clang  3.7.0
SemaLambda.cpp
Go to the documentation of this file.
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
65  VarDecl *VarToCapture) {
66  // Label failure to capture.
67  const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69  assert(
70  isa<clang::sema::LambdaScopeInfo>(
71  FunctionScopes[FunctionScopes.size() - 1]) &&
72  "The function on the top of sema's function-info stack must be a lambda");
73 
74  // If VarToCapture is null, we are attempting to capture 'this'.
75  const bool IsCapturingThis = !VarToCapture;
76  const bool IsCapturingVariable = !IsCapturingThis;
77 
78  // Start with the current lambda at the top of the stack (highest index).
79  unsigned CurScopeIndex = FunctionScopes.size() - 1;
80  DeclContext *EnclosingDC =
81  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82 
83  do {
84  const clang::sema::LambdaScopeInfo *LSI =
85  cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86  // IF we have climbed down to an intervening enclosing lambda that contains
87  // the variable declaration - it obviously can/must not capture the
88  // variable.
89  // Since its enclosing DC is dependent, all the lambdas between it and the
90  // innermost nested lambda are dependent (otherwise we wouldn't have
91  // arrived here) - so we don't yet have a lambda that can capture the
92  // variable.
93  if (IsCapturingVariable &&
94  VarToCapture->getDeclContext()->Equals(EnclosingDC))
95  return NoLambdaIsCaptureReady;
96 
97  // For an enclosing lambda to be capture ready for an entity, all
98  // intervening lambda's have to be able to capture that entity. If even
99  // one of the intervening lambda's is not capable of capturing the entity
100  // then no enclosing lambda can ever capture that entity.
101  // For e.g.
102  // const int x = 10;
103  // [=](auto a) { #1
104  // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
105  // [=](auto c) { #3
106  // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
107  // }; }; };
108  // If they do not have a default implicit capture, check to see
109  // if the entity has already been explicitly captured.
110  // If even a single dependent enclosing lambda lacks the capability
111  // to ever capture this variable, there is no further enclosing
112  // non-dependent lambda that can capture this variable.
114  if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115  return NoLambdaIsCaptureReady;
116  if (IsCapturingThis && !LSI->isCXXThisCaptured())
117  return NoLambdaIsCaptureReady;
118  }
119  EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120 
121  assert(CurScopeIndex);
122  --CurScopeIndex;
123  } while (!EnclosingDC->isTranslationUnit() &&
124  EnclosingDC->isDependentContext() &&
125  isLambdaCallOperator(EnclosingDC));
126 
127  assert(CurScopeIndex < (FunctionScopes.size() - 1));
128  // If the enclosingDC is not dependent, then the immediately nested lambda
129  // (one index above) is capture-ready.
130  if (!EnclosingDC->isDependentContext())
131  return CurScopeIndex + 1;
132  return NoLambdaIsCaptureReady;
133 }
134 
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 /// - climb down the stack (i.e. starting from the innermost and examining
147 /// each outer lambda step by step) checking if each enclosing
148 /// lambda can either implicitly or explicitly capture the variable.
149 /// Record the first such lambda that is enclosed in a non-dependent
150 /// context. If no such lambda currently exists return failure.
151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 /// capture the variable by checking all its enclosing lambdas:
153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
154 /// identified above in 'a' can also capture the variable (this is done
155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
156 /// 'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable. If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169 
172  VarDecl *VarToCapture, Sema &S) {
173 
174  const Optional<unsigned> NoLambdaIsCaptureCapable;
175 
176  const Optional<unsigned> OptionalStackIndex =
178  VarToCapture);
179  if (!OptionalStackIndex)
180  return NoLambdaIsCaptureCapable;
181 
182  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184  S.getCurGenericLambda()) &&
185  "The capture ready lambda for a potential capture can only be the "
186  "current lambda if it is a generic lambda");
187 
188  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189  cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190 
191  // If VarToCapture is null, we are attempting to capture 'this'
192  const bool IsCapturingThis = !VarToCapture;
193  const bool IsCapturingVariable = !IsCapturingThis;
194 
195  if (IsCapturingVariable) {
196  // Check if the capture-ready lambda can truly capture the variable, by
197  // checking whether all enclosing lambdas of the capture-ready lambda allow
198  // the capture - i.e. make sure it is capture-capable.
199  QualType CaptureType, DeclRefType;
200  const bool CanCaptureVariable =
201  !S.tryCaptureVariable(VarToCapture,
202  /*ExprVarIsUsedInLoc*/ SourceLocation(),
204  /*EllipsisLoc*/ SourceLocation(),
205  /*BuildAndDiagnose*/ false, CaptureType,
206  DeclRefType, &IndexOfCaptureReadyLambda);
207  if (!CanCaptureVariable)
208  return NoLambdaIsCaptureCapable;
209  } else {
210  // Check if the capture-ready lambda can truly capture 'this' by checking
211  // whether all enclosing lambdas of the capture-ready lambda can capture
212  // 'this'.
213  const bool CanCaptureThis =
215  CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216  /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217  &IndexOfCaptureReadyLambda);
218  if (!CanCaptureThis)
219  return NoLambdaIsCaptureCapable;
220  }
221  return IndexOfCaptureReadyLambda;
222 }
223 
224 static inline TemplateParameterList *
226  if (LSI->GLTemplateParameterList)
227  return LSI->GLTemplateParameterList;
228 
229  if (LSI->AutoTemplateParams.size()) {
230  SourceRange IntroRange = LSI->IntroducerRange;
231  SourceLocation LAngleLoc = IntroRange.getBegin();
232  SourceLocation RAngleLoc = IntroRange.getEnd();
234  SemaRef.Context,
235  /*Template kw loc*/ SourceLocation(), LAngleLoc,
236  (NamedDecl **)LSI->AutoTemplateParams.data(),
237  LSI->AutoTemplateParams.size(), RAngleLoc);
238  }
239  return LSI->GLTemplateParameterList;
240 }
241 
243  TypeSourceInfo *Info,
244  bool KnownDependent,
245  LambdaCaptureDefault CaptureDefault) {
246  DeclContext *DC = CurContext;
247  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
248  DC = DC->getParent();
249  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
250  *this);
251  // Start constructing the lambda class.
253  IntroducerRange.getBegin(),
254  KnownDependent,
255  IsGenericLambda,
256  CaptureDefault);
257  DC->addDecl(Class);
258 
259  return Class;
260 }
261 
262 /// \brief Determine whether the given context is or is enclosed in an inline
263 /// function.
264 static bool isInInlineFunction(const DeclContext *DC) {
265  while (!DC->isFileContext()) {
266  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267  if (FD->isInlined())
268  return true;
269 
270  DC = DC->getLexicalParent();
271  }
272 
273  return false;
274 }
275 
278  Decl *&ManglingContextDecl) {
279  // Compute the context for allocating mangling numbers in the current
280  // expression, if the ABI requires them.
281  ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282 
283  enum ContextKind {
284  Normal,
285  DefaultArgument,
286  DataMember,
287  StaticDataMember
288  } Kind = Normal;
289 
290  // Default arguments of member function parameters that appear in a class
291  // definition, as well as the initializers of data members, receive special
292  // treatment. Identify them.
