clang  3.8.0
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 // Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45  Value *LHS;
46  Value *RHS;
47  QualType Ty; // Computation Type.
48  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49  bool FPContractable;
50  const Expr *E; // Entire expr, for error unsupported. May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54  // If a null pointer expression's type is the C++0x nullptr_t, then
55  // it's not necessarily a simple constant and it must be evaluated
56  // for its potential side effects.
57  return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61  : public StmtVisitor<ScalarExprEmitter, Value*> {
62  CodeGenFunction &CGF;
64  bool IgnoreResultAssign;
65  llvm::LLVMContext &VMContext;
66 public:
67 
68  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70  VMContext(cgf.getLLVMContext()) {
71  }
72 
73  //===--------------------------------------------------------------------===//
74  // Utilities
75  //===--------------------------------------------------------------------===//
76 
77  bool TestAndClearIgnoreResultAssign() {
78  bool I = IgnoreResultAssign;
79  IgnoreResultAssign = false;
80  return I;
81  }
82 
83  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86  return CGF.EmitCheckedLValue(E, TCK);
87  }
88 
89  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90  const BinOpInfo &Info);
91 
92  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94  }
95 
96  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97  const AlignValueAttr *AVAttr = nullptr;
98  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99  const ValueDecl *VD = DRE->getDecl();
100 
101  if (VD->getType()->isReferenceType()) {
102  if (const auto *TTy =
103  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105  } else {
106  // Assumptions for function parameters are emitted at the start of the
107  // function, so there is no need to repeat that here.
108  if (isa<ParmVarDecl>(VD))
109  return;
110 
111  AVAttr = VD->getAttr<AlignValueAttr>();
112  }
113  }
114 
115  if (!AVAttr)
116  if (const auto *TTy =
117  dyn_cast<TypedefType>(E->getType()))
118  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120  if (!AVAttr)
121  return;
122 
123  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125  CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126  }
127 
128  /// EmitLoadOfLValue - Given an expression with complex type that represents a
129  /// value l-value, this method emits the address of the l-value, then loads
130  /// and returns the result.
131  Value *EmitLoadOfLValue(const Expr *E) {
132  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133  E->getExprLoc());
134 
135  EmitLValueAlignmentAssumption(E, V);
136  return V;
137  }
138 
139  /// EmitConversionToBool - Convert the specified expression value to a
140  /// boolean (i1) truth value. This is equivalent to "Val != 0".
141  Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143  /// Emit a check that a conversion to or from a floating-point type does not
144  /// overflow.
145  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146  Value *Src, QualType SrcType, QualType DstType,
147  llvm::Type *DstTy, SourceLocation Loc);
148 
149  /// Emit a conversion from the specified type to the specified destination
150  /// type, both of which are LLVM scalar types.
151  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152  SourceLocation Loc);
153 
154  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155  SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157  /// Emit a conversion from the specified complex type to the specified
158  /// destination type, where the destination type is an LLVM scalar type.
159  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160  QualType SrcTy, QualType DstTy,
161  SourceLocation Loc);
162 
163  /// EmitNullValue - Emit a value that corresponds to null for the given type.
164  Value *EmitNullValue(QualType Ty);
165 
166  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167  Value *EmitFloatToBoolConversion(Value *V) {
168  // Compare against 0.0 for fp scalars.
169  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170  return Builder.CreateFCmpUNE(V, Zero, "tobool");
171  }
172 
173  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174  Value *EmitPointerToBoolConversion(Value *V) {
175  Value *Zero = llvm::ConstantPointerNull::get(
176  cast<llvm::PointerType>(V->getType()));
177  return Builder.CreateICmpNE(V, Zero, "tobool");
178  }
179 
180  Value *EmitIntToBoolConversion(Value *V) {
181  // Because of the type rules of C, we often end up computing a
182  // logical value, then zero extending it to int, then wanting it
183  // as a logical value again. Optimize this common case.
184  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186  Value *Result = ZI->getOperand(0);
187  // If there aren't any more uses, zap the instruction to save space.
188  // Note that there can be more uses, for example if this
189  // is the result of an assignment.
190  if (ZI->use_empty())
191  ZI->eraseFromParent();
192  return Result;
193  }
194  }
195 
196  return Builder.CreateIsNotNull(V, "tobool");
197  }
198 
199  //===--------------------------------------------------------------------===//
200  // Visitor Methods
201  //===--------------------------------------------------------------------===//
202 
203  Value *Visit(Expr *E) {
204  ApplyDebugLocation DL(CGF, E);
206  }
207 
208  Value *VisitStmt(Stmt *S) {
209  S->dump(CGF.getContext().getSourceManager());
210  llvm_unreachable("Stmt can't have complex result type!");
211  }
212  Value *VisitExpr(Expr *S);
213 
214  Value *VisitParenExpr(ParenExpr *PE) {
215  return Visit(PE->getSubExpr());
216  }
217  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218  return Visit(E->getReplacement());
219  }
220  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221  return Visit(GE->getResultExpr());
222  }
223 
224  // Leaves.
225  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226  return Builder.getInt(E->getValue());
227  }
228  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229  return llvm::ConstantFP::get(VMContext, E->getValue());
230  }
231  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233  }
234  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236  }
237  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239  }
240  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241  return EmitNullValue(E->getType());
242  }
243  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244  return EmitNullValue(E->getType());
245  }
246  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250  return Builder.CreateBitCast(V, ConvertType(E->getType()));
251  }
252 
253  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255  }
256 
257  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259  }
260 
261  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262  if (E->isGLValue())
263  return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265  // Otherwise, assume the mapping is the scalar directly.
266  return CGF.getOpaqueRValueMapping(E).getScalarVal();
267  }
268 
269  // l-values.
270  Value *VisitDeclRefExpr(DeclRefExpr *E) {
271  if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272  if (result.isReference())
273  return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274  E->getExprLoc());
275  return result.getValue();
276  }
277  return EmitLoadOfLValue(E);
278  }
279 
280  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281  return CGF.EmitObjCSelectorExpr(E);
282  }
283  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284  return CGF.EmitObjCProtocolExpr(E);
285  }
286  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287  return EmitLoadOfLValue(E);
288  }
289  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290  if (E->getMethodDecl() &&
292  return EmitLoadOfLValue(E);
293  return CGF.EmitObjCMessageExpr(E).getScalarVal();
294  }
295 
296  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297  LValue LV = CGF.EmitObjCIsaExpr(E);
298  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299  return V;
300  }
301 
302  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305  Value *VisitMemberExpr(MemberExpr *E);
306  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308  return EmitLoadOfLValue(E);
309  }
310 
311  Value *VisitInitListExpr(InitListExpr *E);
312 
313  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314  return EmitNullValue(E->getType());
315  }
316  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318  return VisitCastExpr(E);
319  }
320  Value *VisitCastExpr(CastExpr *E);
321 
322  Value *VisitCallExpr(const CallExpr *E) {
323  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324  return EmitLoadOfLValue(E);
325 
326  Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328  EmitLValueAlignmentAssumption(E, V);
329  return V;
330  }
331 
332  Value *VisitStmtExpr(const StmtExpr *E);
333 
334  // Unary Operators.
335  Value *VisitUnaryPostDec(const UnaryOperator *E) {
336  LValue LV = EmitLValue(E->getSubExpr());
337  return EmitScalarPrePostIncDec(E, LV, false, false);
338  }
339  Value *VisitUnaryPostInc(const UnaryOperator *E) {
340  LValue LV = EmitLValue(E->getSubExpr());
341  return EmitScalarPrePostIncDec(E, LV, true, false);
342  }
343  Value *VisitUnaryPreDec(const UnaryOperator *E) {
344  LValue LV = EmitLValue(E->getSubExpr());
345  return EmitScalarPrePostIncDec(E, LV, false, true);
346  }
347  Value *VisitUnaryPreInc(const UnaryOperator *E) {
348  LValue LV = EmitLValue(E->getSubExpr());
349  return EmitScalarPrePostIncDec(E, LV, true, true);
350  }
351 
352  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353  llvm::Value *InVal,
354  bool IsInc);
355 
356  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357  bool isInc, bool isPre);
358 
359 
360  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361  if (isa<MemberPointerType>(E->getType())) // never sugared
362  return CGF.CGM.getMemberPointerConstant(E);
363 
364  return EmitLValue(E->getSubExpr()).getPointer();
365  }
366  Value *VisitUnaryDeref(const UnaryOperator *E) {
367  if (E->getType()->isVoidType())
368  return Visit(E->getSubExpr()); // the actual value should be unused
369  return EmitLoadOfLValue(E);
370  }
371  Value *VisitUnaryPlus(const UnaryOperator *E) {
372  // This differs from gcc, though, most likely due to a bug in gcc.
373  TestAndClearIgnoreResultAssign();
374  return Visit(E->getSubExpr());
375  }
376  Value *VisitUnaryMinus (const UnaryOperator *E);
377  Value *VisitUnaryNot (const UnaryOperator *E);
378  Value *VisitUnaryLNot (const UnaryOperator *E);
379  Value *VisitUnaryReal (const UnaryOperator *E);
380  Value *VisitUnaryImag (const UnaryOperator *E);
381  Value *VisitUnaryExtension(const UnaryOperator *E) {
382  return Visit(E->getSubExpr());
383  }
384 
385  // C++
386  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387  return EmitLoadOfLValue(E);
388  }
389 
390  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391  return Visit(DAE->getExpr());
392  }
393  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395  return Visit(DIE->getExpr());
396  }
397  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398  return CGF.LoadCXXThis();
399  }
400 
401  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402  CGF.enterFullExpression(E);
404  return Visit(E->getSubExpr());
405  }
406  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407  return CGF.EmitCXXNewExpr(E);
408  }
409  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410  CGF.EmitCXXDeleteExpr(E);
411  return nullptr;
412  }
413 
414  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416  }
417 
418  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420  }
421 
422  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424  }
425 
426  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427  // C++ [expr.pseudo]p1:
428  // The result shall only be used as the operand for the function call
429  // operator (), and the result of such a call has type void. The only
430  // effect is the evaluation of the postfix-expression before the dot or
431  // arrow.
432  CGF.EmitScalarExpr(E->getBase());
433  return nullptr;
434  }
435 
436  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437  return EmitNullValue(E->getType());
438  }
439 
440  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441  CGF.EmitCXXThrowExpr(E);
442  return nullptr;
443  }
444 
445  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446  return Builder.getInt1(E->getValue());
447  }
448 
449  // Binary Operators.
450  Value *EmitMul(const BinOpInfo &Ops) {
451  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458  // Fall through.
460  return EmitOverflowCheckedBinOp(Ops);
461  }
462  }
463 
464  if (Ops.Ty->isUnsignedIntegerType() &&
465  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466  return EmitOverflowCheckedBinOp(Ops);
467 
468  if (Ops.LHS->getType()->isFPOrFPVectorTy())
469  return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471  }
472  /// Create a binary op that checks for overflow.
473  /// Currently only supports +, - and *.
474  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476  // Check for undefined division and modulus behaviors.
477  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478  llvm::Value *Zero,bool isDiv);
479  // Common helper for getting how wide LHS of shift is.
480  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481  Value *EmitDiv(const BinOpInfo &Ops);
482  Value *EmitRem(const BinOpInfo &Ops);
483  Value *EmitAdd(const BinOpInfo &Ops);
484  Value *EmitSub(const BinOpInfo &Ops);
485  Value *EmitShl(const BinOpInfo &Ops);
486  Value *EmitShr(const BinOpInfo &Ops);
487  Value *EmitAnd(const BinOpInfo &Ops) {
488  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489  }
490  Value *EmitXor(const BinOpInfo &Ops) {
491  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492  }
493  Value *EmitOr (const BinOpInfo &Ops) {
494  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495  }
496 
497  BinOpInfo EmitBinOps(const BinaryOperator *E);
498  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500  Value *&Result);
501 
502  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505  // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507  Value *VisitBin ## OP(const BinaryOperator *E) { \
508  return Emit ## OP(EmitBinOps(E)); \
509  } \
510  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
511  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
512  }
513  HANDLEBINOP(Mul)
514  HANDLEBINOP(Div)
515  HANDLEBINOP(Rem)
516  HANDLEBINOP(Add)
517  HANDLEBINOP(Sub)
518  HANDLEBINOP(Shl)
519  HANDLEBINOP(Shr)
521  HANDLEBINOP(Xor)
522  HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525  // Comparisons.
526  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527  llvm::CmpInst::Predicate SICmpOpc,
528  llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530  Value *VisitBin##CODE(const BinaryOperator *E) { \
531  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532  llvm::FCmpInst::FP); }
533  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541  Value *VisitBinAssign (const BinaryOperator *E);
542 
543  Value *VisitBinLAnd (const BinaryOperator *E);
544  Value *VisitBinLOr (const BinaryOperator *E);
545  Value *VisitBinComma (const BinaryOperator *E);
546 
547  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550  // Other Operators.
551  Value *VisitBlockExpr(const BlockExpr *BE);
552  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553  Value *VisitChooseExpr(ChooseExpr *CE);
554  Value *VisitVAArgExpr(VAArgExpr *VE);
555  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556  return CGF.EmitObjCStringLiteral(E);
557  }
558  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559  return CGF.EmitObjCBoxedExpr(E);
560  }
561  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562  return CGF.EmitObjCArrayLiteral(E);
563  }
564  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565  return CGF.EmitObjCDictionaryLiteral(E);
566  }
567  Value *VisitAsTypeExpr(AsTypeExpr *CE);
568  Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 } // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 // Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value. This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581  if (SrcType->isRealFloatingType())
582  return EmitFloatToBoolConversion(Src);
583 
584  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588  "Unknown scalar type to convert");
589 
590  if (isa<llvm::IntegerType>(Src->getType()))
591  return EmitIntToBoolConversion(Src);
592 
593  assert(isa<llvm::PointerType>(Src->getType()));
594  return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600  CodeGenFunction::SanitizerScope SanScope(&CGF);
601  using llvm::APFloat;
602  using llvm::APSInt;
603 
604  llvm::Type *SrcTy = Src->getType();
605 
606  llvm::Value *Check = nullptr;
607  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608  // Integer to floating-point. This can fail for unsigned short -> __half
609  // or unsigned __int128 -> float.
