (const EnumType *ET = DstType->getAs<EnumType>())
1177  if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1178  SrcType->isIntegerType()) {
1179  if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1180  SrcExpr->isIntegerConstantExpr(Context)) {
1181  // Get the bitwidth of the enum value before promotions.
1182  unsigned DstWidth = Context.getIntWidth(DstType);
1183  bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1184 
1185  llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1186  AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1187  const EnumDecl *ED = ET->getDecl();
1188 
1189  if (ED->hasAttr<FlagEnumAttr>()) {
1190  if (!IsValueInFlagEnum(ED, RhsVal, true))
1191  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1192  << DstType.getUnqualifiedType();
1193  } else {
1195  EnumValsTy;
1196  EnumValsTy EnumVals;
1197 
1198  // Gather all enum values, set their type and sort them,
1199  // allowing easier comparison with rhs constant.
1200  for (auto *EDI : ED->enumerators()) {
1201  llvm::APSInt Val = EDI->getInitVal();
1202  AdjustAPSInt(Val, DstWidth, DstIsSigned);
1203  EnumVals.push_back(std::make_pair(Val, EDI));
1204  }
1205  if (EnumVals.empty())
1206  return;
1207  std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1208  EnumValsTy::iterator EIend =
1209  std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1210 
1211  // See which values aren't in the enum.
1212  EnumValsTy::const_iterator EI = EnumVals.begin();
1213  while (EI != EIend && EI->first < RhsVal)
1214  EI++;
1215  if (EI == EIend || EI->first != RhsVal) {
1216  Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1217  << DstType.getUnqualifiedType();
1218  }
1219  }
1220  }
1221  }
1222 }
1223 
1224 StmtResult
1226  Decl *CondVar, Stmt *Body) {
1227  ExprResult CondResult(Cond.release());
1228 
1229  VarDecl *ConditionVar = nullptr;
1230  if (CondVar) {
1231  ConditionVar = cast<VarDecl>(CondVar);
1232  CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1233  CondResult = ActOnFinishFullExpr(CondResult.get(), WhileLoc);
1234  if (CondResult.isInvalid())
1235  return StmtError();
1236  }
1237  Expr *ConditionExpr = CondResult.get();
1238  if (!ConditionExpr)
1239  return StmtError();
1240  CheckBreakContinueBinding(ConditionExpr);
1241 
1242  DiagnoseUnusedExprResult(Body);
1243 
1244  if (isa<NullStmt>(Body))
1245  getCurCompoundScope().setHasEmptyLoopBodies();
1246 
1247  return new (Context)
1248  WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1249 }
1250 
1251 StmtResult
1253  SourceLocation WhileLoc, SourceLocation CondLParen,
1254  Expr *Cond, SourceLocation CondRParen) {
1255  assert(Cond && "ActOnDoStmt(): missing expression");
1256 
1257  CheckBreakContinueBinding(Cond);
1258  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1259  if (CondResult.isInvalid())
1260  return StmtError();
1261  Cond = CondResult.get();
1262 
1263  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1264  if (CondResult.isInvalid())
1265  return StmtError();
1266  Cond = CondResult.get();
1267 
1268  DiagnoseUnusedExprResult(Body);
1269 
1270  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1271 }
1272 
1273 namespace {
1274  // This visitor will traverse a conditional statement and store all
1275  // the evaluated decls into a vector. Simple is set to true if none
1276  // of the excluded constructs are used.
1277  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1278  llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1280  bool Simple;
1281  public:
1282  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1283 
1284  DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1286  Inherited(S.Context),
1287  Decls(Decls),
1288  Ranges(Ranges),
1289  Simple(true) {}
1290 
1291  bool isSimple() { return Simple; }
1292 
1293  // Replaces the method in EvaluatedExprVisitor.
1294  void VisitMemberExpr(MemberExpr* E) {
1295  Simple = false;
1296  }
1297 
1298  // Any Stmt not whitelisted will cause the condition to be marked complex.
1299  void VisitStmt(Stmt *S) {
1300  Simple = false;
1301  }
1302 
1303  void VisitBinaryOperator(BinaryOperator *E) {
1304  Visit(E->getLHS());
1305  Visit(E->getRHS());
1306  }
1307 
1308  void VisitCastExpr(CastExpr *E) {
1309  Visit(E->getSubExpr());
1310  }
1311 
1312  void VisitUnaryOperator(UnaryOperator *E) {
1313  // Skip checking conditionals with derefernces.
1314  if (E->getOpcode() == UO_Deref)
1315  Simple = false;
1316  else
1317  Visit(E->getSubExpr());
1318  }
1319 
1320  void VisitConditionalOperator(ConditionalOperator *E) {
1321  Visit(E->getCond());
1322  Visit(E->getTrueExpr());
1323  Visit(E->getFalseExpr());
1324  }
1325 
1326  void VisitParenExpr(ParenExpr *E) {
1327  Visit(E->getSubExpr());
1328  }
1329 
1330  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1331  Visit(E->getOpaqueValue()->getSourceExpr());
1332  Visit(E->getFalseExpr());
1333  }
1334 
1335  void VisitIntegerLiteral(IntegerLiteral *E) { }
1336  void VisitFloatingLiteral(FloatingLiteral *E) { }
1337  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1338  void VisitCharacterLiteral(CharacterLiteral *E) { }
1339  void VisitGNUNullExpr(GNUNullExpr *E) { }
1340  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1341 
1342  void VisitDeclRefExpr(DeclRefExpr *E) {
1343  VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1344  if (!VD) return;
1345 
1346  Ranges.push_back(E->getSourceRange());
1347 
1348  Decls.insert(VD);
1349  }
1350 
1351  }; // end class DeclExtractor
1352 
1353  // DeclMatcher checks to see if the decls are used in a non-evaluated
1354  // context.
1355  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1356  llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1357  bool FoundDecl;
1358 
1359  public:
1360  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1361 
1362  DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1363  Stmt *Statement) :
1364  Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1365  if (!Statement) return;
1366 
1367  Visit(Statement);
1368  }
1369 
1370  void VisitReturnStmt(ReturnStmt *S) {
1371  FoundDecl = true;
1372  }
1373 
1374  void VisitBreakStmt(BreakStmt *S) {
1375  FoundDecl = true;
1376  }
1377 
1378  void VisitGotoStmt(GotoStmt *S) {
1379  FoundDecl = true;
1380  }
1381 
1382  void VisitCastExpr(CastExpr *E) {
1383  if (E->getCastKind() == CK_LValueToRValue)
1384  CheckLValueToRValueCast(E->getSubExpr());
1385  else
1386  Visit(E->getSubExpr());
1387  }
1388 
1389  void CheckLValueToRValueCast(Expr *E) {
1390  E = E->IgnoreParenImpCasts();
1391 
1392  if (isa<DeclRefExpr>(E)) {
1393  return;
1394  }
1395 
1396  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1397  Visit(CO->getCond());
1398  CheckLValueToRValueCast(CO->getTrueExpr());
1399  CheckLValueToRValueCast(CO->getFalseExpr());
1400  return;
1401  }
1402 
1403  if (BinaryConditionalOperator *BCO =
1404  dyn_cast<BinaryConditionalOperator>(E)) {
1405  CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1406  CheckLValueToRValueCast(BCO->getFalseExpr());
1407  return;
1408  }
1409 
1410  Visit(E);
1411  }
1412 
1413  void VisitDeclRefExpr(DeclRefExpr *E) {
1414  if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1415  if (Decls.count(VD))
1416  FoundDecl = true;
1417  }
1418 
1419  bool FoundDeclInUse() { return FoundDecl; }
1420 
1421  }; // end class DeclMatcher
1422 
1423  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1424  Expr *Third, Stmt *Body) {
1425  // Condition is empty
1426  if (!Second) return;
1427 
1428  if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1429  Second->getLocStart()))
1430  return;
1431 
1432  PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1433  llvm::SmallPtrSet<VarDecl*, 8> Decls;
1435  DeclExtractor DE(S, Decls, Ranges);
1436  DE.Visit(Second);
1437 
1438  // Don't analyze complex conditionals.
1439  if (!DE.isSimple()) return;
1440 
1441  // No decls found.
1442  if (Decls.size() == 0) return;
1443 
1444  // Don't warn on volatile, static, or global variables.
1445  for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1446  E = Decls.end();
1447  I != E; ++I)
1448  if ((*I)->getType().isVolatileQualified() ||
1449  (*I)->hasGlobalStorage()) return;
1450 
1451  if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1452  DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1453  DeclMatcher(S, Decls, Body).FoundDeclInUse())
1454  return;
1455 
1456  // Load decl names into diagnostic.
1457  if (Decls.size() > 4)
1458  PDiag << 0;
1459  else {
1460  PDiag << Decls.size();
1461  for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1462  E = Decls.end();
1463  I != E; ++I)
1464  PDiag << (*I)->getDeclName();
1465  }
1466 
1467  // Load SourceRanges into diagnostic if there is room.
1468  // Otherwise, load the SourceRange of the conditional expression.
1469  if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1470  for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1471  E = Ranges.end();
1472  I != E; ++I)
1473  PDiag << *I;
1474  else
1475  PDiag << Second->getSourceRange();
1476 
1477  S.Diag(Ranges.begin()->getBegin(), PDiag);
1478  }
1479 
1480  // If Statement is an incemement or decrement, return true and sets the
1481  // variables Increment and DRE.
1482  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1483  DeclRefExpr *&DRE) {
1484  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1485  switch (UO->getOpcode()) {
1486  default: return false;
1487  case UO_PostInc:
1488  case UO_PreInc:
1489  Increment = true;
1490  break;
1491  case UO_PostDec:
1492  case UO_PreDec:
1493  Increment = false;
1494  break;
1495  }
1496  DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1497  return DRE;
1498  }
1499 
1500  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1501  FunctionDecl *FD = Call->getDirectCallee();
1502  if (!FD || !FD->isOverloadedOperator()) return false;
1503  switch (FD->getOverloadedOperator()) {
1504  default: return false;
1505  case OO_PlusPlus:
1506  Increment = true;
1507  break;
1508  case OO_MinusMinus:
1509  Increment = false;
1510  break;
1511  }
1512  DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1513  return DRE;
1514  }
1515 
1516  return false;
1517  }
1518 
1519  // A visitor to determine if a continue or break statement is a
1520  // subexpression.
1521  class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1522  SourceLocation BreakLoc;
1523  SourceLocation ContinueLoc;
1524  public:
1525  BreakContinueFinder(Sema &S, Stmt* Body) :
1526  Inherited(S.Context) {
1527  Visit(Body);
1528  }
1529 
1531 
1532  void VisitContinueStmt(ContinueStmt* E) {
1533  ContinueLoc = E->getContinueLoc();
1534  }
1535 
1536  void VisitBreakStmt(BreakStmt* E) {
1537  BreakLoc = E->getBreakLoc();
1538  }
1539 
1540  bool ContinueFound() { return ContinueLoc.isValid(); }
1541  bool BreakFound() { return BreakLoc.isValid(); }
1542  SourceLocation GetContinueLoc() { return ContinueLoc; }
1543  SourceLocation GetBreakLoc() { return BreakLoc; }
1544 
1545  }; // end class BreakContinueFinder
1546 
1547  // Emit a warning when a loop increment/decrement appears twice per loop
1548  // iteration. The conditions which trigger this warning are:
1549  // 1) The last statement in the loop body and the third expression in the
1550  // for loop are both increment or both decrement of the same variable
1551  // 2) No continue statements in the loop body.
1552  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1553  // Return when there is nothing to check.
1554  if (!Body || !Third) return;
1555 
1556  if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1557  Third->getLocStart()))
1558  return;
1559 
1560  // Get the last statement from the loop body.
1561  CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1562  if (!CS || CS->body_empty()) return;
1563  Stmt *LastStmt = CS->body_back();
1564  if (!LastStmt) return;
1565 
1566  bool LoopIncrement, LastIncrement;
1567  DeclRefExpr *LoopDRE, *LastDRE;
1568 
1569  if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1570  if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1571 
1572  // Check that the two statements are both increments or both decrements
1573  // on the same variable.
1574  if (LoopIncrement != LastIncrement ||
1575  LoopDRE->getDecl() != LastDRE->getDecl()) return;
1576 
1577  if (BreakContinueFinder(S, Body).ContinueFound()) return;
1578 
1579  S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1580  << LastDRE->getDecl() << LastIncrement;
1581  S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1582  << LoopIncrement;
1583  }
1584 
1585 } // end namespace
1586 
1587 
1588 void Sema::CheckBreakContinueBinding(Expr *E) {
1589  if (!E || getLangOpts().CPlusPlus)
1590  return;
1591  BreakContinueFinder BCFinder(*this, E);
1592  Scope *BreakParent = CurScope->getBreakParent();
1593  if (BCFinder.BreakFound() && BreakParent) {
1594  if (BreakParent->getFlags() & Scope::SwitchScope) {
1595  Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1596  } else {
1597  Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1598  << "break";
1599  }
1600  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1601  Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1602  << "continue";
1603  }
1604 }
1605 
1606 StmtResult
1608  Stmt *First, FullExprArg second, Decl *secondVar,
1609  FullExprArg third,
1610  SourceLocation RParenLoc, Stmt *Body) {
1611  if (!getLangOpts().CPlusPlus) {
1612  if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1613  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1614  // declare identifiers for objects having storage class 'auto' or
1615  // 'register'.
1616  for (auto *DI : DS->decls()) {
1617  VarDecl *VD = dyn_cast<VarDecl>(DI);
1618  if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1619  VD = nullptr;
1620  if (!VD) {
1621  Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1622  DI->setInvalidDecl();
1623  }
1624  }
1625  }
1626  }
1627 
1628  CheckBreakContinueBinding(second.get());
1629  CheckBreakContinueBinding(third.get());
1630 
1631  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1632  CheckForRedundantIteration(*this, third.get(), Body);
1633 
1634  ExprResult SecondResult(second.release());
1635  VarDecl *ConditionVar = nullptr;
1636  if (secondVar) {
1637  ConditionVar = cast<VarDecl>(secondVar);
1638  SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1639  SecondResult = ActOnFinishFullExpr(SecondResult.get(), ForLoc);
1640  if (SecondResult.isInvalid())
1641  return StmtError();
1642  }
1643 
1644  Expr *Third = third.release().getAs<Expr>();
1645 
1646  DiagnoseUnusedExprResult(First);
1647  DiagnoseUnusedExprResult(Third);
1648  DiagnoseUnusedExprResult(Body);
1649 
1650  if (isa<NullStmt>(Body))
1651  getCurCompoundScope().setHasEmptyLoopBodies();
1652 
1653  return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1654  Third, Body, ForLoc, LParenLoc, RParenLoc);
1655 }
1656 
1657 /// In an Objective C collection iteration statement:
1658 /// for (x in y)
1659 /// x can be an arbitrary l-value expression. Bind it up as a
1660 /// full-expression.