293  if (ManglingContextDecl) {
294  if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295  if (const DeclContext *LexicalDC
296  = Param->getDeclContext()->getLexicalParent())
297  if (LexicalDC->isRecord())
298  Kind = DefaultArgument;
299  } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300  if (Var->getDeclContext()->isRecord())
301  Kind = StaticDataMember;
302  } else if (isa<FieldDecl>(ManglingContextDecl)) {
303  Kind = DataMember;
304  }
305  }
306 
307  // Itanium ABI [5.1.7]:
308  // In the following contexts [...] the one-definition rule requires closure
309  // types in different translation units to "correspond":
310  bool IsInNonspecializedTemplate =
311  !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
312  switch (Kind) {
313  case Normal:
314  // -- the bodies of non-exported nonspecialized template functions
315  // -- the bodies of inline functions
316  if ((IsInNonspecializedTemplate &&
317  !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
318  isInInlineFunction(CurContext)) {
319  ManglingContextDecl = nullptr;
320  return &Context.getManglingNumberContext(DC);
321  }
322 
323  ManglingContextDecl = nullptr;
324  return nullptr;
325 
326  case StaticDataMember:
327  // -- the initializers of nonspecialized static members of template classes
328  if (!IsInNonspecializedTemplate) {
329  ManglingContextDecl = nullptr;
330  return nullptr;
331  }
332  // Fall through to get the current context.
333 
334  case DataMember:
335  // -- the in-class initializers of class members
336  case DefaultArgument:
337  // -- default arguments appearing in class definitions
338  return &ExprEvalContexts.back().getMangleNumberingContext(Context);
339  }
340 
341  llvm_unreachable("unexpected context");
342 }
343 
346  ASTContext &Ctx) {
347  assert(ManglingContextDecl && "Need to have a context declaration");
348  if (!MangleNumbering)
349  MangleNumbering = Ctx.createMangleNumberingContext();
350  return *MangleNumbering;
351 }
352 
354  SourceRange IntroducerRange,
355  TypeSourceInfo *MethodTypeInfo,
356  SourceLocation EndLoc,
357  ArrayRef<ParmVarDecl *> Params) {
358  QualType MethodType = MethodTypeInfo->getType();
359  TemplateParameterList *TemplateParams =
360  getGenericLambdaTemplateParameterList(getCurLambda(), *this);
361  // If a lambda appears in a dependent context or is a generic lambda (has
362  // template parameters) and has an 'auto' return type, deduce it to a
363  // dependent type.
364  if (Class->isDependentContext() || TemplateParams) {
365  const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
366  QualType Result = FPT->getReturnType();
367  if (Result->isUndeducedType()) {
368  Result = SubstAutoType(Result, Context.DependentTy);
369  MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
370  FPT->getExtProtoInfo());
371  }
372  }
373 
374  // C++11 [expr.prim.lambda]p5:
375  // The closure type for a lambda-expression has a public inline function
376  // call operator (13.5.4) whose parameters and return type are described by
377  // the lambda-expression's parameter-declaration-clause and
378  // trailing-return-type respectively.
379  DeclarationName MethodName
381  DeclarationNameLoc MethodNameLoc;
382  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
383  = IntroducerRange.getBegin().getRawEncoding();
384  MethodNameLoc.CXXOperatorName.EndOpNameLoc
385  = IntroducerRange.getEnd().getRawEncoding();
386  CXXMethodDecl *Method
387  = CXXMethodDecl::Create(Context, Class, EndLoc,
388  DeclarationNameInfo(MethodName,
389  IntroducerRange.getBegin(),
390  MethodNameLoc),
391  MethodType, MethodTypeInfo,
392  SC_None,
393  /*isInline=*/true,
394  /*isConstExpr=*/false,
395  EndLoc);
396  Method->setAccess(AS_public);
397 
398  // Temporarily set the lexical declaration context to the current
399  // context, so that the Scope stack matches the lexical nesting.
400  Method->setLexicalDeclContext(CurContext);
401  // Create a function template if we have a template parameter list
402  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
404  Method->getLocation(), MethodName,
405  TemplateParams,
406  Method) : nullptr;
407  if (TemplateMethod) {
408  TemplateMethod->setLexicalDeclContext(CurContext);
409  TemplateMethod->setAccess(AS_public);
410  Method->setDescribedFunctionTemplate(TemplateMethod);
411  }
412 
413  // Add parameters.
414  if (!Params.empty()) {
415  Method->setParams(Params);
416  CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
417  const_cast<ParmVarDecl **>(Params.end()),
418  /*CheckParameterNames=*/false);
419 
420  for (auto P : Method->params())
421  P->setOwningFunction(Method);
422  }
423 
424  Decl *ManglingContextDecl;
425  if (MangleNumberingContext *MCtx =
426  getCurrentMangleNumberContext(Class->getDeclContext(),
427  ManglingContextDecl)) {
428  unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429  Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430  }
431 
432  return Method;
433 }
434 
436  CXXMethodDecl *CallOperator,
437  SourceRange IntroducerRange,
438  LambdaCaptureDefault CaptureDefault,
439  SourceLocation CaptureDefaultLoc,
440  bool ExplicitParams,
441  bool ExplicitResultType,
442  bool Mutable) {
443  LSI->CallOperator = CallOperator;
444  CXXRecordDecl *LambdaClass = CallOperator->getParent();
445  LSI->Lambda = LambdaClass;
446  if (CaptureDefault == LCD_ByCopy)
448  else if (CaptureDefault == LCD_ByRef)
450  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451  LSI->IntroducerRange = IntroducerRange;
452  LSI->ExplicitParams = ExplicitParams;
453  LSI->Mutable = Mutable;
454 
455  if (ExplicitResultType) {
456  LSI->ReturnType = CallOperator->getReturnType();
457 
458  if (!LSI->ReturnType->isDependentType() &&
459  !LSI->ReturnType->isVoidType()) {
460  if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461  diag::err_lambda_incomplete_result)) {
462  // Do nothing.
463  }
464  }
465  } else {
466  LSI->HasImplicitReturnType = true;
467  }
468 }
469 
472 }
473 
474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475  // Introduce our parameters into the function scope
476  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477  p < NumParams; ++p) {
478  ParmVarDecl *Param = CallOperator->getParamDecl(p);
479 
480  // If this has an identifier, add it to the scope stack.
481  if (CurScope && Param->getIdentifier()) {
482  CheckShadow(CurScope, Param);
483 
484  PushOnScopeChains(Param, CurScope);
485  }
486  }
487 }
488 
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
491 ///
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
497  // An expression is an enumerator-like expression of type T if,
498  // ignoring parens and parens-like expressions:
499  E = E->IgnoreParens();
500 
501  // - it is an enumerator whose enum type is T or
502  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503  if (EnumConstantDecl *D
504  = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505  return cast<EnumDecl>(D->getDeclContext());
506  }
507  return nullptr;
508  }
509 
510  // - it is a comma expression whose RHS is an enumerator-like
511  // expression of type T or
512  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513  if (BO->getOpcode() == BO_Comma)
514  return findEnumForBlockReturn(BO->getRHS());
515  return nullptr;
516  }
517 
518  // - it is a statement-expression whose value expression is an
519  // enumerator-like expression of type T or
520  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521  if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522  return findEnumForBlockReturn(last);
523  return nullptr;
524  }
525 
526  // - it is a ternary conditional operator (not the GNU ?:
527  // extension) whose second and third operands are
528  // enumerator-like expressions of type T or
529  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530  if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531  if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532  return ED;
533  return nullptr;
534  }
535 
536  // (implicitly:)
537  // - it is an implicit integral conversion applied to an
538  // enumerator-like expression of type T or
539  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540  // We can sometimes see integral conversions in valid
541  // enumerator-like expressions.
542  if (ICE->getCastKind() == CK_IntegralCast)
543  return findEnumForBlockReturn(ICE->getSubExpr());
544 
545  // Otherwise, just rely on the type.
546  }
547 
548  // - it is an expression of that formal enum type.
549  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550  return ET->getDecl();
551  }
552 
553  // Otherwise, nope.
554  return nullptr;
555 }
556 
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
560  if (Expr *retValue = ret->getRetValue())
561  return findEnumForBlockReturn(retValue);
562  return nullptr;
563 }
564 
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
569  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570 
571  // Try to find one for the first return.
573  if (!ED) return nullptr;
574 
575  // Check that the rest of the returns have the same enum.
576  for (++i; i != e; ++i) {
577  if (findEnumForBlockReturn(*i) != ED)
578  return nullptr;
579  }
580 
581  // Never infer an anonymous enum type.
