clang  3.8.0
MicrosoftMangle.cpp
Go to the documentation of this file.
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/JamCRC.h"
32 
33 using namespace clang;
34 
35 namespace {
36 
37 /// \brief Retrieve the declaration context that should be used when mangling
38 /// the given declaration.
39 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
40  // The ABI assumes that lambda closure types that occur within
41  // default arguments live in the context of the function. However, due to
42  // the way in which Clang parses and creates function declarations, this is
43  // not the case: the lambda closure type ends up living in the context
44  // where the function itself resides, because the function declaration itself
45  // had not yet been created. Fix the context here.
46  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
47  if (RD->isLambda())
48  if (ParmVarDecl *ContextParam =
49  dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
50  return ContextParam->getDeclContext();
51  }
52 
53  // Perform the same check for block literals.
54  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
55  if (ParmVarDecl *ContextParam =
56  dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
57  return ContextParam->getDeclContext();
58  }
59 
60  const DeclContext *DC = D->getDeclContext();
61  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62  return getEffectiveDeclContext(CD);
63 
64  return DC;
65 }
66 
67 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68  return getEffectiveDeclContext(cast<Decl>(DC));
69 }
70 
71 static const FunctionDecl *getStructor(const NamedDecl *ND) {
72  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
73  return FTD->getTemplatedDecl();
74 
75  const auto *FD = cast<FunctionDecl>(ND);
76  if (const auto *FTD = FD->getPrimaryTemplate())
77  return FTD->getTemplatedDecl();
78 
79  return FD;
80 }
81 
82 static bool isLambda(const NamedDecl *ND) {
83  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
84  if (!Record)
85  return false;
86 
87  return Record->isLambda();
88 }
89 
90 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
91 /// Microsoft Visual C++ ABI.
92 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
93  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
94  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
95  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
96  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
97  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
98  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
99 
100 public:
101  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
102  : MicrosoftMangleContext(Context, Diags) {}
103  bool shouldMangleCXXName(const NamedDecl *D) override;
104  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
105  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
106  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
107  raw_ostream &) override;
108  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
109  raw_ostream &) override;
110  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
112  raw_ostream &) override;
113  void mangleCXXVFTable(const CXXRecordDecl *Derived,
115  raw_ostream &Out) override;
116  void mangleCXXVBTable(const CXXRecordDecl *Derived,
118  raw_ostream &Out) override;
119  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
120  const CXXRecordDecl *DstRD,
121  raw_ostream &Out) override;
122  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
123  uint32_t NumEntries, raw_ostream &Out) override;
124  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
125  raw_ostream &Out) override;
126  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
127  CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
128  int32_t VBPtrOffset, uint32_t VBIndex,
129  raw_ostream &Out) override;
130  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
131  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
132  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
133  uint32_t NVOffset, int32_t VBPtrOffset,
134  uint32_t VBTableOffset, uint32_t Flags,
135  raw_ostream &Out) override;
136  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
137  raw_ostream &Out) override;
138  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
139  raw_ostream &Out) override;
140  void
141  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
143  raw_ostream &Out) override;
144  void mangleTypeName(QualType T, raw_ostream &) override;
145  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
146  raw_ostream &) override;
147  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
148  raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
150  raw_ostream &) override;
151  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
152  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
153  raw_ostream &Out) override;
154  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
155  void mangleDynamicAtExitDestructor(const VarDecl *D,
156  raw_ostream &Out) override;
157  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
158  raw_ostream &Out) override;
159  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
160  raw_ostream &Out) override;
161  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
162  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
163  // Lambda closure types are already numbered.
164  if (isLambda(ND))
165  return false;
166 
167  const DeclContext *DC = getEffectiveDeclContext(ND);
168  if (!DC->isFunctionOrMethod())
169  return false;
170 
171  // Use the canonical number for externally visible decls.
172  if (ND->isExternallyVisible()) {
173  disc = getASTContext().getManglingNumber(ND);
174  return true;
175  }
176 
177  // Anonymous tags are already numbered.
178  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
179  if (!Tag->hasNameForLinkage() &&
180  !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
181  !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
182  return false;
183  }
184 
185  // Make up a reasonable number for internal decls.
186  unsigned &discriminator = Uniquifier[ND];
187  if (!discriminator)
188  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
189  disc = discriminator + 1;
190  return true;
191  }
192 
193  unsigned getLambdaId(const CXXRecordDecl *RD) {
194  assert(RD->isLambda() && "RD must be a lambda!");
195  assert(!RD->isExternallyVisible() && "RD must not be visible!");
196  assert(RD->getLambdaManglingNumber() == 0 &&
197  "RD must not have a mangling number!");
199  Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
200  return Result.first->second;
201  }
202 
203 private:
204  void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
205 };
206 
207 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
208 /// Microsoft Visual C++ ABI.
209 class MicrosoftCXXNameMangler {
210  MicrosoftMangleContextImpl &Context;
211  raw_ostream &Out;
212 
213  /// The "structor" is the top-level declaration being mangled, if
214  /// that's not a template specialization; otherwise it's the pattern
215  /// for that specialization.
216  const NamedDecl *Structor;
217  unsigned StructorType;
218 
219  typedef llvm::SmallVector<std::string, 10> BackRefVec;
220  BackRefVec NameBackReferences;
221 
222  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
223  ArgBackRefMap TypeBackReferences;
224 
225  typedef std::set<int> PassObjectSizeArgsSet;
226  PassObjectSizeArgsSet PassObjectSizeArgs;
227 
228  ASTContext &getASTContext() const { return Context.getASTContext(); }
229 
230  // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
231  // this check into mangleQualifiers().
232  const bool PointersAre64Bit;
233 
234 public:
235  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
236 
237  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
238  : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
239  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
240  64) {}
241 
242  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
244  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
245  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
246  64) {}
247 
248  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
250  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
251  PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
252  64) {}
253 
254  raw_ostream &getStream() const { return Out; }
255 
256  void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
257  void mangleName(const NamedDecl *ND);
258  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
259  void mangleVariableEncoding(const VarDecl *VD);
260  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
261  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
262  const CXXMethodDecl *MD);
263  void mangleVirtualMemPtrThunk(
264  const CXXMethodDecl *MD,
266  void mangleNumber(int64_t Number);
267  void mangleTagTypeKind(TagTypeKind TK);
268  void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
269  ArrayRef<StringRef> NestedNames = None);
270  void mangleType(QualType T, SourceRange Range,
271  QualifierMangleMode QMM = QMM_Mangle);
272  void mangleFunctionType(const FunctionType *T,
273  const FunctionDecl *D = nullptr,
274  bool ForceThisQuals = false);
275  void mangleNestedName(const NamedDecl *ND);
276 
277 private:
278  void mangleUnqualifiedName(const NamedDecl *ND) {
279  mangleUnqualifiedName(ND, ND->getDeclName());
280  }
281  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
282  void mangleSourceName(StringRef Name);
283  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
284  void mangleCXXDtorType(CXXDtorType T);
285  void mangleQualifiers(Qualifiers Quals, bool IsMember);
286  void mangleRefQualifier(RefQualifierKind RefQualifier);
287  void manglePointerCVQualifiers(Qualifiers Quals);
288  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
289 
290  void mangleUnscopedTemplateName(const TemplateDecl *ND);
291  void
292  mangleTemplateInstantiationName(const TemplateDecl *TD,
293  const TemplateArgumentList &TemplateArgs);
294  void mangleObjCMethodName(const ObjCMethodDecl *MD);
295 
296  void mangleArgumentType(QualType T, SourceRange Range);
297  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
298 
299  // Declare manglers for every type class.
300 #define ABSTRACT_TYPE(CLASS, PARENT)
301 #define NON_CANONICAL_TYPE(CLASS, PARENT)
302 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
303  Qualifiers Quals, \
304  SourceRange Range);
305 #include "clang/AST/TypeNodes.def"
306 #undef ABSTRACT_TYPE
307 #undef NON_CANONICAL_TYPE
308 #undef TYPE
309 
310  void mangleType(const TagDecl *TD);
311  void mangleDecayedArrayType(const ArrayType *T);
312  void mangleArrayType(const ArrayType *T);
313  void mangleFunctionClass(const FunctionDecl *FD);
314  void mangleCallingConvention(CallingConv CC);
315  void mangleCallingConvention(const FunctionType *T);
316  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
317  void mangleExpression(const Expr *E);
318  void mangleThrowSpecification(const FunctionProtoType *T);
319 
320  void mangleTemplateArgs(const TemplateDecl *TD,
321  const TemplateArgumentList &TemplateArgs);
322  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
323  const NamedDecl *Parm);
324 };
325 }
326 
327 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
328  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
329  LanguageLinkage L = FD->getLanguageLinkage();
330  // Overloadable functions need mangling.
331  if (FD->hasAttr<OverloadableAttr>())
332  return true;
333 
334  // The ABI expects that we would never mangle "typical" user-defined entry
335  // points regardless of visibility or freestanding-ness.
336  //
337  // N.B. This is distinct from asking about "main". "main" has a lot of
338  // special rules associated with it in the standard while these
339  // user-defined entry points are outside of the purview of the standard.
340  // For example, there can be only one definition for "main" in a standards
341  // compliant program; however nothing forbids the existence of wmain and
342  // WinMain in the same translation unit.
343  if (FD->isMSVCRTEntryPoint())
344  return false;
345 
346  // C++ functions and those whose names are not a simple identifier need
347  // mangling.
348  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
349  return true;
350 
351  // C functions are not mangled.
352  if (L == CLanguageLinkage)
353  return false;
354  }
355 
356  // Otherwise, no mangling is done outside C++ mode.
357  if (!getASTContext().getLangOpts().CPlusPlus)
358  return false;
359 
360  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
361  // C variables are not mangled.
362  if (VD->isExternC())
363  return false;
364 
365  // Variables at global scope with non-internal linkage are not mangled.
366  const DeclContext *DC = getEffectiveDeclContext(D);
367  // Check for extern variable declared locally.
368  if (DC->isFunctionOrMethod() && D->hasLinkage())
369  while (!DC->isNamespace() && !DC->isTranslationUnit())
370  DC = getEffectiveParentContext(DC);
371 
372  if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
373  !isa<VarTemplateSpecializationDecl>(D) &&
374  D->getIdentifier() != nullptr)
375  return false;
376  }
377 
378  return true;
379 }
380 
381 bool
382 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
383  return true;
384 }
385 
386 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
387  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
388  // Therefore it's really important that we don't decorate the
389  // name with leading underscores or leading/trailing at signs. So, by
390  // default, we emit an asm marker at the start so we get the name right.
391  // Callers can override this with a custom prefix.
392 
393  // <mangled-name> ::= ? <name> <type-encoding>
394  Out << Prefix;
395  mangleName(D);
396  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
397  mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
398  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
399  mangleVariableEncoding(VD);
400  else
401  llvm_unreachable("Tried to mangle unexpected NamedDecl!");
402 }
403 
404 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
405  bool ShouldMangle) {
406  // <type-encoding> ::= <function-class> <function-type>
407 
408  // Since MSVC operates on the type as written and not the canonical type, it
409  // actually matters which decl we have here. MSVC appears to choose the
410  // first, since it is most likely to be the declaration in a header file.
411  FD = FD->getFirstDecl();
412 
413  // We should never ever see a FunctionNoProtoType at this point.
414  // We don't even know how to mangle their types anyway :).
415  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
416 
417  // extern "C" functions can hold entities that must be mangled.
418  // As it stands, these functions still need to get expressed in the full
419  // external name. They have their class and type omitted, replaced with '9'.
420  if (ShouldMangle) {
421  // We would like to mangle all extern "C" functions using this additional
422  // component but this would break compatibility with MSVC's behavior.
423  // Instead, do this when we know that compatibility isn't important (in
424  // other words, when it is an overloaded extern "C" function).
425  if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
426  Out << "$$J0";
427 
428  mangleFunctionClass(FD);
429 
430  mangleFunctionType(FT, FD);
431  } else {
432  Out << '9';
433  }
434 }
435 
436 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
437  // <type-encoding> ::= <storage-class> <variable-type>
438  // <storage-class> ::= 0 # private static member
439  // ::= 1 # protected static member
440  // ::= 2 # public static member
441  // ::= 3 # global
442  // ::= 4 # static local
443 
444  // The first character in the encoding (after the name) is the storage class.
445  if (VD->isStaticDataMember()) {
446  // If it's a static member, it also encodes the access level.
447  switch (VD->getAccess()) {
448  default:
449  case AS_private: Out << '0'; break;
450  case AS_protected: Out << '1'; break;
451  case AS_public: Out << '2'; break;
452  }
453  }
454  else if (!VD->isStaticLocal())
455  Out << '3';
456  else
457  Out << '4';
458  // Now mangle the type.
459  // <variable-type> ::= <type> <cvr-qualifiers>
460  // ::= <type> <pointee-cvr-qualifiers> # pointers, references
461  // Pointers and references are odd. The type of 'int * const foo;' gets
462  // mangled as 'QAHA' instead of 'PAHB', for example.
463  SourceRange SR = VD->getSourceRange();
464  QualType Ty = VD->getType();
465  if (Ty->isPointerType() || Ty->isReferenceType() ||
466  Ty->isMemberPointerType()) {
467  mangleType(Ty, SR, QMM_Drop);
468  manglePointerExtQualifiers(
469  Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
470  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
471  mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
472  // Member pointers are suffixed with a back reference to the member
473  // pointer's class name.