1662  // Reduce placeholder expressions here. Note that this rejects the
1663  // use of pseudo-object l-values in this position.
1664  ExprResult result = CheckPlaceholderExpr(E);
1665  if (result.isInvalid()) return StmtError();
1666  E = result.get();
1667 
1668  ExprResult FullExpr = ActOnFinishFullExpr(E);
1669  if (FullExpr.isInvalid())
1670  return StmtError();
1671  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1672 }
1673 
1674 ExprResult
1676  if (!collection)
1677  return ExprError();
1678 
1679  ExprResult result = CorrectDelayedTyposInExpr(collection);
1680  if (!result.isUsable())
1681  return ExprError();
1682  collection = result.get();
1683 
1684  // Bail out early if we've got a type-dependent expression.
1685  if (collection->isTypeDependent()) return collection;
1686 
1687  // Perform normal l-value conversion.
1688  result = DefaultFunctionArrayLvalueConversion(collection);
1689  if (result.isInvalid())
1690  return ExprError();
1691  collection = result.get();
1692 
1693  // The operand needs to have object-pointer type.
1694  // TODO: should we do a contextual conversion?
1695  const ObjCObjectPointerType *pointerType =
1696  collection->getType()->getAs<ObjCObjectPointerType>();
1697  if (!pointerType)
1698  return Diag(forLoc, diag::err_collection_expr_type)
1699  << collection->getType() << collection->getSourceRange();
1700 
1701  // Check that the operand provides
1702  // - countByEnumeratingWithState:objects:count:
1703  const ObjCObjectType *objectType = pointerType->getObjectType();
1704  ObjCInterfaceDecl *iface = objectType->getInterface();
1705 
1706  // If we have a forward-declared type, we can't do this check.
1707  // Under ARC, it is an error not to have a forward-declared class.
1708  if (iface &&
1709  (getLangOpts().ObjCAutoRefCount
1710  ? RequireCompleteType(forLoc, QualType(objectType, 0),
1711  diag::err_arc_collection_forward, collection)
1712  : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1713  // Otherwise, if we have any useful type information, check that
1714  // the type declares the appropriate method.
1715  } else if (iface || !objectType->qual_empty()) {
1716  IdentifierInfo *selectorIdents[] = {
1717  &Context.Idents.get("countByEnumeratingWithState"),
1718  &Context.Idents.get("objects"),
1719  &Context.Idents.get("count")
1720  };
1721  Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1722 
1723  ObjCMethodDecl *method = nullptr;
1724 
1725  // If there's an interface, look in both the public and private APIs.
1726  if (iface) {
1727  method = iface->lookupInstanceMethod(selector);
1728  if (!method) method = iface->lookupPrivateMethod(selector);
1729  }
1730 
1731  // Also check protocol qualifiers.
1732  if (!method)
1733  method = LookupMethodInQualifiedType(selector, pointerType,
1734  /*instance*/ true);
1735 
1736  // If we didn't find it anywhere, give up.
1737  if (!method) {
1738  Diag(forLoc, diag::warn_collection_expr_type)
1739  << collection->getType() << selector << collection->getSourceRange();
1740  }
1741 
1742  // TODO: check for an incompatible signature?
1743  }
1744 
1745  // Wrap up any cleanups in the expression.
1746  return collection;
1747 }
1748 
1749 StmtResult
1751  Stmt *First, Expr *collection,
1752  SourceLocation RParenLoc) {
1753 
1754  ExprResult CollectionExprResult =
1755  CheckObjCForCollectionOperand(ForLoc, collection);
1756 
1757  if (First) {
1758  QualType FirstType;
1759  if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1760  if (!DS->isSingleDecl())
1761  return StmtError(Diag((*DS->decl_begin())->getLocation(),
1762  diag::err_toomany_element_decls));
1763 
1764  VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1765  if (!D || D->isInvalidDecl())
1766  return StmtError();
1767 
1768  FirstType = D->getType();
1769  // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1770  // declare identifiers for objects having storage class 'auto' or
1771  // 'register'.
1772  if (!D->hasLocalStorage())
1773  return StmtError(Diag(D->getLocation(),
1774  diag::err_non_local_variable_decl_in_for));
1775 
1776  // If the type contained 'auto', deduce the 'auto' to 'id'.
1777  if (FirstType->getContainedAutoType()) {
1779  VK_RValue);
1780  Expr *DeducedInit = &OpaqueId;
1781  if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1782  DAR_Failed)
1783  DiagnoseAutoDeductionFailure(D, DeducedInit);
1784  if (FirstType.isNull()) {
1785  D->setInvalidDecl();
1786  return StmtError();
1787  }
1788 
1789  D->setType(FirstType);
1790 
1791  if (ActiveTemplateInstantiations.empty()) {
1792  SourceLocation Loc =
1794  Diag(Loc, diag::warn_auto_var_is_id)
1795  << D->getDeclName();
1796  }
1797  }
1798 
1799  } else {
1800  Expr *FirstE = cast<Expr>(First);
1801  if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1802  return StmtError(Diag(First->getLocStart(),
1803  diag::err_selector_element_not_lvalue)
1804  << First->getSourceRange());
1805 
1806  FirstType = static_cast<Expr*>(First)->getType();
1807  if (FirstType.isConstQualified())
1808  Diag(ForLoc, diag::err_selector_element_const_type)
1809  << FirstType << First->getSourceRange();
1810  }
1811  if (!FirstType->isDependentType() &&
1812  !FirstType->isObjCObjectPointerType() &&
1813  !FirstType->isBlockPointerType())
1814  return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1815  << FirstType << First->getSourceRange());
1816  }
1817 
1818  if (CollectionExprResult.isInvalid())
1819  return StmtError();
1820 
1821  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1822  if (CollectionExprResult.isInvalid())
1823  return StmtError();
1824 
1825  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1826  nullptr, ForLoc, RParenLoc);
1827 }
1828 
1829 /// Finish building a variable declaration for a for-range statement.
1830 /// \return true if an error occurs.
1831 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1832  SourceLocation Loc, int DiagID) {
1833  if (Decl->getType()->isUndeducedType()) {
1834  ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1835  if (!Res.isUsable()) {
1836  Decl->setInvalidDecl();
1837  return true;
1838  }
1839  Init = Res.get();
1840  }
1841 
1842  // Deduce the type for the iterator variable now rather than leaving it to
1843  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1844  QualType InitType;
1845  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1846  SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1848  SemaRef.Diag(Loc, DiagID) << Init->getType();
1849  if (InitType.isNull()) {
1850  Decl->setInvalidDecl();
1851  return true;
1852  }
1853  Decl->setType(InitType);
1854 
1855  // In ARC, infer lifetime.
1856  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1857  // we're doing the equivalent of fast iteration.
1858  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1859  SemaRef.inferObjCARCLifetime(Decl))
1860  Decl->setInvalidDecl();
1861 
1862  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1863  /*TypeMayContainAuto=*/false);
1864  SemaRef.FinalizeDeclaration(Decl);
1865  SemaRef.CurContext->addHiddenDecl(Decl);
1866  return false;
1867 }
1868 
1869 namespace {
1870 // An enum to represent whether something is dealing with a call to begin()
1871 // or a call to end() in a range-based for loop.
1873  BEF_begin,
1874  BEF_end
1875 };
1876 
1877 /// Produce a note indicating which begin/end function was implicitly called
1878 /// by a C++11 for-range statement. This is often not obvious from the code,
1879 /// nor from the diagnostics produced when analysing the implicit expressions
1880 /// required in a for-range statement.
1881 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1882  BeginEndFunction BEF) {
1883  CallExpr *CE = dyn_cast<CallExpr>(E);
1884  if (!CE)
1885  return;
1886  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1887  if (!D)
1888  return;
1889  SourceLocation Loc = D->getLocation();
1890 
1891  std::string Description;
1892  bool IsTemplate = false;
1893  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1894  Description = SemaRef.getTemplateArgumentBindingsText(
1895  FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1896  IsTemplate = true;
1897  }
1898 
1899  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1900  << BEF << IsTemplate << Description << E->getType();
1901 }
1902 
1903 /// Build a variable declaration for a for-range statement.
1904 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1905  QualType Type, const char *Name) {
1906  DeclContext *DC = SemaRef.CurContext;
1907  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1908  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1909  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1910  TInfo, SC_None);
1911  Decl->setImplicit();
1912  return Decl;
1913 }
1914 
1915 }
1916 
1917 static bool ObjCEnumerationCollection(Expr *Collection) {
1918  return !Collection->isTypeDependent()
1919  && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1920 }
1921 
1922 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1923 ///
1924 /// C++11 [stmt.ranged]:
1925 /// A range-based for statement is equivalent to
1926 ///
1927 /// {
1928 /// auto && __range = range-init;
1929 /// for ( auto __begin = begin-expr,
1930 /// __end = end-expr;
1931 /// __begin != __end;
1932 /// ++__begin ) {
1933 /// for-range-declaration = *__begin;
1934 /// statement
1935 /// }
1936 /// }
1937 ///
1938 /// The body of the loop is not available yet, since it cannot be analysed until
1939 /// we have determined the type of the for-range-declaration.
1941  SourceLocation CoawaitLoc, Stmt *First,
1942  SourceLocation ColonLoc, Expr *Range,
1943  SourceLocation RParenLoc,
1945  if (!First)
1946  return StmtError();
1947 
1948  if (Range && ObjCEnumerationCollection(Range))
1949  return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1950 
1951  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1952  assert(DS && "first part of for range not a decl stmt");
1953 
1954  if (!DS->isSingleDecl()) {
1955  Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1956  return StmtError();
1957  }
1958 
1959  Decl *LoopVar = DS->getSingleDecl();
1960  if (LoopVar->isInvalidDecl() || !Range ||
1961  DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1962  LoopVar->setInvalidDecl();
1963  return StmtError();
1964  }
1965 
1966  // Coroutines: 'for co_await' implicitly co_awaits its range.
1967  if (CoawaitLoc.isValid()) {
1968  ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range);
1969  if (Coawait.isInvalid()) return StmtError();
1970  Range = Coawait.get();
1971  }
1972 
1973  // Build auto && __range = range-init
1974  SourceLocation RangeLoc = Range->getLocStart();
1975  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1977  "__range");
1978  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1979  diag::err_for_range_deduction_failure)) {
1980  LoopVar->setInvalidDecl();
1981  return StmtError();
1982  }
1983 
1984  // Claim the type doesn't contain auto: we've already done the checking.
1985  DeclGroupPtrTy RangeGroup =
1986  BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1987  /*TypeMayContainAuto=*/ false);
1988  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1989  if (RangeDecl.isInvalid()) {
1990  LoopVar->setInvalidDecl();
1991  return StmtError();
1992  }
1993 
1994  return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
1995  /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1996  /*Inc=*/nullptr, DS, RParenLoc, Kind);
1997 }
1998 
1999 /// \brief Create the initialization, compare, and increment steps for
2000 /// the range-based for loop expression.
2001 /// This function does not handle array-based for loops,
2002 /// which are created in Sema::BuildCXXForRangeStmt.
2003 ///
2004 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2005 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2006 /// CandidateSet and BEF are set and some non-success value is returned on
2007 /// failure.
2009  Expr *BeginRange, Expr *EndRange,
2010  QualType RangeType,
2011  VarDecl *BeginVar,
2012  VarDecl *EndVar,
2014  OverloadCandidateSet *CandidateSet,
2015  ExprResult *BeginExpr,
2016  ExprResult *EndExpr,
2017  BeginEndFunction *BEF) {
2018  DeclarationNameInfo BeginNameInfo(
2019  &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2020  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2021  ColonLoc);
2022 
2023  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2025  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2026 
2027  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2028  // - if _RangeT is a class type, the unqualified-ids begin and end are
2029  // looked up in the scope of class _RangeT as if by class member access
2030  // lookup (3.4.5), and if either (or both) finds at least one
2031  // declaration, begin-expr and end-expr are __range.begin() and
2032  // __range.end(), respectively;
2033  SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2034  SemaRef.LookupQualifiedName(EndMemberLookup, D);
2035 
2036  if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2037  SourceLocation RangeLoc = BeginVar->getLocation();
2038  *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
2039 
2040  SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2041  << RangeLoc << BeginRange->getType() << *BEF;
2043  }
2044  } else {
2045  // - otherwise, begin-expr and end-expr are begin(__range) and
2046  // end(__range), respectively, where begin and end are looked up with
2047  // argument-dependent lookup (3.4.2). For the purposes of this name
2048  // lookup, namespace std is an associated namespace.
2049 
2050  }
2051 
2052  *BEF = BEF_begin;
2053  Sema::ForRangeStatus RangeStatus =
2054  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2055  BeginMemberLookup, CandidateSet,
2056  BeginRange, BeginExpr);
2057 
2058  if (RangeStatus != Sema::FRS_Success) {
2059  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2060  SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
2061  << ColonLoc << BEF_begin << BeginRange->getType();
2062  return RangeStatus;
2063  }
2064  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2065  diag::err_for_range_iter_deduction_failure)) {
2066  NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2068  }
2069 
2070  *BEF = BEF_end;
2071  RangeStatus =
2072  SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2073  EndMemberLookup, CandidateSet,
2074  EndRange, EndExpr);
2075  if (RangeStatus != Sema::FRS_Success) {
2076  if (RangeStatus == Sema::FRS_DiagnosticIssued)
2077  SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
2078  << ColonLoc << BEF_end << EndRange->getType();
2079  return RangeStatus;
2080  }
2081  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2082  diag::err_for_range_iter_deduction_failure)) {
2083  NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2085  }
2086  return Sema::FRS_Success;
2087 }
2088 
2089 /// Speculatively attempt to dereference an invalid range expression.
2090 /// If the attempt fails, this function will return a valid, null StmtResult
2091 /// and emit no diagnostics.