582  if (!ED->hasNameForLinkage()) return nullptr;
583 
584  return ED;
585 }
586 
587 /// Adjust the given return statements so that they formally return
588 /// the given type. It should require, at most, an IntegralCast.
590  QualType returnType) {
592  i = returns.begin(), e = returns.end(); i != e; ++i) {
593  ReturnStmt *ret = *i;
594  Expr *retValue = ret->getRetValue();
595  if (S.Context.hasSameType(retValue->getType(), returnType))
596  continue;
597 
598  // Right now we only support integral fixup casts.
599  assert(returnType->isIntegralOrUnscopedEnumerationType());
600  assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601 
602  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603 
604  Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
606  E, /*base path*/ nullptr, VK_RValue);
607  if (cleanups) {
608  cleanups->setSubExpr(E);
609  } else {
610  ret->setRetValue(E);
611  }
612  }
613 }
614 
616  assert(CSI.HasImplicitReturnType);
617  // If it was ever a placeholder, it had to been deduced to DependentTy.
618  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619 
620  // C++ core issue 975:
621  // If a lambda-expression does not include a trailing-return-type,
622  // it is as if the trailing-return-type denotes the following type:
623  // - if there are no return statements in the compound-statement,
624  // or all return statements return either an expression of type
625  // void or no expression or braced-init-list, the type void;
626  // - otherwise, if all return statements return an expression
627  // and the types of the returned expressions after
628  // lvalue-to-rvalue conversion (4.1 [conv.lval]),
629  // array-to-pointer conversion (4.2 [conv.array]), and
630  // function-to-pointer conversion (4.3 [conv.func]) are the
631  // same, that common type;
632  // - otherwise, the program is ill-formed.
633  //
634  // C++ core issue 1048 additionally removes top-level cv-qualifiers
635  // from the types of returned expressions to match the C++14 auto
636  // deduction rules.
637  //
638  // In addition, in blocks in non-C++ modes, if all of the return
639  // statements are enumerator-like expressions of some type T, where
640  // T has a name for linkage, then we infer the return type of the
641  // block to be that type.
642 
643  // First case: no return statements, implicit void return type.
644  ASTContext &Ctx = getASTContext();
645  if (CSI.Returns.empty()) {
646  // It's possible there were simply no /valid/ return statements.
647  // In this case, the first one we found may have at least given us a type.
648  if (CSI.ReturnType.isNull())
649  CSI.ReturnType = Ctx.VoidTy;
650  return;
651  }
652 
653  // Second case: at least one return statement has dependent type.
654  // Delay type checking until instantiation.
655  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
656  if (CSI.ReturnType->isDependentType())
657  return;
658 
659  // Try to apply the enum-fuzz rule.
660  if (!getLangOpts().CPlusPlus) {
661  assert(isa<BlockScopeInfo>(CSI));
663  if (ED) {
666  return;
667  }
668  }
669 
670  // Third case: only one return statement. Don't bother doing extra work!
672  E = CSI.Returns.end();
673  if (I+1 == E)
674  return;
675 
676  // General case: many return statements.
677  // Check that they all have compatible return types.
678 
679  // We require the return types to strictly match here.
680  // Note that we've already done the required promotions as part of
681  // processing the return statement.
682  for (; I != E; ++I) {
683  const ReturnStmt *RS = *I;
684  const Expr *RetE = RS->getRetValue();
685 
686  QualType ReturnType =
687  (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
688  if (Context.hasSameType(ReturnType, CSI.ReturnType))
689  continue;
690 
691  // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
692  // TODO: It's possible that the *first* return is the divergent one.
693  Diag(RS->getLocStart(),
694  diag::err_typecheck_missing_return_type_incompatible)
695  << ReturnType << CSI.ReturnType
696  << isa<LambdaScopeInfo>(CSI);
697  // Continue iterating so that we keep emitting diagnostics.
698  }
699 }
700 
702  bool ByRef,
703  IdentifierInfo *Id,
704  Expr *&Init) {
705 
706  // We do not need to distinguish between direct-list-initialization
707  // and copy-list-initialization here, because we will always deduce
708  // std::initializer_list<T>, and direct- and copy-list-initialization
709  // always behave the same for such a type.
710  // FIXME: We should model whether an '=' was present.
711  const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
712 
713  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
714  // deduce against.
715  QualType DeductType = Context.getAutoDeductType();
716  TypeLocBuilder TLB;
717  TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
718  if (ByRef) {
719  DeductType = BuildReferenceType(DeductType, true, Loc, Id);
720  assert(!DeductType.isNull() && "can't build reference to auto");
721  TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
722  }
723  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
724 
725  // Are we a non-list direct initialization?
726  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
727 
728  Expr *DeduceInit = Init;
729  // Initializer could be a C++ direct-initializer. Deduction only works if it
730  // contains exactly one expression.
731  if (CXXDirectInit) {
732  if (CXXDirectInit->getNumExprs() == 0) {
733  Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
734  << DeclarationName(Id) << TSI->getType() << Loc;
735  return QualType();
736  } else if (CXXDirectInit->getNumExprs() > 1) {
737  Diag(CXXDirectInit->getExpr(1)->getLocStart(),
738  diag::err_init_capture_multiple_expressions)
739  << DeclarationName(Id) << TSI->getType() << Loc;
740  return QualType();
741  } else {
742  DeduceInit = CXXDirectInit->getExpr(0);
743  if (isa<InitListExpr>(DeduceInit))
744  Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
745  << DeclarationName(Id) << Loc;
746  }
747  }
748 
749  // Now deduce against the initialization expression and store the deduced
750  // type below.
751  QualType DeducedType;
752  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
753  if (isa<InitListExpr>(Init))
754  Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
755  << DeclarationName(Id)
756  << (DeduceInit->getType().isNull() ? TSI->getType()
757  : DeduceInit->getType())
758  << DeduceInit->getSourceRange();
759  else
760  Diag(Loc, diag::err_init_capture_deduction_failure)
761  << DeclarationName(Id) << TSI->getType()
762  << (DeduceInit->getType().isNull() ? TSI->getType()
763  : DeduceInit->getType())
764  << DeduceInit->getSourceRange();
765  }
766  if (DeducedType.isNull())
767  return QualType();
768 
769  // Perform initialization analysis and ensure any implicit conversions
770  // (such as lvalue-to-rvalue) are enforced.
771  InitializedEntity Entity =
772  InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
774  IsDirectInit
775  ? (CXXDirectInit ? InitializationKind::CreateDirect(
776  Loc, Init->getLocStart(), Init->getLocEnd())
778  : InitializationKind::CreateCopy(Loc, Init->getLocStart());
779 
780  MultiExprArg Args = Init;
781  if (CXXDirectInit)
782  Args =
783  MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
784  QualType DclT;
785  InitializationSequence InitSeq(*this, Entity, Kind, Args);
786  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
787 
788  if (Result.isInvalid())
789  return QualType();
790  Init = Result.getAs<Expr>();
791 
792  // The init-capture initialization is a full-expression that must be
793  // processed as one before we enter the declcontext of the lambda's
794  // call-operator.
795  Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
796  /*IsConstexpr*/ false,
797  /*IsLambdaInitCaptureInitalizer*/ true);
798  if (Result.isInvalid())
799  return QualType();
800 
801  Init = Result.getAs<Expr>();
802  return DeducedType;
803 }
804 
806  QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
807 
808  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
809  Loc);
810  // Create a dummy variable representing the init-capture. This is not actually
811  // used as a variable, and only exists as a way to name and refer to the
812  // init-capture.
813  // FIXME: Pass in separate source locations for '&' and identifier.