610  assert(DstType->isFloatingType());
611  bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612 
613  APFloat LargestFloat =
614  APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615  APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616 
617  bool IsExact;
618  if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619  &IsExact) != APFloat::opOK)
620  // The range of representable values of this floating point type includes
621  // all values of this integer type. Don't need an overflow check.
622  return;
623 
624  llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625  if (SrcIsUnsigned)
626  Check = Builder.CreateICmpULE(Src, Max);
627  else {
628  llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629  llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630  llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631  Check = Builder.CreateAnd(GE, LE);
632  }
633  } else {
634  const llvm::fltSemantics &SrcSema =
635  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636  if (isa<llvm::IntegerType>(DstTy)) {
637  // Floating-point to integer. This has undefined behavior if the source is
638  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639  // to an integer).
640  unsigned Width = CGF.getContext().getIntWidth(DstType);
641  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642 
643  APSInt Min = APSInt::getMinValue(Width, Unsigned);
644  APFloat MinSrc(SrcSema, APFloat::uninitialized);
645  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646  APFloat::opOverflow)
647  // Don't need an overflow check for lower bound. Just check for
648  // -Inf/NaN.
649  MinSrc = APFloat::getInf(SrcSema, true);
650  else
651  // Find the largest value which is too small to represent (before
652  // truncation toward zero).
653  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654 
655  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658  APFloat::opOverflow)
659  // Don't need an overflow check for upper bound. Just check for
660  // +Inf/NaN.
661  MaxSrc = APFloat::getInf(SrcSema, false);
662  else
663  // Find the smallest value which is too large to represent (before
664  // truncation toward zero).
665  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666 
667  // If we're converting from __half, convert the range to float to match
668  // the type of src.
669  if (OrigSrcType->isHalfType()) {
670  const llvm::fltSemantics &Sema =
671  CGF.getContext().getFloatTypeSemantics(SrcType);
672  bool IsInexact;
673  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675  }
676 
677  llvm::Value *GE =
678  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679  llvm::Value *LE =
680  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681  Check = Builder.CreateAnd(GE, LE);
682  } else {
683  // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684  //
685  // Floating-point to floating-point. This has undefined behavior if the
686  // source is not in the range of representable values of the destination
687  // type. The C and C++ standards are spectacularly unclear here. We
688  // diagnose finite out-of-range conversions, but allow infinities and NaNs
689  // to convert to the corresponding value in the smaller type.
690  //
691  // C11 Annex F gives all such conversions defined behavior for IEC 60559
692  // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693  // does not.
694 
695  // Converting from a lower rank to a higher rank can never have
696  // undefined behavior, since higher-rank types must have a superset
697  // of values of lower-rank types.
698  if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699  return;
700 
701  assert(!OrigSrcType->isHalfType() &&
702  "should not check conversion from __half, it has the lowest rank");
703 
704  const llvm::fltSemantics &DstSema =
705  CGF.getContext().getFloatTypeSemantics(DstType);
706  APFloat MinBad = APFloat::getLargest(DstSema, false);
707  APFloat MaxBad = APFloat::getInf(DstSema, false);
708 
709  bool IsInexact;
710  MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711  MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712 
713  Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714  CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715  llvm::Value *GE =
716  Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717  llvm::Value *LE =
718  Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719  Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720  }
721  }
722 
723  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724  CGF.EmitCheckTypeDescriptor(OrigSrcType),
725  CGF.EmitCheckTypeDescriptor(DstType)};
726  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727  "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729 
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733  QualType DstType,
734  SourceLocation Loc) {
735  return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737 
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739  QualType DstType,
740  SourceLocation Loc,
741  bool TreatBooleanAsSigned) {
742  SrcType = CGF.getContext().getCanonicalType(SrcType);
743  DstType = CGF.getContext().getCanonicalType(DstType);
744  if (SrcType == DstType) return Src;
745 
746  if (DstType->isVoidType()) return nullptr;
747 
748  llvm::Value *OrigSrc = Src;
749  QualType OrigSrcType = SrcType;
750  llvm::Type *SrcTy = Src->getType();
751 
752  // Handle conversions to bool first, they are special: comparisons against 0.
753  if (DstType->isBooleanType())
754  return EmitConversionToBool(Src, SrcType);
755 
756  llvm::Type *DstTy = ConvertType(DstType);
757 
758  // Cast from half through float if half isn't a native type.
759  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760  // Cast to FP using the intrinsic if the half type itself isn't supported.
761  if (DstTy->isFloatingPointTy()) {
762  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763  return Builder.CreateCall(
764  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765  Src);
766  } else {
767  // Cast to other types through float, using either the intrinsic or FPExt,
768  // depending on whether the half type itself is supported
769  // (as opposed to operations on half, available with NativeHalfType).
770  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771  Src = Builder.CreateCall(
772  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773  CGF.CGM.FloatTy),
774  Src);
775  } else {
776  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777  }
778  SrcType = CGF.getContext().FloatTy;
779  SrcTy = CGF.FloatTy;
780  }
781  }
782 
783  // Ignore conversions like int -> uint.
784  if (SrcTy == DstTy)
785  return Src;
786 
787  // Handle pointer conversions next: pointers can only be converted to/from
788  // other pointers and integers. Check for pointer types in terms of LLVM, as
789  // some native types (like Obj-C id) may map to a pointer type.
790  if (isa<llvm::PointerType>(DstTy)) {
791  // The source value may be an integer, or a pointer.
792  if (isa<llvm::PointerType>(SrcTy))
793  return Builder.CreateBitCast(Src, DstTy, "conv");
794 
795  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796  // First, convert to the correct width so that we control the kind of
797  // extension.
798  llvm::Type *MiddleTy = CGF.IntPtrTy;
799  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800  llvm::Value* IntResult =
801  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802  // Then, cast to pointer.
803  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804  }
805 
806  if (isa<llvm::PointerType>(SrcTy)) {
807  // Must be an ptr to int cast.
808  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809  return Builder.CreatePtrToInt(Src, DstTy, "conv");
810  }
811 
812  // A scalar can be splatted to an extended vector of the same element type
813  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814  // Sema should add casts to make sure that the source expression's type is
815  // the same as the vector's element type (sans qualifiers)
816  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817  SrcType.getTypePtr() &&
818  "Splatted expr doesn't match with vector element type?");
819 
820  // Splat the element across to all elements
821  unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
822  return Builder.CreateVectorSplat(NumElements, Src, "splat");
823  }
824 
825  // Allow bitcast from vector to integer/fp of the same size.
826  if (isa<llvm::VectorType>(SrcTy) ||
827  isa<llvm::VectorType>(DstTy))
828  return Builder.CreateBitCast(Src, DstTy, "conv");
829 
830  // Finally, we have the arithmetic types: real int/float.
831  Value *Res = nullptr;
832  llvm::Type *ResTy = DstTy;
833 
834  // An overflowing conversion has undefined behavior if either the source type
835  // or the destination type is a floating-point type.
836  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837  (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839  Loc);
840 
841  // Cast to half through float if half isn't a native type.
842  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843  // Make sure we cast in a single step if from another FP type.
844  if (SrcTy->isFloatingPointTy()) {
845  // Use the intrinsic if the half type itself isn't supported
846  // (as opposed to operations on half, available with NativeHalfType).
847  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848  return Builder.CreateCall(
849  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850  // If the half type is supported, just use an fptrunc.
851  return Builder.CreateFPTrunc(Src, DstTy);
852  }
853  DstTy = CGF.FloatTy;
854  }
855 
856  if (isa<llvm::IntegerType>(SrcTy)) {
857  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858  if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859  InputSigned = true;
860  }
861  if (isa<llvm::IntegerType>(DstTy))
862  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863  else if (InputSigned)
864  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865  else
866  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867  } else if (isa<llvm::IntegerType>(DstTy)) {
868  assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869  if (DstType->isSignedIntegerOrEnumerationType())
870  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871  else
872  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873  } else {
874  assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875  "Unknown real conversion");
876  if (DstTy->getTypeID() < SrcTy->getTypeID())
877  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878  else
879  Res = Builder.CreateFPExt(Src, DstTy, "conv");
880  }
881 
882  if (DstTy != ResTy) {
883  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885  Res = Builder.CreateCall(
886  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887  Res);
888  } else {
889  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890  }
891  }
892 
893  return Res;
894 }
895 
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
900  SourceLocation Loc) {
901  // Get the source element type.
902  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903 
904  // Handle conversions to bool first, they are special: comparisons against 0.
905  if (DstTy->isBooleanType()) {
906  // Complex != 0 -> (Real != 0) | (Imag != 0)
907  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909  return Builder.CreateOr(Src.first, Src.second, "tobool");
910  }
911 
912  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913  // the imaginary part of the complex value is discarded and the value of the
914  // real part is converted according to the conversion rules for the
915  // corresponding real type.
916  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918 
919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922 
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
927 void ScalarExprEmitter::EmitBinOpCheck(
928  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929  assert(CGF.IsSanitizerScope);
930  StringRef CheckName;
932  SmallVector<llvm::Value *, 2> DynamicData;
933 
934  BinaryOperatorKind Opcode = Info.Opcode;
937 
938  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940  if (UO && UO->getOpcode() == UO_Minus) {
941  CheckName = "negate_overflow";
942  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943  DynamicData.push_back(Info.RHS);
944  } else {
945  if (BinaryOperator::isShiftOp(Opcode)) {
946  // Shift LHS negative or too large, or RHS out of bounds.
947  CheckName = "shift_out_of_bounds";
948  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949  StaticData.push_back(
950  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951  StaticData.push_back(
952  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955  CheckName = "divrem_overflow";
956  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957  } else {
958  // Arithmetic overflow (+, -, *).
959  switch (Opcode) {
960  case BO_Add: CheckName = "add_overflow"; break;
961  case BO_Sub: CheckName = "sub_overflow"; break;
962  case BO_Mul: CheckName = "mul_overflow"; break;
963  default: llvm_unreachable("unexpected opcode for bin op check");
964  }
965  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966  }
967  DynamicData.push_back(Info.LHS);
968  DynamicData.push_back(Info.RHS);
969  }
970 
971  CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973 
974 //===----------------------------------------------------------------------===//
975 // Visitor Methods
976 //===----------------------------------------------------------------------===//
977 
978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979  CGF.ErrorUnsupported(E, "scalar expression");
980  if (E->getType()->isVoidType())
981  return nullptr;
982  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984 
985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986  // Vector Mask Case
987  if (E->getNumSubExprs() == 2 ||
988  (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
989  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
990  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
991  Value *Mask;
992 
993  llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
994  unsigned LHSElts = LTy->getNumElements();
995 
996  if (E->getNumSubExprs() == 3) {
997  Mask = CGF.EmitScalarExpr(E->getExpr(2));
998 
999  // Shuffle LHS & RHS into one input vector.
1001  for (unsigned i = 0; i != LHSElts; ++i) {
1002  concat.push_back(Builder.getInt32(2*i));
1003  concat.push_back(Builder.getInt32(2*i+1));
1004  }
1005 
1006  Value* CV = llvm::ConstantVector::get(concat);
1007  LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1008  LHSElts *= 2;
1009  } else {
1010  Mask = RHS;
1011  }
1012 
1013  llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1014 
1015  // Mask off the high bits of each shuffle index.
1016  Value *MaskBits =
1017  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1018  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1019 
1020  // newv = undef
1021  // mask = mask & maskbits
1022  // for each elt
1023  // n = extract mask i
1024  // x = extract val n
1025  // newv = insert newv, x, i
1026  llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1027  MTy->getNumElements());
1028  Value* NewV = llvm::UndefValue::get(RTy);
1029  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1030  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1031  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1032 
1033  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1034  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1035  }
1036  return NewV;
1037  }
1038 
1039  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1040  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1041 
1043  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1044  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1045  // Check for -1 and output it as undef in the IR.
1046  if (Idx.isSigned() && Idx.isAllOnesValue())
1047  indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1048  else
1049  indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1050  }
1051 
1052  Value *SV = llvm::ConstantVector::get(indices);
1053  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1054 }
1055 
1056 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1057  QualType SrcType = E->getSrcExpr()->getType(),
1058  DstType = E->getType();
1059 
1060  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1061 
1062  SrcType = CGF.getContext().getCanonicalType(SrcType);
1063  DstType = CGF.getContext().getCanonicalType(DstType);
1064  if (SrcType == DstType) return Src;
1065 
1066  assert(SrcType->isVectorType() &&
1067  "ConvertVector source type must be a vector");
1068  assert(DstType->isVectorType() &&
1069  "ConvertVector destination type must be a vector");
1070 
1071  llvm::Type *SrcTy = Src->getType();
1072  llvm::Type *DstTy = ConvertType(DstType);
1073 
1074  // Ignore conversions like int -> uint.
1075  if (SrcTy == DstTy)
1076  return Src;
1077 
1078  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1079  DstEltType = DstType->getAs<VectorType>()->getElementType();
1080 
1081  assert(SrcTy->isVectorTy() &&
1082  "ConvertVector source IR type must be a vector");
1083  assert(DstTy->isVectorTy() &&
1084  "ConvertVector destination IR type must be a vector");
1085 
1086  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1087  *DstEltTy = DstTy->getVectorElementType();
1088 
1089  if (DstEltType->isBooleanType()) {
1090  assert((SrcEltTy->isFloatingPointTy() ||
1091  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1092 
1093  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1094  if (SrcEltTy->isFloatingPointTy()) {
1095  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1096  } else {
1097  return Builder.CreateICmpNE(Src, Zero, "tobool");
1098  }
1099  }
1100 
1101  // We have the arithmetic types: real int/float.