2093  SourceLocation ForLoc,
2094  SourceLocation CoawaitLoc,
2095  Stmt *LoopVarDecl,
2097  Expr *Range,
2098  SourceLocation RangeLoc,
2099  SourceLocation RParenLoc) {
2100  // Determine whether we can rebuild the for-range statement with a
2101  // dereferenced range expression.
2102  ExprResult AdjustedRange;
2103  {
2104  Sema::SFINAETrap Trap(SemaRef);
2105 
2106  AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2107  if (AdjustedRange.isInvalid())
2108  return StmtResult();
2109 
2110  StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2111  S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
2112  RParenLoc, Sema::BFRK_Check);
2113  if (SR.isInvalid())
2114  return StmtResult();
2115  }
2116 
2117  // The attempt to dereference worked well enough that it could produce a valid
2118  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2119  // case there are any other (non-fatal) problems with it.
2120  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2121  << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2122  return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
2123  ColonLoc, AdjustedRange.get(), RParenLoc,
2125 }
2126 
2127 namespace {
2128 /// RAII object to automatically invalidate a declaration if an error occurs.
2129 struct InvalidateOnErrorScope {
2130  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2131  : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2132  ~InvalidateOnErrorScope() {
2133  if (Enabled && Trap.hasErrorOccurred())
2134  D->setInvalidDecl();
2135  }
2136 
2137  DiagnosticErrorTrap Trap;
2138  Decl *D;
2139  bool Enabled;
2140 };
2141 }
2142 
2143 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2144 StmtResult
2147  Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2148  Expr *Inc, Stmt *LoopVarDecl,
2149  SourceLocation RParenLoc, BuildForRangeKind Kind) {
2150  // FIXME: This should not be used during template instantiation. We should
2151  // pick up the set of unqualified lookup results for the != and + operators
2152  // in the initial parse.
2153  //
2154  // Testcase (accepts-invalid):
2155  // template<typename T> void f() { for (auto x : T()) {} }
2156  // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2157  // bool operator!=(N::X, N::X); void operator++(N::X);
2158  // void g() { f<N::X>(); }
2159  Scope *S = getCurScope();
2160 
2161  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2162  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2163  QualType RangeVarType = RangeVar->getType();
2164 
2165  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2166  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2167 
2168  // If we hit any errors, mark the loop variable as invalid if its type
2169  // contains 'auto'.
2170  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2171  LoopVar->getType()->isUndeducedType());
2172 
2173  StmtResult BeginEndDecl = BeginEnd;
2174  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2175 
2176  if (RangeVarType->isDependentType()) {
2177  // The range is implicitly used as a placeholder when it is dependent.
2178  RangeVar->markUsed(Context);
2179 
2180  // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2181  // them in properly when we instantiate the loop.
2182  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2183  LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2184  } else if (!BeginEndDecl.get()) {
2185  SourceLocation RangeLoc = RangeVar->getLocation();
2186 
2187  const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2188 
2189  ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2190  VK_LValue, ColonLoc);
2191  if (BeginRangeRef.isInvalid())
2192  return StmtError();
2193 
2194  ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2195  VK_LValue, ColonLoc);
2196  if (EndRangeRef.isInvalid())
2197  return StmtError();
2198 
2200  Expr *Range = RangeVar->getInit();
2201  if (!Range)
2202  return StmtError();
2203  QualType RangeType = Range->getType();
2204 
2205  if (RequireCompleteType(RangeLoc, RangeType,
2206  diag::err_for_range_incomplete_type))
2207  return StmtError();
2208 
2209  // Build auto __begin = begin-expr, __end = end-expr.
2210  VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2211  "__begin");
2212  VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2213  "__end");
2214 
2215  // Build begin-expr and end-expr and attach to __begin and __end variables.
2216  ExprResult BeginExpr, EndExpr;
2217  if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2218  // - if _RangeT is an array type, begin-expr and end-expr are __range and
2219  // __range + __bound, respectively, where __bound is the array bound. If
2220  // _RangeT is an array of unknown size or an array of incomplete type,
2221  // the program is ill-formed;
2222 
2223  // begin-expr is __range.
2224  BeginExpr = BeginRangeRef;
2225  if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2226  diag::err_for_range_iter_deduction_failure)) {
2227  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2228  return StmtError();
2229  }
2230 
2231  // Find the array bound.
2232  ExprResult BoundExpr;
2233  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2234  BoundExpr = IntegerLiteral::Create(
2235  Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2236  else if (const VariableArrayType *VAT =
2237  dyn_cast<VariableArrayType>(UnqAT))
2238  BoundExpr = VAT->getSizeExpr();
2239  else {
2240  // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2241  // UnqAT is not incomplete and Range is not type-dependent.
2242  llvm_unreachable("Unexpected array type in for-range");
2243  }
2244 
2245  // end-expr is __range + __bound.
2246  EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2247  BoundExpr.get());
2248  if (EndExpr.isInvalid())
2249  return StmtError();
2250  if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2251  diag::err_for_range_iter_deduction_failure)) {
2252  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2253  return StmtError();
2254  }
2255  } else {
2256  OverloadCandidateSet CandidateSet(RangeLoc,
2258  BeginEndFunction BEFFailure;
2259  ForRangeStatus RangeStatus =
2260  BuildNonArrayForRange(*this, BeginRangeRef.get(),
2261  EndRangeRef.get(), RangeType,
2262  BeginVar, EndVar, ColonLoc, &CandidateSet,
2263  &BeginExpr, &EndExpr, &BEFFailure);
2264 
2265  if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2266  BEFFailure == BEF_begin) {
2267  // If the range is being built from an array parameter, emit a
2268  // a diagnostic that it is being treated as a pointer.
2269  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2270  if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2271  QualType ArrayTy = PVD->getOriginalType();
2272  QualType PointerTy = PVD->getType();
2273  if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2274  Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2275  << RangeLoc << PVD << ArrayTy << PointerTy;
2276  Diag(PVD->getLocation(), diag::note_declared_at);
2277  return StmtError();
2278  }
2279  }
2280  }
2281 
2282  // If building the range failed, try dereferencing the range expression
2283  // unless a diagnostic was issued or the end function is problematic.
2284  StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2285  CoawaitLoc,
2286  LoopVarDecl, ColonLoc,
2287  Range, RangeLoc,
2288  RParenLoc);
2289  if (SR.isInvalid() || SR.isUsable())
2290  return SR;
2291  }
2292 
2293  // Otherwise, emit diagnostics if we haven't already.
2294  if (RangeStatus == FRS_NoViableFunction) {
2295  Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2296  Diag(Range->getLocStart(), diag::err_for_range_invalid)
2297  << RangeLoc << Range->getType() << BEFFailure;
2298  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2299  }
2300  // Return an error if no fix was discovered.
2301  if (RangeStatus != FRS_Success)
2302  return StmtError();
2303  }
2304 
2305  assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2306  "invalid range expression in for loop");
2307 
2308  // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2309  QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2310  if (!Context.hasSameType(BeginType, EndType)) {
2311  Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2312  << BeginType << EndType;
2313  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2314  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2315  }
2316 
2317  Decl *BeginEndDecls[] = { BeginVar, EndVar };
2318  // Claim the type doesn't contain auto: we've already done the checking.
2319  DeclGroupPtrTy BeginEndGroup =
2320  BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2321  /*TypeMayContainAuto=*/ false);
2322  BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2323 
2324  const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2325  ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2326  VK_LValue, ColonLoc);
2327  if (BeginRef.isInvalid())
2328  return StmtError();
2329 
2330  ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2331  VK_LValue, ColonLoc);
2332  if (EndRef.isInvalid())
2333  return StmtError();
2334 
2335  // Build and check __begin != __end expression.
2336  NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2337  BeginRef.get(), EndRef.get());
2338  NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2339  NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2340  if (NotEqExpr.isInvalid()) {
2341  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2342  << RangeLoc << 0 << BeginRangeRef.get()->getType();
2343  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2344  if (!Context.hasSameType(BeginType, EndType))
2345  NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2346  return StmtError();
2347  }
2348 
2349  // Build and check ++__begin expression.
2350  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2351  VK_LValue, ColonLoc);
2352  if (BeginRef.isInvalid())
2353  return StmtError();
2354 
2355  IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2356  if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2357  IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2358  if (!IncrExpr.isInvalid())
2359  IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2360  if (IncrExpr.isInvalid()) {
2361  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2362  << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2363  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2364  return StmtError();
2365  }
2366 
2367  // Build and check *__begin expression.
2368  BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2369  VK_LValue, ColonLoc);
2370  if (BeginRef.isInvalid())
2371  return StmtError();
2372 
2373  ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2374  if (DerefExpr.isInvalid()) {
2375  Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2376  << RangeLoc << 1 << BeginRangeRef.get()->getType();
2377  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2378  return StmtError();
2379  }
2380 
2381  // Attach *__begin as initializer for VD. Don't touch it if we're just
2382  // trying to determine whether this would be a valid range.
2383  if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2384  AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2385  /*TypeMayContainAuto=*/true);
2386  if (LoopVar->isInvalidDecl())
2387  NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2388  }
2389  }
2390 
2391  // Don't bother to actually allocate the result if we're just trying to
2392  // determine whether it would be valid.
2393  if (Kind == BFRK_Check)
2394  return StmtResult();
2395 
2396  return new (Context) CXXForRangeStmt(
2397  RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2398  IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2399  ColonLoc, RParenLoc);
2400 }
2401 
2402 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2403 /// statement.
2405  if (!S || !B)
2406  return StmtError();
2407  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2408 
2409  ForStmt->setBody(B);
2410  return S;
2411 }
2412 
2413 // Warn when the loop variable is a const reference that creates a copy.
2414 // Suggest using the non-reference type for copies. If a copy can be prevented
2415 // suggest the const reference type that would do so.
2416 // For instance, given "for (const &Foo : Range)", suggest
2417 // "for (const Foo : Range)" to denote a copy is made for the loop. If
2418 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2419 // the copy altogether.
2421  const VarDecl *VD,
2422  QualType RangeInitType) {
2423  const Expr *InitExpr = VD->getInit();
2424  if (!InitExpr)
2425  return;
2426 
2427  QualType VariableType = VD->getType();
2428 
2429  const MaterializeTemporaryExpr *MTE =
2430  dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2431 
2432  // No copy made.
2433  if (!MTE)
2434  return;
2435 
2436  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2437 
2438  // Searching for either UnaryOperator for dereference of a pointer or
2439  // CXXOperatorCallExpr for handling iterators.
2440  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2441  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2442  E = CCE->getArg(0);
2443  } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2444  const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2445  E = ME->getBase();
2446  } else {
2447  const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2448  E = MTE->GetTemporaryExpr();
2449  }
2450  E = E->IgnoreImpCasts();
2451  }
2452 
2453  bool ReturnsReference = false;
2454  if (isa<UnaryOperator>(E)) {
2455  ReturnsReference = true;
2456  } else {
2457  const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2458  const FunctionDecl *FD = Call->getDirectCallee();
2459  QualType ReturnType = FD->getReturnType();
2460  ReturnsReference = ReturnType->isReferenceType();
2461  }
2462 
2463  if (ReturnsReference) {
2464  // Loop variable creates a temporary. Suggest either to go with
2465  // non-reference loop variable to indiciate a copy is made, or
2466  // the correct time to bind a const reference.
2467  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2468  << VD << VariableType << E->getType();
2469  QualType NonReferenceType = VariableType.getNonReferenceType();
2470  NonReferenceType.removeLocalConst();
2471  QualType NewReferenceType =
2473  SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2474  << NonReferenceType << NewReferenceType << VD->getSourceRange();
2475  } else {
2476  // The range always returns a copy, so a temporary is always created.
2477  // Suggest removing the reference from the loop variable.
2478  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2479  << VD << RangeInitType;
2480  QualType NonReferenceType = VariableType.getNonReferenceType();
2481  NonReferenceType.removeLocalConst();
2482  SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2483  << NonReferenceType << VD->getSourceRange();
2484  }
2485 }
2486 
2487 // Warns when the loop variable can be changed to a reference type to
2488 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
2489 // "for (const Foo &x : Range)" if this form does not make a copy.
2491  const VarDecl *VD) {
2492  const Expr *InitExpr = VD->getInit();
2493  if (!InitExpr)
2494  return;
2495 
2496  QualType VariableType = VD->getType();
2497 
2498  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2499  if (!CE->getConstructor()->isCopyConstructor())
2500  return;
2501  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2502  if (CE->getCastKind() != CK_LValueToRValue)
2503  return;
2504  } else {
2505  return;
2506  }
2507 
2508  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2509  // should be emitted. Also, only ignore POD types with trivial copy
2510  // constructors.
2511  if (VariableType.isPODType(SemaRef.Context))
2512  return;
2513 
2514  // Suggest changing from a const variable to a const reference variable
2515  // if doing so will prevent a copy.
2516  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2517  << VD << VariableType << InitExpr->getType();
2518  SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2519  << SemaRef.Context.getLValueReferenceType(VariableType)
2520  << VD->getSourceRange();
2521 }
2522 
2523 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2524 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
2525 /// using "const foo x" to show that a copy is made
2526 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
2527 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
2528 /// prevent the copy.
2529 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2530 /// Suggest "const foo &x" to prevent the copy.
2532  const CXXForRangeStmt *ForStmt) {
2533  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2534  ForStmt->getLocStart()) &&
2535  SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2536  ForStmt->getLocStart()) &&
2537  SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2538  ForStmt->getLocStart())) {
2539  return;
2540  }
2541 
2542  const VarDecl *VD = ForStmt->getLoopVariable();
2543  if (!VD)
2544  return;
2545 
2546  QualType VariableType = VD->getType();
2547 
2548  if (VariableType->isIncompleteType())
2549  return;
2550 
2551  const Expr *InitExpr = VD->getInit();
2552  if (!InitExpr)
2553  return;
2554 
2555  if (VariableType->isReferenceType()) {
2557  ForStmt->getRangeInit()->getType());
2558  } else if (VariableType.isConstQualified()) {
2560  }
2561 }
2562 
2563 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2564 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2565 /// body cannot be performed until after the type of the range variable is
2566 /// determined.