474  mangleName(MPT->getClass()->getAsCXXRecordDecl());
475  } else
476  mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
477  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
478  // Global arrays are funny, too.
479  mangleDecayedArrayType(AT);
480  if (AT->getElementType()->isArrayType())
481  Out << 'A';
482  else
483  mangleQualifiers(Ty.getQualifiers(), false);
484  } else {
485  mangleType(Ty, SR, QMM_Drop);
486  mangleQualifiers(Ty.getQualifiers(), false);
487  }
488 }
489 
490 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
491  const ValueDecl *VD) {
492  // <member-data-pointer> ::= <integer-literal>
493  // ::= $F <number> <number>
494  // ::= $G <number> <number> <number>
495 
496  int64_t FieldOffset;
497  int64_t VBTableOffset;
498  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
499  if (VD) {
500  FieldOffset = getASTContext().getFieldOffset(VD);
501  assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
502  "cannot take address of bitfield");
503  FieldOffset /= getASTContext().getCharWidth();
504 
505  VBTableOffset = 0;
506 
507  if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
508  FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
509  } else {
510  FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
511 
512  VBTableOffset = -1;
513  }
514 
515  char Code = '\0';
516  switch (IM) {
517  case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
518  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
519  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
520  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
521  }
522 
523  Out << '$' << Code;
524 
525  mangleNumber(FieldOffset);
526 
527  // The C++ standard doesn't allow base-to-derived member pointer conversions
528  // in template parameter contexts, so the vbptr offset of data member pointers
529  // is always zero.
530  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
531  mangleNumber(0);
532  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
533  mangleNumber(VBTableOffset);
534 }
535 
536 void
537 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
538  const CXXMethodDecl *MD) {
539  // <member-function-pointer> ::= $1? <name>
540  // ::= $H? <name> <number>
541  // ::= $I? <name> <number> <number>
542  // ::= $J? <name> <number> <number> <number>
543 
544  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
545 
546  char Code = '\0';
547  switch (IM) {
548  case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
549  case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
550  case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
551  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
552  }
553 
554  // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
555  // thunk.
556  uint64_t NVOffset = 0;
557  uint64_t VBTableOffset = 0;
558  uint64_t VBPtrOffset = 0;
559  if (MD) {
560  Out << '$' << Code << '?';
561  if (MD->isVirtual()) {
562  MicrosoftVTableContext *VTContext =
563  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
565  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
566  mangleVirtualMemPtrThunk(MD, ML);
567  NVOffset = ML.VFPtrOffset.getQuantity();
568  VBTableOffset = ML.VBTableIndex * 4;
569  if (ML.VBase) {
570  const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
571  VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
572  }
573  } else {
574  mangleName(MD);
575  mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
576  }
577 
578  if (VBTableOffset == 0 &&
579  IM == MSInheritanceAttr::Keyword_virtual_inheritance)
580  NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
581  } else {
582  // Null single inheritance member functions are encoded as a simple nullptr.
583  if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
584  Out << "$0A@";
585  return;
586  }
587  if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
588  VBTableOffset = -1;
589  Out << '$' << Code;
590  }
591 
592  if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
593  mangleNumber(static_cast<uint32_t>(NVOffset));
594  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
595  mangleNumber(VBPtrOffset);
596  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
597  mangleNumber(VBTableOffset);
598 }
599 
600 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
601  const CXXMethodDecl *MD,
603  // Get the vftable offset.
604  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
605  getASTContext().getTargetInfo().getPointerWidth(0));
606  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
607 
608  Out << "?_9";
609  mangleName(MD->getParent());
610  Out << "$B";
611  mangleNumber(OffsetInVFTable);
612  Out << 'A';
613  mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
614 }
615 
616 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
617  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
618 
619  // Always start with the unqualified name.
620  mangleUnqualifiedName(ND);
621 
622  mangleNestedName(ND);
623 
624  // Terminate the whole name with an '@'.
625  Out << '@';
626 }
627 
628 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
629  // <non-negative integer> ::= A@ # when Number == 0
630  // ::= <decimal digit> # when 1 <= Number <= 10
631  // ::= <hex digit>+ @ # when Number >= 10
632  //
633  // <number> ::= [?] <non-negative integer>
634 
635  uint64_t Value = static_cast<uint64_t>(Number);
636  if (Number < 0) {
637  Value = -Value;
638  Out << '?';
639  }
640 
641  if (Value == 0)
642  Out << "A@";
643  else if (Value >= 1 && Value <= 10)
644  Out << (Value - 1);
645  else {
646  // Numbers that are not encoded as decimal digits are represented as nibbles
647  // in the range of ASCII characters 'A' to 'P'.
648  // The number 0x123450 would be encoded as 'BCDEFA'
649  char EncodedNumberBuffer[sizeof(uint64_t) * 2];
650  MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
651  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
652  for (; Value != 0; Value >>= 4)
653  *I++ = 'A' + (Value & 0xf);
654  Out.write(I.base(), I - BufferRef.rbegin());
655  Out << '@';
656  }
657 }
658 
659 static const TemplateDecl *
660 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
661  // Check if we have a function template.
662  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
663  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
664  TemplateArgs = FD->getTemplateSpecializationArgs();
665  return TD;
666  }
667  }
668 
669  // Check if we have a class template.
670  if (const ClassTemplateSpecializationDecl *Spec =
671  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
672  TemplateArgs = &Spec->getTemplateArgs();
673  return Spec->getSpecializedTemplate();
674  }
675 
676  // Check if we have a variable template.
677  if (const VarTemplateSpecializationDecl *Spec =
678  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
679  TemplateArgs = &Spec->getTemplateArgs();
680  return Spec->getSpecializedTemplate();
681  }
682 
683  return nullptr;
684 }
685 
686 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
688  // <unqualified-name> ::= <operator-name>
689  // ::= <ctor-dtor-name>
690  // ::= <source-name>
691  // ::= <template-name>
692 
693  // Check if we have a template.
694  const TemplateArgumentList *TemplateArgs = nullptr;
695  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
696  // Function templates aren't considered for name back referencing. This
697  // makes sense since function templates aren't likely to occur multiple
698  // times in a symbol.
699  if (isa<FunctionTemplateDecl>(TD)) {
700  mangleTemplateInstantiationName(TD, *TemplateArgs);
701  Out << '@';
702  return;
703  }
704 
705  // Here comes the tricky thing: if we need to mangle something like
706  // void foo(A::X<Y>, B::X<Y>),
707  // the X<Y> part is aliased. However, if you need to mangle
708  // void foo(A::X<A::Y>, A::X<B::Y>),
709  // the A::X<> part is not aliased.
710  // That said, from the mangler's perspective we have a structure like this:
711  // namespace[s] -> type[ -> template-parameters]
712  // but from the Clang perspective we have
713  // type [ -> template-parameters]
714  // \-> namespace[s]
715  // What we do is we create a new mangler, mangle the same type (without
716  // a namespace suffix) to a string using the extra mangler and then use
717  // the mangled type name as a key to check the mangling of different types
718  // for aliasing.
719 
720  llvm::SmallString<64> TemplateMangling;
721  llvm::raw_svector_ostream Stream(TemplateMangling);
722  MicrosoftCXXNameMangler Extra(Context, Stream);
723  Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
724 
725  mangleSourceName(TemplateMangling);
726  return;
727  }
728 
729  switch (Name.getNameKind()) {
731  if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
732  mangleSourceName(II->getName());
733  break;
734  }
735 
736  // Otherwise, an anonymous entity. We must have a declaration.
737  assert(ND && "mangling empty name without declaration");
738 
739  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
740  if (NS->isAnonymousNamespace()) {
741  Out << "?A@";
742  break;
743  }
744  }
745 
746  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
747  // We must have an anonymous union or struct declaration.
748  const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
749  assert(RD && "expected variable decl to have a record type");
750  // Anonymous types with no tag or typedef get the name of their
751  // declarator mangled in. If they have no declarator, number them with
752  // a $S prefix.
754  // Get a unique id for the anonymous struct.
755  Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
756  mangleSourceName(Name.str());
757  break;
758  }
759 
760  // We must have an anonymous struct.
761  const TagDecl *TD = cast<TagDecl>(ND);
762  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
763  assert(TD->getDeclContext() == D->getDeclContext() &&
764  "Typedef should not be in another decl context!");
765  assert(D->getDeclName().getAsIdentifierInfo() &&
766  "Typedef was not named!");
767  mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
768  break;
769  }
770 
771  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
772  if (Record->isLambda()) {
773  llvm::SmallString<10> Name("<lambda_");
774  unsigned LambdaId;
775  if (Record->getLambdaManglingNumber())
776  LambdaId = Record->getLambdaManglingNumber();
777  else
778  LambdaId = Context.getLambdaId(Record);
779 
780  Name += llvm::utostr(LambdaId);
781  Name += ">";
782 
783  mangleSourceName(Name);
784  break;
785  }
786  }
787 
788  llvm::SmallString<64> Name("<unnamed-type-");
789  if (DeclaratorDecl *DD =
790  Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
791  // Anonymous types without a name for linkage purposes have their
792  // declarator mangled in if they have one.
793  Name += DD->getName();
794  } else if (TypedefNameDecl *TND =
796  TD)) {
797  // Anonymous types without a name for linkage purposes have their
798  // associate typedef mangled in if they have one.
799  Name += TND->getName();
800  } else {
801  // Otherwise, number the types using a $S prefix.
802  Name += "$S";
803  Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
804  }
805  Name += ">";
806  mangleSourceName(Name.str());
807  break;
808  }
809 
813  llvm_unreachable("Can't mangle Objective-C selector names here!");
814 
816  if (Structor == getStructor(ND)) {
818  Out << "?_O";
819  return;
820  }
822  Out << "?_F";
823  return;
824  }
825  }
826  Out << "?0";
827  return;
828 
830  if (ND == Structor)
831  // If the named decl is the C++ destructor we're mangling,
832  // use the type we were given.
833  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
834  else
835  // Otherwise, use the base destructor name. This is relevant if a
836  // class with a destructor is declared within a destructor.
837  mangleCXXDtorType(Dtor_Base);
838  break;
839 
841  // <operator-name> ::= ?B # (cast)
842  // The target type is encoded as the return type.
843  Out << "?B";
844  break;
845 
847  mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
848  break;
849 
851  Out << "?__K";
852  mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
853  break;
854  }
855 
857  llvm_unreachable("Can't mangle a using directive name!");
858  }
859 }
860 
861 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
862  // <postfix> ::= <unqualified-name> [<postfix>]
863  // ::= <substitution> [<postfix>]
864  const DeclContext *DC = getEffectiveDeclContext(ND);
865 
866  while (!DC->isTranslationUnit()) {
867  if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
868  unsigned Disc;
869  if (Context.getNextDiscriminator(ND, Disc)) {
870  Out << '?';
871  mangleNumber(Disc);
872  Out << '?';
873  }
874  }
875 
876  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
877  DiagnosticsEngine &Diags = Context.getDiags();
878  unsigned DiagID =
880  "cannot mangle a local inside this block yet");
881  Diags.Report(BD->getLocation(), DiagID);
882 
883  // FIXME: This is completely, utterly, wrong; see ItaniumMangle
884  // for how this should be done.
885  Out << "__block_invoke" << Context.getBlockId(BD, false);
886  Out << '@';
887  continue;
888  } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
889  mangleObjCMethodName(Method);
890  } else if (isa<NamedDecl>(DC)) {
891  ND = cast<NamedDecl>(DC);
892  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
893  mangle(FD, "?");
894  break;
895  } else
896  mangleUnqualifiedName(ND);
897  }
898  DC = DC->getParent();
899  }
900 }
901 
902 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
903  // Microsoft uses the names on the case labels for these dtor variants. Clang
904  // uses the Itanium terminology internally. Everything in this ABI delegates
905  // towards the base dtor.
906  switch (T) {
907  // <operator-name> ::= ?1 # destructor
908  case Dtor_Base: Out << "?1"; return;
909  // <operator-name> ::= ?_D # vbase destructor
910  case Dtor_Complete: Out << "?_D"; return;
911  // <operator-name> ::= ?_G # scalar deleting destructor
912  case Dtor_Deleting: Out << "?_G"; return;
913  // <operator-name> ::= ?_E # vector deleting destructor
914  // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
915  // it.
916  case Dtor_Comdat:
917  llvm_unreachable("not expecting a COMDAT");
918  }
919  llvm_unreachable("Unsupported dtor type?");
920 }
921 
922 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
923  SourceLocation Loc) {
924  switch (OO) {
925  // ?0 # constructor
926  // ?1 # destructor
927  // <operator-name> ::= ?2 # new
928  case OO_New: Out << "?2"; break;
929  // <operator-name> ::= ?3 # delete
930  case OO_Delete: Out << "?3"; break;
931  // <operator-name> ::= ?4 # =
932  case OO_Equal: Out << "?4"; break;
933  // <operator-name> ::= ?5 # >>
934  case OO_GreaterGreater: Out << "?5"; break;
935  // <operator-name> ::= ?6 # <<
936  case OO_LessLess: Out << "?6"; break;
937  // <operator-name> ::= ?7 # !