1102  Value *Res = nullptr;
1103 
1104  if (isa<llvm::IntegerType>(SrcEltTy)) {
1105  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1106  if (isa<llvm::IntegerType>(DstEltTy))
1107  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1108  else if (InputSigned)
1109  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1110  else
1111  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1112  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1113  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1114  if (DstEltType->isSignedIntegerOrEnumerationType())
1115  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1116  else
1117  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1118  } else {
1119  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1120  "Unknown real conversion");
1121  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1122  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1123  else
1124  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1125  }
1126 
1127  return Res;
1128 }
1129 
1130 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1131  llvm::APSInt Value;
1132  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1133  if (E->isArrow())
1134  CGF.EmitScalarExpr(E->getBase());
1135  else
1136  EmitLValue(E->getBase());
1137  return Builder.getInt(Value);
1138  }
1139 
1140  return EmitLoadOfLValue(E);
1141 }
1142 
1143 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1144  TestAndClearIgnoreResultAssign();
1145 
1146  // Emit subscript expressions in rvalue context's. For most cases, this just
1147  // loads the lvalue formed by the subscript expr. However, we have to be
1148  // careful, because the base of a vector subscript is occasionally an rvalue,
1149  // so we can't get it as an lvalue.
1150  if (!E->getBase()->getType()->isVectorType())
1151  return EmitLoadOfLValue(E);
1152 
1153  // Handle the vector case. The base must be a vector, the index must be an
1154  // integer value.
1155  Value *Base = Visit(E->getBase());
1156  Value *Idx = Visit(E->getIdx());
1157  QualType IdxTy = E->getIdx()->getType();
1158 
1159  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1160  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1161 
1162  return Builder.CreateExtractElement(Base, Idx, "vecext");
1163 }
1164 
1165 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1166  unsigned Off, llvm::Type *I32Ty) {
1167  int MV = SVI->getMaskValue(Idx);
1168  if (MV == -1)
1169  return llvm::UndefValue::get(I32Ty);
1170  return llvm::ConstantInt::get(I32Ty, Off+MV);
1171 }
1172 
1173 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1174  if (C->getBitWidth() != 32) {
1175  assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1176  C->getZExtValue()) &&
1177  "Index operand too large for shufflevector mask!");
1178  return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1179  }
1180  return C;
1181 }
1182 
1183 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1184  bool Ignore = TestAndClearIgnoreResultAssign();
1185  (void)Ignore;
1186  assert (Ignore == false && "init list ignored");
1187  unsigned NumInitElements = E->getNumInits();
1188 
1189  if (E->hadArrayRangeDesignator())
1190  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1191 
1192  llvm::VectorType *VType =
1193  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1194 
1195  if (!VType) {
1196  if (NumInitElements == 0) {
1197  // C++11 value-initialization for the scalar.
1198  return EmitNullValue(E->getType());
1199  }
1200  // We have a scalar in braces. Just use the first element.
1201  return Visit(E->getInit(0));
1202  }
1203 
1204  unsigned ResElts = VType->getNumElements();
1205 
1206  // Loop over initializers collecting the Value for each, and remembering
1207  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1208  // us to fold the shuffle for the swizzle into the shuffle for the vector
1209  // initializer, since LLVM optimizers generally do not want to touch
1210  // shuffles.
1211  unsigned CurIdx = 0;
1212  bool VIsUndefShuffle = false;
1213  llvm::Value *V = llvm::UndefValue::get(VType);
1214  for (unsigned i = 0; i != NumInitElements; ++i) {
1215  Expr *IE = E->getInit(i);
1216  Value *Init = Visit(IE);
1218 
1219  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1220 
1221  // Handle scalar elements. If the scalar initializer is actually one
1222  // element of a different vector of the same width, use shuffle instead of
1223  // extract+insert.
1224  if (!VVT) {
1225  if (isa<ExtVectorElementExpr>(IE)) {
1226  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1227 
1228  if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1229  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1230  Value *LHS = nullptr, *RHS = nullptr;
1231  if (CurIdx == 0) {
1232  // insert into undef -> shuffle (src, undef)
1233  // shufflemask must use an i32
1234  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1235  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236 
1237  LHS = EI->getVectorOperand();
1238  RHS = V;
1239  VIsUndefShuffle = true;
1240  } else if (VIsUndefShuffle) {
1241  // insert into undefshuffle && size match -> shuffle (v, src)
1242  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1243  for (unsigned j = 0; j != CurIdx; ++j)
1244  Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1245  Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1246  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1247 
1248  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1249  RHS = EI->getVectorOperand();
1250  VIsUndefShuffle = false;
1251  }
1252  if (!Args.empty()) {
1253  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1254  V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1255  ++CurIdx;
1256  continue;
1257  }
1258  }
1259  }
1260  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1261  "vecinit");
1262  VIsUndefShuffle = false;
1263  ++CurIdx;
1264  continue;
1265  }
1266 
1267  unsigned InitElts = VVT->getNumElements();
1268 
1269  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1270  // input is the same width as the vector being constructed, generate an
1271  // optimized shuffle of the swizzle input into the result.
1272  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1273  if (isa<ExtVectorElementExpr>(IE)) {
1274  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1275  Value *SVOp = SVI->getOperand(0);
1276  llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1277 
1278  if (OpTy->getNumElements() == ResElts) {
1279  for (unsigned j = 0; j != CurIdx; ++j) {
1280  // If the current vector initializer is a shuffle with undef, merge
1281  // this shuffle directly into it.
1282  if (VIsUndefShuffle) {
1283  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1284  CGF.Int32Ty));
1285  } else {
1286  Args.push_back(Builder.getInt32(j));
1287  }
1288  }
1289  for (unsigned j = 0, je = InitElts; j != je; ++j)
1290  Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1291  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1292 
1293  if (VIsUndefShuffle)
1294  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1295 
1296  Init = SVOp;
1297  }
1298  }
1299 
1300  // Extend init to result vector length, and then shuffle its contribution
1301  // to the vector initializer into V.
1302  if (Args.empty()) {
1303  for (unsigned j = 0; j != InitElts; ++j)
1304  Args.push_back(Builder.getInt32(j));
1305  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1306  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307  Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1308  Mask, "vext");
1309 
1310  Args.clear();
1311  for (unsigned j = 0; j != CurIdx; ++j)
1312  Args.push_back(Builder.getInt32(j));
1313  for (unsigned j = 0; j != InitElts; ++j)
1314  Args.push_back(Builder.getInt32(j+Offset));
1315  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1316  }
1317 
1318  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1319  // merging subsequent shuffles into this one.
1320  if (CurIdx == 0)
1321  std::swap(V, Init);
1322  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1323  V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1324  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1325  CurIdx += InitElts;
1326  }
1327 
1328  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1329  // Emit remaining default initializers.
1330  llvm::Type *EltTy = VType->getElementType();
1331 
1332  // Emit remaining default initializers
1333  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1334  Value *Idx = Builder.getInt32(CurIdx);
1335  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1336  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1337  }
1338  return V;
1339 }
1340 
1342  const Expr *E = CE->getSubExpr();
1343 
1345  return false;
1346 
1347  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1348  // We always assume that 'this' is never null.
1349  return false;
1350  }
1351 
1352  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1353  // And that glvalue casts are never null.
1354  if (ICE->getValueKind() != VK_RValue)
1355  return false;
1356  }
1357 
1358  return true;
1359 }
1360 
1361 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1362 // have to handle a more broad range of conversions than explicit casts, as they
1363 // handle things like function to ptr-to-function decay etc.
1364 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1365  Expr *E = CE->getSubExpr();
1366  QualType DestTy = CE->getType();
1367  CastKind Kind = CE->getCastKind();
1368 
1369  if (!DestTy->isVoidType())
1370  TestAndClearIgnoreResultAssign();
1371 
1372  // Since almost all cast kinds apply to scalars, this switch doesn't have
1373  // a default case, so the compiler will warn on a missing case. The cases
1374  // are in the same order as in the CastKind enum.
1375  switch (Kind) {
1376  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1377  case CK_BuiltinFnToFnPtr:
1378  llvm_unreachable("builtin functions are handled elsewhere");
1379 
1380  case CK_LValueBitCast:
1381  case CK_ObjCObjectLValueCast: {
1382  Address Addr = EmitLValue(E).getAddress();
1383  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1384  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1385  return EmitLoadOfLValue(LV, CE->getExprLoc());
1386  }
1387 
1391  case CK_BitCast: {
1392  Value *Src = Visit(const_cast<Expr*>(E));
1393  llvm::Type *SrcTy = Src->getType();
1394  llvm::Type *DstTy = ConvertType(DestTy);
1395  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1396  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1397  llvm_unreachable("wrong cast for pointers in different address spaces"
1398  "(must be an address space cast)!");
1399  }
1400 
1401  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1402  if (auto PT = DestTy->getAs<PointerType>())
1403  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1404  /*MayBeNull=*/true,
1406  CE->getLocStart());
1407  }
1408 
1409  return Builder.CreateBitCast(Src, DstTy);
1410  }
1412  Value *Src = Visit(const_cast<Expr*>(E));
1413  return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1414  }
1415  case CK_AtomicToNonAtomic:
1416  case CK_NonAtomicToAtomic:
1417  case CK_NoOp:
1419  return Visit(const_cast<Expr*>(E));
1420 
1421  case CK_BaseToDerived: {
1422  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1423  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1424 
1425  Address Base = CGF.EmitPointerWithAlignment(E);
1426  Address Derived =
1427  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1428  CE->path_begin(), CE->path_end(),
1429  CGF.ShouldNullCheckClassCastValue(CE));
1430 
1431  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1432  // performed and the object is not of the derived type.
1433  if (CGF.sanitizePerformTypeCheck())
1434  CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1435  Derived.getPointer(), DestTy->getPointeeType());
1436 
1437  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1438  CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1439  Derived.getPointer(),
1440  /*MayBeNull=*/true,
1442  CE->getLocStart());
1443 
1444  return Derived.getPointer();
1445  }
1447  case CK_DerivedToBase: {
1448  // The EmitPointerWithAlignment path does this fine; just discard
1449  // the alignment.
1450  return CGF.EmitPointerWithAlignment(CE).getPointer();
1451  }
1452 
1453  case CK_Dynamic: {
1454  Address V = CGF.EmitPointerWithAlignment(E);
1455  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1456  return CGF.EmitDynamicCast(V, DCE);
1457  }
1458 
1460  return CGF.EmitArrayToPointerDecay(E).getPointer();
1462  return EmitLValue(E).getPointer();
1463 
1464  case CK_NullToPointer:
1465  if (MustVisitNullValue(E))
1466  (void) Visit(E);
1467 
1468  return llvm::ConstantPointerNull::get(
1469  cast<llvm::PointerType>(ConvertType(DestTy)));
1470 
1471  case CK_NullToMemberPointer: {
1472  if (MustVisitNullValue(E))
1473  (void) Visit(E);
1474 
1475  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1476  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1477  }
1478 
1482  Value *Src = Visit(E);
1483 
1484  // Note that the AST doesn't distinguish between checked and
1485  // unchecked member pointer conversions, so we always have to
1486  // implement checked conversions here. This is inefficient when
1487  // actual control flow may be required in order to perform the
1488  // check, which it is for data member pointers (but not member
1489  // function pointers on Itanium and ARM).
1490  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1491  }
1492 
1493  case CK_ARCProduceObject:
1494  return CGF.EmitARCRetainScalarExpr(E);
1495  case CK_ARCConsumeObject:
1496  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1498  llvm::Value *value = Visit(E);
1499  value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1500  return CGF.EmitObjCConsumeObject(E->getType(), value);
1501  }
1503  return CGF.EmitARCExtendBlockObject(E);
1504 
1506  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1507 
1515  case CK_ToUnion:
1516  llvm_unreachable("scalar cast to non-scalar value");
1517 
1518  case CK_LValueToRValue:
1519  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1520  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1521  return Visit(const_cast<Expr*>(E));
1522 
1523  case CK_IntegralToPointer: {
1524  Value *Src = Visit(const_cast<Expr*>(E));
1525 
1526  // First, convert to the correct width so that we control the kind of
1527  // extension.
1528  llvm::Type *MiddleTy = CGF.IntPtrTy;
1529  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1530  llvm::Value* IntResult =
1531  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1532 
1533  return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1534  }
1535  case CK_PointerToIntegral:
1536  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1537  return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1538 
1539  case CK_ToVoid: {
1540  CGF.EmitIgnoredExpr(E);
1541  return nullptr;
1542  }
1543  case CK_VectorSplat: {
1544  llvm::Type *DstTy = ConvertType(DestTy);
1545  Value *Elt = Visit(const_cast<Expr*>(E));
1546  // Splat the element across to all elements
1547  unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1548  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1549  }
1550 
1551  case CK_IntegralCast:
1552  case CK_IntegralToFloating:
1553  case CK_FloatingToIntegral:
1554  case CK_FloatingCast:
1555  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1556  CE->getExprLoc());
1558  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1559  CE->getExprLoc(),
1560  /*TreatBooleanAsSigned=*/true);
1561  case CK_IntegralToBoolean:
1562  return EmitIntToBoolConversion(Visit(E));
1563  case CK_PointerToBoolean:
1564  return EmitPointerToBoolConversion(Visit(E));
1565  case CK_FloatingToBoolean:
1566  return EmitFloatToBoolConversion(Visit(E));
1568  llvm::Value *MemPtr = Visit(E);
1569  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1570  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1571  }
1572 
1575  return CGF.EmitComplexExpr(E, false, true).first;
1576 
1579  CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1580 
1581  // TODO: kill this function off, inline appropriate case here
1582  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1583  CE->getExprLoc());
1584  }
1585 
1586  case CK_ZeroToOCLEvent: {
1587  assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1588  return llvm::Constant::getNullValue(ConvertType(DestTy));
1589  }
1590 
1591  }
1592 
1593  llvm_unreachable("unknown scalar cast");
1594 }
1595 
1596 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1598  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1599  !E->getType()->isVoidType());
1600  if (!RetAlloca.isValid())
1601  return nullptr;
1602  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1603  E->getExprLoc());
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 // Unary Operators
1608 //===----------------------------------------------------------------------===//
1609 
1610 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1611  llvm::Value *InVal, bool IsInc) {
1612  BinOpInfo BinOp;
1613  BinOp.LHS = InVal;
1614  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1615  BinOp.Ty = E->getType();
1616  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1617  BinOp.FPContractable = false;
1618  BinOp.E = E;
1619  return BinOp;
1620 }
1621 
1622 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1623  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1624  llvm::Value *Amount =
1625  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1626  StringRef Name = IsInc ? "inc" : "dec";
1627  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1629  return Builder.CreateAdd(InVal, Amount, Name);
1631  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1632  return Builder.CreateNSWAdd(InVal, Amount, Name);
1633  // Fall through.