814  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
815  Loc, Id, InitCaptureType, TSI, SC_Auto);
816  NewVD->setInitCapture(true);
817  NewVD->setReferenced(true);
818  NewVD->markUsed(Context);
819  NewVD->setInit(Init);
820  return NewVD;
821 }
822 
824  FieldDecl *Field = FieldDecl::Create(
825  Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
826  nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
827  ICIS_NoInit);
828  Field->setImplicit(true);
829  Field->setAccess(AS_private);
830  LSI->Lambda->addDecl(Field);
831 
832  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
833  /*isNested*/false, Var->getLocation(), SourceLocation(),
834  Var->getType(), Var->getInit());
835  return Field;
836 }
837 
839  Declarator &ParamInfo,
840  Scope *CurScope) {
841  // Determine if we're within a context where we know that the lambda will
842  // be dependent, because there are template parameters in scope.
843  bool KnownDependent = false;
844  LambdaScopeInfo *const LSI = getCurLambda();
845  assert(LSI && "LambdaScopeInfo should be on stack!");
846  TemplateParameterList *TemplateParams =
848 
849  if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
850  // Since we have our own TemplateParams, so check if an outer scope
851  // has template params, only then are we in a dependent scope.
852  if (TemplateParams) {
853  TmplScope = TmplScope->getParent();
854  TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
855  }
856  if (TmplScope && !TmplScope->decl_empty())
857  KnownDependent = true;
858  }
859  // Determine the signature of the call operator.
860  TypeSourceInfo *MethodTyInfo;
861  bool ExplicitParams = true;
862  bool ExplicitResultType = true;
863  bool ContainsUnexpandedParameterPack = false;
864  SourceLocation EndLoc;
866  if (ParamInfo.getNumTypeObjects() == 0) {
867  // C++11 [expr.prim.lambda]p4:
868  // If a lambda-expression does not include a lambda-declarator, it is as
869  // if the lambda-declarator were ().
871  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
872  EPI.HasTrailingReturn = true;
873  EPI.TypeQuals |= DeclSpec::TQ_const;
874  // C++1y [expr.prim.lambda]:
875  // The lambda return type is 'auto', which is replaced by the
876  // trailing-return type if provided and/or deduced from 'return'
877  // statements
878  // We don't do this before C++1y, because we don't support deduced return
879  // types there.
880  QualType DefaultTypeForNoTrailingReturn =
881  getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
883  QualType MethodTy =
884  Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
885  MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
886  ExplicitParams = false;
887  ExplicitResultType = false;
888  EndLoc = Intro.Range.getEnd();
889  } else {
890  assert(ParamInfo.isFunctionDeclarator() &&
891  "lambda-declarator is a function");
893 
894  // C++11 [expr.prim.lambda]p5:
895  // This function call operator is declared const (9.3.1) if and only if
896  // the lambda-expression's parameter-declaration-clause is not followed
897  // by mutable. It is neither virtual nor declared volatile. [...]
898  if (!FTI.hasMutableQualifier())
900 
901  MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
902  assert(MethodTyInfo && "no type from lambda-declarator");
903  EndLoc = ParamInfo.getSourceRange().getEnd();
904 
905  ExplicitResultType = FTI.hasTrailingReturnType();
906 
907  if (FTIHasNonVoidParameters(FTI)) {
908  Params.reserve(FTI.NumParams);
909  for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
910  Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
911  }
912 
913  // Check for unexpanded parameter packs in the method type.
914  if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
915  ContainsUnexpandedParameterPack = true;
916  }
917 
918  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
919  KnownDependent, Intro.Default);
920 
921  CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
922  MethodTyInfo, EndLoc, Params);
923  if (ExplicitParams)
924  CheckCXXDefaultArguments(Method);
925 
926  // Attributes on the lambda apply to the method.
927  ProcessDeclAttributes(CurScope, Method, ParamInfo);
928 
929  // Introduce the function call operator as the current declaration context.
930  PushDeclContext(CurScope, Method);
931 
932  // Build the lambda scope.
933  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
934  ExplicitParams, ExplicitResultType, !Method->isConst());
935 
936  // C++11 [expr.prim.lambda]p9:
937  // A lambda-expression whose smallest enclosing scope is a block scope is a
938  // local lambda expression; any other lambda expression shall not have a
939  // capture-default or simple-capture in its lambda-introducer.
940  //
941  // For simple-captures, this is covered by the check below that any named
942  // entity is a variable that can be captured.
943  //
944  // For DR1632, we also allow a capture-default in any context where we can
945  // odr-use 'this' (in particular, in a default initializer for a non-static
946  // data member).
947  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
948  (getCurrentThisType().isNull() ||
949  CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
950  /*BuildAndDiagnose*/false)))
951  Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
952 
953  // Distinct capture names, for diagnostics.
954  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
955 
956  // Handle explicit captures.
957  SourceLocation PrevCaptureLoc
958  = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
959  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
960  PrevCaptureLoc = C->Loc, ++C) {
961  if (C->Kind == LCK_This) {
962  // C++11 [expr.prim.lambda]p8:
963  // An identifier or this shall not appear more than once in a
964  // lambda-capture.
965  if (LSI->isCXXThisCaptured()) {
966  Diag(C->Loc, diag::err_capture_more_than_once)
967  << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
969  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
970  continue;
971  }
972 
973  // C++11 [expr.prim.lambda]p8:
974  // If a lambda-capture includes a capture-default that is =, the
975  // lambda-capture shall not contain this [...].
976  if (Intro.Default == LCD_ByCopy) {
977  Diag(C->Loc, diag::err_this_capture_with_copy_default)
979  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
980  continue;
981  }
982 
983  // C++11 [expr.prim.lambda]p12:
984  // If this is captured by a local lambda expression, its nearest
985  // enclosing function shall be a non-static member function.
986  QualType ThisCaptureType = getCurrentThisType();
987  if (ThisCaptureType.isNull()) {
988  Diag(C->Loc, diag::err_this_capture) << true;
989  continue;
990  }
991 
992  CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
993  continue;
994  }
995 
996  assert(C->Id && "missing identifier for capture");
997 
998  if (C->Init.isInvalid())
999  continue;
1000 
1001  VarDecl *Var = nullptr;
1002  if (C->Init.isUsable()) {
1003  Diag(C->Loc, getLangOpts().CPlusPlus14
1004  ? diag::warn_cxx11_compat_init_capture
1005  : diag::ext_init_capture);
1006 
1007  if (C->Init.get()->containsUnexpandedParameterPack())
1008  ContainsUnexpandedParameterPack = true;
1009  // If the initializer expression is usable, but the InitCaptureType
1010  // is not, then an error has occurred - so ignore the capture for now.
1011  // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1012  // FIXME: we should create the init capture variable and mark it invalid
1013  // in this case.
1014  if (C->InitCaptureType.get().isNull())
1015  continue;
1016  Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1017  C->Id, C->Init.get());
1018  // C++1y [expr.prim.lambda]p11:
1019  // An init-capture behaves as if it declares and explicitly
1020  // captures a variable [...] whose declarative region is the
1021  // lambda-expression's compound-statement
1022  if (Var)
1023  PushOnScopeChains(Var, CurScope, false);
1024  } else {
1025  // C++11 [expr.prim.lambda]p8:
1026  // If a lambda-capture includes a capture-default that is &, the
1027  // identifiers in the lambda-capture shall not be preceded by &.
1028  // If a lambda-capture includes a capture-default that is =, [...]
1029  // each identifier it contains shall be preceded by &.
1030  if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1031  Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1033  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1034  continue;
1035  } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1036  Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1038  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1039  continue;
1040  }
1041 
1042  // C++11 [expr.prim.lambda]p10:
1043  // The identifiers in a capture-list are looked up using the usual
1044  // rules for unqualified name lookup (3.4.1)
1045  DeclarationNameInfo Name(C->Id, C->Loc);
1046  LookupResult R(*this, Name, LookupOrdinaryName);
1047  LookupName(R, CurScope);
1048  if (R.isAmbiguous())
1049  continue;
1050  if (R.empty()) {
1051  // FIXME: Disable corrections that would add qualification?