938  case OO_Exclaim: Out << "?7"; break;
939  // <operator-name> ::= ?8 # ==
940  case OO_EqualEqual: Out << "?8"; break;
941  // <operator-name> ::= ?9 # !=
942  case OO_ExclaimEqual: Out << "?9"; break;
943  // <operator-name> ::= ?A # []
944  case OO_Subscript: Out << "?A"; break;
945  // ?B # conversion
946  // <operator-name> ::= ?C # ->
947  case OO_Arrow: Out << "?C"; break;
948  // <operator-name> ::= ?D # *
949  case OO_Star: Out << "?D"; break;
950  // <operator-name> ::= ?E # ++
951  case OO_PlusPlus: Out << "?E"; break;
952  // <operator-name> ::= ?F # --
953  case OO_MinusMinus: Out << "?F"; break;
954  // <operator-name> ::= ?G # -
955  case OO_Minus: Out << "?G"; break;
956  // <operator-name> ::= ?H # +
957  case OO_Plus: Out << "?H"; break;
958  // <operator-name> ::= ?I # &
959  case OO_Amp: Out << "?I"; break;
960  // <operator-name> ::= ?J # ->*
961  case OO_ArrowStar: Out << "?J"; break;
962  // <operator-name> ::= ?K # /
963  case OO_Slash: Out << "?K"; break;
964  // <operator-name> ::= ?L # %
965  case OO_Percent: Out << "?L"; break;
966  // <operator-name> ::= ?M # <
967  case OO_Less: Out << "?M"; break;
968  // <operator-name> ::= ?N # <=
969  case OO_LessEqual: Out << "?N"; break;
970  // <operator-name> ::= ?O # >
971  case OO_Greater: Out << "?O"; break;
972  // <operator-name> ::= ?P # >=
973  case OO_GreaterEqual: Out << "?P"; break;
974  // <operator-name> ::= ?Q # ,
975  case OO_Comma: Out << "?Q"; break;
976  // <operator-name> ::= ?R # ()
977  case OO_Call: Out << "?R"; break;
978  // <operator-name> ::= ?S # ~
979  case OO_Tilde: Out << "?S"; break;
980  // <operator-name> ::= ?T # ^
981  case OO_Caret: Out << "?T"; break;
982  // <operator-name> ::= ?U # |
983  case OO_Pipe: Out << "?U"; break;
984  // <operator-name> ::= ?V # &&
985  case OO_AmpAmp: Out << "?V"; break;
986  // <operator-name> ::= ?W # ||
987  case OO_PipePipe: Out << "?W"; break;
988  // <operator-name> ::= ?X # *=
989  case OO_StarEqual: Out << "?X"; break;
990  // <operator-name> ::= ?Y # +=
991  case OO_PlusEqual: Out << "?Y"; break;
992  // <operator-name> ::= ?Z # -=
993  case OO_MinusEqual: Out << "?Z"; break;
994  // <operator-name> ::= ?_0 # /=
995  case OO_SlashEqual: Out << "?_0"; break;
996  // <operator-name> ::= ?_1 # %=
997  case OO_PercentEqual: Out << "?_1"; break;
998  // <operator-name> ::= ?_2 # >>=
999  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1000  // <operator-name> ::= ?_3 # <<=
1001  case OO_LessLessEqual: Out << "?_3"; break;
1002  // <operator-name> ::= ?_4 # &=
1003  case OO_AmpEqual: Out << "?_4"; break;
1004  // <operator-name> ::= ?_5 # |=
1005  case OO_PipeEqual: Out << "?_5"; break;
1006  // <operator-name> ::= ?_6 # ^=
1007  case OO_CaretEqual: Out << "?_6"; break;
1008  // ?_7 # vftable
1009  // ?_8 # vbtable
1010  // ?_9 # vcall
1011  // ?_A # typeof
1012  // ?_B # local static guard
1013  // ?_C # string
1014  // ?_D # vbase destructor
1015  // ?_E # vector deleting destructor
1016  // ?_F # default constructor closure
1017  // ?_G # scalar deleting destructor
1018  // ?_H # vector constructor iterator
1019  // ?_I # vector destructor iterator
1020  // ?_J # vector vbase constructor iterator
1021  // ?_K # virtual displacement map
1022  // ?_L # eh vector constructor iterator
1023  // ?_M # eh vector destructor iterator
1024  // ?_N # eh vector vbase constructor iterator
1025  // ?_O # copy constructor closure
1026  // ?_P<name> # udt returning <name>
1027  // ?_Q # <unknown>
1028  // ?_R0 # RTTI Type Descriptor
1029  // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1030  // ?_R2 # RTTI Base Class Array
1031  // ?_R3 # RTTI Class Hierarchy Descriptor
1032  // ?_R4 # RTTI Complete Object Locator
1033  // ?_S # local vftable
1034  // ?_T # local vftable constructor closure
1035  // <operator-name> ::= ?_U # new[]
1036  case OO_Array_New: Out << "?_U"; break;
1037  // <operator-name> ::= ?_V # delete[]
1038  case OO_Array_Delete: Out << "?_V"; break;
1039 
1040  case OO_Conditional: {
1041  DiagnosticsEngine &Diags = Context.getDiags();
1042  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1043  "cannot mangle this conditional operator yet");
1044  Diags.Report(Loc, DiagID);
1045  break;
1046  }
1047 
1048  case OO_Coawait: {
1049  DiagnosticsEngine &Diags = Context.getDiags();
1050  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1051  "cannot mangle this operator co_await yet");
1052  Diags.Report(Loc, DiagID);
1053  break;
1054  }
1055 
1056  case OO_None:
1058  llvm_unreachable("Not an overloaded operator");
1059  }
1060 }
1061 
1062 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1063  // <source name> ::= <identifier> @
1064  BackRefVec::iterator Found =
1065  std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1066  if (Found == NameBackReferences.end()) {
1067  if (NameBackReferences.size() < 10)
1068  NameBackReferences.push_back(Name);
1069  Out << Name << '@';
1070  } else {
1071  Out << (Found - NameBackReferences.begin());
1072  }
1073 }
1074 
1075 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1076  Context.mangleObjCMethodName(MD, Out);
1077 }
1078 
1079 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1080  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1081  // <template-name> ::= <unscoped-template-name> <template-args>
1082  // ::= <substitution>
1083  // Always start with the unqualified name.
1084 
1085  // Templates have their own context for back references.
1086  ArgBackRefMap OuterArgsContext;
1087  BackRefVec OuterTemplateContext;
1088  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1089  NameBackReferences.swap(OuterTemplateContext);
1090  TypeBackReferences.swap(OuterArgsContext);
1091  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1092 
1093  mangleUnscopedTemplateName(TD);
1094  mangleTemplateArgs(TD, TemplateArgs);
1095 
1096  // Restore the previous back reference contexts.
1097  NameBackReferences.swap(OuterTemplateContext);
1098  TypeBackReferences.swap(OuterArgsContext);
1099  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1100 }
1101 
1102 void
1103 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1104  // <unscoped-template-name> ::= ?$ <unqualified-name>
1105  Out << "?$";
1106  mangleUnqualifiedName(TD);
1107 }
1108 
1109 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1110  bool IsBoolean) {
1111  // <integer-literal> ::= $0 <number>
1112  Out << "$0";
1113  // Make sure booleans are encoded as 0/1.
1114  if (IsBoolean && Value.getBoolValue())
1115  mangleNumber(1);
1116  else if (Value.isSigned())
1117  mangleNumber(Value.getSExtValue());
1118  else
1119  mangleNumber(Value.getZExtValue());
1120 }
1121 
1122 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1123  // See if this is a constant expression.
1124  llvm::APSInt Value;
1125  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1126  mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1127  return;
1128  }
1129 
1130  // Look through no-op casts like template parameter substitutions.
1131  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1132 
1133  const CXXUuidofExpr *UE = nullptr;
1134  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1135  if (UO->getOpcode() == UO_AddrOf)
1136  UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1137  } else
1138  UE = dyn_cast<CXXUuidofExpr>(E);
1139 
1140  if (UE) {
1141  // If we had to peek through an address-of operator, treat this like we are
1142  // dealing with a pointer type. Otherwise, treat it like a const reference.
1143  //
1144  // N.B. This matches up with the handling of TemplateArgument::Declaration
1145  // in mangleTemplateArg
1146  if (UE == E)
1147  Out << "$E?";
1148  else
1149  Out << "$1?";
1150 
1151  // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1152  // const __s_GUID _GUID_{lower case UUID with underscores}
1153  StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1154  std::string Name = "_GUID_" + Uuid.lower();
1155  std::replace(Name.begin(), Name.end(), '-', '_');
1156 
1157  mangleSourceName(Name);
1158  // Terminate the whole name with an '@'.
1159  Out << '@';
1160  // It's a global variable.
1161  Out << '3';
1162  // It's a struct called __s_GUID.
1163  mangleArtificalTagType(TTK_Struct, "__s_GUID");
1164  // It's const.
1165  Out << 'B';
1166  return;
1167  }
1168 
1169  // As bad as this diagnostic is, it's better than crashing.
1170  DiagnosticsEngine &Diags = Context.getDiags();
1171  unsigned DiagID = Diags.getCustomDiagID(
1172  DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1173  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1174  << E->getSourceRange();
1175 }
1176 
1177 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1178  const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1179  // <template-args> ::= <template-arg>+
1180  const TemplateParameterList *TPL = TD->getTemplateParameters();
1181  assert(TPL->size() == TemplateArgs.size() &&
1182  "size mismatch between args and parms!");
1183 
1184  unsigned Idx = 0;
1185  for (const TemplateArgument &TA : TemplateArgs.asArray())
1186  mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1187 }
1188 
1189 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1190  const TemplateArgument &TA,
1191  const NamedDecl *Parm) {
1192  // <template-arg> ::= <type>
1193  // ::= <integer-literal>
1194  // ::= <member-data-pointer>
1195  // ::= <member-function-pointer>
1196  // ::= $E? <name> <type-encoding>
1197  // ::= $1? <name> <type-encoding>
1198  // ::= $0A@
1199  // ::= <template-args>
1200 
1201  switch (TA.getKind()) {
1203  llvm_unreachable("Can't mangle null template arguments!");
1205  llvm_unreachable("Can't mangle template expansion arguments!");
1206  case TemplateArgument::Type: {
1207  QualType T = TA.getAsType();
1208  mangleType(T, SourceRange(), QMM_Escape);
1209  break;
1210  }
1212  const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1213  if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1214  mangleMemberDataPointer(
1215  cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1216  cast<ValueDecl>(ND));
1217  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1218  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1219  if (MD && MD->isInstance()) {
1220  mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1221  } else {
1222  Out << "$1?";
1223  mangleName(FD);
1224  mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1225  }
1226  } else {
1227  mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1228  }
1229  break;
1230  }
1232  mangleIntegerLiteral(TA.getAsIntegral(),
1233  TA.getIntegralType()->isBooleanType());
1234  break;
1236  QualType T = TA.getNullPtrType();
1237  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1238  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1239  if (MPT->isMemberFunctionPointerType() &&
1240  !isa<FunctionTemplateDecl>(TD)) {
1241  mangleMemberFunctionPointer(RD, nullptr);
1242  return;
1243  }
1244  if (MPT->isMemberDataPointer()) {
1245  if (!isa<FunctionTemplateDecl>(TD)) {
1246  mangleMemberDataPointer(RD, nullptr);
1247  return;
1248  }
1249  // nullptr data pointers are always represented with a single field
1250  // which is initialized with either 0 or -1. Why -1? Well, we need to
1251  // distinguish the case where the data member is at offset zero in the
1252  // record.
1253  // However, we are free to use 0 *if* we would use multiple fields for
1254  // non-nullptr member pointers.
1255  if (!RD->nullFieldOffsetIsZero()) {
1256  mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1257  return;
1258  }
1259  }
1260  }
1261  mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1262  break;
1263  }
1265  mangleExpression(TA.getAsExpr());
1266  break;
1267  case TemplateArgument::Pack: {
1268  ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1269  if (TemplateArgs.empty()) {
1270  if (isa<TemplateTypeParmDecl>(Parm) ||
1271  isa<TemplateTemplateParmDecl>(Parm))
1272  // MSVC 2015 changed the mangling for empty expanded template packs,
1273  // use the old mangling for link compatibility for old versions.
1274  Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1276  ? "$$V"
1277  : "$$$V");
1278  else if (isa<NonTypeTemplateParmDecl>(Parm))
1279  Out << "$S";
1280  else
1281  llvm_unreachable("unexpected template parameter decl!");
1282  } else {
1283  for (const TemplateArgument &PA : TemplateArgs)
1284  mangleTemplateArg(TD, PA, Parm);
1285  }
1286  break;
1287  }
1289  const NamedDecl *ND =
1291  if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1292  mangleType(TD);
1293  } else if (isa<TypeAliasDecl>(ND)) {
1294  Out << "$$Y";
1295  mangleName(ND);
1296  } else {
1297  llvm_unreachable("unexpected template template NamedDecl!");
1298  }
1299  break;
1300  }
1301  }
1302 }
1303 
1304 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1305  bool IsMember) {
1306  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1307  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1308  // 'I' means __restrict (32/64-bit).
1309  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1310  // keyword!