1635  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1636  }
1637  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1638 }
1639 
1640 llvm::Value *
1641 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1642  bool isInc, bool isPre) {
1643 
1644  QualType type = E->getSubExpr()->getType();
1645  llvm::PHINode *atomicPHI = nullptr;
1646  llvm::Value *value;
1647  llvm::Value *input;
1648 
1649  int amount = (isInc ? 1 : -1);
1650 
1651  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1652  type = atomicTy->getValueType();
1653  if (isInc && type->isBooleanType()) {
1654  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1655  if (isPre) {
1656  Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1657  ->setAtomic(llvm::SequentiallyConsistent);
1658  return Builder.getTrue();
1659  }
1660  // For atomic bool increment, we just store true and return it for
1661  // preincrement, do an atomic swap with true for postincrement
1662  return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1663  LV.getPointer(), True, llvm::SequentiallyConsistent);
1664  }
1665  // Special case for atomic increment / decrement on integers, emit
1666  // atomicrmw instructions. We skip this if we want to be doing overflow
1667  // checking, and fall into the slow path with the atomic cmpxchg loop.
1668  if (!type->isBooleanType() && type->isIntegerType() &&
1669  !(type->isUnsignedIntegerType() &&
1670  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1671  CGF.getLangOpts().getSignedOverflowBehavior() !=
1673  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1674  llvm::AtomicRMWInst::Sub;
1675  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1676  llvm::Instruction::Sub;
1677  llvm::Value *amt = CGF.EmitToMemory(
1678  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1679  llvm::Value *old = Builder.CreateAtomicRMW(aop,
1680  LV.getPointer(), amt, llvm::SequentiallyConsistent);
1681  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1682  }
1683  value = EmitLoadOfLValue(LV, E->getExprLoc());
1684  input = value;
1685  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1686  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1687  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1688  value = CGF.EmitToMemory(value, type);
1689  Builder.CreateBr(opBB);
1690  Builder.SetInsertPoint(opBB);
1691  atomicPHI = Builder.CreatePHI(value->getType(), 2);
1692  atomicPHI->addIncoming(value, startBB);
1693  value = atomicPHI;
1694  } else {
1695  value = EmitLoadOfLValue(LV, E->getExprLoc());
1696  input = value;
1697  }
1698 
1699  // Special case of integer increment that we have to check first: bool++.
1700  // Due to promotion rules, we get:
1701  // bool++ -> bool = bool + 1
1702  // -> bool = (int)bool + 1
1703  // -> bool = ((int)bool + 1 != 0)
1704  // An interesting aspect of this is that increment is always true.
1705  // Decrement does not have this property.
1706  if (isInc && type->isBooleanType()) {
1707  value = Builder.getTrue();
1708 
1709  // Most common case by far: integer increment.
1710  } else if (type->isIntegerType()) {
1711  // Note that signed integer inc/dec with width less than int can't
1712  // overflow because of promotion rules; we're just eliding a few steps here.
1713  bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1714  CGF.IntTy->getIntegerBitWidth();
1715  if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1716  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1717  } else if (CanOverflow && type->isUnsignedIntegerType() &&
1718  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1719  value =
1720  EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1721  } else {
1722  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1723  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1724  }
1725 
1726  // Next most common: pointer increment.
1727  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1728  QualType type = ptr->getPointeeType();
1729 
1730  // VLA types don't have constant size.
1731  if (const VariableArrayType *vla
1732  = CGF.getContext().getAsVariableArrayType(type)) {
1733  llvm::Value *numElts = CGF.getVLASize(vla).first;
1734  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1735  if (CGF.getLangOpts().isSignedOverflowDefined())
1736  value = Builder.CreateGEP(value, numElts, "vla.inc");
1737  else
1738  value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1739 
1740  // Arithmetic on function pointers (!) is just +-1.
1741  } else if (type->isFunctionType()) {
1742  llvm::Value *amt = Builder.getInt32(amount);
1743 
1744  value = CGF.EmitCastToVoidPtr(value);
1745  if (CGF.getLangOpts().isSignedOverflowDefined())
1746  value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1747  else
1748  value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1749  value = Builder.CreateBitCast(value, input->getType());
1750 
1751  // For everything else, we can just do a simple increment.
1752  } else {
1753  llvm::Value *amt = Builder.getInt32(amount);
1754  if (CGF.getLangOpts().isSignedOverflowDefined())
1755  value = Builder.CreateGEP(value, amt, "incdec.ptr");
1756  else
1757  value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1758  }
1759 
1760  // Vector increment/decrement.
1761  } else if (type->isVectorType()) {
1762  if (type->hasIntegerRepresentation()) {
1763  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1764 
1765  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1766  } else {
1767  value = Builder.CreateFAdd(
1768  value,
1769  llvm::ConstantFP::get(value->getType(), amount),
1770  isInc ? "inc" : "dec");
1771  }
1772 
1773  // Floating point.
1774  } else if (type->isRealFloatingType()) {
1775  // Add the inc/dec to the real part.
1776  llvm::Value *amt;
1777 
1778  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1779  // Another special case: half FP increment should be done via float
1780  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1781  value = Builder.CreateCall(
1782  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1783  CGF.CGM.FloatTy),
1784  input, "incdec.conv");
1785  } else {
1786  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1787  }
1788  }
1789 
1790  if (value->getType()->isFloatTy())
1791  amt = llvm::ConstantFP::get(VMContext,
1792  llvm::APFloat(static_cast<float>(amount)));
1793  else if (value->getType()->isDoubleTy())
1794  amt = llvm::ConstantFP::get(VMContext,
1795  llvm::APFloat(static_cast<double>(amount)));
1796  else {
1797  // Remaining types are either Half or LongDouble. Convert from float.
1798  llvm::APFloat F(static_cast<float>(amount));
1799  bool ignored;
1800  // Don't use getFloatTypeSemantics because Half isn't
1801  // necessarily represented using the "half" LLVM type.
1802  F.convert(value->getType()->isHalfTy()
1803  ? CGF.getTarget().getHalfFormat()
1804  : CGF.getTarget().getLongDoubleFormat(),
1805  llvm::APFloat::rmTowardZero, &ignored);
1806  amt = llvm::ConstantFP::get(VMContext, F);
1807  }
1808  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1809 
1810  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1811  if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1812  value = Builder.CreateCall(
1813  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1814  CGF.CGM.FloatTy),
1815  value, "incdec.conv");
1816  } else {
1817  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1818  }
1819  }
1820 
1821  // Objective-C pointer types.
1822  } else {
1823  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1824  value = CGF.EmitCastToVoidPtr(value);
1825 
1826  CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1827  if (!isInc) size = -size;
1828  llvm::Value *sizeValue =
1829  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1830 
1831  if (CGF.getLangOpts().isSignedOverflowDefined())
1832  value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1833  else
1834  value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1835  value = Builder.CreateBitCast(value, input->getType());
1836  }
1837 
1838  if (atomicPHI) {
1839  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1840  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1841  auto Pair = CGF.EmitAtomicCompareExchange(
1842  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1843  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1844  llvm::Value *success = Pair.second;
1845  atomicPHI->addIncoming(old, opBB);
1846  Builder.CreateCondBr(success, contBB, opBB);
1847  Builder.SetInsertPoint(contBB);
1848  return isPre ? value : input;
1849  }
1850 
1851  // Store the updated result through the lvalue.
1852  if (LV.isBitField())
1853  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1854  else
1855  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1856 
1857  // If this is a postinc, return the value read from memory, otherwise use the
1858  // updated value.
1859  return isPre ? value : input;
1860 }
1861 
1862 
1863 
1864 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1865  TestAndClearIgnoreResultAssign();
1866  // Emit unary minus with EmitSub so we handle overflow cases etc.
1867  BinOpInfo BinOp;
1868  BinOp.RHS = Visit(E->getSubExpr());
1869 
1870  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1871  BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1872  else
1873  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1874  BinOp.Ty = E->getType();
1875  BinOp.Opcode = BO_Sub;
1876  BinOp.FPContractable = false;
1877  BinOp.E = E;
1878  return EmitSub(BinOp);
1879 }
1880 
1881 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1882  TestAndClearIgnoreResultAssign();
1883  Value *Op = Visit(E->getSubExpr());
1884  return Builder.CreateNot(Op, "neg");
1885 }
1886 
1887 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1888  // Perform vector logical not on comparison with zero vector.
1889  if (E->getType()->isExtVectorType()) {
1890  Value *Oper = Visit(E->getSubExpr());
1891  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1892  Value *Result;
1893  if (Oper->getType()->isFPOrFPVectorTy())
1894  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1895  else
1896  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1897  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1898  }
1899 
1900  // Compare operand to zero.
1901  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1902 
1903  // Invert value.
1904  // TODO: Could dynamically modify easy computations here. For example, if
1905  // the operand is an icmp ne, turn into icmp eq.
1906  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1907 
1908  // ZExt result to the expr type.
1909  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1910 }
1911 
1912 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1913  // Try folding the offsetof to a constant.
1914  llvm::APSInt Value;
1915  if (E->EvaluateAsInt(Value, CGF.getContext()))
1916  return Builder.getInt(Value);
1917 
1918  // Loop over the components of the offsetof to compute the value.
1919  unsigned n = E->getNumComponents();
1920  llvm::Type* ResultType = ConvertType(E->getType());
1921  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1922  QualType CurrentType = E->getTypeSourceInfo()->getType();
1923  for (unsigned i = 0; i != n; ++i) {
1924  OffsetOfNode ON = E->getComponent(i);
1925  llvm::Value *Offset = nullptr;
1926  switch (ON.getKind()) {
1927  case OffsetOfNode::Array: {
1928  // Compute the index
1929  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1930  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1931  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1932  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1933 
1934  // Save the element type
1935  CurrentType =
1936  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1937 
1938  // Compute the element size
1939  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1940  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1941 
1942  // Multiply out to compute the result
1943  Offset = Builder.CreateMul(Idx, ElemSize);
1944  break;
1945  }
1946 
1947  case OffsetOfNode::Field: {
1948  FieldDecl *MemberDecl = ON.getField();
1949  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1950  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1951 
1952  // Compute the index of the field in its parent.
1953  unsigned i = 0;
1954  // FIXME: It would be nice if we didn't have to loop here!
1955  for (RecordDecl::field_iterator Field = RD->field_begin(),
1956  FieldEnd = RD->field_end();
1957  Field != FieldEnd; ++Field, ++i) {
1958  if (*Field == MemberDecl)
1959  break;
1960  }
1961  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1962 
1963  // Compute the offset to the field
1964  int64_t OffsetInt = RL.getFieldOffset(i) /
1965  CGF.getContext().getCharWidth();
1966  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1967 
1968  // Save the element type.
1969  CurrentType = MemberDecl->getType();
1970  break;
1971  }
1972 
1974  llvm_unreachable("dependent __builtin_offsetof");
1975 
1976  case OffsetOfNode::Base: {
1977  if (ON.getBase()->isVirtual()) {
1978  CGF.ErrorUnsupported(E, "virtual base in offsetof");
1979  continue;
1980  }
1981 
1982  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1983  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1984 
1985  // Save the element type.
1986  CurrentType = ON.getBase()->getType();
1987 
1988  // Compute the offset to the base.
1989  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1990  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1991  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1992  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1993  break;
1994  }
1995  }
1996  Result = Builder.CreateAdd(Result, Offset);
1997  }
1998  return Result;
1999 }
2000 
2001 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2002 /// argument of the sizeof expression as an integer.
2003 Value *
2004 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2005  const UnaryExprOrTypeTraitExpr *E) {
2006  QualType TypeToSize = E->getTypeOfArgument();
2007  if (E->getKind() == UETT_SizeOf) {
2008  if (const VariableArrayType *VAT =
2009  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2010  if (E->isArgumentType()) {
2011  // sizeof(type) - make sure to emit the VLA size.
2012  CGF.EmitVariablyModifiedType(TypeToSize);
2013  } else {
2014  // C99 6.5.3.4p2: If the argument is an expression of type
2015  // VLA, it is evaluated.
2016  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2017  }
2018 
2019  QualType eltType;
2020  llvm::Value *numElts;
2021  std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2022 
2023  llvm::Value *size = numElts;
2024 
2025  // Scale the number of non-VLA elements by the non-VLA element size.
2026  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2027  if (!eltSize.isOne())
2028  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2029 
2030  return size;
2031  }
2032  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2033  auto Alignment =
2034  CGF.getContext()
2035  .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2037  .getQuantity();
2038  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2039  }
2040 
2041  // If this isn't sizeof(vla), the result must be constant; use the constant
2042  // folding logic so we don't have to duplicate it here.
2043  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2044 }
2045 
2046 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2047  Expr *Op = E->getSubExpr();
2048  if (Op->getType()->isAnyComplexType()) {
2049  // If it's an l-value, load through the appropriate subobject l-value.
2050  // Note that we have to ask E because Op might be an l-value that
2051  // this won't work for, e.g. an Obj-C property.
2052  if (E->isGLValue())
2053  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2054  E->getExprLoc()).getScalarVal();
2055 
2056  // Otherwise, calculate and project.