1052  CXXScopeSpec ScopeSpec;
1053  if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1054  llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1055  continue;
1056  }
1057 
1058  Var = R.getAsSingle<VarDecl>();
1059  if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1060  continue;
1061  }
1062 
1063  // C++11 [expr.prim.lambda]p8:
1064  // An identifier or this shall not appear more than once in a
1065  // lambda-capture.
1066  if (!CaptureNames.insert(C->Id).second) {
1067  if (Var && LSI->isCaptured(Var)) {
1068  Diag(C->Loc, diag::err_capture_more_than_once)
1069  << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1071  SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1072  } else
1073  // Previous capture captured something different (one or both was
1074  // an init-cpature): no fixit.
1075  Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1076  continue;
1077  }
1078 
1079  // C++11 [expr.prim.lambda]p10:
1080  // [...] each such lookup shall find a variable with automatic storage
1081  // duration declared in the reaching scope of the local lambda expression.
1082  // Note that the 'reaching scope' check happens in tryCaptureVariable().
1083  if (!Var) {
1084  Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1085  continue;
1086  }
1087 
1088  // Ignore invalid decls; they'll just confuse the code later.
1089  if (Var->isInvalidDecl())
1090  continue;
1091 
1092  if (!Var->hasLocalStorage()) {
1093  Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1094  Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1095  continue;
1096  }
1097 
1098  // C++11 [expr.prim.lambda]p23:
1099  // A capture followed by an ellipsis is a pack expansion (14.5.3).
1100  SourceLocation EllipsisLoc;
1101  if (C->EllipsisLoc.isValid()) {
1102  if (Var->isParameterPack()) {
1103  EllipsisLoc = C->EllipsisLoc;
1104  } else {
1105  Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1106  << SourceRange(C->Loc);
1107 
1108  // Just ignore the ellipsis.
1109  }
1110  } else if (Var->isParameterPack()) {
1111  ContainsUnexpandedParameterPack = true;
1112  }
1113 
1114  if (C->Init.isUsable()) {
1115  buildInitCaptureField(LSI, Var);
1116  } else {
1117  TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1118  TryCapture_ExplicitByVal;
1119  tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1120  }
1121  }
1122  finishLambdaExplicitCaptures(LSI);
1123 
1124  LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1125 
1126  // Add lambda parameters into scope.
1127  addLambdaParameters(Method, CurScope);
1128 
1129  // Enter a new evaluation context to insulate the lambda from any
1130  // cleanups from the enclosing full-expression.
1131  PushExpressionEvaluationContext(PotentiallyEvaluated);
1132 }
1133 
1135  bool IsInstantiation) {
1136  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1137 
1138  // Leave the expression-evaluation context.
1139  DiscardCleanupsInEvaluationContext();
1140  PopExpressionEvaluationContext();
1141 
1142  // Leave the context of the lambda.
1143  if (!IsInstantiation)
1144  PopDeclContext();
1145 
1146  // Finalize the lambda.
1147  CXXRecordDecl *Class = LSI->Lambda;
1148  Class->setInvalidDecl();
1149  SmallVector<Decl*, 4> Fields(Class->fields());
1150  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1151  SourceLocation(), nullptr);
1152  CheckCompletedCXXClass(Class);
1153 
1154  PopFunctionScopeInfo();
1155 }
1156 
1157 /// \brief Add a lambda's conversion to function pointer, as described in
1158 /// C++11 [expr.prim.lambda]p6.
1160  SourceRange IntroducerRange,
1161  CXXRecordDecl *Class,
1162  CXXMethodDecl *CallOperator) {
1163  // Add the conversion to function pointer.
1164  const FunctionProtoType *CallOpProto =
1165  CallOperator->getType()->getAs<FunctionProtoType>();
1166  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1167  CallOpProto->getExtProtoInfo();
1168  QualType PtrToFunctionTy;
1169  QualType InvokerFunctionTy;
1170  {
1171  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1173  CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1174  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1175  InvokerExtInfo.TypeQuals = 0;
1176  assert(InvokerExtInfo.RefQualifier == RQ_None &&
1177  "Lambda's call operator should not have a reference qualifier");
1178  InvokerFunctionTy =
1179  S.Context.getFunctionType(CallOpProto->getReturnType(),
1180  CallOpProto->getParamTypes(), InvokerExtInfo);
1181  PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1182  }
1183 
1184  // Create the type of the conversion function.
1185  FunctionProtoType::ExtProtoInfo ConvExtInfo(
1187  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1188  // The conversion function is always const.
1189  ConvExtInfo.TypeQuals = Qualifiers::Const;
1190  QualType ConvTy =
1191  S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1192 
1193  SourceLocation Loc = IntroducerRange.getBegin();
1194  DeclarationName ConversionName
1196  S.Context.getCanonicalType(PtrToFunctionTy));
1197  DeclarationNameLoc ConvNameLoc;
1198  // Construct a TypeSourceInfo for the conversion function, and wire
1199  // all the parameters appropriately for the FunctionProtoTypeLoc
1200  // so that everything works during transformation/instantiation of
1201  // generic lambdas.
1202  // The main reason for wiring up the parameters of the conversion
1203  // function with that of the call operator is so that constructs
1204  // like the following work:
1205  // auto L = [](auto b) { <-- 1
1206  // return [](auto a) -> decltype(a) { <-- 2
1207  // return a;
1208  // };
1209  // };
1210  // int (*fp)(int) = L(5);
1211  // Because the trailing return type can contain DeclRefExprs that refer
1212  // to the original call operator's variables, we hijack the call
1213  // operators ParmVarDecls below.
1214  TypeSourceInfo *ConvNamePtrToFunctionTSI =
1215  S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1216  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1217 
1218  // The conversion function is a conversion to a pointer-to-function.
1219  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1220  FunctionProtoTypeLoc ConvTL =
1221  ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1222  // Get the result of the conversion function which is a pointer-to-function.
1223  PointerTypeLoc PtrToFunctionTL =
1224  ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1225  // Do the same for the TypeSourceInfo that is used to name the conversion
1226  // operator.
1227  PointerTypeLoc ConvNamePtrToFunctionTL =
1228  ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1229 
1230  // Get the underlying function types that the conversion function will
1231  // be converting to (should match the type of the call operator).
1232  FunctionProtoTypeLoc CallOpConvTL =
1233  PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1234  FunctionProtoTypeLoc CallOpConvNameTL =
1235  ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1236 
1237  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1238  // These parameter's are essentially used to transform the name and
1239  // the type of the conversion operator. By using the same parameters
1240  // as the call operator's we don't have to fix any back references that
1241  // the trailing return type of the call operator's uses (such as
1242  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1243  // - we can simply use the return type of the call operator, and
1244  // everything should work.
1245  SmallVector<ParmVarDecl *, 4> InvokerParams;
1246  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1247  ParmVarDecl *From = CallOperator->getParamDecl(I);
1248 
1249  InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1250  // Temporarily add to the TU. This is set to the invoker below.
1252  From->getLocStart(),
1253  From->getLocation(),
1254  From->getIdentifier(),
1255  From->getType(),
1256  From->getTypeSourceInfo(),
1257  From->getStorageClass(),
1258  /*DefaultArg=*/nullptr));
1259  CallOpConvTL.setParam(I, From);
1260  CallOpConvNameTL.setParam(I, From);
1261  }
1262 
1263  CXXConversionDecl *Conversion
1264  = CXXConversionDecl::Create(S.Context, Class, Loc,
1265  DeclarationNameInfo(ConversionName,
1266  Loc, ConvNameLoc),
1267  ConvTy,
1268  ConvTSI,
1269  /*isInline=*/true, /*isExplicit=*/false,
1270  /*isConstexpr=*/false,
1271  CallOperator->getBody()->getLocEnd());
1272  Conversion->setAccess(AS_public);
1273  Conversion->setImplicit(true);
1274 
1275  if (Class->isGenericLambda()) {
1276  // Create a template version of the conversion operator, using the template
1277  // parameter list of the function call operator.