1311  // <base-cvr-qualifiers> ::= A # near
1312  // ::= B # near const
1313  // ::= C # near volatile
1314  // ::= D # near const volatile
1315  // ::= E # far (16-bit)
1316  // ::= F # far const (16-bit)
1317  // ::= G # far volatile (16-bit)
1318  // ::= H # far const volatile (16-bit)
1319  // ::= I # huge (16-bit)
1320  // ::= J # huge const (16-bit)
1321  // ::= K # huge volatile (16-bit)
1322  // ::= L # huge const volatile (16-bit)
1323  // ::= M <basis> # based
1324  // ::= N <basis> # based const
1325  // ::= O <basis> # based volatile
1326  // ::= P <basis> # based const volatile
1327  // ::= Q # near member
1328  // ::= R # near const member
1329  // ::= S # near volatile member
1330  // ::= T # near const volatile member
1331  // ::= U # far member (16-bit)
1332  // ::= V # far const member (16-bit)
1333  // ::= W # far volatile member (16-bit)
1334  // ::= X # far const volatile member (16-bit)
1335  // ::= Y # huge member (16-bit)
1336  // ::= Z # huge const member (16-bit)
1337  // ::= 0 # huge volatile member (16-bit)
1338  // ::= 1 # huge const volatile member (16-bit)
1339  // ::= 2 <basis> # based member
1340  // ::= 3 <basis> # based const member
1341  // ::= 4 <basis> # based volatile member
1342  // ::= 5 <basis> # based const volatile member
1343  // ::= 6 # near function (pointers only)
1344  // ::= 7 # far function (pointers only)
1345  // ::= 8 # near method (pointers only)
1346  // ::= 9 # far method (pointers only)
1347  // ::= _A <basis> # based function (pointers only)
1348  // ::= _B <basis> # based function (far?) (pointers only)
1349  // ::= _C <basis> # based method (pointers only)
1350  // ::= _D <basis> # based method (far?) (pointers only)
1351  // ::= _E # block (Clang)
1352  // <basis> ::= 0 # __based(void)
1353  // ::= 1 # __based(segment)?
1354  // ::= 2 <name> # __based(name)
1355  // ::= 3 # ?
1356  // ::= 4 # ?
1357  // ::= 5 # not really based
1358  bool HasConst = Quals.hasConst(),
1359  HasVolatile = Quals.hasVolatile();
1360 
1361  if (!IsMember) {
1362  if (HasConst && HasVolatile) {
1363  Out << 'D';
1364  } else if (HasVolatile) {
1365  Out << 'C';
1366  } else if (HasConst) {
1367  Out << 'B';
1368  } else {
1369  Out << 'A';
1370  }
1371  } else {
1372  if (HasConst && HasVolatile) {
1373  Out << 'T';
1374  } else if (HasVolatile) {
1375  Out << 'S';
1376  } else if (HasConst) {
1377  Out << 'R';
1378  } else {
1379  Out << 'Q';
1380  }
1381  }
1382 
1383  // FIXME: For now, just drop all extension qualifiers on the floor.
1384 }
1385 
1386 void
1387 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1388  // <ref-qualifier> ::= G # lvalue reference
1389  // ::= H # rvalue-reference
1390  switch (RefQualifier) {
1391  case RQ_None:
1392  break;
1393 
1394  case RQ_LValue:
1395  Out << 'G';
1396  break;
1397 
1398  case RQ_RValue:
1399  Out << 'H';
1400  break;
1401  }
1402 }
1403 
1404 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1405  QualType PointeeType) {
1406  bool HasRestrict = Quals.hasRestrict();
1407  if (PointersAre64Bit &&
1408  (PointeeType.isNull() || !PointeeType->isFunctionType()))
1409  Out << 'E';
1410 
1411  if (HasRestrict)
1412  Out << 'I';
1413 }
1414 
1415 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1416  // <pointer-cv-qualifiers> ::= P # no qualifiers
1417  // ::= Q # const
1418  // ::= R # volatile
1419  // ::= S # const volatile
1420  bool HasConst = Quals.hasConst(),
1421  HasVolatile = Quals.hasVolatile();
1422 
1423  if (HasConst && HasVolatile) {
1424  Out << 'S';
1425  } else if (HasVolatile) {
1426  Out << 'R';
1427  } else if (HasConst) {
1428  Out << 'Q';
1429  } else {
1430  Out << 'P';
1431  }
1432 }
1433 
1434 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1435  SourceRange Range) {
1436  // MSVC will backreference two canonically equivalent types that have slightly
1437  // different manglings when mangled alone.
1438 
1439  // Decayed types do not match up with non-decayed versions of the same type.
1440  //
1441  // e.g.
1442  // void (*x)(void) will not form a backreference with void x(void)
1443  void *TypePtr;
1444  if (const auto *DT = T->getAs<DecayedType>()) {
1445  QualType OriginalType = DT->getOriginalType();
1446  // All decayed ArrayTypes should be treated identically; as-if they were
1447  // a decayed IncompleteArrayType.
1448  if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1449  OriginalType = getASTContext().getIncompleteArrayType(
1450  AT->getElementType(), AT->getSizeModifier(),
1451  AT->getIndexTypeCVRQualifiers());
1452 
1453  TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1454  // If the original parameter was textually written as an array,
1455  // instead treat the decayed parameter like it's const.
1456  //
1457  // e.g.
1458  // int [] -> int * const
1459  if (OriginalType->isArrayType())
1460  T = T.withConst();
1461  } else {
1462  TypePtr = T.getCanonicalType().getAsOpaquePtr();
1463  }
1464 
1465  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1466 
1467  if (Found == TypeBackReferences.end()) {
1468  size_t OutSizeBefore = Out.tell();
1469 
1470  mangleType(T, Range, QMM_Drop);
1471 
1472  // See if it's worth creating a back reference.
1473  // Only types longer than 1 character are considered
1474  // and only 10 back references slots are available:
1475  bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1476  if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1477  size_t Size = TypeBackReferences.size();
1478  TypeBackReferences[TypePtr] = Size;
1479  }
1480  } else {
1481  Out << Found->second;
1482  }
1483 }
1484 
1485 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1486  const PassObjectSizeAttr *POSA) {
1487  int Type = POSA->getType();
1488 
1489  auto Iter = PassObjectSizeArgs.insert(Type).first;
1490  auto *TypePtr = (const void *)&*Iter;
1491  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1492 
1493  if (Found == TypeBackReferences.end()) {
1494  mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
1495  {"__clang"});
1496 
1497  if (TypeBackReferences.size() < 10) {
1498  size_t Size = TypeBackReferences.size();
1499  TypeBackReferences[TypePtr] = Size;
1500  }
1501  } else {
1502  Out << Found->second;
1503  }
1504 }
1505 
1506 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1507  QualifierMangleMode QMM) {
1508  // Don't use the canonical types. MSVC includes things like 'const' on
1509  // pointer arguments to function pointers that canonicalization strips away.
1510  T = T.getDesugaredType(getASTContext());
1511  Qualifiers Quals = T.getLocalQualifiers();
1512  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1513  // If there were any Quals, getAsArrayType() pushed them onto the array
1514  // element type.
1515  if (QMM == QMM_Mangle)
1516  Out << 'A';
1517  else if (QMM == QMM_Escape || QMM == QMM_Result)
1518  Out << "$$B";
1519  mangleArrayType(AT);
1520  return;
1521  }
1522 
1523  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1524  T->isReferenceType() || T->isBlockPointerType();
1525 
1526  switch (QMM) {
1527  case QMM_Drop:
1528  break;
1529  case QMM_Mangle:
1530  if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1531  Out << '6';
1532  mangleFunctionType(FT);
1533  return;
1534  }
1535  mangleQualifiers(Quals, false);
1536  break;
1537  case QMM_Escape:
1538  if (!IsPointer && Quals) {
1539  Out << "$$C";
1540  mangleQualifiers(Quals, false);
1541  }
1542  break;
1543  case QMM_Result:
1544  if ((!IsPointer && Quals) || isa<TagType>(T)) {
1545  Out << '?';
1546  mangleQualifiers(Quals, false);
1547  }
1548  break;
1549  }
1550 
1551  const Type *ty = T.getTypePtr();
1552 
1553  switch (ty->getTypeClass()) {
1554 #define ABSTRACT_TYPE(CLASS, PARENT)
1555 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1556  case Type::CLASS: \
1557  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1558  return;
1559 #define TYPE(CLASS, PARENT) \
1560  case Type::CLASS: \
1561  mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1562  break;
1563 #include "clang/AST/TypeNodes.def"
1564 #undef ABSTRACT_TYPE
1565 #undef NON_CANONICAL_TYPE
1566 #undef TYPE
1567  }
1568 }
1569 
1570 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1571  SourceRange Range) {
1572  // <type> ::= <builtin-type>
1573  // <builtin-type> ::= X # void
1574  // ::= C # signed char
1575  // ::= D # char
1576  // ::= E # unsigned char
1577  // ::= F # short
1578  // ::= G # unsigned short (or wchar_t if it's not a builtin)
1579  // ::= H # int
1580  // ::= I # unsigned int
1581  // ::= J # long
1582  // ::= K # unsigned long
1583  // L # <none>
1584  // ::= M # float
1585  // ::= N # double
1586  // ::= O # long double (__float80 is mangled differently)
1587  // ::= _J # long long, __int64
1588  // ::= _K # unsigned long long, __int64
1589  // ::= _L # __int128
1590  // ::= _M # unsigned __int128
1591  // ::= _N # bool
1592  // _O # <array in parameter>
1593  // ::= _T # __float80 (Intel)
1594  // ::= _W # wchar_t
1595  // ::= _Z # __float80 (Digital Mars)
1596  switch (T->getKind()) {
1597  case BuiltinType::Void:
1598  Out << 'X';
1599  break;
1600  case BuiltinType::SChar:
1601  Out << 'C';
1602  break;
1603  case BuiltinType::Char_U:
1604  case BuiltinType::Char_S:
1605  Out << 'D';
1606  break;
1607  case BuiltinType::UChar:
1608  Out << 'E';
1609  break;
1610  case BuiltinType::Short:
1611  Out << 'F';
1612  break;
1613  case BuiltinType::UShort:
1614  Out << 'G';
1615  break;
1616  case BuiltinType::Int:
1617  Out << 'H';
1618  break;
1619  case BuiltinType::UInt:
1620  Out << 'I';
1621  break;
1622  case BuiltinType::Long:
1623  Out << 'J';
1624  break;
1625  case BuiltinType::ULong:
1626  Out << 'K';
1627  break;
1628  case BuiltinType::Float:
1629  Out << 'M';
1630  break;
1631  case BuiltinType::Double:
1632  Out << 'N';
1633  break;
1634  // TODO: Determine size and mangle accordingly
1635  case BuiltinType::LongDouble:
1636  Out << 'O';
1637  break;
1638  case BuiltinType::LongLong:
1639  Out << "_J";
1640  break;
1641  case BuiltinType::ULongLong:
1642  Out << "_K";
1643  break;
1644  case BuiltinType::Int128:
1645  Out << "_L";
1646  break;
1647  case BuiltinType::UInt128:
1648  Out << "_M";
1649  break;
1650  case BuiltinType::Bool:
1651  Out << "_N";
1652  break;
1653  case BuiltinType::Char16:
1654  Out << "_S";
1655  break;
1656  case BuiltinType::Char32:
1657  Out << "_U";
1658  break;
1659  case BuiltinType::WChar_S:
1660  case BuiltinType::WChar_U:
1661  Out << "_W";
1662  break;
1663 
1664 #define BUILTIN_TYPE(Id, SingletonId)
1665 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1666  case BuiltinType::Id:
1667 #include "clang/AST/BuiltinTypes.def"
1668  case BuiltinType::Dependent:
1669  llvm_unreachable("placeholder types shouldn't get to name mangling");
1670 
1671  case BuiltinType::ObjCId:
1672  Out << "PA";
1673  mangleArtificalTagType(TTK_Struct, "objc_object");
1674  break;
1675  case BuiltinType::ObjCClass:
1676  Out << "PA";
1677  mangleArtificalTagType(TTK_Struct, "objc_class");
1678  break;
1679  case BuiltinType::ObjCSel:
1680  Out << "PA";
1681  mangleArtificalTagType(TTK_Struct, "objc_selector");
1682  break;
1683 
1684  case BuiltinType::OCLImage1d:
1685  Out << "PA";
1686  mangleArtificalTagType(TTK_Struct, "ocl_image1d");
1687  break;
1688  case BuiltinType::OCLImage1dArray:
1689  Out << "PA";
1690  mangleArtificalTagType(TTK_Struct, "ocl_image1darray");
1691  break;
1692  case BuiltinType::OCLImage1dBuffer:
1693  Out << "PA";
1694  mangleArtificalTagType(TTK_Struct, "ocl_image1dbuffer");
1695  break;
1696  case BuiltinType::OCLImage2d:
1697  Out << "PA";
1698  mangleArtificalTagType(TTK_Struct, "ocl_image2d");
1699  break;
1700  case BuiltinType::OCLImage2dArray:
1701  Out << "PA";
1702  mangleArtificalTagType(TTK_Struct, "ocl_image2darray");
1703  break;
1704  case BuiltinType::OCLImage2dDepth:
1705  Out << "PA";
1706  mangleArtificalTagType(TTK_Struct, "ocl_image2ddepth");
1707  break;
1708  case BuiltinType::OCLImage2dArrayDepth:
1709  Out << "PA";
1710  mangleArtificalTagType(TTK_Struct, "ocl_image2darraydepth");
1711  break;
1712  case BuiltinType::OCLImage2dMSAA:
1713  Out << "PA";
1714  mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaa");
1715  break;
1716  case BuiltinType::OCLImage2dArrayMSAA:
1717  Out << "PA";
1718  mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaa");
1719  break;
1720  case BuiltinType::OCLImage2dMSAADepth:
1721  Out << "PA";
1722  mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaadepth");
1723  break;
1724  case BuiltinType::OCLImage2dArrayMSAADepth:
1725  Out << "PA";
1726  mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaadepth");
1727  break;
1728  case BuiltinType::OCLImage3d:
1729  Out << "PA";
1730  mangleArtificalTagType(TTK_Struct, "ocl_image3d");
1731  break;
1732  case BuiltinType::OCLSampler:
1733  Out << "PA";
1734  mangleArtificalTagType(TTK_Struct, "ocl_sampler");
1735  break;
1736  case BuiltinType::OCLEvent:
1737  Out << "PA";
1738  mangleArtificalTagType(TTK_Struct, "ocl_event");
1739  break;
1740  case BuiltinType::OCLClkEvent:
1741  Out << "PA";
1742  mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
1743  break;
1744  case BuiltinType::OCLQueue:
1745  Out << "PA";
1746  mangleArtificalTagType(TTK_Struct, "ocl_queue");
1747  break;
1748  case BuiltinType::OCLNDRange:
1749  Out << "PA";
1750  mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
1751  break;
1752  case BuiltinType::OCLReserveID:
1753  Out << "PA";
1754  mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
1755  break;
1756 
1757  case BuiltinType::NullPtr:
1758  Out << "$$T";
1759  break;
1760 
1761  case BuiltinType::Half: {
1762  DiagnosticsEngine &Diags = Context.getDiags();
1763  unsigned DiagID = Diags.getCustomDiagID(
1764  DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
1765  Diags.Report(Range.getBegin(), DiagID)
1766  << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
1767  break;
1768  }
1769  }
1770 }
1771 
1772 // <type> ::= <function-type>
1773 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
1774  SourceRange) {
1775  // Structors only appear in decls, so at this point we know it's not a
1776  // structor type.