2568  if (!S || !B)
2569  return StmtError();
2570 
2571  if (isa<ObjCForCollectionStmt>(S))
2572  return FinishObjCForCollectionStmt(S, B);
2573 
2574  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2575  ForStmt->setBody(B);
2576 
2577  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2578  diag::warn_empty_range_based_for_body);
2579 
2580  DiagnoseForRangeVariableCopies(*this, ForStmt);
2581 
2582  return S;
2583 }
2584 
2586  SourceLocation LabelLoc,
2587  LabelDecl *TheDecl) {
2588  getCurFunction()->setHasBranchIntoScope();
2589  TheDecl->markUsed(Context);
2590  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2591 }
2592 
2593 StmtResult
2595  Expr *E) {
2596  // Convert operand to void*
2597  if (!E->isTypeDependent()) {
2598  QualType ETy = E->getType();
2600  ExprResult ExprRes = E;
2601  AssignConvertType ConvTy =
2602  CheckSingleAssignmentConstraints(DestTy, ExprRes);
2603  if (ExprRes.isInvalid())
2604  return StmtError();
2605  E = ExprRes.get();
2606  if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2607  return StmtError();
2608  }
2609 
2610  ExprResult ExprRes = ActOnFinishFullExpr(E);
2611  if (ExprRes.isInvalid())
2612  return StmtError();
2613  E = ExprRes.get();
2614 
2615  getCurFunction()->setHasIndirectGoto();
2616 
2617  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2618 }
2619 
2621  const Scope &DestScope) {
2622  if (!S.CurrentSEHFinally.empty() &&
2623  DestScope.Contains(*S.CurrentSEHFinally.back())) {
2624  S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2625  }
2626 }
2627 
2628 StmtResult
2630  Scope *S = CurScope->getContinueParent();
2631  if (!S) {
2632  // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2633  return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2634  }
2635  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2636 
2637  return new (Context) ContinueStmt(ContinueLoc);
2638 }
2639 
2640 StmtResult
2642  Scope *S = CurScope->getBreakParent();
2643  if (!S) {
2644  // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2645  return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2646  }
2647  if (S->isOpenMPLoopScope())
2648  return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2649  << "break");
2650  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2651 
2652  return new (Context) BreakStmt(BreakLoc);
2653 }
2654 
2655 /// \brief Determine whether the given expression is a candidate for
2656 /// copy elision in either a return statement or a throw expression.
2657 ///
2658 /// \param ReturnType If we're determining the copy elision candidate for
2659 /// a return statement, this is the return type of the function. If we're
2660 /// determining the copy elision candidate for a throw expression, this will
2661 /// be a NULL type.
2662 ///
2663 /// \param E The expression being returned from the function or block, or
2664 /// being thrown.
2665 ///
2666 /// \param AllowFunctionParameter Whether we allow function parameters to
2667 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2668 /// we re-use this logic to determine whether we should try to move as part of
2669 /// a return or throw (which does allow function parameters).
2670 ///
2671 /// \returns The NRVO candidate variable, if the return statement may use the
2672 /// NRVO, or NULL if there is no such candidate.
2674  Expr *E,
2675  bool AllowFunctionParameter) {
2676  if (!getLangOpts().CPlusPlus)
2677  return nullptr;
2678 
2679  // - in a return statement in a function [where] ...
2680  // ... the expression is the name of a non-volatile automatic object ...
2681  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2682  if (!DR || DR->refersToEnclosingVariableOrCapture())
2683  return nullptr;
2684  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2685  if (!VD)
2686  return nullptr;
2687 
2688  if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2689  return VD;
2690  return nullptr;
2691 }
2692 
2693 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2694  bool AllowFunctionParameter) {
2695  QualType VDType = VD->getType();
2696  // - in a return statement in a function with ...
2697  // ... a class return type ...
2698  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2699  if (!ReturnType->isRecordType())
2700  return false;
2701  // ... the same cv-unqualified type as the function return type ...
2702  if (!VDType->isDependentType() &&
2703  !Context.hasSameUnqualifiedType(ReturnType, VDType))
2704  return false;
2705  }
2706 
2707  // ...object (other than a function or catch-clause parameter)...
2708  if (VD->getKind() != Decl::Var &&
2709  !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2710  return false;
2711  if (VD->isExceptionVariable()) return false;
2712 
2713  // ...automatic...
2714  if (!VD->hasLocalStorage()) return false;
2715 
2716  // ...non-volatile...
2717  if (VD->getType().isVolatileQualified()) return false;
2718 
2719  // __block variables can't be allocated in a way that permits NRVO.
2720  if (VD->hasAttr<BlocksAttr>()) return false;
2721 
2722  // Variables with higher required alignment than their type's ABI
2723  // alignment cannot use NRVO.
2724  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2726  return false;
2727 
2728  return true;
2729 }
2730 
2731 /// \brief Perform the initialization of a potentially-movable value, which
2732 /// is the result of return value.
2733 ///
2734 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2735 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2736 /// then falls back to treating them as lvalues if that failed.
2737 ExprResult
2739  const VarDecl *NRVOCandidate,
2740  QualType ResultType,
2741  Expr *Value,
2742  bool AllowNRVO) {
2743  // C++0x [class.copy]p33:
2744  // When the criteria for elision of a copy operation are met or would
2745  // be met save for the fact that the source object is a function
2746  // parameter, and the object to be copied is designated by an lvalue,
2747  // overload resolution to select the constructor for the copy is first
2748  // performed as if the object were designated by an rvalue.
2749  ExprResult Res = ExprError();
2750  if (AllowNRVO &&
2751  (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2753  Value->getType(), CK_NoOp, Value, VK_XValue);
2754 
2755  Expr *InitExpr = &AsRvalue;
2757  = InitializationKind::CreateCopy(Value->getLocStart(),
2758  Value->getLocStart());
2759  InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2760 
2761  // [...] If overload resolution fails, or if the type of the first
2762  // parameter of the selected constructor is not an rvalue reference
2763  // to the object's type (possibly cv-qualified), overload resolution
2764  // is performed again, considering the object as an lvalue.
2765  if (Seq) {
2766  for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2767  StepEnd = Seq.step_end();
2768  Step != StepEnd; ++Step) {
2770  continue;
2771 
2772  CXXConstructorDecl *Constructor
2773  = cast<CXXConstructorDecl>(Step->Function.Function);
2774 
2775  const RValueReferenceType *RRefType
2776  = Constructor->getParamDecl(0)->getType()
2778 
2779  // If we don't meet the criteria, break out now.
2780  if (!RRefType ||
2781  !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2782  Context.getTypeDeclType(Constructor->getParent())))
2783  break;
2784 
2785  // Promote "AsRvalue" to the heap, since we now need this
2786  // expression node to persist.
2787  Value = ImplicitCastExpr::Create(Context, Value->getType(),
2788  CK_NoOp, Value, nullptr, VK_XValue);
2789 
2790  // Complete type-checking the initialization of the return type
2791  // using the constructor we found.
2792  Res = Seq.Perform(*this, Entity, Kind, Value);
2793  }
2794  }
2795  }
2796 
2797  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2798  // above, or overload resolution failed. Either way, we need to try
2799  // (again) now with the return value expression as written.
2800  if (Res.isInvalid())
2801  Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2802 
2803  return Res;
2804 }
2805 
2806 /// \brief Determine whether the declared return type of the specified function
2807 /// contains 'auto'.
2809  const FunctionProtoType *FPT =
2811  return FPT->getReturnType()->isUndeducedType();
2812 }
2813 
2814 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2815 /// for capturing scopes.
2816 ///
2817 StmtResult
2819  // If this is the first return we've seen, infer the return type.
2820  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2821  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2822  QualType FnRetType = CurCap->ReturnType;
2823  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2824 
2825  if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2826  // In C++1y, the return type may involve 'auto'.
2827  // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2828  FunctionDecl *FD = CurLambda->CallOperator;
2829  if (CurCap->ReturnType.isNull())
2830  CurCap->ReturnType = FD->getReturnType();
2831 
2832  AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2833  assert(AT && "lost auto type from lambda return type");
2834  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2835  FD->setInvalidDecl();
2836  return StmtError();
2837  }
2838  CurCap->ReturnType = FnRetType = FD->getReturnType();
2839  } else if (CurCap->HasImplicitReturnType) {
2840  // For blocks/lambdas with implicit return types, we check each return
2841  // statement individually, and deduce the common return type when the block
2842  // or lambda is completed.
2843  // FIXME: Fold this into the 'auto' codepath above.
2844  if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2845  ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2846  if (Result.isInvalid())
2847  return StmtError();
2848  RetValExp = Result.get();
2849 
2850  // DR1048: even prior to C++14, we should use the 'auto' deduction rules
2851  // when deducing a return type for a lambda-expression (or by extension
2852  // for a block). These rules differ from the stated C++11 rules only in
2853  // that they remove top-level cv-qualifiers.
2854  if (!CurContext->isDependentContext())
2855  FnRetType = RetValExp->getType().getUnqualifiedType();
2856  else
2857  FnRetType = CurCap->ReturnType = Context.DependentTy;
2858  } else {
2859  if (RetValExp) {
2860  // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2861  // initializer list, because it is not an expression (even
2862  // though we represent it as one). We still deduce 'void'.
2863  Diag(ReturnLoc, diag::err_lambda_return_init_list)
2864  << RetValExp->getSourceRange();
2865  }
2866 
2867  FnRetType = Context.VoidTy;
2868  }
2869 
2870  // Although we'll properly infer the type of the block once it's completed,
2871  // make sure we provide a return type now for better error recovery.
2872  if (CurCap->ReturnType.isNull())
2873  CurCap->ReturnType = FnRetType;
2874  }
2875  assert(!FnRetType.isNull());
2876 
2877  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2878  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2879  Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2880  return StmtError();
2881  }
2882  } else if (CapturedRegionScopeInfo *CurRegion =
2883  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2884  Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2885  return StmtError();
2886  } else {
2887  assert(CurLambda && "unknown kind of captured scope");
2888  if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2889  ->getNoReturnAttr()) {
2890  Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2891  return StmtError();
2892  }
2893  }
2894 
2895  // Otherwise, verify that this result type matches the previous one. We are
2896  // pickier with blocks than for normal functions because we don't have GCC
2897  // compatibility to worry about here.
2898  const VarDecl *NRVOCandidate = nullptr;
2899  if (FnRetType->isDependentType()) {
2900  // Delay processing for now. TODO: there are lots of dependent
2901  // types we can conclusively prove aren't void.
2902  } else if (FnRetType->isVoidType()) {
2903  if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2904  !(getLangOpts().CPlusPlus &&
2905  (RetValExp->isTypeDependent() ||
2906  RetValExp->getType()->isVoidType()))) {
2907  if (!getLangOpts().CPlusPlus &&
2908  RetValExp->getType()->isVoidType())
2909  Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2910  else {
2911  Diag(ReturnLoc, diag::err_return_block_has_expr);
2912  RetValExp = nullptr;
2913  }
2914  }
2915  } else if (!RetValExp) {
2916  return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2917  } else if (!RetValExp->isTypeDependent()) {
2918  // we have a non-void block with an expression, continue checking
2919 
2920  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2921  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2922  // function return.
2923 
2924  // In C++ the return statement is handled via a copy initialization.
2925  // the C version of which boils down to CheckSingleAssignmentConstraints.
2926  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2928  FnRetType,
2929  NRVOCandidate != nullptr);
2930  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2931  FnRetType, RetValExp);
2932  if (Res.isInvalid()) {
2933  // FIXME: Cleanup temporaries here, anyway?
2934  return StmtError();
2935  }
2936  RetValExp = Res.get();
2937  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2938  } else {
2939  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2940  }
2941 
2942  if (RetValExp) {
2943  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2944  if (ER.isInvalid())
2945  return StmtError();
2946  RetValExp = ER.get();
2947  }
2948  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2949  NRVOCandidate);
2950 
2951  // If we need to check for the named return value optimization,
2952  // or if we need to infer the return type,
2953  // save the return statement in our scope for later processing.
2954  if (CurCap->HasImplicitReturnType || NRVOCandidate)
2955  FunctionScopes.back()->Returns.push_back(Result);
2956 
2957  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
2958  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
2959 
2960  return Result;
2961 }
2962 
2963 namespace {
2964 /// \brief Marks all typedefs in all local classes in a type referenced.
2965 ///
2966 /// In a function like
2967 /// auto f() {
2968 /// struct S { typedef int a; };
2969 /// return S();
2970 /// }
2971 ///
2972 /// the local type escapes and could be referenced in some TUs but not in
2973 /// others. Pretend that all local typedefs are always referenced, to not warn
2974 /// on this. This isn't necessary if f has internal linkage, or the typedef
2975 /// is private.
2976 class LocalTypedefNameReferencer
2977  : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
2978 public:
2979  LocalTypedefNameReferencer(Sema &S) : S(S) {}
2980  bool VisitRecordType(const RecordType *RT);
2981 private:
2982  Sema &S;
2983 };
2984 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
2985  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
2986  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
2987  R->isDependentType())
2988  return true;
2989  for (auto *TmpD : R->decls())
2990  if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2991  if (T->getAccess() != AS_private || R->hasFriends())
2992  S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
2993  return true;
2994 }
2995 }
2996 
2999  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3000  TL = ATL.getModifiedLoc().IgnoreParens();
3001  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3002 }
3003 
3004 /// Deduce the return type for a function from a returned expression, per
3005 /// C++1y [dcl.spec.auto]p6.
3007  SourceLocation ReturnLoc,
3008  Expr *&RetExpr,
3009  AutoType *AT) {
3010  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3011  QualType Deduced;
3012 
3013  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3014  // If the deduction is for a return statement and the initializer is
3015  // a braced-init-list, the program is ill-formed.
3016  Diag(RetExpr->getExprLoc(),
3017  getCurLambda() ? diag::err_lambda_return_init_list
3018  : diag::err_auto_fn_return_init_list)
3019  << RetExpr->getSourceRange();
3020  return true;
3021  }
3022 
3023  if (FD->isDependentContext()) {
3024  // C++1y [dcl.spec.auto]p12:
3025  // Return type deduction [...] occurs when the definition is
3026  // instantiated even if the function body contains a return
3027  // statement with a non-type-dependent operand.
3028  assert(AT->isDeduced() && "should have deduced to dependent type");
3029  return false;
3030  }
3031 
3032  if (RetExpr) {
3033  // Otherwise, [...] deduce a value for U using the rules of template
3034  // argument deduction.
3035  DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3036 
3037  if (DAR == DAR_Failed && !FD->isInvalidDecl())
3038  Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3039  << OrigResultType.getType() << RetExpr->getType();
3040 
3041  if (DAR != DAR_Succeeded)
3042  return true;
3043 
3044  // If a local type is part of the returned type, mark its fields as
3045  // referenced.