1278  FunctionTemplateDecl *TemplateCallOperator =
1279  CallOperator->getDescribedFunctionTemplate();
1280  FunctionTemplateDecl *ConversionTemplate =
1282  Loc, ConversionName,
1283  TemplateCallOperator->getTemplateParameters(),
1284  Conversion);
1285  ConversionTemplate->setAccess(AS_public);
1286  ConversionTemplate->setImplicit(true);
1287  Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1288  Class->addDecl(ConversionTemplate);
1289  } else
1290  Class->addDecl(Conversion);
1291  // Add a non-static member function that will be the result of
1292  // the conversion with a certain unique ID.
1293  DeclarationName InvokerName = &S.Context.Idents.get(
1295  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1296  // we should get a prebuilt TrivialTypeSourceInfo from Context
1297  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1298  // then rewire the parameters accordingly, by hoisting up the InvokeParams
1299  // loop below and then use its Params to set Invoke->setParams(...) below.
1300  // This would avoid the 'const' qualifier of the calloperator from
1301  // contaminating the type of the invoker, which is currently adjusted
1302  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1303  // trailing return type of the invoker would require a visitor to rebuild
1304  // the trailing return type and adjusting all back DeclRefExpr's to refer
1305  // to the new static invoker parameters - not the call operator's.
1306  CXXMethodDecl *Invoke
1307  = CXXMethodDecl::Create(S.Context, Class, Loc,
1308  DeclarationNameInfo(InvokerName, Loc),
1309  InvokerFunctionTy,
1310  CallOperator->getTypeSourceInfo(),
1311  SC_Static, /*IsInline=*/true,
1312  /*IsConstexpr=*/false,
1313  CallOperator->getBody()->getLocEnd());
1314  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1315  InvokerParams[I]->setOwningFunction(Invoke);
1316  Invoke->setParams(InvokerParams);
1317  Invoke->setAccess(AS_private);
1318  Invoke->setImplicit(true);
1319  if (Class->isGenericLambda()) {
1320  FunctionTemplateDecl *TemplateCallOperator =
1321  CallOperator->getDescribedFunctionTemplate();
1322  FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1323  S.Context, Class, Loc, InvokerName,
1324  TemplateCallOperator->getTemplateParameters(),
1325  Invoke);
1326  StaticInvokerTemplate->setAccess(AS_private);
1327  StaticInvokerTemplate->setImplicit(true);
1328  Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1329  Class->addDecl(StaticInvokerTemplate);
1330  } else
1331  Class->addDecl(Invoke);
1332 }
1333 
1334 /// \brief Add a lambda's conversion to block pointer.
1336  SourceRange IntroducerRange,
1337  CXXRecordDecl *Class,
1338  CXXMethodDecl *CallOperator) {
1339  const FunctionProtoType *Proto =
1340  CallOperator->getType()->getAs<FunctionProtoType>();
1341 
1342  // The function type inside the block pointer type is the same as the call
1343  // operator with some tweaks. The calling convention is the default free
1344  // function convention, and the type qualifications are lost.
1346  BlockEPI.ExtInfo =
1347  BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1348  Proto->isVariadic(), /*IsCXXMethod=*/false));
1349  BlockEPI.TypeQuals = 0;
1350  QualType FunctionTy = S.Context.getFunctionType(
1351  Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1352  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1353 
1354  FunctionProtoType::ExtProtoInfo ConversionEPI(
1356  /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1357  ConversionEPI.TypeQuals = Qualifiers::Const;
1358  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1359 
1360  SourceLocation Loc = IntroducerRange.getBegin();
1361  DeclarationName Name
1363  S.Context.getCanonicalType(BlockPtrTy));
1364  DeclarationNameLoc NameLoc;
1365  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1366  CXXConversionDecl *Conversion
1367  = CXXConversionDecl::Create(S.Context, Class, Loc,
1368  DeclarationNameInfo(Name, Loc, NameLoc),
1369  ConvTy,
1370  S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1371  /*isInline=*/true, /*isExplicit=*/false,
1372  /*isConstexpr=*/false,
1373  CallOperator->getBody()->getLocEnd());
1374  Conversion->setAccess(AS_public);
1375  Conversion->setImplicit(true);
1376  Class->addDecl(Conversion);
1377 }
1378 
1380  Sema &S, LambdaScopeInfo::Capture &Capture,
1381  FieldDecl *Field,
1382  SmallVectorImpl<VarDecl *> &ArrayIndexVars,
1383  SmallVectorImpl<unsigned> &ArrayIndexStarts) {
1384  assert(Capture.isVariableCapture() && "not a variable capture");
1385 
1386  auto *Var = Capture.getVariable();
1387  SourceLocation Loc = Capture.getLocation();
1388 
1389  // C++11 [expr.prim.lambda]p21:
1390  // When the lambda-expression is evaluated, the entities that
1391  // are captured by copy are used to direct-initialize each
1392  // corresponding non-static data member of the resulting closure
1393  // object. (For array members, the array elements are
1394  // direct-initialized in increasing subscript order.) These
1395  // initializations are performed in the (unspecified) order in
1396  // which the non-static data members are declared.
1397 
1398  // C++ [expr.prim.lambda]p12:
1399  // An entity captured by a lambda-expression is odr-used (3.2) in
1400  // the scope containing the lambda-expression.
1401  ExprResult RefResult = S.BuildDeclarationNameExpr(
1402  CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1403  if (RefResult.isInvalid())
1404  return ExprError();
1405  Expr *Ref = RefResult.get();
1406 
1407  QualType FieldType = Field->getType();
1408 
1409  // When the variable has array type, create index variables for each
1410  // dimension of the array. We use these index variables to subscript
1411  // the source array, and other clients (e.g., CodeGen) will perform
1412  // the necessary iteration with these index variables.
1413  //
1414  // FIXME: This is dumb. Add a proper AST representation for array
1415  // copy-construction and use it here.
1416  SmallVector<VarDecl *, 4> IndexVariables;
1417  QualType BaseType = FieldType;
1418  QualType SizeType = S.Context.getSizeType();
1419  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1420  while (const ConstantArrayType *Array
1421  = S.Context.getAsConstantArrayType(BaseType)) {
1422  // Create the iteration variable for this array index.
1423  IdentifierInfo *IterationVarName = nullptr;
1424  {
1425  SmallString<8> Str;
1426  llvm::raw_svector_ostream OS(Str);
1427  OS << "__i" << IndexVariables.size();
1428  IterationVarName = &S.Context.Idents.get(OS.str());
1429  }
1430  VarDecl *IterationVar = VarDecl::Create(
1431  S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
1432  S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
1433  IterationVar->setImplicit();
1434  IndexVariables.push_back(IterationVar);
1435  ArrayIndexVars.push_back(IterationVar);
1436 
1437  // Create a reference to the iteration variable.
1438  ExprResult IterationVarRef =
1439  S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
1440  assert(!IterationVarRef.isInvalid() &&
1441  "Reference to invented variable cannot fail!");
1442  IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
1443  assert(!IterationVarRef.isInvalid() &&
1444  "Conversion of invented variable cannot fail!");
1445 
1446  // Subscript the array with this iteration variable.
1447  ExprResult Subscript =
1448  S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
1449  if (Subscript.isInvalid())
1450  return ExprError();
1451 
1452  Ref = Subscript.get();
1453  BaseType = Array->getElementType();
1454  }
1455 
1456  // Construct the entity that we will be initializing. For an array, this
1457  // will be first element in the array, which may require several levels
1458  // of array-subscript entities.