1777  // FIXME: This may not be lambda-friendly.
1778  if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1779  Out << "$$A8@@";
1780  mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1781  } else {
1782  Out << "$$A6";
1783  mangleFunctionType(T);
1784  }
1785 }
1786 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1788  Out << "$$A6";
1789  mangleFunctionType(T);
1790 }
1791 
1792 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1793  const FunctionDecl *D,
1794  bool ForceThisQuals) {
1795  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1796  // <return-type> <argument-list> <throw-spec>
1797  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
1798 
1799  SourceRange Range;
1800  if (D) Range = D->getSourceRange();
1801 
1802  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1803  CallingConv CC = T->getCallConv();
1804  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1805  if (MD->isInstance())
1806  HasThisQuals = true;
1807  if (isa<CXXDestructorDecl>(MD)) {
1808  IsStructor = true;
1809  } else if (isa<CXXConstructorDecl>(MD)) {
1810  IsStructor = true;
1811  IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1813  getStructor(MD) == Structor;
1814  if (IsCtorClosure)
1815  CC = getASTContext().getDefaultCallingConvention(
1816  /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1817  }
1818  }
1819 
1820  // If this is a C++ instance method, mangle the CVR qualifiers for the
1821  // this pointer.
1822  if (HasThisQuals) {
1824  manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
1825  mangleRefQualifier(Proto->getRefQualifier());
1826  mangleQualifiers(Quals, /*IsMember=*/false);
1827  }
1828 
1829  mangleCallingConvention(CC);
1830 
1831  // <return-type> ::= <type>
1832  // ::= @ # structors (they have no declared return type)
1833  if (IsStructor) {
1834  if (isa<CXXDestructorDecl>(D) && D == Structor &&
1836  // The scalar deleting destructor takes an extra int argument.
1837  // However, the FunctionType generated has 0 arguments.
1838  // FIXME: This is a temporary hack.
1839  // Maybe should fix the FunctionType creation instead?
1840  Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1841  return;
1842  }
1843  if (IsCtorClosure) {
1844  // Default constructor closure and copy constructor closure both return
1845  // void.
1846  Out << 'X';
1847 
1849  // Default constructor closure always has no arguments.
1850  Out << 'X';
1851  } else if (StructorType == Ctor_CopyingClosure) {
1852  // Copy constructor closure always takes an unqualified reference.
1853  mangleArgumentType(getASTContext().getLValueReferenceType(
1854  Proto->getParamType(0)
1856  ->getPointeeType(),
1857  /*SpelledAsLValue=*/true),
1858  Range);
1859  Out << '@';
1860  } else {
1861  llvm_unreachable("unexpected constructor closure!");
1862  }
1863  Out << 'Z';
1864  return;
1865  }
1866  Out << '@';
1867  } else {
1868  QualType ResultType = T->getReturnType();
1869  if (const auto *AT =
1870  dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1871  Out << '?';
1872  mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1873  Out << '?';
1874  assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
1875  "shouldn't need to mangle __auto_type!");
1876  mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1877  Out << '@';
1878  } else {
1879  if (ResultType->isVoidType())
1880  ResultType = ResultType.getUnqualifiedType();
1881  mangleType(ResultType, Range, QMM_Result);
1882  }
1883  }
1884 
1885  // <argument-list> ::= X # void
1886  // ::= <type>+ @
1887  // ::= <type>* Z # varargs
1888  if (!Proto) {
1889  // Function types without prototypes can arise when mangling a function type
1890  // within an overloadable function in C. We mangle these as the absence of
1891  // any parameter types (not even an empty parameter list).
1892  Out << '@';
1893  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1894  Out << 'X';
1895  } else {
1896  // Happens for function pointer type arguments for example.
1897  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
1898  mangleArgumentType(Proto->getParamType(I), Range);
1899  // Mangle each pass_object_size parameter as if it's a paramater of enum
1900  // type passed directly after the parameter with the pass_object_size
1901  // attribute. The aforementioned enum's name is __pass_object_size, and we
1902  // pretend it resides in a top-level namespace called __clang.
1903  //
1904  // FIXME: Is there a defined extension notation for the MS ABI, or is it
1905  // necessary to just cross our fingers and hope this type+namespace
1906  // combination doesn't conflict with anything?
1907  if (D)
1908  if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
1909  manglePassObjectSizeArg(P);
1910  }
1911  // <builtin-type> ::= Z # ellipsis
1912  if (Proto->isVariadic())
1913  Out << 'Z';
1914  else
1915  Out << '@';
1916  }
1917 
1918  mangleThrowSpecification(Proto);
1919 }
1920 
1921 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1922  // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1923  // # pointer. in 64-bit mode *all*
1924  // # 'this' pointers are 64-bit.
1925  // ::= <global-function>
1926  // <member-function> ::= A # private: near
1927  // ::= B # private: far
1928  // ::= C # private: static near
1929  // ::= D # private: static far
1930  // ::= E # private: virtual near
1931  // ::= F # private: virtual far
1932  // ::= I # protected: near
1933  // ::= J # protected: far
1934  // ::= K # protected: static near
1935  // ::= L # protected: static far
1936  // ::= M # protected: virtual near
1937  // ::= N # protected: virtual far
1938  // ::= Q # public: near
1939  // ::= R # public: far
1940  // ::= S # public: static near
1941  // ::= T # public: static far
1942  // ::= U # public: virtual near
1943  // ::= V # public: virtual far
1944  // <global-function> ::= Y # global near
1945  // ::= Z # global far
1946  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1947  switch (MD->getAccess()) {
1948  case AS_none:
1949  llvm_unreachable("Unsupported access specifier");
1950  case AS_private:
1951  if (MD->isStatic())
1952  Out << 'C';
1953  else if (MD->isVirtual())
1954  Out << 'E';
1955  else
1956  Out << 'A';
1957  break;
1958  case AS_protected:
1959  if (MD->isStatic())
1960  Out << 'K';
1961  else if (MD->isVirtual())
1962  Out << 'M';
1963  else
1964  Out << 'I';
1965  break;
1966  case AS_public:
1967  if (MD->isStatic())
1968  Out << 'S';
1969  else if (MD->isVirtual())
1970  Out << 'U';
1971  else
1972  Out << 'Q';
1973  }
1974  } else {
1975  Out << 'Y';
1976  }
1977 }
1978 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1979  // <calling-convention> ::= A # __cdecl
1980  // ::= B # __export __cdecl
1981  // ::= C # __pascal
1982  // ::= D # __export __pascal
1983  // ::= E # __thiscall
1984  // ::= F # __export __thiscall
1985  // ::= G # __stdcall
1986  // ::= H # __export __stdcall
1987  // ::= I # __fastcall
1988  // ::= J # __export __fastcall
1989  // ::= Q # __vectorcall
1990  // The 'export' calling conventions are from a bygone era
1991  // (*cough*Win16*cough*) when functions were declared for export with
1992  // that keyword. (It didn't actually export them, it just made them so
1993  // that they could be in a DLL and somebody from another module could call
1994  // them.)
1995 
1996  switch (CC) {
1997  default:
1998  llvm_unreachable("Unsupported CC for mangling");
1999  case CC_X86_64Win64:
2000  case CC_X86_64SysV:
2001  case CC_C: Out << 'A'; break;
2002  case CC_X86Pascal: Out << 'C'; break;
2003  case CC_X86ThisCall: Out << 'E'; break;
2004  case CC_X86StdCall: Out << 'G'; break;
2005  case CC_X86FastCall: Out << 'I'; break;
2006  case CC_X86VectorCall: Out << 'Q'; break;
2007  }
2008 }
2009 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2010  mangleCallingConvention(T->getCallConv());
2011 }
2012 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2013  const FunctionProtoType *FT) {
2014  // <throw-spec> ::= Z # throw(...) (default)
2015  // ::= @ # throw() or __declspec/__attribute__((nothrow))
2016  // ::= <type>+
2017  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
2018  // all actually mangled as 'Z'. (They're ignored because their associated
2019  // functionality isn't implemented, and probably never will be.)
2020  Out << 'Z';
2021 }
2022 
2023 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2024  Qualifiers, SourceRange Range) {
2025  // Probably should be mangled as a template instantiation; need to see what
2026  // VC does first.
2027  DiagnosticsEngine &Diags = Context.getDiags();
2028  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2029  "cannot mangle this unresolved dependent type yet");
2030  Diags.Report(Range.getBegin(), DiagID)
2031  << Range;
2032 }
2033 
2034 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2035 // <union-type> ::= T <name>
2036 // <struct-type> ::= U <name>
2037 // <class-type> ::= V <name>
2038 // <enum-type> ::= W4 <name>
2039 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2040  switch (TTK) {
2041  case TTK_Union:
2042  Out << 'T';
2043  break;
2044  case TTK_Struct:
2045  case TTK_Interface:
2046  Out << 'U';
2047  break;
2048  case TTK_Class:
2049  Out << 'V';
2050  break;
2051  case TTK_Enum:
2052  Out << "W4";
2053  break;
2054  }
2055 }
2056 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2057  SourceRange) {
2058  mangleType(cast<TagType>(T)->getDecl());
2059 }
2060 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2061  SourceRange) {
2062  mangleType(cast<TagType>(T)->getDecl());
2063 }
2064 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2065  mangleTagTypeKind(TD->getTagKind());
2066  mangleName(TD);
2067 }
2068 void MicrosoftCXXNameMangler::mangleArtificalTagType(
2069  TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
2070  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2071  mangleTagTypeKind(TK);
2072 
2073  // Always start with the unqualified name.
2074  mangleSourceName(UnqualifiedName);
2075 
2076  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2077  mangleSourceName(*I);
2078 
2079  // Terminate the whole name with an '@'.
2080  Out << '@';
2081 }
2082 
2083 // <type> ::= <array-type>
2084 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2085 // [Y <dimension-count> <dimension>+]
2086 // <element-type> # as global, E is never required
2087 // It's supposed to be the other way around, but for some strange reason, it
2088 // isn't. Today this behavior is retained for the sole purpose of backwards
2089 // compatibility.
2090 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2091  // This isn't a recursive mangling, so now we have to do it all in this
2092  // one call.
2093  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2094  mangleType(T->getElementType(), SourceRange());
2095 }
2096 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2097  SourceRange) {
2098  llvm_unreachable("Should have been special cased");
2099 }
2100 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2101  SourceRange) {
2102  llvm_unreachable("Should have been special cased");
2103 }
2104 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2106  llvm_unreachable("Should have been special cased");
2107 }
2108 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2110  llvm_unreachable("Should have been special cased");
2111 }
2112 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2113  QualType ElementTy(T, 0);
2114  SmallVector<llvm::APInt, 3> Dimensions;
2115  for (;;) {
2116  if (ElementTy->isConstantArrayType()) {
2117  const ConstantArrayType *CAT =
2118  getASTContext().getAsConstantArrayType(ElementTy);
2119  Dimensions.push_back(CAT->getSize());
2120  ElementTy = CAT->getElementType();
2121  } else if (ElementTy->isIncompleteArrayType()) {
2122  const IncompleteArrayType *IAT =
2123  getASTContext().getAsIncompleteArrayType(ElementTy);
2124  Dimensions.push_back(llvm::APInt(32, 0));
2125  ElementTy = IAT->getElementType();
2126  } else if (ElementTy->isVariableArrayType()) {
2127  const VariableArrayType *VAT =
2128  getASTContext().getAsVariableArrayType(ElementTy);
2129  Dimensions.push_back(llvm::APInt(32, 0));
2130  ElementTy = VAT->getElementType();
2131  } else if (ElementTy->isDependentSizedArrayType()) {
2132  // The dependent expression has to be folded into a constant (TODO).