3046  LocalTypedefNameReferencer Referencer(*this);
3047  Referencer.TraverseType(RetExpr->getType());
3048  } else {
3049  // In the case of a return with no operand, the initializer is considered
3050  // to be void().
3051  //
3052  // Deduction here can only succeed if the return type is exactly 'cv auto'
3053  // or 'decltype(auto)', so just check for that case directly.
3054  if (!OrigResultType.getType()->getAs<AutoType>()) {
3055  Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3056  << OrigResultType.getType();
3057  return true;
3058  }
3059  // We always deduce U = void in this case.
3060  Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3061  if (Deduced.isNull())
3062  return true;
3063  }
3064 
3065  // If a function with a declared return type that contains a placeholder type
3066  // has multiple return statements, the return type is deduced for each return
3067  // statement. [...] if the type deduced is not the same in each deduction,
3068  // the program is ill-formed.
3069  if (AT->isDeduced() && !FD->isInvalidDecl()) {
3070  AutoType *NewAT = Deduced->getContainedAutoType();
3072  AT->getDeducedType());
3074  NewAT->getDeducedType());
3075  if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3076  const LambdaScopeInfo *LambdaSI = getCurLambda();
3077  if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3078  Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3079  << NewAT->getDeducedType() << AT->getDeducedType()
3080  << true /*IsLambda*/;
3081  } else {
3082  Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3083  << (AT->isDecltypeAuto() ? 1 : 0)
3084  << NewAT->getDeducedType() << AT->getDeducedType();
3085  }
3086  return true;
3087  }
3088  } else if (!FD->isInvalidDecl()) {
3089  // Update all declarations of the function to have the deduced return type.
3091  }
3092 
3093  return false;
3094 }
3095 
3096 StmtResult
3098  Scope *CurScope) {
3099  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3100  if (R.isInvalid()) {
3101  return R;
3102  }
3103 
3104  if (VarDecl *VD =
3105  const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3106  CurScope->addNRVOCandidate(VD);
3107  } else {
3108  CurScope->setNoNRVO();
3109  }
3110 
3111  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3112 
3113  return R;
3114 }
3115 
3117  // Check for unexpanded parameter packs.
3118  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3119  return StmtError();
3120 
3121  if (isa<CapturingScopeInfo>(getCurFunction()))
3122  return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3123 
3124  QualType FnRetType;
3125  QualType RelatedRetType;
3126  const AttrVec *Attrs = nullptr;
3127  bool isObjCMethod = false;
3128 
3129  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3130  FnRetType = FD->getReturnType();
3131  if (FD->hasAttrs())
3132  Attrs = &FD->getAttrs();
3133  if (FD->isNoReturn())
3134  Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3135  << FD->getDeclName();
3136  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3137  FnRetType = MD->getReturnType();
3138  isObjCMethod = true;
3139  if (MD->hasAttrs())
3140  Attrs = &MD->getAttrs();
3141  if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3142  // In the implementation of a method with a related return type, the
3143  // type used to type-check the validity of return statements within the
3144  // method body is a pointer to the type of the class being implemented.
3145  RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3146  RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3147  }
3148  } else // If we don't have a function/method context, bail.
3149  return StmtError();
3150 
3151  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3152  // deduction.
3153  if (getLangOpts().CPlusPlus14) {
3154  if (AutoType *AT = FnRetType->getContainedAutoType()) {
3155  FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3156  if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3157  FD->setInvalidDecl();
3158  return StmtError();
3159  } else {
3160  FnRetType = FD->getReturnType();
3161  }
3162  }
3163  }
3164 
3165  bool HasDependentReturnType = FnRetType->isDependentType();
3166 
3167  ReturnStmt *Result = nullptr;
3168  if (FnRetType->isVoidType()) {
3169  if (RetValExp) {
3170  if (isa<InitListExpr>(RetValExp)) {
3171  // We simply never allow init lists as the return value of void
3172  // functions. This is compatible because this was never allowed before,
3173  // so there's no legacy code to deal with.
3174  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3175  int FunctionKind = 0;
3176  if (isa<ObjCMethodDecl>(CurDecl))
3177  FunctionKind = 1;
3178  else if (isa<CXXConstructorDecl>(CurDecl))
3179  FunctionKind = 2;
3180  else if (isa<CXXDestructorDecl>(CurDecl))
3181  FunctionKind = 3;
3182 
3183  Diag(ReturnLoc, diag::err_return_init_list)
3184  << CurDecl->getDeclName() << FunctionKind
3185  << RetValExp->getSourceRange();
3186 
3187  // Drop the expression.
3188  RetValExp = nullptr;
3189  } else if (!RetValExp->isTypeDependent()) {
3190  // C99 6.8.6.4p1 (ext_ since GCC warns)
3191  unsigned D = diag::ext_return_has_expr;
3192  if (RetValExp->getType()->isVoidType()) {
3193  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3194  if (isa<CXXConstructorDecl>(CurDecl) ||
3195  isa<CXXDestructorDecl>(CurDecl))
3196  D = diag::err_ctor_dtor_returns_void;
3197  else
3198  D = diag::ext_return_has_void_expr;
3199  }
3200  else {
3201  ExprResult Result = RetValExp;
3202  Result = IgnoredValueConversions(Result.get());
3203  if (Result.isInvalid())
3204  return StmtError();
3205  RetValExp = Result.get();
3206  RetValExp = ImpCastExprToType(RetValExp,
3207  Context.VoidTy, CK_ToVoid).get();
3208  }
3209  // return of void in constructor/destructor is illegal in C++.
3210  if (D == diag::err_ctor_dtor_returns_void) {
3211  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3212  Diag(ReturnLoc, D)
3213  << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3214  << RetValExp->getSourceRange();
3215  }
3216  // return (some void expression); is legal in C++.
3217  else if (D != diag::ext_return_has_void_expr ||
3218  !getLangOpts().CPlusPlus) {
3219  NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3220 
3221  int FunctionKind = 0;
3222  if (isa<ObjCMethodDecl>(CurDecl))
3223  FunctionKind = 1;
3224  else if (isa<CXXConstructorDecl>(CurDecl))
3225  FunctionKind = 2;
3226  else if (isa<CXXDestructorDecl>(CurDecl))
3227  FunctionKind = 3;
3228 
3229  Diag(ReturnLoc, D)
3230  << CurDecl->getDeclName() << FunctionKind
3231  << RetValExp->getSourceRange();
3232  }
3233  }
3234 
3235  if (RetValExp) {
3236  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3237  if (ER.isInvalid())
3238  return StmtError();
3239  RetValExp = ER.get();
3240  }
3241  }
3242 
3243  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3244  } else if (!RetValExp && !HasDependentReturnType) {
3245  FunctionDecl *FD = getCurFunctionDecl();
3246 
3247  unsigned DiagID;
3248  if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3249  // C++11 [stmt.return]p2
3250  DiagID = diag::err_constexpr_return_missing_expr;
3251  FD->setInvalidDecl();
3252  } else if (getLangOpts().C99) {
3253  // C99 6.8.6.4p1 (ext_ since GCC warns)
3254  DiagID = diag::ext_return_missing_expr;
3255  } else {
3256  // C90 6.6.6.4p4
3257  DiagID = diag::warn_return_missing_expr;
3258  }
3259 
3260  if (FD)
3261  Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3262  else
3263  Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3264 
3265  Result = new (Context) ReturnStmt(ReturnLoc);
3266  } else {
3267  assert(RetValExp || HasDependentReturnType);
3268  const VarDecl *NRVOCandidate = nullptr;
3269 
3270  QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3271 
3272  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3273  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3274  // function return.
3275 
3276  // In C++ the return statement is handled via a copy initialization,
3277  // the C version of which boils down to CheckSingleAssignmentConstraints.
3278  if (RetValExp)
3279  NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3280  if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3281  // we have a non-void function with an expression, continue checking
3283  RetType,
3284  NRVOCandidate != nullptr);
3285  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3286  RetType, RetValExp);
3287  if (Res.isInvalid()) {
3288  // FIXME: Clean up temporaries here anyway?
3289  return StmtError();
3290  }
3291  RetValExp = Res.getAs<Expr>();
3292 
3293  // If we have a related result type, we need to implicitly
3294  // convert back to the formal result type. We can't pretend to
3295  // initialize the result again --- we might end double-retaining
3296  // --- so instead we initialize a notional temporary.
3297  if (!RelatedRetType.isNull()) {
3298  Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3299  FnRetType);
3300  Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3301  if (Res.isInvalid()) {
3302  // FIXME: Clean up temporaries here anyway?
3303  return StmtError();
3304  }
3305  RetValExp = Res.getAs<Expr>();
3306  }
3307 
3308  CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3309  getCurFunctionDecl());
3310  }
3311 
3312  if (RetValExp) {
3313  ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3314  if (ER.isInvalid())
3315  return StmtError();
3316  RetValExp = ER.get();
3317  }
3318  Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3319  }
3320 
3321  // If we need to check for the named return value optimization, save the
3322  // return statement in our scope for later processing.
3323  if (Result->getNRVOCandidate())
3324  FunctionScopes.back()->Returns.push_back(Result);
3325 
3326  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3327  FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3328 
3329  return Result;
3330 }
3331 
3332 StmtResult
3334  SourceLocation RParen, Decl *Parm,
3335  Stmt *Body) {
3336  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3337  if (Var && Var->isInvalidDecl())
3338  return StmtError();
3339 
3340  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3341 }
3342 
3343 StmtResult
3345  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3346 }
3347 
3348 StmtResult
3350  MultiStmtArg CatchStmts, Stmt *Finally) {
3351  if (!getLangOpts().ObjCExceptions)
3352  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3353 
3354  getCurFunction()->setHasBranchProtectedScope();
3355  unsigned NumCatchStmts = CatchStmts.size();
3356  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3357  NumCatchStmts, Finally);
3358 }
3359 
3361  if (Throw) {
3362  ExprResult Result = DefaultLvalueConversion(Throw);
3363  if (Result.isInvalid())
3364  return StmtError();
3365 
3366  Result = ActOnFinishFullExpr(Result.get());
3367  if (Result.isInvalid())
3368  return StmtError();
3369  Throw = Result.get();
3370 
3371  QualType ThrowType = Throw->getType();
3372  // Make sure the expression type is an ObjC pointer or "void *".
3373  if (!ThrowType->isDependentType() &&
3374  !ThrowType->isObjCObjectPointerType()) {
3375  const PointerType *PT = ThrowType->getAs<PointerType>();
3376  if (!PT || !PT->getPointeeType()->isVoidType())
3377  return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3378  << Throw->getType() << Throw->getSourceRange());
3379  }
3380  }
3381 
3382  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3383 }
3384 
3385 StmtResult
3387  Scope *CurScope) {
3388  if (!getLangOpts().ObjCExceptions)
3389  Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3390 
3391  if (!Throw) {
3392  // @throw without an expression designates a rethrow (which must occur
3393  // in the context of an @catch clause).
3394  Scope *AtCatchParent = CurScope;
3395  while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3396  AtCatchParent = AtCatchParent->getParent();
3397  if (!AtCatchParent)
3398  return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3399  }
3400  return BuildObjCAtThrowStmt(AtLoc, Throw);
3401 }
3402 
3403 ExprResult
3405  ExprResult result = DefaultLvalueConversion(operand);
3406  if (result.isInvalid())
3407  return ExprError();
3408  operand = result.get();
3409 
3410  // Make sure the expression type is an ObjC pointer or "void *".
3411  QualType type = operand->getType();
3412  if (!type->isDependentType() &&
3413  !type->isObjCObjectPointerType()) {
3414  const PointerType *pointerType = type->getAs<PointerType>();
3415  if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3416  if (getLangOpts().CPlusPlus) {
3417  if (RequireCompleteType(atLoc, type,
3418  diag::err_incomplete_receiver_type))
3419  return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3420  << type << operand->getSourceRange();
3421 
3422  ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3423  if (!result.isUsable())
3424  return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3425  << type << operand->getSourceRange();
3426 
3427  operand = result.get();
3428  } else {
3429  return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3430  << type << operand->getSourceRange();
3431  }
3432  }
3433  }
3434 
3435  // The operand to @synchronized is a full-expression.
3436  return ActOnFinishFullExpr(operand);
3437 }
3438 
3439 StmtResult
3441  Stmt *SyncBody) {
3442  // We can't jump into or indirect-jump out of a @synchronized block.
3443  getCurFunction()->setHasBranchProtectedScope();
3444  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3445 }
3446 
3447 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3448 /// and creates a proper catch handler from them.
3449 StmtResult
3451  Stmt *HandlerBlock) {
3452  // There's nothing to test that ActOnExceptionDecl didn't already test.
3453  return new (Context)
3454  CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3455 }
3456 
3457 StmtResult
3459  getCurFunction()->setHasBranchProtectedScope();
3460  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3461 }
3462 
3463 namespace {
3464 class CatchHandlerType {
3465  QualType QT;
3466  unsigned IsPointer : 1;
3467 
3468  // This is a special constructor to be used only with DenseMapInfo's
3469  // getEmptyKey() and getTombstoneKey() functions.
3470  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3471  enum Unique { ForDenseMap };
3472  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3473 
3474 public:
3475  /// Used when creating a CatchHandlerType from a handler type; will determine
3476  /// whether the type is a pointer or reference and will strip off the top
3477  /// level pointer and cv-qualifiers.
3478  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3479  if (QT->isPointerType())
3480  IsPointer = true;
3481 
3482  if (IsPointer || QT->isReferenceType())
3483  QT = QT->getPointeeType();
3484  QT = QT.getUnqualifiedType();
3485  }
3486 
3487  /// Used when creating a CatchHandlerType from a base class type; pretends the
3488  /// type passed in had the pointer qualifier, does not need to get an
3489  /// unqualified type.
3490  CatchHandlerType(QualType QT, bool IsPointer)
3491  : QT(QT), IsPointer(IsPointer) {}
3492 
3493  QualType underlying() const { return QT; }
3494  bool isPointer() const { return IsPointer; }
3495 
3496  friend bool operator==(const CatchHandlerType &LHS,
3497  const CatchHandlerType &RHS) {
3498  // If the pointer qualification does not match, we can return early.
3499  if (LHS.IsPointer != RHS.IsPointer)
3500  return false;
3501  // Otherwise, check the underlying type without cv-qualifiers.