1460  Entities.reserve(1 + IndexVariables.size());
1461  Entities.push_back(InitializedEntity::InitializeLambdaCapture(
1462  Var->getIdentifier(), FieldType, Loc));
1463  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1464  Entities.push_back(
1465  InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
1466 
1467  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1468  InitializationSequence Init(S, Entities.back(), InitKind, Ref);
1469  return Init.Perform(S, Entities.back(), InitKind, Ref);
1470 }
1471 
1473  Scope *CurScope) {
1474  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1475  ActOnFinishFunctionBody(LSI.CallOperator, Body);
1476  return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1477 }
1478 
1479 static LambdaCaptureDefault
1481  switch (ICS) {
1483  return LCD_None;
1485  return LCD_ByCopy;
1488  return LCD_ByRef;
1490  llvm_unreachable("block capture in lambda");
1491  }
1492  llvm_unreachable("Unknown implicit capture style");
1493 }
1494 
1496  LambdaScopeInfo *LSI) {
1497  // Collect information from the lambda scope.
1499  SmallVector<Expr *, 4> CaptureInits;
1500  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1501  LambdaCaptureDefault CaptureDefault =
1503  CXXRecordDecl *Class;
1504  CXXMethodDecl *CallOperator;
1505  SourceRange IntroducerRange;
1506  bool ExplicitParams;
1507  bool ExplicitResultType;
1508  bool LambdaExprNeedsCleanups;
1509  bool ContainsUnexpandedParameterPack;
1510  SmallVector<VarDecl *, 4> ArrayIndexVars;
1511  SmallVector<unsigned, 4> ArrayIndexStarts;
1512  {
1513  CallOperator = LSI->CallOperator;
1514  Class = LSI->Lambda;
1515  IntroducerRange = LSI->IntroducerRange;
1516  ExplicitParams = LSI->ExplicitParams;
1517  ExplicitResultType = !LSI->HasImplicitReturnType;
1518  LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1519  ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1520 
1521  CallOperator->setLexicalDeclContext(Class);
1522  Decl *TemplateOrNonTemplateCallOperatorDecl =
1523  CallOperator->getDescribedFunctionTemplate()
1524  ? CallOperator->getDescribedFunctionTemplate()
1525  : cast<Decl>(CallOperator);
1526 
1527  TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1528  Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1529 
1530  PopExpressionEvaluationContext();
1531 
1532  // Translate captures.
1533  auto CurField = Class->field_begin();
1534  for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1535  LambdaScopeInfo::Capture From = LSI->Captures[I];
1536  assert(!From.isBlockCapture() && "Cannot capture __block variables");
1537  bool IsImplicit = I >= LSI->NumExplicitCaptures;
1538 
1539  // Handle 'this' capture.
1540  if (From.isThisCapture()) {
1541  Captures.push_back(
1542  LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1543  CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1544  getCurrentThisType(),
1545  /*isImplicit=*/true));
1546  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1547  continue;
1548  }
1549  if (From.isVLATypeCapture()) {
1550  Captures.push_back(
1551  LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1552  CaptureInits.push_back(nullptr);
1553  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1554  continue;
1555  }
1556 
1557  VarDecl *Var = From.getVariable();
1558  LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1559  Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1560  Var, From.getEllipsisLoc()));
1561  Expr *Init = From.getInitExpr();
1562  if (!Init) {
1563  auto InitResult = performLambdaVarCaptureInitialization(
1564  *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
1565  if (InitResult.isInvalid())
1566  return ExprError();
1567  Init = InitResult.get();
1568  } else {
1569  ArrayIndexStarts.push_back(ArrayIndexVars.size());
1570  }
1571  CaptureInits.push_back(Init);
1572  }
1573 
1574  // C++11 [expr.prim.lambda]p6:
1575  // The closure type for a lambda-expression with no lambda-capture
1576  // has a public non-virtual non-explicit const conversion function
1577  // to pointer to function having the same parameter and return
1578  // types as the closure type's function call operator.
1579  if (Captures.empty() && CaptureDefault == LCD_None)
1580  addFunctionPointerConversion(*this, IntroducerRange, Class,
1581  CallOperator);
1582 
1583  // Objective-C++:
1584  // The closure type for a lambda-expression has a public non-virtual
1585  // non-explicit const conversion function to a block pointer having the
1586  // same parameter and return types as the closure type's function call
1587  // operator.
1588  // FIXME: Fix generic lambda to block conversions.
1589  if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1590  !Class->isGenericLambda())
1591  addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1592 
1593  // Finalize the lambda class.
1594  SmallVector<Decl*, 4> Fields(Class->fields());
1595  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1596  SourceLocation(), nullptr);
1597  CheckCompletedCXXClass(Class);
1598  }
1599 
1600  if (LambdaExprNeedsCleanups)
1601  ExprNeedsCleanups = true;
1602 
1603  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1604  CaptureDefault, CaptureDefaultLoc,
1605  Captures,
1606  ExplicitParams, ExplicitResultType,
1607  CaptureInits, ArrayIndexVars,
1608  ArrayIndexStarts, EndLoc,
1609  ContainsUnexpandedParameterPack);
1610 
1611  if (!CurContext->isDependentContext()) {
1612  switch (ExprEvalContexts.back().Context) {
1613  // C++11 [expr.prim.lambda]p2:
1614  // A lambda-expression shall not appear in an unevaluated operand
1615  // (Clause 5).
1616  case Unevaluated:
1617  case UnevaluatedAbstract:
1618  // C++1y [expr.const]p2:
1619  // A conditional-expression e is a core constant expression unless the
1620  // evaluation of e, following the rules of the abstract machine, would
1621  // evaluate [...] a lambda-expression.
1622  //
1623  // This is technically incorrect, there are some constant evaluated contexts
1624  // where this should be allowed. We should probably fix this when DR1607 is
1625  // ratified, it lays out the exact set of conditions where we shouldn't
1626  // allow a lambda-expression.
1627  case ConstantEvaluated:
1628  // We don't actually diagnose this case immediately, because we
1629  // could be within a context where we might find out later that
1630  // the expression is potentially evaluated (e.g., for typeid).
1631  ExprEvalContexts.back().Lambdas.push_back(Lambda);
1632  break;
1633 
1634  case PotentiallyEvaluated:
1635  case PotentiallyEvaluatedIfUsed:
1636  break;
1637  }
1638  }
1639 
1640  return MaybeBindToTemporary(Lambda);
1641 }
1642 
1644  SourceLocation ConvLocation,
1645  CXXConversionDecl *Conv,
1646  Expr *Src) {
1647  // Make sure that the lambda call operator is marked used.
1648  CXXRecordDecl *Lambda = Conv->getParent();
1649  CXXMethodDecl *CallOperator
1650  = cast<CXXMethodDecl>(
1651  Lambda->lookup(
1652  Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1653  CallOperator->setReferenced();
1654  CallOperator->markUsed(Context);
1655 
1656  ExprResult Init = PerformCopyInitialization(
1657  InitializedEntity::InitializeBlock(ConvLocation,
1658  Src->getType(),
1659  /*NRVO=*/false),
1660  CurrentLocation, Src);
1661  if (!Init.isInvalid())
1662  Init = ActOnFinishFullExpr(Init.get());
1663 
1664  if (Init.isInvalid())
1665  return ExprError();
1666 
1667  // Create the new block to be returned.
1668  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1669 
1670  // Set the type information.
1671  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1672  Block->setIsVariadic(CallOperator->isVariadic());
1673  Block->setBlockMissingReturnType(false);
1674 
1675  // Add parameters.
1676  SmallVector<ParmVarDecl *, 4> BlockParams;
1677  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1678  ParmVarDecl *From = CallOperator->getParamDecl(I);
1679  BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1680  From->getLocStart(),
1681  From->getLocation(),
1682  From->getIdentifier(),
1683  From->getType(),
1684  From->getTypeSourceInfo(),
1685  From->getStorageClass(),
1686  /*DefaultArg=*/nullptr));
1687  }
1688  Block->setParams(BlockParams);
1689 
1690  Block->setIsConversionFromLambda(true);
1691 
1692  // Add capture. The capture uses a fake variable, which doesn't correspond
1693  // to any actual memory location. However, the initializer copy-initializes
1694  // the lambda object.