2133  const DependentSizedArrayType *DSAT =
2134  getASTContext().getAsDependentSizedArrayType(ElementTy);
2135  DiagnosticsEngine &Diags = Context.getDiags();
2136  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2137  "cannot mangle this dependent-length array yet");
2138  Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2139  << DSAT->getBracketsRange();
2140  return;
2141  } else {
2142  break;
2143  }
2144  }
2145  Out << 'Y';
2146  // <dimension-count> ::= <number> # number of extra dimensions
2147  mangleNumber(Dimensions.size());
2148  for (const llvm::APInt &Dimension : Dimensions)
2149  mangleNumber(Dimension.getLimitedValue());
2150  mangleType(ElementTy, SourceRange(), QMM_Escape);
2151 }
2152 
2153 // <type> ::= <pointer-to-member-type>
2154 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2155 // <class name> <type>
2156 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
2157  SourceRange Range) {
2158  QualType PointeeType = T->getPointeeType();
2159  manglePointerCVQualifiers(Quals);
2160  manglePointerExtQualifiers(Quals, PointeeType);
2161  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2162  Out << '8';
2163  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2164  mangleFunctionType(FPT, nullptr, true);
2165  } else {
2166  mangleQualifiers(PointeeType.getQualifiers(), true);
2167  mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2168  mangleType(PointeeType, Range, QMM_Drop);
2169  }
2170 }
2171 
2172 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2173  Qualifiers, SourceRange Range) {
2174  DiagnosticsEngine &Diags = Context.getDiags();
2175  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2176  "cannot mangle this template type parameter type yet");
2177  Diags.Report(Range.getBegin(), DiagID)
2178  << Range;
2179 }
2180 
2181 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2182  Qualifiers, SourceRange Range) {
2183  DiagnosticsEngine &Diags = Context.getDiags();
2184  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2185  "cannot mangle this substituted parameter pack yet");
2186  Diags.Report(Range.getBegin(), DiagID)
2187  << Range;
2188 }
2189 
2190 // <type> ::= <pointer-type>
2191 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2192 // # the E is required for 64-bit non-static pointers
2193 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2194  SourceRange Range) {
2195  QualType PointeeType = T->getPointeeType();
2196  manglePointerCVQualifiers(Quals);
2197  manglePointerExtQualifiers(Quals, PointeeType);
2198  mangleType(PointeeType, Range);
2199 }
2200 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2201  Qualifiers Quals, SourceRange Range) {
2202  QualType PointeeType = T->getPointeeType();
2203  manglePointerCVQualifiers(Quals);
2204  manglePointerExtQualifiers(Quals, PointeeType);
2205  // Object pointers never have qualifiers.
2206  Out << 'A';
2207  mangleType(PointeeType, Range);
2208 }
2209 
2210 // <type> ::= <reference-type>
2211 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2212 // # the E is required for 64-bit non-static lvalue references
2213 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2214  Qualifiers Quals, SourceRange Range) {
2215  QualType PointeeType = T->getPointeeType();
2216  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2217  Out << 'A';
2218  manglePointerExtQualifiers(Quals, PointeeType);
2219  mangleType(PointeeType, Range);
2220 }
2221 
2222 // <type> ::= <r-value-reference-type>
2223 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2224 // # the E is required for 64-bit non-static rvalue references
2225 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2226  Qualifiers Quals, SourceRange Range) {
2227  QualType PointeeType = T->getPointeeType();
2228  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2229  Out << "$$Q";
2230  manglePointerExtQualifiers(Quals, PointeeType);
2231  mangleType(PointeeType, Range);
2232 }
2233 
2234 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2235  SourceRange Range) {
2236  QualType ElementType = T->getElementType();
2237 
2238  llvm::SmallString<64> TemplateMangling;
2239  llvm::raw_svector_ostream Stream(TemplateMangling);
2240  MicrosoftCXXNameMangler Extra(Context, Stream);
2241  Stream << "?$";
2242  Extra.mangleSourceName("_Complex");
2243  Extra.mangleType(ElementType, Range, QMM_Escape);
2244 
2245  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2246 }
2247 
2248 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2249  SourceRange Range) {
2250  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2251  assert(ET && "vectors with non-builtin elements are unsupported");
2252  uint64_t Width = getASTContext().getTypeSize(T);
2253  // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2254  // doesn't match the Intel types uses a custom mangling below.
2255  size_t OutSizeBefore = Out.tell();
2256  llvm::Triple::ArchType AT =
2257  getASTContext().getTargetInfo().getTriple().getArch();
2258  if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2259  if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2260  mangleArtificalTagType(TTK_Union, "__m64");
2261  } else if (Width >= 128) {
2262  if (ET->getKind() == BuiltinType::Float)
2263  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
2264  else if (ET->getKind() == BuiltinType::LongLong)
2265  mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2266  else if (ET->getKind() == BuiltinType::Double)
2267  mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2268  }
2269  }
2270 
2271  bool IsBuiltin = Out.tell() != OutSizeBefore;
2272  if (!IsBuiltin) {
2273  // The MS ABI doesn't have a special mangling for vector types, so we define
2274  // our own mangling to handle uses of __vector_size__ on user-specified
2275  // types, and for extensions like __v4sf.
2276 
2277  llvm::SmallString<64> TemplateMangling;
2278  llvm::raw_svector_ostream Stream(TemplateMangling);
2279  MicrosoftCXXNameMangler Extra(Context, Stream);
2280  Stream << "?$";
2281  Extra.mangleSourceName("__vector");
2282  Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2283  Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2284  /*IsBoolean=*/false);
2285 
2286  mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
2287  }
2288 }
2289 
2290 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2291  Qualifiers Quals, SourceRange Range) {
2292  mangleType(static_cast<const VectorType *>(T), Quals, Range);
2293 }
2294 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2295  Qualifiers, SourceRange Range) {
2296  DiagnosticsEngine &Diags = Context.getDiags();
2297  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2298  "cannot mangle this dependent-sized extended vector type yet");
2299  Diags.Report(Range.getBegin(), DiagID)
2300  << Range;
2301 }
2302 
2303 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2304  SourceRange) {
2305  // ObjC interfaces have structs underlying them.
2306  mangleTagTypeKind(TTK_Struct);
2307  mangleName(T->getDecl());
2308 }
2309 
2310 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2311  SourceRange Range) {
2312  // We don't allow overloading by different protocol qualification,
2313  // so mangling them isn't necessary.
2314  mangleType(T->getBaseType(), Range);
2315 }
2316 
2317 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2318  Qualifiers Quals, SourceRange Range) {
2319  QualType PointeeType = T->getPointeeType();
2320  manglePointerCVQualifiers(Quals);
2321  manglePointerExtQualifiers(Quals, PointeeType);
2322 
2323  Out << "_E";
2324 
2325  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2326 }
2327 
2328 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2330  llvm_unreachable("Cannot mangle injected class name type.");
2331 }
2332 
2333 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2334  Qualifiers, SourceRange Range) {
2335  DiagnosticsEngine &Diags = Context.getDiags();
2336  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2337  "cannot mangle this template specialization type yet");
2338  Diags.Report(Range.getBegin(), DiagID)
2339  << Range;
2340 }
2341 
2342 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2343  SourceRange Range) {
2344  DiagnosticsEngine &Diags = Context.getDiags();
2345  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2346  "cannot mangle this dependent name type yet");
2347  Diags.Report(Range.getBegin(), DiagID)
2348  << Range;
2349 }
2350 
2351 void MicrosoftCXXNameMangler::mangleType(
2353  SourceRange Range) {
2354  DiagnosticsEngine &Diags = Context.getDiags();
2355  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2356  "cannot mangle this dependent template specialization type yet");
2357  Diags.Report(Range.getBegin(), DiagID)
2358  << Range;
2359 }
2360 
2361 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2362  SourceRange Range) {
2363  DiagnosticsEngine &Diags = Context.getDiags();
2364  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2365  "cannot mangle this pack expansion yet");
2366  Diags.Report(Range.getBegin(), DiagID)
2367  << Range;
2368 }
2369 
2370 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2371  SourceRange Range) {
2372  DiagnosticsEngine &Diags = Context.getDiags();
2373  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2374  "cannot mangle this typeof(type) yet");
2375  Diags.Report(Range.getBegin(), DiagID)
2376  << Range;
2377 }
2378 
2379 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2380  SourceRange Range) {
2381  DiagnosticsEngine &Diags = Context.getDiags();
2382  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2383  "cannot mangle this typeof(expression) yet");
2384  Diags.Report(Range.getBegin(), DiagID)
2385  << Range;
2386 }
2387 
2388 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2389  SourceRange Range) {
2390  DiagnosticsEngine &Diags = Context.getDiags();
2391  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2392  "cannot mangle this decltype() yet");
2393  Diags.Report(Range.getBegin(), DiagID)
2394  << Range;
2395 }
2396 
2397 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2398  Qualifiers, SourceRange Range) {
2399  DiagnosticsEngine &Diags = Context.getDiags();
2400  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2401  "cannot mangle this unary transform type yet");
2402  Diags.Report(Range.getBegin(), DiagID)
2403  << Range;
2404 }
2405 
2406 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2407  SourceRange Range) {
2408  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2409 
2410  DiagnosticsEngine &Diags = Context.getDiags();
2411  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2412  "cannot mangle this 'auto' type yet");
2413  Diags.Report(Range.getBegin(), DiagID)
2414  << Range;
2415 }
2416 
2417 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2418  SourceRange Range) {
2419  QualType ValueType = T->getValueType();
2420 
2421  llvm::SmallString<64> TemplateMangling;
2422  llvm::raw_svector_ostream Stream(TemplateMangling);
2423  MicrosoftCXXNameMangler Extra(Context, Stream);
2424  Stream << "?$";
2425  Extra.mangleSourceName("_Atomic");
2426  Extra.mangleType(ValueType, Range, QMM_Escape);
2427 
2428  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2429 }
2430 
2431 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2432  SourceRange Range) {
2433  DiagnosticsEngine &Diags = Context.getDiags();
2434  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2435  "cannot mangle this OpenCL pipe type yet");
2436  Diags.Report(Range.getBegin(), DiagID)
2437  << Range;
2438 }
2439 
2440 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2441  raw_ostream &Out) {
2442  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2443  "Invalid mangleName() call, argument is not a variable or function!");
2444  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2445  "Invalid mangleName() call on 'structor decl!");
2446 
2447  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2448  getASTContext().getSourceManager(),
2449  "Mangling declaration");
2450 
2451  MicrosoftCXXNameMangler Mangler(*this, Out);
2452  return Mangler.mangle(D);
2453 }
2454 
2455 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2456 // <virtual-adjustment>
2457 // <no-adjustment> ::= A # private near
2458 // ::= B # private far
2459 // ::= I # protected near
2460 // ::= J # protected far
2461 // ::= Q # public near
2462 // ::= R # public far
2463 // <static-adjustment> ::= G <static-offset> # private near
2464 // ::= H <static-offset> # private far
2465 // ::= O <static-offset> # protected near
2466 // ::= P <static-offset> # protected far
2467 // ::= W <static-offset> # public near
2468 // ::= X <static-offset> # public far
2469 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2470 // ::= $1 <virtual-shift> <static-offset> # private far
2471 // ::= $2 <virtual-shift> <static-offset> # protected near
2472 // ::= $3 <virtual-shift> <static-offset> # protected far
2473 // ::= $4 <virtual-shift> <static-offset> # public near
2474 // ::= $5 <virtual-shift> <static-offset> # public far
2475 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2476 // <vtordisp-shift> ::= <offset-to-vtordisp>
2477 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2478 // <offset-to-vtordisp>
2480  const ThisAdjustment &Adjustment,
2481  MicrosoftCXXNameMangler &Mangler,
2482  raw_ostream &Out) {
2483  if (!Adjustment.Virtual.isEmpty()) {
2484  Out << '$';
2485  char AccessSpec;
2486  switch (MD->getAccess()) {
2487  case AS_none:
2488  llvm_unreachable("Unsupported access specifier");
2489  case AS_private:
2490  AccessSpec = '0';
2491  break;
2492  case AS_protected:
2493  AccessSpec = '2';
2494  break;
2495  case AS_public:
2496  AccessSpec = '4';
2497  }
2498  if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2499  Out << 'R' << AccessSpec;
2500  Mangler.mangleNumber(
2501  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2502  Mangler.mangleNumber(
2503  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2504  Mangler.mangleNumber(
2505  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2506  Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2507  } else {
2508  Out << AccessSpec;
2509  Mangler.mangleNumber(
2510  static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2511  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2512  }
2513  } else if (Adjustment.NonVirtual != 0) {
2514  switch (MD->getAccess()) {
2515  case AS_none:
2516  llvm_unreachable("Unsupported access specifier");
2517  case AS_private:
2518  Out << 'G';
2519  break;
2520  case AS_protected:
2521  Out << 'O';
2522  break;
2523  case AS_public:
2524  Out << 'W';
2525  }
2526  Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2527  } else {
2528  switch (MD->getAccess()) {
2529  case AS_none:
2530  llvm_unreachable("Unsupported access specifier");
2531  case AS_private:
2532  Out << 'A';
2533  break;
2534  case AS_protected:
2535  Out << 'I';
2536  break;
2537  case AS_public:
2538  Out << 'Q';
2539  }
2540  }
2541 }
2542 
2543 void
2544 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2545  raw_ostream &Out) {
2546  MicrosoftVTableContext *VTContext =
2547  cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2549  VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2550 
2551  MicrosoftCXXNameMangler Mangler(*this, Out);
2552  Mangler.getStream() << "\01?";
2553  Mangler.mangleVirtualMemPtrThunk(MD, ML);
2554 }
2555 
2556 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2557  const ThunkInfo &Thunk,
2558  raw_ostream &Out) {
2559  MicrosoftCXXNameMangler Mangler(*this, Out);
2560  Out << "\01?";
2561  Mangler.mangleName(MD);
2562  mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2563  if (!Thunk.Return.isEmpty())
2564  assert(Thunk.Method != nullptr &&
2565  "Thunk info should hold the overridee decl");
2566 
2567  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2568  Mangler.mangleFunctionType(
2569  DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2570 }
2571 
2572 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2573  const CXXDestructorDecl *DD, CXXDtorType Type,
2574  const ThisAdjustment &Adjustment, raw_ostream &Out) {
2575  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2576  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2577  // mangling manually until we support both deleting dtor types.