3502  return LHS.QT == RHS.QT;
3503  }
3504 };
3505 } // namespace
3506 
3507 namespace llvm {
3508 template <> struct DenseMapInfo<CatchHandlerType> {
3509  static CatchHandlerType getEmptyKey() {
3510  return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3511  CatchHandlerType::ForDenseMap);
3512  }
3513 
3514  static CatchHandlerType getTombstoneKey() {
3515  return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3516  CatchHandlerType::ForDenseMap);
3517  }
3518 
3519  static unsigned getHashValue(const CatchHandlerType &Base) {
3520  return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3521  }
3522 
3523  static bool isEqual(const CatchHandlerType &LHS,
3524  const CatchHandlerType &RHS) {
3525  return LHS == RHS;
3526  }
3527 };
3528 
3529 // It's OK to treat CatchHandlerType as a POD type.
3530 template <> struct isPodLike<CatchHandlerType> {
3531  static const bool value = true;
3532 };
3533 }
3534 
3535 namespace {
3536 class CatchTypePublicBases {
3537  ASTContext &Ctx;
3538  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3539  const bool CheckAgainstPointer;
3540 
3541  CXXCatchStmt *FoundHandler;
3542  CanQualType FoundHandlerType;
3543 
3544 public:
3545  CatchTypePublicBases(
3546  ASTContext &Ctx,
3547  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3548  : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3549  FoundHandler(nullptr) {}
3550 
3551  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3552  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3553 
3554  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3556  CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3557  auto M = TypesToCheck;
3558  auto I = M.find(Check);
3559  if (I != M.end()) {
3560  FoundHandler = I->second;
3561  FoundHandlerType = Ctx.getCanonicalType(S->getType());
3562  return true;
3563  }
3564  }
3565  return false;
3566  }
3567 };
3568 }
3569 
3570 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3571 /// handlers and creates a try statement from them.
3573  ArrayRef<Stmt *> Handlers) {
3574  // Don't report an error if 'try' is used in system headers.
3575  if (!getLangOpts().CXXExceptions &&
3576  !getSourceManager().isInSystemHeader(TryLoc))
3577  Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3578 
3579  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3580  Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3581 
3582  sema::FunctionScopeInfo *FSI = getCurFunction();
3583 
3584  // C++ try is incompatible with SEH __try.
3585  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3586  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3587  Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3588  }
3589 
3590  const unsigned NumHandlers = Handlers.size();
3591  assert(!Handlers.empty() &&
3592  "The parser shouldn't call this if there are no handlers.");
3593 
3594  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3595  for (unsigned i = 0; i < NumHandlers; ++i) {
3596  CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3597 
3598  // Diagnose when the handler is a catch-all handler, but it isn't the last
3599  // handler for the try block. [except.handle]p5. Also, skip exception
3600  // declarations that are invalid, since we can't usefully report on them.
3601  if (!H->getExceptionDecl()) {
3602  if (i < NumHandlers - 1)
3603  return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3604  continue;
3605  } else if (H->getExceptionDecl()->isInvalidDecl())
3606  continue;
3607 
3608  // Walk the type hierarchy to diagnose when this type has already been
3609  // handled (duplication), or cannot be handled (derivation inversion). We
3610  // ignore top-level cv-qualifiers, per [except.handle]p3
3611  CatchHandlerType HandlerCHT =
3613 
3614  // We can ignore whether the type is a reference or a pointer; we need the
3615  // underlying declaration type in order to get at the underlying record
3616  // decl, if there is one.
3617  QualType Underlying = HandlerCHT.underlying();
3618  if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3619  if (!RD->hasDefinition())
3620  continue;
3621  // Check that none of the public, unambiguous base classes are in the
3622  // map ([except.handle]p1). Give the base classes the same pointer
3623  // qualification as the original type we are basing off of. This allows
3624  // comparison against the handler type using the same top-level pointer
3625  // as the original type.
3626  CXXBasePaths Paths;
3627  Paths.setOrigin(RD);
3628  CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3629  if (RD->lookupInBases(CTPB, Paths)) {
3630  const CXXCatchStmt *Problem = CTPB.getFoundHandler();
3631  if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
3633  diag::warn_exception_caught_by_earlier_handler)
3634  << H->getCaughtType();
3636  diag::note_previous_exception_handler)
3637  << Problem->getCaughtType();
3638  }
3639  }
3640  }
3641 
3642  // Add the type the list of ones we have handled; diagnose if we've already
3643  // handled it.
3644  auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
3645  if (!R.second) {
3646  const CXXCatchStmt *Problem = R.first->second;
3648  diag::warn_exception_caught_by_earlier_handler)
3649  << H->getCaughtType();
3651  diag::note_previous_exception_handler)
3652  << Problem->getCaughtType();
3653  }
3654  }
3655 
3656  FSI->setHasCXXTry(TryLoc);
3657 
3658  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3659 }
3660 
3662  Stmt *TryBlock, Stmt *Handler) {
3663  assert(TryBlock && Handler);
3664 
3665  sema::FunctionScopeInfo *FSI = getCurFunction();
3666 
3667  // SEH __try is incompatible with C++ try. Borland appears to support this,
3668  // however.
3669  if (!getLangOpts().Borland) {
3670  if (FSI->FirstCXXTryLoc.isValid()) {
3671  Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3672  Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
3673  }
3674  }
3675 
3676  FSI->setHasSEHTry(TryLoc);
3677 
3678  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
3679  // track if they use SEH.
3680  DeclContext *DC = CurContext;
3681  while (DC && !DC->isFunctionOrMethod())
3682  DC = DC->getParent();
3683  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
3684  if (FD)
3685  FD->setUsesSEHTry(true);
3686  else
3687  Diag(TryLoc, diag::err_seh_try_outside_functions);
3688 
3689  // Reject __try on unsupported targets.
3691  Diag(TryLoc, diag::err_seh_try_unsupported);
3692 
3693  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
3694 }
3695 
3696 StmtResult
3698  Expr *FilterExpr,
3699  Stmt *Block) {
3700  assert(FilterExpr && Block);
3701 
3702  if(!FilterExpr->getType()->isIntegerType()) {
3703  return StmtError(Diag(FilterExpr->getExprLoc(),
3704  diag::err_filter_expression_integral)
3705  << FilterExpr->getType());
3706  }
3707 
3708  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3709 }
3710 
3712  CurrentSEHFinally.push_back(CurScope);
3713 }
3714 
3716  CurrentSEHFinally.pop_back();
3717 }
3718 
3720  assert(Block);
3721  CurrentSEHFinally.pop_back();
3722  return SEHFinallyStmt::Create(Context, Loc, Block);
3723 }
3724 
3725 StmtResult
3727  Scope *SEHTryParent = CurScope;
3728  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3729  SEHTryParent = SEHTryParent->getParent();
3730  if (!SEHTryParent)
3731  return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3732  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
3733 
3734  return new (Context) SEHLeaveStmt(Loc);
3735 }
3736 
3738  bool IsIfExists,
3739  NestedNameSpecifierLoc QualifierLoc,
3740  DeclarationNameInfo NameInfo,
3741  Stmt *Nested)
3742 {
3743  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3744  QualifierLoc, NameInfo,
3745  cast<CompoundStmt>(Nested));
3746 }
3747 
3748 
3750  bool IsIfExists,
3751  CXXScopeSpec &SS,
3752  UnqualifiedId &Name,
3753  Stmt *Nested) {
3754  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3756  GetNameFromUnqualifiedId(Name),
3757  Nested);
3758 }
3759 
3760 RecordDecl*
3762  unsigned NumParams) {
3763  DeclContext *DC = CurContext;
3764  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3765  DC = DC->getParent();
3766 
3767  RecordDecl *RD = nullptr;
3768  if (getLangOpts().CPlusPlus)
3769  RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3770  /*Id=*/nullptr);
3771  else
3772  RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3773 
3774  RD->setCapturedRecord();
3775  DC->addDecl(RD);
3776  RD->setImplicit();
3777  RD->startDefinition();
3778 
3779  assert(NumParams > 0 && "CapturedStmt requires context parameter");
3780  CD = CapturedDecl::Create(Context, CurContext, NumParams);
3781  DC->addDecl(CD);
3782  return RD;
3783 }
3784 
3787  SmallVectorImpl<Expr *> &CaptureInits,
3789 
3791  for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3792 
3793  if (Cap->isThisCapture()) {
3794  Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3796  CaptureInits.push_back(Cap->getInitExpr());
3797  continue;
3798  } else if (Cap->isVLATypeCapture()) {
3799  Captures.push_back(
3800  CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
3801  CaptureInits.push_back(nullptr);
3802  continue;
3803  }
3804 
3805  Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3806  Cap->isReferenceCapture()
3809  Cap->getVariable()));
3810  CaptureInits.push_back(Cap->getInitExpr());
3811  }
3812 }
3813 
3816  unsigned NumParams) {
3817  CapturedDecl *CD = nullptr;
3818  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3819 
3820  // Build the context parameter
3822  IdentifierInfo *ParamName = &Context.Idents.get("__context");
3824  ImplicitParamDecl *Param
3825  = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3826  DC->addDecl(Param);
3827 
3828  CD->setContextParam(0, Param);
3829 
3830  // Enter the capturing scope for this captured region.
3831  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3832 
3833  if (CurScope)
3834  PushDeclContext(CurScope, CD);
3835  else
3836  CurContext = CD;
3837 
3838  PushExpressionEvaluationContext(PotentiallyEvaluated);
3839 }
3840 
3844  CapturedDecl *CD = nullptr;
3845  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3846 
3847  // Build the context parameter
3849  bool ContextIsFound = false;
3850  unsigned ParamNum = 0;
3851  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3852  E = Params.end();
3853  I != E; ++I, ++ParamNum) {
3854  if (I->second.isNull()) {
3855  assert(!ContextIsFound &&
3856  "null type has been found already for '__context' parameter");
3857  IdentifierInfo *ParamName = &Context.Idents.get("__context");
3859  ImplicitParamDecl *Param
3860  = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3861  DC->addDecl(Param);
3862  CD->setContextParam(ParamNum, Param);
3863  ContextIsFound = true;
3864  } else {
3865  IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3866  ImplicitParamDecl *Param
3867  = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3868  DC->addDecl(Param);
3869  CD->setParam(ParamNum, Param);
3870  }
3871  }
3872  assert(ContextIsFound && "no null type for '__context' parameter");
3873  if (!ContextIsFound) {
3874  // Add __context implicitly if it is not specified.
3875  IdentifierInfo *ParamName = &Context.Idents.get("__context");
3877  ImplicitParamDecl *Param =
3878  ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3879  DC->addDecl(Param);
3880  CD->setContextParam(ParamNum, Param);
3881  }
3882  // Enter the capturing scope for this captured region.
3883  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3884 
3885  if (CurScope)
3886  PushDeclContext(CurScope, CD);
3887  else
3888  CurContext = CD;
3889 
3890  PushExpressionEvaluationContext(PotentiallyEvaluated);
3891 }
3892 
3894  DiscardCleanupsInEvaluationContext();
3895  PopExpressionEvaluationContext();
3896 
3897  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3898  RecordDecl *Record = RSI->TheRecordDecl;
3899  Record->setInvalidDecl();
3900 
3901  SmallVector<Decl*, 4> Fields(Record->fields());
3902  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3903  SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3904 
3905  PopDeclContext();
3906  PopFunctionScopeInfo();
3907 }
3908 
3910  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3911 
3913  SmallVector<Expr *, 4> CaptureInits;
3914  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3915 
3916  CapturedDecl *CD = RSI->TheCapturedDecl;
3917  RecordDecl *RD = RSI->TheRecordDecl;
3918 
3919  CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3920  RSI->CapRegionKind, Captures,
3921  CaptureInits, CD, RD);
3922 
3923  CD->setBody(Res->getCapturedStmt());
3924  RD->completeDefinition();
3925 
3926  DiscardCleanupsInEvaluationContext();
3927  PopExpressionEvaluationContext();
3928 
3929  PopDeclContext();
3930  PopFunctionScopeInfo();
3931 
3932  return Res;
3933 }
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:207
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:54
bool qual_empty() const
Definition: Type.h:4670
Defines the clang::ASTContext interface.
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:652
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:64
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *BeginEndDecl, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind)
BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
Definition: SemaStmt.cpp:2145
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5108
CastKind getCastKind() const
Definition: Expr.h:2658
void setImplicit(bool I=true)
Definition: DeclBase.h:515
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1483
Stmt * body_back()
Definition: Stmt.h:573
CK_LValueToRValue - A conversion which causes the extraction of an r-value from the operand gl-value...
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:193
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
Definition: ASTMatchers.h:1192
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
void setOrigin(CXXRecordDecl *Rec)
Smart pointer class that efficiently represents Objective-C method names.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2147
EvaluatedExprVisitor - This class visits 'Expr *'s.
CanQualType VoidPtrTy
Definition: ASTContext.h:895
A (possibly-)qualified type.
Definition: Type.h:575
bool isInvalid() const
Definition: Ownership.h:159
bool isNull() const
Definition: DeclGroup.h:82
bool isMacroID() const
Instantiation or recovery rebuild of a for-range statement.
Definition: Sema.h:3356
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned)
Definition: SemaStmt.cpp:669
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams)
Definition: SemaStmt.cpp:3814
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:252
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock)
ActOnCXXCatchBlock - Takes an exception declaration and a handler block and creates a proper catch ha...
Definition: SemaStmt.cpp:3450
bool operator==(CanQual< T > x, CanQual< U > y)
static unsigned getHashValue(const CatchHandlerType &Base)
Definition: SemaStmt.cpp:3519
bool hasUnusedResultAttr() const
Returns true if this function or its return type has the warn_unused_result attribute.
Definition: Decl.cpp:2932
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:164
const LangOptions & getLangOpts() const
Definition: Sema.h:1041
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:220
SmallVectorImpl< Step >::const_iterator step_iterator
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:2847
IfStmt - This represents an if/then/else.
Definition: Stmt.h:869
unsigned getIntWidth(QualType T) const
QualType ReturnType
ReturnType - The target type of return statements in this context, or null if unknown.
Definition: ScopeInfo.h:511
StmtResult ActOnExprStmt(ExprResult Arg)
Definition: SemaStmt.cpp:43
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:215
Expr * GetTemporaryExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue...