2057  return CGF.EmitComplexExpr(Op, false, true).first;
2058  }
2059 
2060  return Visit(Op);
2061 }
2062 
2063 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2064  Expr *Op = E->getSubExpr();
2065  if (Op->getType()->isAnyComplexType()) {
2066  // If it's an l-value, load through the appropriate subobject l-value.
2067  // Note that we have to ask E because Op might be an l-value that
2068  // this won't work for, e.g. an Obj-C property.
2069  if (Op->isGLValue())
2070  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2071  E->getExprLoc()).getScalarVal();
2072 
2073  // Otherwise, calculate and project.
2074  return CGF.EmitComplexExpr(Op, true, false).second;
2075  }
2076 
2077  // __imag on a scalar returns zero. Emit the subexpr to ensure side
2078  // effects are evaluated, but not the actual value.
2079  if (Op->isGLValue())
2080  CGF.EmitLValue(Op);
2081  else
2082  CGF.EmitScalarExpr(Op, true);
2083  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2084 }
2085 
2086 //===----------------------------------------------------------------------===//
2087 // Binary Operators
2088 //===----------------------------------------------------------------------===//
2089 
2090 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2091  TestAndClearIgnoreResultAssign();
2092  BinOpInfo Result;
2093  Result.LHS = Visit(E->getLHS());
2094  Result.RHS = Visit(E->getRHS());
2095  Result.Ty = E->getType();
2096  Result.Opcode = E->getOpcode();
2097  Result.FPContractable = E->isFPContractable();
2098  Result.E = E;
2099  return Result;
2100 }
2101 
2102 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2103  const CompoundAssignOperator *E,
2104  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2105  Value *&Result) {
2106  QualType LHSTy = E->getLHS()->getType();
2107  BinOpInfo OpInfo;
2108 
2110  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2111 
2112  // Emit the RHS first. __block variables need to have the rhs evaluated
2113  // first, plus this should improve codegen a little.
2114  OpInfo.RHS = Visit(E->getRHS());
2115  OpInfo.Ty = E->getComputationResultType();
2116  OpInfo.Opcode = E->getOpcode();
2117  OpInfo.FPContractable = E->isFPContractable();
2118  OpInfo.E = E;
2119  // Load/convert the LHS.
2120  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2121 
2122  llvm::PHINode *atomicPHI = nullptr;
2123  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2124  QualType type = atomicTy->getValueType();
2125  if (!type->isBooleanType() && type->isIntegerType() &&
2126  !(type->isUnsignedIntegerType() &&
2127  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2128  CGF.getLangOpts().getSignedOverflowBehavior() !=
2130  llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2131  switch (OpInfo.Opcode) {
2132  // We don't have atomicrmw operands for *, %, /, <<, >>
2133  case BO_MulAssign: case BO_DivAssign:
2134  case BO_RemAssign:
2135  case BO_ShlAssign:
2136  case BO_ShrAssign:
2137  break;
2138  case BO_AddAssign:
2139  aop = llvm::AtomicRMWInst::Add;
2140  break;
2141  case BO_SubAssign:
2142  aop = llvm::AtomicRMWInst::Sub;
2143  break;
2144  case BO_AndAssign:
2146  break;
2147  case BO_XorAssign:
2148  aop = llvm::AtomicRMWInst::Xor;
2149  break;
2150  case BO_OrAssign:
2151  aop = llvm::AtomicRMWInst::Or;
2152  break;
2153  default:
2154  llvm_unreachable("Invalid compound assignment type");
2155  }
2156  if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2157  llvm::Value *amt = CGF.EmitToMemory(
2158  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2159  E->getExprLoc()),
2160  LHSTy);
2161  Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2162  llvm::SequentiallyConsistent);
2163  return LHSLV;
2164  }
2165  }
2166  // FIXME: For floating point types, we should be saving and restoring the
2167  // floating point environment in the loop.
2168  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2169  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2170  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2171  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2172  Builder.CreateBr(opBB);
2173  Builder.SetInsertPoint(opBB);
2174  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2175  atomicPHI->addIncoming(OpInfo.LHS, startBB);
2176  OpInfo.LHS = atomicPHI;
2177  }
2178  else
2179  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2180 
2181  SourceLocation Loc = E->getExprLoc();
2182  OpInfo.LHS =
2183  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2184 
2185  // Expand the binary operator.
2186  Result = (this->*Func)(OpInfo);
2187 
2188  // Convert the result back to the LHS type.
2189  Result =
2190  EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2191 
2192  if (atomicPHI) {
2193  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2194  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2195  auto Pair = CGF.EmitAtomicCompareExchange(
2196  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2197  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2198  llvm::Value *success = Pair.second;
2199  atomicPHI->addIncoming(old, opBB);
2200  Builder.CreateCondBr(success, contBB, opBB);
2201  Builder.SetInsertPoint(contBB);
2202  return LHSLV;
2203  }
2204 
2205  // Store the result value into the LHS lvalue. Bit-fields are handled
2206  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2207  // 'An assignment expression has the value of the left operand after the
2208  // assignment...'.
2209  if (LHSLV.isBitField())
2210  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2211  else
2212  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2213 
2214  return LHSLV;
2215 }
2216 
2217 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2218  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2219  bool Ignore = TestAndClearIgnoreResultAssign();
2220  Value *RHS;
2221  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2222 
2223  // If the result is clearly ignored, return now.
2224  if (Ignore)
2225  return nullptr;
2226 
2227  // The result of an assignment in C is the assigned r-value.
2228  if (!CGF.getLangOpts().CPlusPlus)
2229  return RHS;
2230 
2231  // If the lvalue is non-volatile, return the computed value of the assignment.
2232  if (!LHS.isVolatileQualified())
2233  return RHS;
2234 
2235  // Otherwise, reload the value.
2236  return EmitLoadOfLValue(LHS, E->getExprLoc());
2237 }
2238 
2239 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2240  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2242 
2243  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2244  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2245  SanitizerKind::IntegerDivideByZero));
2246  }
2247 
2248  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2249  Ops.Ty->hasSignedIntegerRepresentation()) {
2250  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2251 
2252  llvm::Value *IntMin =
2253  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2254  llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2255 
2256  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2257  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2258  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2259  Checks.push_back(
2260  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2261  }
2262 
2263  if (Checks.size() > 0)
2264  EmitBinOpCheck(Checks, Ops);
2265 }
2266 
2267 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2268  {
2269  CodeGenFunction::SanitizerScope SanScope(&CGF);
2270  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2271  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2272  Ops.Ty->isIntegerType()) {
2273  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2274  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2275  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2276  Ops.Ty->isRealFloatingType()) {
2277  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2278  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2279  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2280  Ops);
2281  }
2282  }
2283 
2284  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2285  llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2286  if (CGF.getLangOpts().OpenCL) {
2287  // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2288  llvm::Type *ValTy = Val->getType();
2289  if (ValTy->isFloatTy() ||
2290  (isa<llvm::VectorType>(ValTy) &&
2291  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2292  CGF.SetFPAccuracy(Val, 2.5);
2293  }
2294  return Val;
2295  }
2296  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2297  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2298  else
2299  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2300 }
2301 
2302 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2303  // Rem in C can't be a floating point type: C99 6.5.5p2.
2304  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2305  CodeGenFunction::SanitizerScope SanScope(&CGF);
2306  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2307 
2308  if (Ops.Ty->isIntegerType())
2309  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2310  }
2311 
2312  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2313  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2314  else
2315  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2316 }
2317 
2318 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2319  unsigned IID;
2320  unsigned OpID = 0;
2321 
2322  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2323  switch (Ops.Opcode) {
2324  case BO_Add:
2325  case BO_AddAssign:
2326  OpID = 1;
2327  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2328  llvm::Intrinsic::uadd_with_overflow;
2329  break;
2330  case BO_Sub:
2331  case BO_SubAssign:
2332  OpID = 2;
2333  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2334  llvm::Intrinsic::usub_with_overflow;
2335  break;
2336  case BO_Mul:
2337  case BO_MulAssign:
2338  OpID = 3;
2339  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2340  llvm::Intrinsic::umul_with_overflow;
2341  break;
2342  default:
2343  llvm_unreachable("Unsupported operation for overflow detection");
2344  }
2345  OpID <<= 1;
2346  if (isSigned)
2347  OpID |= 1;
2348 
2349  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2350 
2351  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2352 
2353  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2354  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2355  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2356 
2357  // Handle overflow with llvm.trap if no custom handler has been specified.
2358  const std::string *handlerName =
2359  &CGF.getLangOpts().OverflowHandler;
2360  if (handlerName->empty()) {
2361  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2362  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2363  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2364  CodeGenFunction::SanitizerScope SanScope(&CGF);
2365  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2366  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2367  : SanitizerKind::UnsignedIntegerOverflow;
2368  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2369  } else
2370  CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2371  return result;
2372  }
2373 
2374  // Branch in case of overflow.
2375  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2376  llvm::Function::iterator insertPt = initialBB->getIterator();
2377  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2378  &*std::next(insertPt));
2379  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2380 
2381  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2382 
2383  // If an overflow handler is set, then we want to call it and then use its
2384  // result, if it returns.
2385  Builder.SetInsertPoint(overflowBB);
2386 
2387  // Get the overflow handler.
2388  llvm::Type *Int8Ty = CGF.Int8Ty;
2389  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2390  llvm::FunctionType *handlerTy =
2391  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2392  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2393 
2394  // Sign extend the args to 64-bit, so that we can use the same handler for
2395  // all types of overflow.
2396  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2397  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2398 
2399  // Call the handler with the two arguments, the operation, and the size of
2400  // the result.
2401  llvm::Value *handlerArgs[] = {
2402  lhs,
2403  rhs,
2404  Builder.getInt8(OpID),
2405  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2406  };
2407  llvm::Value *handlerResult =
2408  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2409 
2410  // Truncate the result back to the desired size.
2411  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2412  Builder.CreateBr(continueBB);
2413 
2414  Builder.SetInsertPoint(continueBB);
2415  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2416  phi->addIncoming(result, initialBB);
2417  phi->addIncoming(handlerResult, overflowBB);
2418 
2419  return phi;
2420 }
2421 
2422 /// Emit pointer + index arithmetic.
2424  const BinOpInfo &op,
2425  bool isSubtraction) {
2426  // Must have binary (not unary) expr here. Unary pointer
2427  // increment/decrement doesn't use this path.
2428  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2429 
2430  Value *pointer = op.LHS;
2431  Expr *pointerOperand = expr->getLHS();
2432  Value *index = op.RHS;
2433  Expr *indexOperand = expr->getRHS();
2434 
2435  // In a subtraction, the LHS is always the pointer.
2436  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2437  std::swap(pointer, index);
2438  std::swap(pointerOperand, indexOperand);
2439  }
2440 
2441  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2442  if (width != CGF.PointerWidthInBits) {
2443  // Zero-extend or sign-extend the pointer value according to
2444  // whether the index is signed or not.
2445  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2446  index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2447  "idx.ext");
2448  }
2449 
2450  // If this is subtraction, negate the index.
2451  if (isSubtraction)
2452  index = CGF.Builder.CreateNeg(index, "idx.neg");
2453 
2454  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2455  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2456  /*Accessed*/ false);
2457 
2458  const PointerType *pointerType
2459  = pointerOperand->getType()->getAs<PointerType>();
2460  if (!pointerType) {
2461  QualType objectType = pointerOperand->getType()
2463  ->getPointeeType();
2464  llvm::Value *objectSize
2465  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2466 
2467  index = CGF.Builder.CreateMul(index, objectSize);
2468 
2469  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2470  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2471  return CGF.Builder.CreateBitCast(result, pointer->getType());
2472  }
2473 
2474  QualType elementType = pointerType->getPointeeType();
2475  if (const VariableArrayType *vla
2476  = CGF.getContext().getAsVariableArrayType(elementType)) {
2477  // The element count here is the total number of non-VLA elements.
2478  llvm::Value *numElements = CGF.getVLASize(vla).first;
2479 
2480  // Effectively, the multiply by the VLA size is part of the GEP.
2481  // GEP indexes are signed, and scaling an index isn't permitted to
2482  // signed-overflow, so we use the same semantics for our explicit
2483  // multiply. We suppress this if overflow is not undefined behavior.
2484  if (CGF.getLangOpts().isSignedOverflowDefined()) {
2485  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2486  pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2487  } else {
2488  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2489  pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2490  }
2491  return pointer;
2492  }
2493 
2494  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2495  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2496  // future proof.
2497  if (elementType->isVoidType() || elementType->isFunctionType()) {
2498  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2499  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2500  return CGF.Builder.CreateBitCast(result, pointer->getType());
2501  }
2502 
2504  return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2505 
2506  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2507 }
2508 
2509 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2510 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2511 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2512 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2513 // efficient operations.
2514 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2515  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2516  bool negMul, bool negAdd) {
2517  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2518 
2519  Value *MulOp0 = MulOp->getOperand(0);
2520  Value *MulOp1 = MulOp->getOperand(1);
2521  if (negMul) {
2522  MulOp0 =
2523  Builder.CreateFSub(
2524  llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2525  "neg");
2526  } else if (negAdd) {
2527  Addend =
2528  Builder.CreateFSub(
2529  llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2530  "neg");
2531  }
2532 
2533  Value *FMulAdd = Builder.CreateCall(
2534  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2535  {MulOp0, MulOp1, Addend});
2536  MulOp->eraseFromParent();
2537 
2538  return FMulAdd;
2539 }
2540 
2541 // Check whether it would be legal to emit an fmuladd intrinsic call to
2542 // represent op and if so, build the fmuladd.
2543 //
2544 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2545 // Does NOT check the type of the operation - it's assumed that this function
2546 // will be called from contexts where it's known that the type is contractable.
2547 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2548  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2549  bool isSub=false) {
2550 
2551  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2552  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2553  "Only fadd/fsub can be the root of an fmuladd.");
2554 
2555  // Check whether this op is marked as fusable.
2556  if (!op.FPContractable)
2557  return nullptr;
2558 
2559  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2560  // either disabled, or handled entirely by the LLVM backend).