2578  assert(Type == Dtor_Deleting);
2579  MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2580  Out << "\01??_E";
2581  Mangler.mangleName(DD->getParent());
2582  mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2583  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2584 }
2585 
2586 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2587  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2588  raw_ostream &Out) {
2589  // <mangled-name> ::= ?_7 <class-name> <storage-class>
2590  // <cvr-qualifiers> [<name>] @
2591  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2592  // is always '6' for vftables.
2593  MicrosoftCXXNameMangler Mangler(*this, Out);
2594  Mangler.getStream() << "\01??_7";
2595  Mangler.mangleName(Derived);
2596  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2597  for (const CXXRecordDecl *RD : BasePath)
2598  Mangler.mangleName(RD);
2599  Mangler.getStream() << '@';
2600 }
2601 
2602 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2603  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2604  raw_ostream &Out) {
2605  // <mangled-name> ::= ?_8 <class-name> <storage-class>
2606  // <cvr-qualifiers> [<name>] @
2607  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2608  // is always '7' for vbtables.
2609  MicrosoftCXXNameMangler Mangler(*this, Out);
2610  Mangler.getStream() << "\01??_8";
2611  Mangler.mangleName(Derived);
2612  Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2613  for (const CXXRecordDecl *RD : BasePath)
2614  Mangler.mangleName(RD);
2615  Mangler.getStream() << '@';
2616 }
2617 
2618 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2619  MicrosoftCXXNameMangler Mangler(*this, Out);
2620  Mangler.getStream() << "\01??_R0";
2621  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2622  Mangler.getStream() << "@8";
2623 }
2624 
2625 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2626  raw_ostream &Out) {
2627  MicrosoftCXXNameMangler Mangler(*this, Out);
2628  Mangler.getStream() << '.';
2629  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2630 }
2631 
2632 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2633  const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2634  MicrosoftCXXNameMangler Mangler(*this, Out);
2635  Mangler.getStream() << "\01??_K";
2636  Mangler.mangleName(SrcRD);
2637  Mangler.getStream() << "$C";
2638  Mangler.mangleName(DstRD);
2639 }
2640 
2641 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
2642  bool IsConst,
2643  bool IsVolatile,
2644  uint32_t NumEntries,
2645  raw_ostream &Out) {
2646  MicrosoftCXXNameMangler Mangler(*this, Out);
2647  Mangler.getStream() << "_TI";
2648  if (IsConst)
2649  Mangler.getStream() << 'C';
2650  if (IsVolatile)
2651  Mangler.getStream() << 'V';
2652  Mangler.getStream() << NumEntries;
2653  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2654 }
2655 
2656 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2657  QualType T, uint32_t NumEntries, raw_ostream &Out) {
2658  MicrosoftCXXNameMangler Mangler(*this, Out);
2659  Mangler.getStream() << "_CTA";
2660  Mangler.getStream() << NumEntries;
2661  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2662 }
2663 
2664 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2665  QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2666  uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2667  raw_ostream &Out) {
2668  MicrosoftCXXNameMangler Mangler(*this, Out);
2669  Mangler.getStream() << "_CT";
2670 
2671  llvm::SmallString<64> RTTIMangling;
2672  {
2673  llvm::raw_svector_ostream Stream(RTTIMangling);
2674  mangleCXXRTTI(T, Stream);
2675  }
2676  Mangler.getStream() << RTTIMangling.substr(1);
2677 
2678  // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
2679  // in fact, superfluous but I'm not sure the change was made consciously.
2680  // TODO: Revisit this when VS2015 gets released.
2681  llvm::SmallString<64> CopyCtorMangling;
2682  if (CD) {
2683  llvm::raw_svector_ostream Stream(CopyCtorMangling);
2684  mangleCXXCtor(CD, CT, Stream);
2685  }
2686  Mangler.getStream() << CopyCtorMangling.substr(1);
2687 
2688  Mangler.getStream() << Size;
2689  if (VBPtrOffset == -1) {
2690  if (NVOffset) {
2691  Mangler.getStream() << NVOffset;
2692  }
2693  } else {
2694  Mangler.getStream() << NVOffset;
2695  Mangler.getStream() << VBPtrOffset;
2696  Mangler.getStream() << VBIndex;
2697  }
2698 }
2699 
2700 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2701  const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2702  uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2703  MicrosoftCXXNameMangler Mangler(*this, Out);
2704  Mangler.getStream() << "\01??_R1";
2705  Mangler.mangleNumber(NVOffset);
2706  Mangler.mangleNumber(VBPtrOffset);
2707  Mangler.mangleNumber(VBTableOffset);
2708  Mangler.mangleNumber(Flags);
2709  Mangler.mangleName(Derived);
2710  Mangler.getStream() << "8";
2711 }
2712 
2713 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2714  const CXXRecordDecl *Derived, raw_ostream &Out) {
2715  MicrosoftCXXNameMangler Mangler(*this, Out);
2716  Mangler.getStream() << "\01??_R2";
2717  Mangler.mangleName(Derived);
2718  Mangler.getStream() << "8";
2719 }
2720 
2721 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2722  const CXXRecordDecl *Derived, raw_ostream &Out) {
2723  MicrosoftCXXNameMangler Mangler(*this, Out);
2724  Mangler.getStream() << "\01??_R3";
2725  Mangler.mangleName(Derived);
2726  Mangler.getStream() << "8";
2727 }
2728 
2729 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2730  const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2731  raw_ostream &Out) {
2732  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2733  // <cvr-qualifiers> [<name>] @
2734  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2735  // is always '6' for vftables.
2736  MicrosoftCXXNameMangler Mangler(*this, Out);
2737  Mangler.getStream() << "\01??_R4";
2738  Mangler.mangleName(Derived);
2739  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2740  for (const CXXRecordDecl *RD : BasePath)
2741  Mangler.mangleName(RD);
2742  Mangler.getStream() << '@';
2743 }
2744 
2745 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2746  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2747  MicrosoftCXXNameMangler Mangler(*this, Out);
2748  // The function body is in the same comdat as the function with the handler,
2749  // so the numbering here doesn't have to be the same across TUs.
2750  //
2751  // <mangled-name> ::= ?filt$ <filter-number> @0
2752  Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2753  Mangler.mangleName(EnclosingDecl);
2754 }
2755 
2756 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2757  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2758  MicrosoftCXXNameMangler Mangler(*this, Out);
2759  // The function body is in the same comdat as the function with the handler,
2760  // so the numbering here doesn't have to be the same across TUs.
2761  //
2762  // <mangled-name> ::= ?fin$ <filter-number> @0
2763  Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2764  Mangler.mangleName(EnclosingDecl);
2765 }
2766 
2767 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2768  // This is just a made up unique string for the purposes of tbaa. undname
2769  // does *not* know how to demangle it.
2770  MicrosoftCXXNameMangler Mangler(*this, Out);
2771  Mangler.getStream() << '?';
2772  Mangler.mangleType(T, SourceRange());
2773 }
2774 
2775 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2776  CXXCtorType Type,
2777  raw_ostream &Out) {
2778  MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2779  mangler.mangle(D);
2780 }
2781 
2782 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2783  CXXDtorType Type,
2784  raw_ostream &Out) {
2785  MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2786  mangler.mangle(D);
2787 }
2788 
2789 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
2790  const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
2791  MicrosoftCXXNameMangler Mangler(*this, Out);
2792 
2793  Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
2794  Mangler.mangle(VD, "");
2795 }
2796 
2797 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
2798  const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
2799  MicrosoftCXXNameMangler Mangler(*this, Out);
2800 
2801  Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
2802  Mangler.mangleNestedName(VD);
2803 }
2804 
2805 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2806  raw_ostream &Out) {
2807  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2808  // ::= ?__J <postfix> @5 <scope-depth>
2809  // ::= ?$S <guard-num> @ <postfix> @4IA
2810 
2811  // The first mangling is what MSVC uses to guard static locals in inline
2812  // functions. It uses a different mangling in external functions to support
2813  // guarding more than 32 variables. MSVC rejects inline functions with more
2814  // than 32 static locals. We don't fully implement the second mangling
2815  // because those guards are not externally visible, and instead use LLVM's
2816  // default renaming when creating a new guard variable.
2817  MicrosoftCXXNameMangler Mangler(*this, Out);
2818 
2819  bool Visible = VD->isExternallyVisible();
2820  if (Visible) {
2821  Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
2822  } else {
2823  Mangler.getStream() << "\01?$S1@";
2824  }
2825  unsigned ScopeDepth = 0;
2826  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2827  // If we do not have a discriminator and are emitting a guard variable for
2828  // use at global scope, then mangling the nested name will not be enough to
2829  // remove ambiguities.
2830  Mangler.mangle(VD, "");
2831  else
2832  Mangler.mangleNestedName(VD);
2833  Mangler.getStream() << (Visible ? "@5" : "@4IA");
2834  if (ScopeDepth)
2835  Mangler.mangleNumber(ScopeDepth);
2836 }
2837 
2838 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2839  raw_ostream &Out,
2840  char CharCode) {
2841  MicrosoftCXXNameMangler Mangler(*this, Out);
2842  Mangler.getStream() << "\01??__" << CharCode;
2843  Mangler.mangleName(D);
2844  if (D->isStaticDataMember()) {
2845  Mangler.mangleVariableEncoding(D);
2846  Mangler.getStream() << '@';
2847  }
2848  // This is the function class mangling. These stubs are global, non-variadic,
2849  // cdecl functions that return void and take no args.
2850  Mangler.getStream() << "YAXXZ";
2851 }
2852 
2853 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2854  raw_ostream &Out) {
2855  // <initializer-name> ::= ?__E <name> YAXXZ
2856  mangleInitFiniStub(D, Out, 'E');
2857 }
2858 
2859 void
2860 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2861  raw_ostream &Out) {
2862  // <destructor-name> ::= ?__F <name> YAXXZ
2863  mangleInitFiniStub(D, Out, 'F');
2864 }
2865 
2866 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2867  raw_ostream &Out) {
2868  // <char-type> ::= 0 # char
2869  // ::= 1 # wchar_t
2870  // ::= ??? # char16_t/char32_t will need a mangling too...
2871  //
2872  // <literal-length> ::= <non-negative integer> # the length of the literal
2873  //
2874  // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2875  // # null-terminator
2876  //
2877  // <encoded-string> ::= <simple character> # uninteresting character
2878  // ::= '?$' <hex digit> <hex digit> # these two nibbles
2879  // # encode the byte for the
2880  // # character
2881  // ::= '?' [a-z] # \xe1 - \xfa
2882  // ::= '?' [A-Z] # \xc1 - \xda
2883  // ::= '?' [0-9] # [,/\:. \n\t'-]
2884  //
2885  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2886  // <encoded-string> '@'
2887  MicrosoftCXXNameMangler Mangler(*this, Out);
2888  Mangler.getStream() << "\01??_C@_";
2889 
2890  // <char-type>: The "kind" of string literal is encoded into the mangled name.
2891  if (SL->isWide())
2892  Mangler.getStream() << '1';
2893  else
2894  Mangler.getStream() << '0';
2895 
2896  // <literal-length>: The next part of the mangled name consists of the length
2897  // of the string.
2898  // The StringLiteral does not consider the NUL terminator byte(s) but the
2899  // mangling does.
2900  // N.B. The length is in terms of bytes, not characters.
2901  Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2902 
2903  auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2904  unsigned CharByteWidth = SL->getCharByteWidth();
2905  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2906  unsigned OffsetInCodeUnit = Index % CharByteWidth;
2907  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2908  };
2909 
2910  auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2911  unsigned CharByteWidth = SL->getCharByteWidth();
2912  uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2913  unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2914  return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2915  };
2916 
2917  // CRC all the bytes of the StringLiteral.
2918  llvm::JamCRC JC;
2919  for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2920  JC.update(GetLittleEndianByte(I));
2921 
2922  // The NUL terminator byte(s) were not present earlier,
2923  // we need to manually process those bytes into the CRC.
2924  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2925  ++NullTerminator)
2926  JC.update('\x00');
2927 
2928  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2929  // scheme.
2930  Mangler.mangleNumber(JC.getCRC());
2931 
2932  // <encoded-string>: The mangled name also contains the first 32 _characters_
2933  // (including null-terminator bytes) of the StringLiteral.
2934  // Each character is encoded by splitting them into bytes and then encoding
2935  // the constituent bytes.
2936  auto MangleByte = [&Mangler](char Byte) {
2937  // There are five different manglings for characters:
2938  // - [a-zA-Z0-9_$]: A one-to-one mapping.