Definition: ExprCXX.h:3905
void setParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:3605
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc)
Definition: SemaStmt.cpp:1750
ActionResult< Expr * > ExprResult
Definition: Ownership.h:252
Expr * get() const
Definition: Sema.h:3233
SmallVector< Scope *, 2 > CurrentSEHFinally
Stack of active SEH __finally scopes. Can be empty.
Definition: Sema.h:356
std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)
Produces a formatted string that describes the binding of template parameters to template arguments...
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const
Definition: SemaStmt.cpp:2997
bool isRecordType() const
Definition: Type.h:5362
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef< Stmt * > Elts, bool isStmtExpr)
Definition: SemaStmt.cpp:331
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1118
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:77
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition: Decl.cpp:2661
void setType(QualType t)
Definition: Expr.h:126
AssignConvertType
AssignConvertType - All of the 'assignment' semantic checks return this enum to indicate whether the ...
Definition: Sema.h:8316
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1589
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:3918
Represents an attribute applied to a statement.
Definition: Stmt.h:818
bool isEnumeralType() const
Definition: Type.h:5365
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1605
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, bool AllowFunctionParameters)
Definition: SemaStmt.cpp:2693
PtrTy get() const
Definition: Ownership.h:163
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type...
static CapturedStmt * Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef< Capture > Captures, ArrayRef< Expr * > CaptureInits, CapturedDecl *CD, RecordDecl *RD)
Definition: Stmt.cpp:1028
The base class of the type hierarchy.
Definition: Type.h:1249
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:313
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:884
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2424
ForRangeStatus
Definition: Sema.h:2535
const Expr * getInit() const
Definition: Decl.h:1070
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:4861
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1149
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body)
Definition: SemaStmt.cpp:3333
virtual void completeDefinition()
completeDefinition - Notes that the definition of this type is now complete.
Definition: Decl.cpp:3755
bool isDecltypeAuto() const
Definition: Type.h:3933
A container of type source information.
Definition: Decl.h:61
Wrapper for void* pointer.
Definition: Ownership.h:45
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2629
bool isBlockPointerType() const
Definition: Type.h:5311
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:230
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
bool isInSystemMacro(SourceLocation loc)
Returns whether Loc is expanded from a macro in a system header.
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2134
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:3864
Determining whether a for-range statement could be built.
Definition: Sema.h:3359
Retains information about a function, method, or block that is currently being parsed.
Definition: ScopeInfo.h:80
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen)
Definition: SemaStmt.cpp:1252
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:699
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
CK_IntegralCast - A cast between integral types (other than to boolean).
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally)
Definition: SemaStmt.cpp:3349
DiagnosticsEngine & Diags
Definition: Sema.h:297
ObjCLifetime getObjCLifetime() const
Definition: Type.h:290
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl)
Definition: SemaStmt.cpp:81
SourceLocation getLocStart() const LLVM_READONLY
Definition: StmtCXX.h:44
static bool ObjCEnumerationCollection(Expr *Collection)
Definition: SemaStmt.cpp:1917
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:822
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:113
static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, BeginEndFunction *BEF)
Create the initialization, compare, and increment steps for the range-based for loop expression...
Definition: SemaStmt.cpp:2008
static InitializedEntity InitializeResult(SourceLocation ReturnLoc, QualType Type, bool NRVO)
Create the initialization entity for the result of a function.
Defines the Objective-C statement AST node classes.
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body)
FinishObjCForCollectionStmt - Attach the body to a objective-C foreach statement. ...
Definition: SemaStmt.cpp:2404
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input)
Definition: SemaExpr.cpp:11171
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2847
bool body_empty() const
Definition: Stmt.h:563
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1299
Defines the clang::Expr interface and subclasses for C++ expressions.
SourceLocation getDefaultLoc() const
Definition: Stmt.h:752
SourceLocation getLocation() const
Definition: Expr.h:1015
CapturedDecl * TheCapturedDecl
The CapturedDecl for this statement.
Definition: ScopeInfo.h:599
bool isVoidType() const
Definition: Type.h:5546
QualType withConst() const
Retrieves a version of this type with const applied.
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, unsigned UnpromotedWidth, bool UnpromotedSign)
Check the specified case value is in range for the given unpromoted switch type.
Definition: SemaStmt.cpp:676
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:40
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:777
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:2755
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse)
Perform marking for a reference to an arbitrary declaration.
Definition: SemaExpr.cpp:13679
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3166
One of these records is kept for each identifier that is lexed.
const internal::VariadicDynCastAllOfMatcher< Stmt, CaseStmt > caseStmt
Matches case statements inside switch statements.
Definition: ASTMatchers.h:1388
Step
Definition: OpenMPClause.h:311
void DiagnoseUnusedExprResult(const Stmt *S)
DiagnoseUnusedExprResult - If the statement passed in is an expression whose result is unused...
Definition: SemaStmt.cpp:185
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4381
bool hasAttr() const
Definition: DeclBase.h:498
Represents a class type in Objective C.
Definition: Type.h:4557
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:3708
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc)
Speculatively attempt to dereference an invalid range expression.
Definition: SemaStmt.cpp:2092
VarDecl * getCopyElisionCandidate(QualType ReturnType, Expr *E, bool AllowFunctionParameters)
Determine whether the given expression is a candidate for copy elision in either a return statement o...
Definition: SemaStmt.cpp:2673
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3184
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:91
A C++ nested-name-specifier augmented with source location information.
bool isReferenceType() const
Definition: Type.h:5314
QualType getReturnType() const
Definition: Decl.h:1956
static bool CmpCaseVals(const std::pair< llvm::APSInt, CaseStmt * > &lhs, const std::pair< llvm::APSInt, CaseStmt * > &rhs)
CmpCaseVals - Comparison predicate for sorting case values.
Definition: SemaStmt.cpp:542
void setLocStart(SourceLocation L)
Definition: Decl.h:384
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection)
Definition: SemaStmt.cpp:1675
bool isSEHTryScope() const
Determine whether this scope is a SEH '__try' block.
Definition: Scope.h:424
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, FullExprArg Second, Decl *SecondVar, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body)
Definition: SemaStmt.cpp:1607
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
Definition: ASTMatchers.h:259
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3538
bool Contains(const Scope &rhs) const
Returns if rhs has a higher scope depth than this.
Definition: Scope.h:433
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3602
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:1962
void setNoNRVO()
Definition: Scope.h:462
Expr * getSubExpr()
Definition: Expr.h:2662
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1191
void setSubStmt(Stmt *S)
Definition: Stmt.h:714
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:1987
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:240
IdentifierTable & Idents
Definition: ASTContext.h:451
SourceLocation FirstSEHTryLoc
First SEH '__try' statement in the current function.
Definition: ScopeInfo.h:134
void ActOnAbortSEHFinallyBlock()
Definition: SemaStmt.cpp:3715
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:102
Expr * getLHS() const
Definition: Expr.h:2921
Represents Objective-C's @catch statement.
Definition: StmtObjC.h:74
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested)
Definition: SemaStmt.cpp:3737
void setBody(Stmt *S)
Definition: Stmt.h:979
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:1371
A location where the result (returned value) of evaluating a statement should be stored.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:170
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1236
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef< Stmt * > Handlers)
ActOnCXXTryBlock - Takes a try compound-statement and a number of handlers and creates a try statemen...
Definition: SemaStmt.cpp:3572
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:874
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2351
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt)
CheckConvertedConstantExpression - Check that the expression From is a converted constant expression ...
ForStmt - This represents a 'for (init;cond;inc)' stmt.
Definition: Stmt.h:1131
Represents the results of name lookup.
Definition: Sema/Lookup.h:30
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:580
Decl * getSingleDecl()
Definition: DeclGroup.h:86
This is a scope that corresponds to a switch statement.
Definition: Scope.h:96
SmallVector< CharSourceRange, 8 > Ranges
Definition: Format.cpp:1715
void ActOnStartSEHFinallyBlock()
Definition: SemaStmt.cpp:3711
QualType getReturnType() const
Definition: Type.h:2977
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:1801
An x-value expression is a reference to an object with independent storage but which can be "moved"...
Definition: Specifiers.h:111
field_range fields() const
Definition: Decl.h:3295
RecordDecl * CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams)
Definition: SemaStmt.cpp:3761
bool isMacroBodyExpansion(SourceLocation Loc) const
Tests whether the given source location represents the expansion of a macro body. ...
StmtResult StmtError()
Definition: Ownership.h:268
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2875
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:146
RecordDecl * getDecl() const
Definition: Type.h:3553
static CXXTryStmt * Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef< Stmt * > handlers)
Definition: StmtCXX.cpp:26
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:4800
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope)
Definition: SemaStmt.cpp:2641
CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for statement, represented as 'for (ra...
Definition: StmtCXX.h:128
SmallVector< std::pair< llvm::APSInt, EnumConstantDecl * >, 64 > EnumValsTy
Definition: SemaStmt.cpp:694
bool isOverloadedOperator() const
isOverloadedOperator - Whether this function declaration represents an C++ overloaded operator...
Definition: Decl.h:2009
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl)
Definition: SemaStmt.cpp:2585
LabelStmt * getStmt() const
Definition: Decl.h:380
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2464
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:38
void setLHS(Expr *Val)
Definition: Stmt.h:715
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2610
bool isOpenMPLoopScope() const
Determine whether this scope is a loop having OpenMP loop directive attached.
Definition: Scope.h:415
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:1886
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1106
Preprocessor & PP
Definition: Sema.h:294
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1800
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition: Expr.cpp:720
static CatchHandlerType getTombstoneKey()
Definition: SemaStmt.cpp:3514
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block)
Definition: SemaStmt.cpp:3719
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope)
Definition: SemaStmt.cpp:3726
Perform initialization via a constructor.
A class that does preorder depth-first traversal on the entire Clang AST and visits each node...
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr)
Build a call to 'begin' or 'end' for a C++11 for-range statement.
This represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:3560
Represents an ObjC class declaration.
Definition: DeclObjC.h:853
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:2644
detail::InMemoryDirectory::const_iterator I
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope)
Definition: SemaStmt.cpp:3386
QualType getType() const
Definition: Decl.h:530
void setStmt(LabelStmt *T)
Definition: Decl.h:381
T castAs() const
Convert to the specified TypeLoc type, asserting that this TypeLoc is of the desired type...
Definition: TypeLoc.h:53
static SEHTryStmt * Create(const ASTContext &C, bool isCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: Stmt.cpp:907
ObjCMethodDecl * lookupPrivateMethod(const Selector &Sel, bool Instance=true) const
Lookup a method in the classes implementation hierarchy.
Definition: DeclObjC.cpp:683
Contains information about the compound statement currently being parsed.
Definition: ScopeInfo.h:53
SourceLocation FirstCXXTryLoc
First C++ 'try' statement in the current function.
Definition: ScopeInfo.h:131
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:5692
QualType getAutoRRefDeductType() const
C++11 deduction pattern for 'auto &&' type.
EnumDecl * getDecl() const
Definition: Type.h:3576
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:6820
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType)
Change the result type of a function type once it is deduced.
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind)
ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
Definition: SemaStmt.cpp:1940
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3148
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:259
Expr * getFalseExpr() const
Definition: Expr.h:3191
A little helper class used to produce diagnostics.
Definition: Diagnostic.h:866
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:71
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:539
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3041
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit, bool TypeMayContainAuto)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:9194
Describes the capture of either a variable, or 'this', or variable-length array type.
Definition: Stmt.h:1997
Retains information about a captured region.
Definition: ScopeInfo.h:596
bool inferObjCARCLifetime(ValueDecl *decl)
Definition: SemaDecl.cpp:5352
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1759
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
Definition: SemaStmt.cpp:3116
StmtResult ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal)
Definition: SemaStmt.cpp:492
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1643
ASTContext * Context
void ActOnFinishOfCompoundStmt()
Definition: SemaStmt.cpp:323
Expr * getCond() const
Definition: Expr.h:3182
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef< const Attr * > Attrs, Stmt *SubStmt)
Definition: SemaStmt.cpp:483
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3344
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1716
Allows QualTypes to be sorted and hence used in maps and sets.
Retains information about a block that is currently being parsed.
Definition: ScopeInfo.h:569
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:643
Type source information for an attributed type.
Definition: TypeLoc.h:724
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
bool isAtCatchScope() const
isAtCatchScope - Return true if this scope is @catch.
Definition: Scope.h:373
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:112
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:5615
Expr - This represents one expression.
Definition: Expr.h:104
CanQualType getCanonicalFunctionResultType(QualType ResultType) const
Adjust the given function result type.
Allow any unmodeled side effect.
Definition: Expr.h:588
static void buildCapturedStmtCaptureList(SmallVectorImpl< CapturedStmt::Capture > &Captures, SmallVectorImpl< Expr * > &CaptureInits, ArrayRef< CapturingScopeInfo::Capture > Candidates)
Definition: SemaStmt.cpp:3785
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope)
Definition: SemaStmt.cpp:445
SourceManager & SourceMgr
Definition: Format.cpp:1352
void setInit(Expr *I)
Definition: Decl.cpp:2087
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:111
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, const VarDecl *VD)
Definition: SemaStmt.cpp:2490
void setContextParam(unsigned i, ImplicitParamDecl *P)
Definition: Decl.h:3615
Defines the clang::Preprocessor interface.
ObjCMethodDecl * lookupInstanceMethod(Selector Sel) const
Lookup an instance method for a given selector.
Definition: DeclObjC.h:1510
Kind getKind() const
Definition: DeclBase.h:387
bool isGnuLocal() const
Definition: Decl.h:383
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:1927
Expr * getRHS()
Definition: Stmt.h:703
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:262
void removeLocalConst()
Definition: Type.h:5183
bool isMSAsmLabel() const
Definition: Decl.h:390
Defines the clang::TypeLoc interface and its subclasses.
static DeclContext * castToDeclContext(const CapturedDecl *D)
Definition: Decl.h:3636
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond, Decl *CondVar)
Definition: SemaStmt.cpp:583
const SwitchCase * getSwitchCaseList() const
Definition: Stmt.h:974
QualType getType() const
Get the type for which this source info wrapper provides information.
Definition: TypeLoc.h:107
Expr * getSubExpr() const
Definition: Expr.h:1681
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1751
bool isExceptionVariable() const
Determine whether this variable is the exception variable in a C++ catch statememt or an Objective-C ...