2561  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2562  return nullptr;
2563 
2564  // We have a potentially fusable op. Look for a mul on one of the operands.
2565  // Also, make sure that the mul result isn't used directly. In that case,
2566  // there's no point creating a muladd operation.
2567  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2568  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2569  LHSBinOp->use_empty())
2570  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2571  }
2572  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2573  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2574  RHSBinOp->use_empty())
2575  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2576  }
2577 
2578  return nullptr;
2579 }
2580 
2581 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2582  if (op.LHS->getType()->isPointerTy() ||
2583  op.RHS->getType()->isPointerTy())
2584  return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2585 
2586  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2587  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2589  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2591  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2592  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2593  // Fall through.
2595  return EmitOverflowCheckedBinOp(op);
2596  }
2597  }
2598 
2599  if (op.Ty->isUnsignedIntegerType() &&
2600  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2601  return EmitOverflowCheckedBinOp(op);
2602 
2603  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2604  // Try to form an fmuladd.
2605  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2606  return FMulAdd;
2607 
2608  return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2609  }
2610 
2611  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2612 }
2613 
2614 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2615  // The LHS is always a pointer if either side is.
2616  if (!op.LHS->getType()->isPointerTy()) {
2617  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2618  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2620  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2622  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2623  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2624  // Fall through.
2626  return EmitOverflowCheckedBinOp(op);
2627  }
2628  }
2629 
2630  if (op.Ty->isUnsignedIntegerType() &&
2631  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2632  return EmitOverflowCheckedBinOp(op);
2633 
2634  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2635  // Try to form an fmuladd.
2636  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2637  return FMulAdd;
2638  return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2639  }
2640 
2641  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2642  }
2643 
2644  // If the RHS is not a pointer, then we have normal pointer
2645  // arithmetic.
2646  if (!op.RHS->getType()->isPointerTy())
2647  return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2648 
2649  // Otherwise, this is a pointer subtraction.
2650 
2651  // Do the raw subtraction part.
2652  llvm::Value *LHS
2653  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2654  llvm::Value *RHS
2655  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2656  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2657 
2658  // Okay, figure out the element size.
2659  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2660  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2661 
2662  llvm::Value *divisor = nullptr;
2663 
2664  // For a variable-length array, this is going to be non-constant.
2665  if (const VariableArrayType *vla
2666  = CGF.getContext().getAsVariableArrayType(elementType)) {
2667  llvm::Value *numElements;
2668  std::tie(numElements, elementType) = CGF.getVLASize(vla);
2669 
2670  divisor = numElements;
2671 
2672  // Scale the number of non-VLA elements by the non-VLA element size.
2673  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2674  if (!eltSize.isOne())
2675  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2676 
2677  // For everything elese, we can just compute it, safe in the
2678  // assumption that Sema won't let anything through that we can't
2679  // safely compute the size of.
2680  } else {
2681  CharUnits elementSize;
2682  // Handle GCC extension for pointer arithmetic on void* and
2683  // function pointer types.
2684  if (elementType->isVoidType() || elementType->isFunctionType())
2685  elementSize = CharUnits::One();
2686  else
2687  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2688 
2689  // Don't even emit the divide for element size of 1.
2690  if (elementSize.isOne())
2691  return diffInChars;
2692 
2693  divisor = CGF.CGM.getSize(elementSize);
2694  }
2695 
2696  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2697  // pointer difference in C is only defined in the case where both operands
2698  // are pointing to elements of an array.
2699  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2700 }
2701 
2702 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2703  llvm::IntegerType *Ty;
2704  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2705  Ty = cast<llvm::IntegerType>(VT->getElementType());
2706  else
2707  Ty = cast<llvm::IntegerType>(LHS->getType());
2708  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2709 }
2710 
2711 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2712  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2713  // RHS to the same size as the LHS.
2714  Value *RHS = Ops.RHS;
2715  if (Ops.LHS->getType() != RHS->getType())
2716  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2717 
2718  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2719  Ops.Ty->hasSignedIntegerRepresentation();
2720  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2721  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2722  if (CGF.getLangOpts().OpenCL)
2723  RHS =
2724  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2725  else if ((SanitizeBase || SanitizeExponent) &&
2726  isa<llvm::IntegerType>(Ops.LHS->getType())) {
2727  CodeGenFunction::SanitizerScope SanScope(&CGF);
2729  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2730  llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2731 
2732  if (SanitizeExponent) {
2733  Checks.push_back(
2734  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2735  }
2736 
2737  if (SanitizeBase) {
2738  // Check whether we are shifting any non-zero bits off the top of the
2739  // integer. We only emit this check if exponent is valid - otherwise
2740  // instructions below will have undefined behavior themselves.
2741  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2742  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2743  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2744  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2745  CGF.EmitBlock(CheckShiftBase);
2746  llvm::Value *BitsShiftedOff =
2747  Builder.CreateLShr(Ops.LHS,
2748  Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2749  /*NUW*/true, /*NSW*/true),
2750  "shl.check");
2751  if (CGF.getLangOpts().CPlusPlus) {
2752  // In C99, we are not permitted to shift a 1 bit into the sign bit.
2753  // Under C++11's rules, shifting a 1 bit into the sign bit is
2754  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2755  // define signed left shifts, so we use the C99 and C++11 rules there).
2756  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2757  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2758  }
2759  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2760  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2761  CGF.EmitBlock(Cont);
2762  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2763  BaseCheck->addIncoming(Builder.getTrue(), Orig);
2764  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2765  Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2766  }
2767 
2768  assert(!Checks.empty());
2769  EmitBinOpCheck(Checks, Ops);
2770  }
2771 
2772  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2773 }
2774 
2775 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2776  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2777  // RHS to the same size as the LHS.
2778  Value *RHS = Ops.RHS;
2779  if (Ops.LHS->getType() != RHS->getType())
2780  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2781 
2782  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2783  if (CGF.getLangOpts().OpenCL)
2784  RHS =
2785  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2786  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2787  isa<llvm::IntegerType>(Ops.LHS->getType())) {
2788  CodeGenFunction::SanitizerScope SanScope(&CGF);
2789  llvm::Value *Valid =
2790  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2791  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2792  }
2793 
2794  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2795  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2796  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2797 }
2798 
2800 // return corresponding comparison intrinsic for given vector type
2802  BuiltinType::Kind ElemKind) {
2803  switch (ElemKind) {
2804  default: llvm_unreachable("unexpected element type");
2805  case BuiltinType::Char_U:
2806  case BuiltinType::UChar:
2807  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2808  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2809  case BuiltinType::Char_S:
2810  case BuiltinType::SChar:
2811  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2812  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2813  case BuiltinType::UShort:
2814  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2815  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2816  case BuiltinType::Short:
2817  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2818  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2819  case BuiltinType::UInt:
2820  case BuiltinType::ULong:
2821  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2822  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2823  case BuiltinType::Int:
2824  case BuiltinType::Long:
2825  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2826  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2827  case BuiltinType::Float:
2828  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2829  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2830  }
2831 }
2832 
2833 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2834  llvm::CmpInst::Predicate UICmpOpc,
2835  llvm::CmpInst::Predicate SICmpOpc,
2836  llvm::CmpInst::Predicate FCmpOpc) {
2837  TestAndClearIgnoreResultAssign();
2838  Value *Result;
2839  QualType LHSTy = E->getLHS()->getType();
2840  QualType RHSTy = E->getRHS()->getType();
2841  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2842  assert(E->getOpcode() == BO_EQ ||
2843  E->getOpcode() == BO_NE);
2844  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2845  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2846  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2847  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2848  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2849  Value *LHS = Visit(E->getLHS());
2850  Value *RHS = Visit(E->getRHS());
2851 
2852  // If AltiVec, the comparison results in a numeric type, so we use
2853  // intrinsics comparing vectors and giving 0 or 1 as a result
2854  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2855  // constants for mapping CR6 register bits to predicate result
2856  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2857 
2858  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2859 
2860  // in several cases vector arguments order will be reversed
2861  Value *FirstVecArg = LHS,
2862  *SecondVecArg = RHS;
2863 
2864  QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2865  const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2866  BuiltinType::Kind ElementKind = BTy->getKind();
2867 
2868  switch(E->getOpcode()) {
2869  default: llvm_unreachable("is not a comparison operation");
2870  case BO_EQ:
2871  CR6 = CR6_LT;
2872  ID = GetIntrinsic(VCMPEQ, ElementKind);
2873  break;
2874  case BO_NE:
2875  CR6 = CR6_EQ;
2876  ID = GetIntrinsic(VCMPEQ, ElementKind);
2877  break;
2878  case BO_LT:
2879  CR6 = CR6_LT;
2880  ID = GetIntrinsic(VCMPGT, ElementKind);
2881  std::swap(FirstVecArg, SecondVecArg);
2882  break;
2883  case BO_GT:
2884  CR6 = CR6_LT;
2885  ID = GetIntrinsic(VCMPGT, ElementKind);
2886  break;
2887  case BO_LE:
2888  if (ElementKind == BuiltinType::Float) {
2889  CR6 = CR6_LT;
2890  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2891  std::swap(FirstVecArg, SecondVecArg);
2892  }
2893  else {
2894  CR6 = CR6_EQ;
2895  ID = GetIntrinsic(VCMPGT, ElementKind);
2896  }
2897  break;
2898  case BO_GE:
2899  if (ElementKind == BuiltinType::Float) {
2900  CR6 = CR6_LT;
2901  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2902  }
2903  else {
2904  CR6 = CR6_EQ;
2905  ID = GetIntrinsic(VCMPGT, ElementKind);
2906  std::swap(FirstVecArg, SecondVecArg);
2907  }
2908  break;
2909  }
2910 
2911  Value *CR6Param = Builder.getInt32(CR6);
2912  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2913  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2914  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2915  E->getExprLoc());
2916  }
2917 
2918  if (LHS->getType()->isFPOrFPVectorTy()) {
2919  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2920  } else if (LHSTy->hasSignedIntegerRepresentation()) {
2921  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2922  } else {
2923  // Unsigned integers and pointers.
2924  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2925  }
2926 
2927  // If this is a vector comparison, sign extend the result to the appropriate
2928  // vector integer type and return it (don't convert to bool).
2929  if (LHSTy->isVectorType())
2930  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2931 
2932  } else {
2933  // Complex Comparison: can only be an equality comparison.
2935  QualType CETy;
2936  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2937  LHS = CGF.EmitComplexExpr(E->getLHS());
2938  CETy = CTy->getElementType();
2939  } else {
2940  LHS.first = Visit(E->getLHS());
2941  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2942  CETy = LHSTy;
2943  }
2944  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2945  RHS = CGF.EmitComplexExpr(E->getRHS());
2946  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2947  CTy->getElementType()) &&
2948  "The element types must always match.");
2949  (void)CTy;
2950  } else {
2951  RHS.first = Visit(E->getRHS());
2952  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2953  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2954  "The element types must always match.");
2955  }
2956 
2957  Value *ResultR, *ResultI;
2958  if (CETy->isRealFloatingType()) {
2959  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2960  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2961  } else {
2962  // Complex comparisons can only be equality comparisons. As such, signed
2963  // and unsigned opcodes are the same.
2964  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2965  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2966  }
2967 
2968  if (E->getOpcode() == BO_EQ) {
2969  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2970  } else {
2971  assert(E->getOpcode() == BO_NE &&
2972  "Complex comparison other than == or != ?");
2973  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2974  }
2975  }
2976 
2977  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2978  E->getExprLoc());
2979 }
2980 
2981 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2982  bool Ignore = TestAndClearIgnoreResultAssign();
2983 
2984  Value *RHS;
2985  LValue LHS;
2986 
2987  switch (E->getLHS()->getType().getObjCLifetime()) {
2989  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2990  break;
2991 
2993  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2994  break;
2995 
2996  case Qualifiers::OCL_Weak:
2997  RHS = Visit(E->getRHS());
2998  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2999  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3000  break;
3001 
3002  // No reason to do any of these differently.
3003  case Qualifiers::OCL_None:
3005  // __block variables need to have the rhs evaluated first, plus
3006  // this should improve codegen just a little.
3007  RHS = Visit(E->getRHS());
3008  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3009 
3010  // Store the value into the LHS. Bit-fields are handled specially
3011  // because the result is altered by the store, i.e., [C99 6.5.16p1]
3012  // 'An assignment expression has the value of the left operand after
3013  // the assignment...'.
3014  if (LHS.isBitField())
3015  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3016  else
3017  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3018  }
3019 
3020  // If the result is clearly ignored, return now.
3021  if (Ignore)
3022  return nullptr;
3023 
3024  // The result of an assignment in C is the assigned r-value.
3025  if (!CGF.getLangOpts().CPlusPlus)
3026  return RHS;
3027 
3028  // If the lvalue is non-volatile, return the computed value of the assignment.
3029  if (!LHS.isVolatileQualified())
3030  return RHS;
3031 
3032  // Otherwise, reload the value.
3033  return EmitLoadOfLValue(LHS, E->getExprLoc());
3034 }
3035 
3036 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3037  // Perform vector logical and on comparisons with zero vectors.
3038  if (E->getType()->isVectorType()) {
3039  CGF.incrementProfileCounter(E);
3040 
3041  Value *LHS = Visit(E->getLHS());
3042  Value *RHS = Visit(E->getRHS());
3043  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3044  if (LHS->getType()->isFPOrFPVectorTy()) {
3045  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3046  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3047  } else {
3048  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3049  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3050  }
3051  Value *And = Builder.CreateAnd(LHS, RHS);
3052  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3053  }
3054 
3055  llvm::Type *ResTy = ConvertType(E->getType());
3056 
3057  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3058  // If we have 1 && X, just emit X without inserting the control flow.
3059  bool LHSCondVal;
3060  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3061  if (LHSCondVal) { // If we have 1 && X, just emit X.
3062  CGF.incrementProfileCounter(E);
3063 
3064  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3065  // ZExt result to int or bool.