2939  // - ?[a-z]: The range from \xe1 to \xfa.
2940  // - ?[A-Z]: The range from \xc1 to \xda.
2941  // - ?[0-9]: The set of [,/\:. \n\t'-].
2942  // - ?$XX: A fallback which maps nibbles.
2943  if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2944  Mangler.getStream() << Byte;
2945  } else if (isLetter(Byte & 0x7f)) {
2946  Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2947  } else {
2948  const char SpecialChars[] = {',', '/', '\\', ':', '.',
2949  ' ', '\n', '\t', '\'', '-'};
2950  const char *Pos =
2951  std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2952  if (Pos != std::end(SpecialChars)) {
2953  Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2954  } else {
2955  Mangler.getStream() << "?$";
2956  Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2957  Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2958  }
2959  }
2960  };
2961 
2962  // Enforce our 32 character max.
2963  unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2964  for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2965  ++I)
2966  if (SL->isWide())
2967  MangleByte(GetBigEndianByte(I));
2968  else
2969  MangleByte(GetLittleEndianByte(I));
2970 
2971  // Encode the NUL terminator if there is room.
2972  if (NumCharsToMangle < 32)
2973  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2974  ++NullTerminator)
2975  MangleByte(0);
2976 
2977  Mangler.getStream() << '@';
2978 }
2979 
2982  return new MicrosoftMangleContextImpl(Context, Diags);
2983 }
Kind getKind() const
Definition: Type.h:2028
unsigned getNumElements() const
Definition: Type.h:2749
Defines the clang::ASTContext interface.
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5108
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:4778
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1483
bool isVariadic() const
Definition: Type.h:3255
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2147
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:3332
A (possibly-)qualified type.
Definition: Type.h:575
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:282
bool isMemberPointerType() const
Definition: Type.h:5329
__auto_type (GNU extension)
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:164
static MicrosoftMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
MSInheritanceAttr::Spelling getMSInheritanceModel() const
Returns the inheritance model used for this record.
StringRef getUuidAsStringRef(ASTContext &Context) const
Definition: ExprCXX.cpp:115
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:2847
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
IdentifierInfo * getCXXLiteralIdentifier() const
getCXXLiteralIdentifier - If this name is the name of a literal operator, retrieve the identifier ass...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:4328
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:171
The template argument is an expression, and we've not resolved it to one of the other forms yet...
Definition: TemplateBase.h:69
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:77
static LLVM_READONLY bool isLetter(unsigned char c)
Return true if this character is an ASCII letter: [a-zA-Z].
Definition: CharInfo.h:112
AutoType * getContainedAutoType() const
Get the AutoType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1589
Defines the C++ template declaration subclasses.
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:3918
TemplateSpecializationType(TemplateName T, const TemplateArgument *Args, unsigned NumArgs, QualType Canon, QualType Aliased)
Definition: Type.cpp:3118
QualType getPointeeType() const
Definition: Type.h:2388
IdentifierInfo * getAsIdentifierInfo() const
getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in this declaration name, or NULL if this declaration name isn't a simple identifier.
The base class of the type hierarchy.
Definition: Type.h:1249
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1598
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:111
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, const IdentifierInfo *Name, unsigned NumArgs, const TemplateArgument *Args, QualType Canon)
Definition: Type.cpp:2454
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1117
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2424
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:51
NamespaceDecl - Represent a C++ namespace.
Definition: Decl.h:402
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:100
bool isBooleanType() const
Definition: Type.h:5609
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:305
bool isBlockPointerType() const
Definition: Type.h:5311
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2134
Default closure variant of a ctor.
Definition: ABI.h:30
const llvm::APInt & getSize() const
Definition: Type.h:2495
void * getAsOpaquePtr() const
Definition: Type.h:623
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:699
TLSKind getTLSKind() const
Definition: Decl.cpp:1818
The "union" keyword.
Definition: Type.h:4180
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:46
AccessSpecifier getAccess() const
Definition: DeclBase.h:428
struct clang::ThisAdjustment::VirtualAdjustment::@114 Microsoft
CallingConv getCallConv() const
Definition: Type.h:2985
A this pointer adjustment.
Definition: ABI.h:108
The "__interface" keyword.
Definition: Type.h:4178
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:113
const CXXMethodDecl * Method
Holds a pointer to the overridden method this thunk is for, if needed by the ABI to distinguish diffe...
Definition: ABI.h:191
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:48
iterator begin() const
Definition: Type.h:4072
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1299
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isVoidType() const
Definition: Type.h:5546
The collection of all-type qualifiers we support.
Definition: Type.h:116
PipeType - OpenCL20.
Definition: Type.h:5020
unsigned getNumParams() const
Definition: Type.h:3160
int32_t VBOffsetOffset
The offset (in bytes) of the vbase offset in the vbtable.
Definition: ABI.h:132
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2629
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
class LLVM_ALIGNAS(8) DependentTemplateSpecializationType const IdentifierInfo * Name
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4381
bool hasAttr() const
Definition: DeclBase.h:498
Represents a class type in Objective C.
Definition: Type.h:4557
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3184
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:91
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:57
bool isReferenceType() const
Definition: Type.h:5314
bool isAnyPointerType() const
Definition: Type.h:5308
bool isTranslationUnit() const
Definition: DeclBase.h:1269
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:232
TagKind getTagKind() const
Definition: Decl.h:2847
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:3872
unsigned size() const
Definition: DeclTemplate.h:91
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
T * getAttr() const
Definition: DeclBase.h:495
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1522
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2351
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1620
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1208
const LangOptions & getLangOpts() const
Definition: ASTContext.h:596
unsigned getLength() const
Definition: Expr.h:1533
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:4612
QualType getReturnType() const
Definition: Type.h:2977
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:1801
Deleting dtor.
Definition: ABI.h:35
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:135
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:3384
Enums/classes describing ABI related information about constructors, destructors and thunks...
TypeClass getTypeClass() const
Definition: Type.h:1501
bool hasConst() const
Definition: Type.h:229
bool isStaticLocal() const
isStaticLocal - Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:908
iterator end() const
This represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:3560
detail::InMemoryDirectory::const_iterator I
QualType getType() const
Definition: Decl.h:530
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:2686
AnnotatingParser & P
Represents a K&R-style 'int foo()' function, which has no information available about its arguments...
Definition: Type.h:3007
bool isStatic() const
Definition: DeclCXX.cpp:1408
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5003
bool isNamespace() const
Definition: DeclBase.h:1277
CXXRecordDecl * getMostRecentDecl()
Definition: DeclCXX.h:666
QualType getParamType(unsigned i) const
Definition: Type.h:3161
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3041
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2584
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:577
ASTContext * Context
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Definition: DeclTemplate.h:226
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:415
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
bool hasVolatile() const
Definition: Type.h:236
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2627
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
BlockDecl - This represents a block literal declaration, which is like an unnamed FunctionDecl...
Definition: Decl.h:3369
QualType getPointeeType() const
Definition: Type.h:2268
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:521
Expr - This represents one expression.
Definition: Expr.h:104
StringRef getName() const
Return the actual identifier string.
bool isInstance() const
Definition: DeclCXX.h:1728
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:54
bool isVirtual() const
Definition: DeclCXX.h:1745
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2345
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:1927
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:216
DeclContext * getDeclContext()
Definition: DeclBase.h:393
Represents the type decltype(expr) (C++11).
Definition: Type.h:3449
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:869
Base object dtor.
Definition: ABI.h:37
A unary type transform, which is a type constructed from another.
Definition: Type.h:3490
bool isFunctionOrMethod() const
Definition: DeclBase.h:1249
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1200
bool isExternallyVisible() const
Definition: Decl.h:280
CharUnits getVBPtrOffset() const
getVBPtrOffset - Get the offset for virtual base table pointer.
Definition: RecordLayout.h:297
UnaryOperator - This represents the unary-expression's (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1654
Represents a GCC generic vector type.
Definition: Type.h:2724
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2334
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:190
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:271
QualType getElementType() const
Definition: Type.h:2748
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The result type of a method or function.
The COMDAT used for dtors.
Definition: ABI.h:38
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:228
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:2878
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:28
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:545
decl_type * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:156
SourceRange getBracketsRange() const
Definition: Type.h:2652
The "struct" keyword.
Definition: Type.h:4176
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3570
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5089
TemplateName getAsTemplate() const
Retrieve the template name for a template name argument.
Definition: TemplateBase.h:262
const TemplateArgument * iterator
Definition: Type.h:4070
QualType getElementType() const
Definition: Type.h:2099
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3271
Represents typeof(type), a GCC extension.
Definition: Type.h:3425
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:4766
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
TagDecl - Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:2644
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:55
QualType withConst() const
Definition: Type.h:741
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1701
TypedefNameDecl * getTypedefNameForUnnamedTagDecl(const TagDecl *TD)
No ref-qualifier was provided.
Definition: Type.h:1206
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getCharByteWidth() const
Definition: Expr.h:1534
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1204
SourceLocation getBegin() const
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:5706
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:602
Complete object dtor.
Definition: ABI.h:36
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1840
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1210
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:245
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2231
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:193
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4128
QualType getPointeeType() const
Definition: Type.h:2161
Represents a pack expansion of types.
Definition: Type.h:4471
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, const ThisAdjustment &Adjustment, MicrosoftCXXNameMangler &Mangler, raw_ostream &Out)
Expr * getSizeExpr() const
Definition: Type.h:2647
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2526
QualType getType() const
Definition: Expr.h:125
Represents a template argument.
Definition: TemplateBase.h:40
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:238
TagTypeKind
The kind of a tag type.
Definition: Type.h:4174
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3164
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:181
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1121
unsigned getByteLength() const
Definition: Expr.h:1532
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:331
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:63
DeclarationName - The name of a declaration.
detail::InMemoryDirectory::const_iterator E
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2369
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1022
union clang::ThisAdjustment::VirtualAdjustment Virtual
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:4836
Represents a pointer to an Objective C object.
Definition: Type.h:4821
Pointer to a block type.
Definition: Type.h:2254
Not an overloaded operator.
Definition: OperatorKinds.h:23
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3544
Complex values, per C99 6.2.5p11.
Definition: Type.h:2087
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:5675
unsigned getTypeQuals() const
Definition: Type.h:3267
QualType getCanonicalType() const
Definition: Type.h:5128
bool isWide() const
Definition: Expr.h:1544
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:294
bool isFunctionType() const
Definition: Type.h:5302
ExtVectorType - Extended vector type.
Definition: Type.h:2784
DeclaratorDecl * getDeclaratorForUnnamedTagDecl(const TagDecl *TD)
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:184
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1522
The template argument is a type.
Definition: TemplateBase.h:48
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:33
The template argument is actually a parameter pack.
Definition: TemplateBase.h:72
The "class" keyword.
Definition: Type.h:4182
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:986
QualType getPointeeType() const
Definition: Type.h:2308
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
Definition: LangOptions.h:141
A template argument list.
Definition: DeclTemplate.h:172
static LLVM_READONLY bool isIdentifierBody(unsigned char c, bool AllowDollar=false)
Returns true if this is a body character of a C identifier, which is [a-zA-Z0-9_].
Definition: CharInfo.h:59
const Type * getClass() const
Definition: Type.h:2402
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:256
ArrayRef< TemplateArgument > getPackAsArray() const
Return the array of arguments in this template argument pack.
Definition: TemplateBase.h:341
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:360
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5169
Represents a C++ struct/union/class.
Definition: DeclCXX.h:285
The template argument is a template name that was provided for a template template parameter...
Definition: TemplateBase.h:60
Represents a C array with an unspecified size.
Definition: Type.h:2530
int32_t VtordispOffset
The offset of the vtordisp (in bytes), relative to the ECX.
Definition: ABI.h:125
The "enum" keyword.
Definition: Type.h:4184
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target)
This class is used for builtin types like 'int'.
Definition: Type.h:2011
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:355
bool isArrayType() const
Definition: Type.h:5344
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:250
Copying closure variant of a ctor.
Definition: ABI.h:29
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1452
Defines the clang::TargetInfo interface.
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:3341
uint64_t Index
Method's index in the vftable.
static Qualifiers fromCVRMask(unsigned CVR)
Definition: Type.h:211
bool hasRestrict() const
Definition: Type.h:243
QualType getElementType() const
Definition: Type.h:2458
A trivial tuple used to represent a source range.
SourceLocation getLocation() const
Definition: DeclBase.h:384
NamedDecl - This represents a decl with a name.
Definition: Decl.h:145
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2513
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2575
A Microsoft C++ __uuidof expression, which gets the _GUID that corresponds to the supplied type or ex...
Definition: ExprCXX.h:768
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:642
bool nullFieldOffsetIsZero() const
In the Microsoft C++ ABI, use zero for the field offset of a null data member pointer if we can guara...
Definition: DeclCXX.h:1657
int32_t VBPtrOffset
The offset of the vbptr of the derived class (in bytes), relative to the ECX after vtordisp adjustmen...
Definition: ABI.h:129
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2480
bool isEmpty() const
Definition: ABI.h:87
const MethodVFTableLocation & getMethodVFTableLocation(GlobalDecl GD)
PrettyStackTraceDecl - If a crash occurs, indicate that it happened when doing something to a specifi...
Definition: DeclBase.h:1038
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5116
bool isPointerType() const
Definition: Type.h:5305
QualType getDeducedType() const
Get the type deduced for this auto type, or null if it's either not been deduced or was deduced to a ...
Definition: Type.h:3945