Definition: Decl.h:1140
bool isFunctionOrMethod() const
Definition: DeclBase.h:1249
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:3994
static bool isEqual(const CatchHandlerType &LHS, const CatchHandlerType &RHS)
Definition: SemaStmt.cpp:3523
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1200
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1593
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1344
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:66
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1654
void setLocation(SourceLocation L)
Definition: DeclBase.h:385
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:190
static AttributedStmt * Create(const ASTContext &C, SourceLocation Loc, ArrayRef< const Attr * > Attrs, Stmt *SubStmt)
Definition: Stmt.cpp:313
void setHasCXXTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:344
ValueDecl * getDecl()
Definition: Expr.h:1007
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2392
The result type of a method or function.
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:2812
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:602
Expr * getTrueExpr() const
Definition: Expr.h:3186
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1409
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:1794
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
static CXXRecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl=nullptr, bool DelayTypeCreation=false)
Definition: DeclCXX.cpp:95
static SEHFinallyStmt * Create(const ASTContext &C, SourceLocation FinallyLoc, Stmt *Block)
Definition: Stmt.cpp:943
DoStmt - This represents a 'do/while' stmt.
Definition: Stmt.h:1080
AttrVec & getAttrs()
Definition: DeclBase.h:443
void setBody(Stmt *S)
Definition: StmtCXX.h:186
BuildForRangeKind
Definition: Sema.h:3351
static CatchHandlerType getEmptyKey()
Definition: SemaStmt.cpp:3509
bool getNoReturnAttr() const
Determine whether this function type includes the GNU noreturn attribute.
Definition: Type.h:2984
void ActOnStartOfCompoundStmt()
Definition: SemaStmt.cpp:319
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:215
static QualType GetTypeBeforeIntegralPromotion(Expr *&expr)
GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of potentially integral-promoted expr...
Definition: SemaStmt.cpp:572
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:840
#define false
Definition: stdbool.h:33
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
The "struct" keyword.
Definition: Type.h:4176
SelectorTable & Selectors
Definition: ASTContext.h:452
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:144
Kind
This captures a statement into a function.
Definition: Stmt.h:1984
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:5596
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:145
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4692
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt)
ActOnCaseStmtBody - This installs a statement as the body of a case.
Definition: SemaStmt.cpp:437
void setHasSEHTry(SourceLocation TryLoc)
Definition: ScopeInfo.h:349
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const
IsValueInFlagEnum - Determine if a value is allowed as part of a flag enum.
Definition: SemaDecl.cpp:14334
DeduceAutoResult
Result type of DeduceAutoType.
Definition: Sema.h:6407
Encodes a location in the source.
enumerator_range enumerators() const
Definition: Decl.h:3026
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3570
const TemplateArgument * iterator
Definition: Type.h:4070
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:892
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr)
DiagnoseAssignmentEnum - Warn if assignment to enum is a constant integer not in the range of enum va...
Definition: SemaStmt.cpp:1171
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:10142
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope)
Definition: SemaStmt.cpp:3097
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isSingleDecl() const
isSingleDecl - This method returns true if this DeclStmt refers to a single Decl. ...
Definition: Stmt.h:445
Expr * getLHS()
Definition: Stmt.h:702
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt)
Definition: SemaStmt.cpp:460
bool isSEHTrySupported() const
Whether the target supports SEH __try.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const
Retrieve a nested-name-specifier with location information, copied into the given AST context...
Definition: DeclSpec.cpp:143
StmtResult ActOnForEachLValueExpr(Expr *E)
In an Objective C collection iteration statement: for (x in y) x can be an arbitrary l-value expressi...
Definition: SemaStmt.cpp:1661
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:124
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
bool refersToEnclosingVariableOrCapture() const
Does this DeclRefExpr refer to an enclosing local or a captured variable?
Definition: Expr.h:1127
bool isLocalVarDecl() const
isLocalVarDecl - Returns true for local variable declarations other than parameters.
Definition: Decl.h:955
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:431
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:690
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:355
const Expr * getCond() const
Definition: Stmt.h:972
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
QualType withConst() const
Definition: Type.h:741
StmtResult ActOnCapturedRegionEnd(Stmt *S)
Definition: SemaStmt.cpp:3909
void setAllEnumCasesCovered()
Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a switch over an enum value then ...
Definition: Stmt.h:1001
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT)
Deduce the return type for a function from a returned expression, per C++1y [dcl.spec.auto]p6.
Definition: SemaStmt.cpp:3006
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw)
Definition: SemaStmt.cpp:3360
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block)
Definition: SemaStmt.cpp:3697
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
static bool CmpEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl * > &lhs, const std::pair< llvm::APSInt, EnumConstantDecl * > &rhs)
CmpEnumVals - Comparison predicate for sorting enumeration values.
Definition: SemaStmt.cpp:556
CanQualType VoidTy
Definition: ASTContext.h:881
Describes the kind of initialization being performed, along with location information for tokens rela...
SourceLocation getContinueLoc() const
Definition: Stmt.h:1288
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:503
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body)
Definition: SemaStmt.cpp:729
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2712
Stmt * getCapturedStmt()
Retrieve the statement being captured.
Definition: Stmt.h:2084
Requests that all candidates be shown.
Definition: Overload.h:50
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5706
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:164
bool isFileContext() const
Definition: DeclBase.h:1265
PtrTy get() const
Definition: Ownership.h:74
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1840
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5159
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13...
Definition: Overload.h:700
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody)
Definition: SemaStmt.cpp:3440
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:645
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:69
__SIZE_TYPE__ size_t
Definition: stddef.h:62
Opcode getOpcode() const
Definition: Expr.h:1678
Representation of a Microsoft __if_exists or __if_not_exists statement with a dependent name...
Definition: StmtCXX.h:235
const Decl * getSingleDecl() const
Definition: Stmt.h:449
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, const VarDecl *VD, QualType RangeInitType)
Definition: SemaStmt.cpp:2420
QualType getPointeeType() const
Definition: Type.h:2161
QualType getType() const
Definition: Expr.h:125
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:3742
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3164
NullStmt - This is the null statement ";": C99 6.8.3p3.
Definition: Stmt.h:499
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body)
Definition: SemaStmt.cpp:3458
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1121
AccessSpecifier getAccessSpecifier() const
Returns the access specifier for this base specifier.
Definition: DeclCXX.h:233
CapturedRegionKind CapRegionKind
The kind of captured region.
Definition: ScopeInfo.h:607
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1210
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchers.h:1723
void ActOnCapturedRegionError()
Definition: SemaStmt.cpp:3893
void addNRVOCandidate(VarDecl *VD)
Definition: Scope.h:451
bool isInvalidDecl() const
Definition: DeclBase.h:509
void setARCPseudoStrong(bool ps)
Definition: Decl.h:1183
StmtResult ActOnExprStmtError()
Definition: SemaStmt.cpp:61
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1056
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:104
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp)
Definition: SemaStmt.cpp:2594
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language...
Definition: Expr.h:246
QualType getCaughtType() const
Definition: StmtCXX.cpp:20
static void DiagnoseForRangeVariableCopies(Sema &SemaRef, const CXXForRangeStmt *ForStmt)
DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
Definition: SemaStmt.cpp:2531
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:624
EnumDecl - Represents an enum.
Definition: Decl.h:2930
bool hasAttrs() const
Definition: DeclBase.h:439
detail::InMemoryDirectory::const_iterator E
bool isAmbiguous(CanQualType BaseType)
Determine whether the path from the most-derived type to the given base type is ambiguous (i...
sema::CompoundScopeInfo & getCurCompoundScope() const
Definition: SemaStmt.cpp:327
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:1946
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2551
Represents a __leave statement.
Definition: Stmt.h:1950
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5255
Decl * getCalleeDecl()
Definition: Expr.cpp:1186
Represents a pointer to an Objective C object.
Definition: Type.h:4821
SwitchStmt - This represents a 'switch' stmt.
Definition: Stmt.h:938
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested)
Definition: SemaStmt.cpp:3749
bool empty() const
Return true if no decls were found.
Definition: Sema/Lookup.h:280
RecordDecl * TheRecordDecl
The captured record type.
Definition: ScopeInfo.h:601
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal, SourceLocation DotDotDotLoc, Expr *RHSVal, SourceLocation ColonLoc)
Definition: SemaStmt.cpp:375
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3544
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5675
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T)
Definition: Decl.cpp:3948
Represents Objective-C's collection statement.
Definition: StmtObjC.h:24
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3261
void setRHS(Expr *Val)
Definition: Stmt.h:716
bool isDeduced() const
Definition: Type.h:3948
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
CanQualType DependentTy
Definition: ASTContext.h:896
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, const EnumDecl *ED, const Expr *CaseExpr, EnumValsTy::iterator &EI, EnumValsTy::iterator &EIEnd, const llvm::APSInt &Val)
Returns true if we should emit a diagnostic about this case expression not being a part of the enum u...
Definition: SemaStmt.cpp:698
void setUsesSEHTry(bool UST)
Definition: Decl.h:1799
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:253
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1522
Represents Objective-C's @finally statement.
Definition: StmtObjC.h:120
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:78
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1257
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl...
Represents a base class of a C++ class.
Definition: DeclCXX.h:157
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E)
Diagnose unused comparisons, both builtin and overloaded operators.
Definition: SemaStmt.cpp:127
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:343
bool isUsable() const
Definition: Ownership.h:160
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression which will be evaluated if the condnition evaluates to false;...
Definition: Expr.h:3277
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1202
Expr * getBase() const
Definition: Expr.h:2387
bool isPODType(ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:1961
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO=true)
Perform the initialization of a potentially-movable value, which is the result of return value...
Definition: SemaStmt.cpp:2738
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2297
const Expr * getSubExpr() const
Definition: Expr.h:1621
static InitializedEntity InitializeRelatedResult(ObjCMethodDecl *MD, QualType Type)
Create the initialization entity for a related result.
Describes the sequence of initializations required to initialize a given object or reference with a s...
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5169
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp)
ActOnCapScopeReturnStmt - Utility routine to type-check return statements for capturing scopes...
Definition: SemaStmt.cpp:2818
Represents a C++ struct/union/class.
Definition: DeclCXX.h:285
ContinueStmt - This represents a continue.
Definition: Stmt.h:1280
bool isObjCObjectPointerType() const
Definition: Type.h:5377
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID)
Finish building a variable declaration for a for-range statement.
Definition: SemaStmt.cpp:1831
BinaryConditionalOperator - The GNU extension to the conditional operator which allows the middle ope...
Definition: Expr.h:3218
SourceLocation getBreakLoc() const
Definition: Stmt.h:1318
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:29
VarDecl * getLoopVariable()
Definition: StmtCXX.cpp:78
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1315
void addHiddenDecl(Decl *D)
Add the declaration D to this context without modifying any lookup tables.
Definition: DeclBase.cpp:1231
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult{return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
WhileStmt - This represents a 'while' stmt.
Definition: Stmt.h:1025
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:307
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:115
bool isArrayType() const
Definition: Type.h:5344
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2134
Expr * getRHS() const
Definition: Expr.h:2923
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body)
FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
Definition: SemaStmt.cpp:2567
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g.
Definition: ScopeInfo.h:507
static bool EqEnumVals(const std::pair< llvm::APSInt, EnumConstantDecl * > &lhs, const std::pair< llvm::APSInt, EnumConstantDecl * > &rhs)
EqEnumVals - Comparison preficate for uniqing enumeration values.
Definition: SemaStmt.cpp:564
ExprResult ExprError()
Definition: Ownership.h:267
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand)
Definition: SemaStmt.cpp:3404
bool isRecord() const
Definition: DeclBase.h:1273
CK_NoOp - A conversion which does not affect the type other than (possibly) adding qualifiers...
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:50
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:922
BreakStmt - This represents a break.
Definition: Stmt.h:1306
SourceLocation getStarLoc() const
Definition: TypeLoc.h:1137
SourceManager & SourceMgr
Definition: Sema.h:298
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result)
#define true
Definition: stdbool.h:32
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:106
static bool hasDeducedReturnType(FunctionDecl *FD)
Determine whether the declared return type of the specified function contains 'auto'.
Definition: SemaStmt.cpp:2808
SourceLocation getRParenLoc() const
Definition: StmtCXX.h:191
A trivial tuple used to represent a source range.
SourceLocation getLocation() const
Definition: DeclBase.h:384
ASTContext & Context
Definition: Sema.h:295
NamedDecl - This represents a decl with a name.
Definition: Decl.h:145
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:455
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2575
CanQualType BoolTy
Definition: ASTContext.h:882
SourceLocation getStartLoc() const
Definition: Stmt.h:456
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5148
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:642
Describes an entity that is being initialized.
BeginEndFunction
Definition: SemaStmt.cpp:1872
ExprResult release()
Definition: Sema.h:3229
CK_ToVoid - Cast to void, discarding the computed value.
void setType(QualType newType)
Definition: Decl.h:531
Wrapper for source info for pointers.
Definition: TypeLoc.h:1134
SourceLocation ColonLoc
Location of ':'.
Definition: OpenMPClause.h:266
bool isSingleDecl() const
Definition: DeclGroup.h:83
Represents Objective-C's @autoreleasepool Statement.
Definition: StmtObjC.h:345
static SEHExceptStmt * Create(const ASTContext &C, SourceLocation ExceptLoc, Expr *FilterExpr, Stmt *Block)
Definition: Stmt.cpp:931
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2480
Declaration of a template function.
Definition: DeclTemplate.h:830
static ObjCAtTryStmt * Create(const ASTContext &Context, SourceLocation atTryLoc, Stmt *atTryStmt, Stmt **CatchStmts, unsigned NumCatchStmts, Stmt *atFinallyStmt)
Definition: StmtObjC.cpp:46
void setBody(Stmt *B)
Definition: Decl.cpp:4007
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:5568
bool hasLocalStorage() const
hasLocalStorage - Returns true if a variable with function scope is a non-static local variable...
Definition: Decl.h:891
StmtResult ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler)
Definition: SemaStmt.cpp:3661
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, const Scope &DestScope)
Definition: SemaStmt.cpp:2620
Helper class that creates diagnostics with optional template instantiation stacks.
Definition: Sema.h:1071
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2433
bool isPointerType() const
Definition: Type.h:5305
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3009
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, Decl *CondVar, Stmt *Body)
Definition: SemaStmt.cpp:1225
QualType getDeducedType() const
Get the type deduced for this auto type, or null if it's either not been deduced or was deduced to a ...
Definition: Type.h:3945