3066  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3067  }
3068 
3069  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3070  if (!CGF.ContainsLabel(E->getRHS()))
3071  return llvm::Constant::getNullValue(ResTy);
3072  }
3073 
3074  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3075  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3076 
3078 
3079  // Branch on the LHS first. If it is false, go to the failure (cont) block.
3080  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3081  CGF.getProfileCount(E->getRHS()));
3082 
3083  // Any edges into the ContBlock are now from an (indeterminate number of)
3084  // edges from this first condition. All of these values will be false. Start
3085  // setting up the PHI node in the Cont Block for this.
3086  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3087  "", ContBlock);
3088  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3089  PI != PE; ++PI)
3090  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3091 
3092  eval.begin(CGF);
3093  CGF.EmitBlock(RHSBlock);
3094  CGF.incrementProfileCounter(E);
3095  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3096  eval.end(CGF);
3097 
3098  // Reaquire the RHS block, as there may be subblocks inserted.
3099  RHSBlock = Builder.GetInsertBlock();
3100 
3101  // Emit an unconditional branch from this block to ContBlock.
3102  {
3103  // There is no need to emit line number for unconditional branch.
3104  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3105  CGF.EmitBlock(ContBlock);
3106  }
3107  // Insert an entry into the phi node for the edge with the value of RHSCond.
3108  PN->addIncoming(RHSCond, RHSBlock);
3109 
3110  // ZExt result to int.
3111  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3112 }
3113 
3114 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3115  // Perform vector logical or on comparisons with zero vectors.
3116  if (E->getType()->isVectorType()) {
3117  CGF.incrementProfileCounter(E);
3118 
3119  Value *LHS = Visit(E->getLHS());
3120  Value *RHS = Visit(E->getRHS());
3121  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3122  if (LHS->getType()->isFPOrFPVectorTy()) {
3123  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3124  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3125  } else {
3126  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3127  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3128  }
3129  Value *Or = Builder.CreateOr(LHS, RHS);
3130  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3131  }
3132 
3133  llvm::Type *ResTy = ConvertType(E->getType());
3134 
3135  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3136  // If we have 0 || X, just emit X without inserting the control flow.
3137  bool LHSCondVal;
3138  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3139  if (!LHSCondVal) { // If we have 0 || X, just emit X.
3140  CGF.incrementProfileCounter(E);
3141 
3142  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3143  // ZExt result to int or bool.
3144  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3145  }
3146 
3147  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3148  if (!CGF.ContainsLabel(E->getRHS()))
3149  return llvm::ConstantInt::get(ResTy, 1);
3150  }
3151 
3152  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3153  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3154 
3156 
3157  // Branch on the LHS first. If it is true, go to the success (cont) block.
3158  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3159  CGF.getCurrentProfileCount() -
3160  CGF.getProfileCount(E->getRHS()));
3161 
3162  // Any edges into the ContBlock are now from an (indeterminate number of)
3163  // edges from this first condition. All of these values will be true. Start
3164  // setting up the PHI node in the Cont Block for this.
3165  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3166  "", ContBlock);
3167  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3168  PI != PE; ++PI)
3169  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3170 
3171  eval.begin(CGF);
3172 
3173  // Emit the RHS condition as a bool value.
3174  CGF.EmitBlock(RHSBlock);
3175  CGF.incrementProfileCounter(E);
3176  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3177 
3178  eval.end(CGF);
3179 
3180  // Reaquire the RHS block, as there may be subblocks inserted.
3181  RHSBlock = Builder.GetInsertBlock();
3182 
3183  // Emit an unconditional branch from this block to ContBlock. Insert an entry
3184  // into the phi node for the edge with the value of RHSCond.
3185  CGF.EmitBlock(ContBlock);
3186  PN->addIncoming(RHSCond, RHSBlock);
3187 
3188  // ZExt result to int.
3189  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3190 }
3191 
3192 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3193  CGF.EmitIgnoredExpr(E->getLHS());
3194  CGF.EnsureInsertPoint();
3195  return Visit(E->getRHS());
3196 }
3197 
3198 //===----------------------------------------------------------------------===//
3199 // Other Operators
3200 //===----------------------------------------------------------------------===//
3201 
3202 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3203 /// expression is cheap enough and side-effect-free enough to evaluate
3204 /// unconditionally instead of conditionally. This is used to convert control
3205 /// flow into selects in some cases.
3207  CodeGenFunction &CGF) {
3208  // Anything that is an integer or floating point constant is fine.
3209  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3210 
3211  // Even non-volatile automatic variables can't be evaluated unconditionally.
3212  // Referencing a thread_local may cause non-trivial initialization work to
3213  // occur. If we're inside a lambda and one of the variables is from the scope
3214  // outside the lambda, that function may have returned already. Reading its
3215  // locals is a bad idea. Also, these reads may introduce races there didn't
3216  // exist in the source-level program.
3217 }
3218 
3219 
3220 Value *ScalarExprEmitter::
3221 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3222  TestAndClearIgnoreResultAssign();
3223 
3224  // Bind the common expression if necessary.
3225  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3226 
3227  Expr *condExpr = E->getCond();
3228  Expr *lhsExpr = E->getTrueExpr();
3229  Expr *rhsExpr = E->getFalseExpr();
3230 
3231  // If the condition constant folds and can be elided, try to avoid emitting
3232  // the condition and the dead arm.
3233  bool CondExprBool;
3234  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3235  Expr *live = lhsExpr, *dead = rhsExpr;
3236  if (!CondExprBool) std::swap(live, dead);
3237 
3238  // If the dead side doesn't have labels we need, just emit the Live part.
3239  if (!CGF.ContainsLabel(dead)) {
3240  if (CondExprBool)
3241  CGF.incrementProfileCounter(E);
3242  Value *Result = Visit(live);
3243 
3244  // If the live part is a throw expression, it acts like it has a void
3245  // type, so evaluating it returns a null Value*. However, a conditional
3246  // with non-void type must return a non-null Value*.
3247  if (!Result && !E->getType()->isVoidType())
3248  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3249 
3250  return Result;
3251  }
3252  }
3253 
3254  // OpenCL: If the condition is a vector, we can treat this condition like
3255  // the select function.
3256  if (CGF.getLangOpts().OpenCL
3257  && condExpr->getType()->isVectorType()) {
3258  CGF.incrementProfileCounter(E);
3259 
3260  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3261  llvm::Value *LHS = Visit(lhsExpr);
3262  llvm::Value *RHS = Visit(rhsExpr);
3263 
3264  llvm::Type *condType = ConvertType(condExpr->getType());
3265  llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3266 
3267  unsigned numElem = vecTy->getNumElements();
3268  llvm::Type *elemType = vecTy->getElementType();
3269 
3270  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3271  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3272  llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3273  llvm::VectorType::get(elemType,
3274  numElem),
3275  "sext");
3276  llvm::Value *tmp2 = Builder.CreateNot(tmp);
3277 
3278  // Cast float to int to perform ANDs if necessary.
3279  llvm::Value *RHSTmp = RHS;
3280  llvm::Value *LHSTmp = LHS;
3281  bool wasCast = false;
3282  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3283  if (rhsVTy->getElementType()->isFloatingPointTy()) {
3284  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3285  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3286  wasCast = true;
3287  }
3288 
3289  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3290  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3291  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3292  if (wasCast)
3293  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3294 
3295  return tmp5;
3296  }
3297 
3298  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3299  // select instead of as control flow. We can only do this if it is cheap and
3300  // safe to evaluate the LHS and RHS unconditionally.
3301  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3303  CGF.incrementProfileCounter(E);
3304 
3305  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3306  llvm::Value *LHS = Visit(lhsExpr);
3307  llvm::Value *RHS = Visit(rhsExpr);
3308  if (!LHS) {
3309  // If the conditional has void type, make sure we return a null Value*.
3310  assert(!RHS && "LHS and RHS types must match");
3311  return nullptr;
3312  }
3313  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3314  }
3315 
3316  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3317  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3318  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3319 
3321  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3322  CGF.getProfileCount(lhsExpr));
3323 
3324  CGF.EmitBlock(LHSBlock);
3325  CGF.incrementProfileCounter(E);
3326  eval.begin(CGF);
3327  Value *LHS = Visit(lhsExpr);
3328  eval.end(CGF);
3329 
3330  LHSBlock = Builder.GetInsertBlock();
3331  Builder.CreateBr(ContBlock);
3332 
3333  CGF.EmitBlock(RHSBlock);
3334  eval.begin(CGF);
3335  Value *RHS = Visit(rhsExpr);
3336  eval.end(CGF);
3337 
3338  RHSBlock = Builder.GetInsertBlock();
3339  CGF.EmitBlock(ContBlock);
3340 
3341  // If the LHS or RHS is a throw expression, it will be legitimately null.
3342  if (!LHS)
3343  return RHS;
3344  if (!RHS)
3345  return LHS;
3346 
3347  // Create a PHI node for the real part.
3348  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3349  PN->addIncoming(LHS, LHSBlock);
3350  PN->addIncoming(RHS, RHSBlock);
3351  return PN;
3352 }
3353 
3354 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3355  return Visit(E->getChosenSubExpr());
3356 }
3357 
3358 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3359  QualType Ty = VE->getType();
3360 
3361  if (Ty->isVariablyModifiedType())
3362  CGF.EmitVariablyModifiedType(Ty);
3363 
3364  Address ArgValue = Address::invalid();
3365  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3366 
3367  llvm::Type *ArgTy = ConvertType(VE->getType());
3368 
3369  // If EmitVAArg fails, we fall back to the LLVM instruction.
3370  if (!ArgPtr.isValid())
3371  return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3372 
3373  // FIXME Volatility.
3374  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3375 
3376  // If EmitVAArg promoted the type, we must truncate it.
3377  if (ArgTy != Val->getType()) {
3378  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3379  Val = Builder.CreateIntToPtr(Val, ArgTy);
3380  else
3381  Val = Builder.CreateTrunc(Val, ArgTy);
3382  }
3383 
3384  return Val;
3385 }
3386 
3387 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3388  return CGF.EmitBlockLiteral(block);
3389 }
3390 
3391 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3392  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3393  llvm::Type *DstTy = ConvertType(E->getType());
3394 
3395  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3396  // a shuffle vector instead of a bitcast.
3397  llvm::Type *SrcTy = Src->getType();
3398  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3399  unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3400  unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3401  if ((numElementsDst == 3 && numElementsSrc == 4)
3402  || (numElementsDst == 4 && numElementsSrc == 3)) {
3403 
3404 
3405  // In the case of going from int4->float3, a bitcast is needed before
3406  // doing a shuffle.
3407  llvm::Type *srcElemTy =
3408  cast<llvm::VectorType>(SrcTy)->getElementType();
3409  llvm::Type *dstElemTy =
3410  cast<llvm::VectorType>(DstTy)->getElementType();
3411 
3412  if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3413  || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3414  // Create a float type of the same size as the source or destination.
3415  llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3416  numElementsSrc);
3417 
3418  Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3419  }
3420 
3421  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3422 
3424  Args.push_back(Builder.getInt32(0));
3425  Args.push_back(Builder.getInt32(1));
3426  Args.push_back(Builder.getInt32(2));
3427 
3428  if (numElementsDst == 4)
3429  Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3430 
3431  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3432 
3433  return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3434  }
3435  }
3436 
3437  return Builder.CreateBitCast(Src, DstTy, "astype");
3438 }
3439 
3440 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3441  return CGF.EmitAtomicExpr(E).getScalarVal();
3442 }
3443 
3444 //===----------------------------------------------------------------------===//
3445 // Entry Point into this File
3446 //===----------------------------------------------------------------------===//
3447 
3448 /// Emit the computation of the specified expression of scalar type, ignoring
3449 /// the result.
3450 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3451  assert(E && hasScalarEvaluationKind(E->getType()) &&
3452  "Invalid scalar expression to emit");
3453 
3454  return ScalarExprEmitter(*this, IgnoreResultAssign)
3455  .Visit(const_cast<Expr *>(E));
3456 }
3457 
3458 /// Emit a conversion from the specified type to the specified destination type,
3459 /// both of which are LLVM scalar types.
3461  QualType DstTy,
3462  SourceLocation Loc) {
3463  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3464  "Invalid scalar expression to emit");
3465  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3466 }
3467 
3468 /// Emit a conversion from the specified complex type to the specified
3469 /// destination type, where the destination type is an LLVM scalar type.
3471  QualType SrcTy,
3472  QualType DstTy,
3473  SourceLocation Loc) {
3474  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3475  "Invalid complex -> scalar conversion");
3476  return ScalarExprEmitter(*this)
3477  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3478 }
3479 
3480 
3483  bool isInc, bool isPre) {
3484  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3485 }
3486 
3488  // object->isa or (*object).isa
3489  // Generate code as for: *(Class*)object
3490 
3491  Expr *BaseExpr = E->getBase();
3492  Address Addr = Address::invalid();
3493  if (BaseExpr->isRValue()) {
3494  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3495  } else {
3496  Addr = EmitLValue(BaseExpr).getAddress();
3497  }
3498 
3499  // Cast the address to Class*.
3500  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3501  return MakeAddrLValue(Addr, E->getType());
3502 }
3503 
3504 
3506  const CompoundAssignOperator *E) {
3507  ScalarExprEmitter Scalar(*this);
3508  Value *Result = nullptr;
3509  switch (E->getOpcode()) {
3510 #define COMPOUND_OP(Op) \
3511  case BO_##Op##Assign: \
3512  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3513  Result)
3514  COMPOUND_OP(Mul);
3515  COMPOUND_OP(Div);
3516  COMPOUND_OP(Rem);
3517  COMPOUND_OP(Add);
3518  COMPOUND_OP(Sub);
3519  COMPOUND_OP(Shl);
3520  COMPOUND_OP(Shr);
3521  COMPOUND_OP(And);
3522  COMPOUND_OP(Xor);
3523  COMPOUND_OP(Or);
3524 #undef COMPOUND_OP
3525 
3526  case BO_PtrMemD:
3527  case BO_PtrMemI:
3528  case BO_Mul:
3529  case BO_Div:
3530  case BO_Rem:
3531  case BO_Add:
3532  case BO_Sub:
3533  case BO_Shl:
3534  case BO_Shr:
3535  case BO_LT:
3536  case BO_GT:
3537  case BO_LE:
3538  case BO_GE:
3539  case BO_EQ:
3540  case BO_NE:
3541  case BO_And:
3542  case BO_Xor:
3543  case BO_Or:
3544  case BO_LAnd:
3545  case BO_LOr:
3546  case BO_Assign:
3547  case BO_Comma:
3548  llvm_unreachable("Not valid compound assignment operators");
3549  }
3550 
3551  llvm_unreachable("Unhandled compound assignment operator");
3552 }
Kind getKind() const
Definition: Type.h:2028
Defines the clang::ASTContext interface.
unsigned getNumInits() const
Definition: Expr.h:3754
CastKind getCastKind() const
Definition: Expr.h:2658
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:489
CK_LValueToRValue - A conversion which causes the extraction of an r-value from the operand gl-value...
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
Definition: ASTMatchers.h:1192
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc)
bool isNullPtrType() const
Definition: Type.h:5559
bool isSignedOverflowDefined() const
Definition: LangOptions.h:132
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2147
A (possibly-)qualified type.
Definition: Type.h:575
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:206
llvm::Value * getPointer() const
Definition: CGValue.h:327
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:177
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3011
bool getValue() const
Definition: ExprCXX.h:467
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:252
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:3440
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2191
CompoundStmt * getSubStmt()
Definition: Expr.h:3374
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
static llvm::Constant * getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
bool isArgumentType() const
Definition: Expr.h:1996
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:171
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:1902
unsigned getPackLength() const
Retrieve the length of the parameter pack.
Definition: ExprCXX.h:3632
CK_ToUnion - The GCC cast-to-union extension.
Address getAddress() const
Definition: CGValue.h:331
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1605
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:1814
CK_BaseToDerivedMemberPointer - Member pointer in base class to member pointer in derived class...
const Expr * getResultExpr() const
The generic selection's result expression.
Definition: Expr.h:4494
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:4861
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent...
Definition: ExprCXX.h:2275
CK_FloatingToIntegral - Floating point to integral.
bool isBooleanType() const
Definition: Type.h:5609
const LangOptions & getLangOpts() const
[ARC] Consumes a retainable object pointer that has just been produced, e.g.
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:3864
static Value * buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
#define COMPOUND_OP(Op)
CK_IntegralToFloating - Integral to floating point.
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:1923
bool hadArrayRangeDesignator() const
Definition: Expr.h:3871
CK_IntegralCast - A cast between integral types (other than to boolean).
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
Definition: ExprObjC.h:1383
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2540
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
bool isCanonical() const
Definition: Type.h:5133
field_iterator field_begin() const
Definition: Decl.cpp:3746
CK_Dynamic - A C++ dynamic_cast.
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:1991
CK_Dependent - A conversion which cannot yet be analyzed because either the expression or target type...
unsigned getValue() const
Definition: Expr.h:1324
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:900
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:2847
bool isVoidType() const
Definition: Type.h:5546
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
Definition: CGExpr.cpp:718
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3166
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3400
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4381
bool isVolatileQualified() const
Definition: CGValue.h:252
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1766
Converts between different integral complex types.
bool getValue() const
Definition: ExprCXX.h:3456
bool isReferenceType() const
Definition: Type.h:5314
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2209
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
Converting between two Objective-C object types, which can occur when performing reference binding to...
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that that type refers to...
Definition: Type.cpp:1507
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3602
CK_FloatingCast - Casting between floating types of different size.
[ARC] Causes a value of block type to be copied to the heap, if it is not already there...
CK_VectorSplat - A conversion from an arithmetic type to a vector of that element type...
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:3451
Expr * getSubExpr()
Definition: Expr.h:2662
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:144
CK_NullToPointer - Null pointer constant to pointer, ObjC pointer, or block pointer.
CK_PointerToIntegral - Pointer to integral.
CK_IntegralToPointer - Integral to pointer.
bool isFPContractable() const
Definition: Expr.h:3042
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:102
Expr * getLHS() const
Definition: Expr.h:2921
Converts a floating point complex to bool by comparing against 0+0i.
T * getAttr() const
Definition: DeclBase.h:495
Describes an C or C++ initializer list.
Definition: Expr.h:3724
CK_IntegralToBoolean - Integral to boolean.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:3566
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
Expr * getTrueExpr() const
Definition: Expr.h:3304
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:176
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
uint32_t Offset
Definition: CacheTokens.cpp:44
path_iterator path_begin()
Definition: Expr.h:2678
unsigned char PointerWidthInBits
The width of a pointer into the generic address space.
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2875
RecordDecl * getDecl() const
Definition: Type.h:3553
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1740
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:29
static llvm::Constant * getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off, llvm::Type *I32Ty)
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:38
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:181
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2610
Helper class for OffsetOfExpr.
Definition: Expr.h:1756
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isExtVectorType() const
Definition: Type.h:5374
bool isValid() const
Definition: Address.h:36
detail::InMemoryDirectory::const_iterator I
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:954
QualType getType() const
Definition: Decl.h:530
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
Checking the operand of a load. Must be suitably sized and aligned.
This object can be modified without requiring retains or releases.
Definition: Type.h:137
Represents the this expression in C++.
Definition: ExprCXX.h:860
field_iterator field_end() const
Definition: Decl.h:3298
#define HANDLEBINOP(OP)
CK_AnyPointerToBlockPointerCast - Casting any non-block pointer to a block pointer.
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource AlignSource=AlignmentSource::Type)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:259
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
llvm::APInt getValue() const
Definition: Expr.h:1234
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2048
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:980
Causes a block literal to by copied to the heap and then autoreleased.
CastKind
CastKind - The kind of operation required for a conversion.
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:1960
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1049
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3633
ID
Defines the set of possible language-specific address spaces.
Definition: AddressSpaces.h:27
CK_FunctionToPointerDecay - Function to pointer decay.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:415
Converts between different floating point complex types.
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1793
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1251
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1716
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1683
llvm::Value * getPointer() const
Definition: Address.h:38
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:521
Expr - This represents one expression.
Definition: Expr.h:104
CK_PointerToBoolean - Pointer to boolean conversion.
Allow any unmodeled side effect.
Definition: Expr.h:588
Converts an integral complex to an integral real of the source's element type by discarding the imagi...
static Address invalid()
Definition: Address.h:35
CK_BitCast - A conversion which causes a bit pattern of one type to be reinterpreted as a bit pattern...
bool isAnyComplexType() const
Definition: Type.h:5368
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type, where the destination type is an LLVM scalar type.
bool getValue() const
Definition: ExprCXX.h:2230
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprObjC.h:1431
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4580
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:257
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:224
bool isFloatingType() const
Definition: Type.cpp:1777
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:397
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:3555
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:4622
An RAII object to record that we're evaluating a statement expression.
Expr * getSubExpr() const
Definition: Expr.h:1681
CK_ConstructorConversion - Conversion by constructor.
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:3489
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
unsigned getNumComponents() const
Definition: Expr.h:1919
Converts from an integral complex to a floating complex.
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:1830
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr * > VL, ArrayRef< Expr * > PL, ArrayRef< Expr * > IL, Expr *Step, Expr *CalcStep)
Creates clause with a list of variables VL and a linear step Step.
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1654
Represents a GCC generic vector type.
Definition: Type.h:2724
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys=None)
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3669
QualType getElementType() const
Definition: Type.h:2748
bool isGLValue() const
Definition: Expr.h:249
QualType getComputationLHSType() const
Definition: Expr.h:3093
The result type of a method or function.
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1756
CK_ArrayToPointerDecay - Array to pointer decay.
QualType getComputationResultType() const
Definition: Expr.h:3096
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:3434
The l-value was considered opaque, so the alignment was determined from a type.
Expr * getBase() const
Definition: ExprObjC.h:1408
CK_CPointerToObjCPointerCast - Casting a C pointer kind to an Objective-C pointer.
There is no lifetime qualification on this type.
Definition: Type.h:133
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:274
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:840
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:168
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:3465
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:144
Kind
A field in a dependent type, known only by its name.
Definition: Expr.h:1765
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4692
bool getValue() const
Definition: ExprObjC.h:71
CK_UserDefinedConversion - Conversion using a user defined type conversion function.
ASTContext & getContext() const
Encodes a location in the source.
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1593
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5089
const TemplateArgument * iterator
Definition: Type.h:4070
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1743
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1723
CK_NullToMemberPointer - Null pointer constant to member pointer.
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:531
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:4645
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:178
CK_ReinterpretMemberPointer - Reinterpret a member pointer as a different kind of member pointer...
bool isCompoundAssignmentOp() const
Definition: Expr.h:3008
CK_DerivedToBase - A conversion from a C++ class pointer to a base class pointer. ...
SanitizerSet SanOpts
Sanitizers enabled for this function.
bool getValue() const
Definition: ExprCXX.h:2385
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
Definition: Expr.h:4817
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:441
const CodeGenOptions & getCodeGenOpts() const
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
Converts from an integral real to an integral complex whose element type matches the source...
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2712
bool isRValue() const
Definition: Expr.h:247
QualType getReturnType() const
Definition: DeclObjC.h:330
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5706
bool isVectorType() const
Definition: Type.h:5371
An expression trait intrinsic.
Definition: ExprCXX.h:2347
uint64_t getValue() const
Definition: ExprCXX.h:2324
Assigning into this object requires a lifetime extension.
Definition: Type.h:150
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3358
bool isBitField() const
Definition: CGValue.h:248
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:94
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:69
Opcode getOpcode() const
Definition: Expr.h:1678
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:1909
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
QualType getPointeeType() const
Definition: Type.h:2161
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3070
Represents a C11 generic selection.
Definition: Expr.h:4426
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1273
bool isArrow() const
Definition: Expr.h:2488
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3317
QualType getType() const
Definition: Expr.h:125
Converts a floating point complex to floating point real of the source's element type.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:875
static const Type * getElementType(const Expr *BaseExpr)
uint64_t SanitizerMask
Definition: Sanitizers.h:24
const Expr * getExpr() const
Definition: ExprCXX.h:985
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:1927
Converts an integral complex to bool by comparing against 0+0i.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Definition: ASTMatchers.h:1723
bool isShiftOp() const
Definition: Expr.h:2956
CK_BaseToDerived - A conversion from a C++ class pointer/reference to a derived class pointer/referen...
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
Checking the destination of a store. Must be suitably sized and aligned.
CK_BlockPointerToObjCPointerCast - Casting a block pointer to an ObjC pointer.
detail::InMemoryDirectory::const_iterator E
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2369
bool isHalfType() const
Definition: Type.h:5552
A conversion of a floating point real to a floating point complex of the original type...
CK_MemberPointerToBoolean - Member pointer to boolean.
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:2778
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1459
llvm::APFloat getValue() const
Definition: Expr.h:1354
[ARC] Reclaim a retainable object pointer object that may have been produced and autoreleased as part...
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2097
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5255
#define VISITCOMP(CODE, UI, SI, FP)
Represents a pointer to an Objective C object.
Definition: Type.h:4821
path_iterator path_end()
Definition: Expr.h:2679
Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
Definition: ExprCXX.h:3428
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3544
Complex values, per C99 6.2.5p11.
Definition: Type.h:2087
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5675
Checking the operand of a static_cast to a derived pointer type.
Expr * getFalseExpr() const
Definition: Expr.h:3310
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2049
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2023
QualType getCanonicalType() const
Definition: Type.h:5128
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3106
An implicit indirection through a C++ base class, when the field found is in a base class...
Definition: Expr.h:1768
[ARC] Produces a retainable object pointer so that it may be consumed, e.g.
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
bool isFunctionType() const
Definition: Type.h:5302
ExtVectorType - Extended vector type.
Definition: Type.h:2784
CK_LValueBitCast - A conversion which reinterprets the address of an l-value as an l-value of a diffe...
Converts from T to _Atomic(T).
Converts from a floating complex to an integral complex.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:2914
LabelDecl * getLabel() const
Definition: Expr.h:3339
CK_UncheckedDerivedToBase - A conversion from a C++ class pointer/reference to a base class that can ...
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:479
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1024
Expr * getBase() const
Definition: Expr.h:2387
Reading or writing from this object requires a barrier call.
Definition: Type.h:147
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2297
const Expr * getSubExpr() const
Definition: Expr.h:1621
Represents a C++ struct/union/class.
Definition: DeclCXX.h:285
BoundNodesTreeBuilder *const Builder
Opcode getOpcode() const
Definition: Expr.h:2918
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3525
llvm::Type * ConvertType(QualType T)
An index into an array.
Definition: Expr.h:1761
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:944
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:1820
bool isEventT() const
Definition: Type.h:5472
This class is used for builtin types like 'int'.
Definition: Type.h:2011
Converts from _Atomic(T) to T.
#define fabs(__x)
Definition: tgmath.h:556
std::pair< llvm::Value *, QualType > getVLASize(const VariableArrayType *vla)
getVLASize - Returns an LLVM value that corresponds to the size, in non-variably-sized elements...
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2134
Expr * getRHS() const
Definition: Expr.h:2923
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:60
CK_NoOp - A conversion which does not affect the type other than (possibly) adding qualifiers...
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:922
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
CK_DerivedToBaseMemberPointer - Member pointer in derived class to member pointer in base class...
IntrinsicType
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:579
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3763
LValue - This represents an lvalue references.
Definition: CGValue.h:152
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:455
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:1860
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2575
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1730
CK_ToVoid - Cast to void, discarding the computed value.
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, CodeGenFunction &CGF)
isCheapEnoughToEvaluateUnconditionally - Return true if the specified expression is cheap enough and ...
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4328
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:5568
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:1810
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2433
CK_FloatingToBoolean - Floating point to boolean.