1695  TypeSourceInfo *CapVarTSI =
1697  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1698  ConvLocation, nullptr,
1699  Src->getType(), CapVarTSI,
1700  SC_None);
1701  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1702  /*Nested=*/false, /*Copy=*/Init.get());
1703  Block->setCaptures(Context, &Capture, &Capture + 1,
1704  /*CapturesCXXThis=*/false);
1705 
1706  // Add a fake function body to the block. IR generation is responsible
1707  // for filling in the actual body, which cannot be expressed as an AST.
1708  Block->setBody(new (Context) CompoundStmt(ConvLocation));
1709 
1710  // Create the block literal expression.
1711  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1712  ExprCleanupObjects.push_back(Block);
1713  ExprNeedsCleanups = true;
1714 
1715  return BuildBlock;
1716 }
SourceLocation getEnd() const
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:64
void setImplicit(bool I=true)
Definition: DeclBase.h:504
bool isVariadic() const
Definition: Type.h:3228
SourceRange IntroducerRange
Source range covering the lambda introducer [...].
Definition: ScopeInfo.h:629
DeclaratorChunk::FunctionTypeInfo & getFunctionTypeInfo()
Definition: DeclSpec.h:2039
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
VarDecl * createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, IdentifierInfo *Id, Expr *Init)
Create a dummy variable within the declcontext of the lambda's call operator, for name lookup purpose...
Definition: SemaLambda.cpp:805
bool isInvalid() const
Definition: Ownership.h:159
bool ExplicitParams
Whether the (empty) parameter list is explicit.
Definition: ScopeInfo.h:643
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:2929
QualType getConversionType() const
Returns the type that this conversion function is converting to.
Definition: DeclCXX.h:2445
TemplateParameterList * GLTemplateParameterList
Definition: ScopeInfo.h:665
IdentifierInfo * getIdentifier() const
Definition: Decl.h:163
DeclClass * getAsSingle() const
Definition: Lookup.h:447
static EnumDecl * findCommonEnumForBlockReturns(ArrayRef< ReturnStmt * > returns)
Definition: SemaLambda.cpp:568
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
DeclarationName getCXXConversionFunctionName(CanQualType Ty)
static TemplateParameterList * Create(const ASTContext &C, SourceLocation TemplateLoc, SourceLocation LAngleLoc, NamedDecl **Params, unsigned NumParams, SourceLocation RAngleLoc)
LambdaCaptureDefault
The default, if any, capture method for a lambda expression.
Definition: Lambda.h:23
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src)
PtrTy get() const
Definition: Ownership.h:163
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc)
Definition: SemaExpr.cpp:3995
static InitializationKind CreateDirect(SourceLocation InitLoc, SourceLocation LParenLoc, SourceLocation RParenLoc)
Create a direct initialization.
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:851
const Expr * getInit() const
Definition: Decl.h:1068
A container of type source information.
Definition: Decl.h:60
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:1381
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:26
This file provides some common utility functions for processing Lambda related AST Constructs...
QualType getBlockPointerType(QualType T) const
Return the uniqued reference to the type for a block of the specified type.
static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1935
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1572
ExtProtoInfo - Extra information about a function prototype.
Definition: Type.h:3042
field_iterator field_begin() const
Definition: Decl.cpp:3629
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.cpp:3749
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:46
MangleNumberingContext & getMangleNumberingContext(ASTContext &Ctx)
Retrieve the mangling numbering context, used to consistently number constructs like lambdas for mang...
Definition: SemaLambda.cpp:345
static InitializationKind CreateDirectList(SourceLocation InitLoc)
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt)
Try to capture the given variable.
Definition: SemaExpr.cpp:12765
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1506
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1334
CXXRecordDecl * createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault)
Create a new lambda closure type.
Definition: SemaLambda.cpp:242
Defines the clang::Expr interface and subclasses for C++ expressions.
bool isCXXThisCaptured() const
Determine whether the C++ 'this' is captured.
Definition: ScopeInfo.h:515
bool isVoidType() const
Definition: Type.h:5426
tok::TokenKind ContextKind
bool FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI)
Definition: SemaInternal.h:37
Scope * getTemplateParamParent()
Definition: Scope.h:250
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3057
bool isConst() const
Definition: DeclCXX.h:1758
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:1195
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:89
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3138
bool isReferenceType() const
Definition: Type.h:5241
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
QualType getReturnType() const
Definition: Decl.h:1997
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:34
void setBlockMissingReturnType(bool val)
Definition: Decl.h:3577
void setCaptures(ASTContext &Context, const Capture *begin, const Capture *end, bool capturesCXXThis)
Definition: Decl.cpp:3760
bool isTranslationUnit() const
Definition: DeclBase.h:1243
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:1871
static CXXRecordDecl * CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault)
Definition: DeclCXX.cpp:111
bool ContainsUnexpandedParameterPack
Whether the lambda contains an unexpanded parameter pack.
Definition: ScopeInfo.h:649
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1114
IdentifierTable & Idents
Definition: ASTContext.h:439
StorageClass getStorageClass() const
Returns the storage class as written in the source. For the computed linkage of symbol, see getLinkage.
Definition: Decl.h:871
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:95
static InitializedEntity InitializeBlock(SourceLocation BlockVarLoc, QualType Type, bool NRVO)
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1616
void setNameLoc(SourceLocation Loc)
Definition: TypeLoc.h:488
Represents the results of name lookup.
Definition: Lookup.h:30
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition: DeclSpec.h:1947
Capturing by copy (a.k.a., by value)
Definition: Lambda.h:36
static LambdaCaptureDefault mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)
static Optional< unsigned > getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef< const clang::sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:63
void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope)
Introduce the lambda parameters into scope.
Definition: SemaLambda.cpp:474
Keeps track of the mangled names of lambda expressions and block literals within a particular context...
QualType getReturnType() const
Definition: Type.h:2952
const CXXRecordDecl * getParent() const
Definition: DeclCXX.h:1817
field_range fields() const
Definition: Decl.h:3349
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2918
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl)
Set the mangling number and context declaration for a lambda class.
Definition: DeclCXX.h:1657
void finishedExplicitCaptures()
Note when all explicit captures have been added.
Definition: ScopeInfo.h:703
bool ExprNeedsCleanups
Whether any of the capture expressions requires cleanups.
Definition: ScopeInfo.h:646
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2362
DeclContext * getLambdaAwareParentOfDeclContext(DeclContext *DC)
Definition: ASTLambda.h:71
ExprResult Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType=nullptr)
Perform the actual initialization of the given entity based on the computed initialization sequence...
Definition: SemaInit.cpp:6024
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:68
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1343
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1785
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:28
static FunctionTemplateDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name, TemplateParameterList *Params, NamedDecl *Decl)
Create a function template node.
StringRef getLambdaStaticInvokerName()
Definition: ASTLambda.h:23
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl=false)
Definition: SemaExpr.cpp:2763
static ExprResult performLambdaVarCaptureInitialization(Sema &S, LambdaScopeInfo::Capture &Capture, FieldDecl *Field, SmallVectorImpl< VarDecl * > &ArrayIndexVars, SmallVectorImpl< unsigned > &ArrayIndexStarts)
static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to function pointer, as described in C++11 [expr.prim.lambda]p6.
SmallVector< TemplateTypeParmDecl *, 4 > AutoTemplateParams
Store the list of the auto parameters for a generic lambda. If this is a generic lambda, store the list of the auto parameters converted into TemplateTypeParmDecls into a vector that can be used to construct the generic lambda's template parameter list, during initial AST construction.
Definition: ScopeInfo.h:660
QualType getType() const
Definition: Decl.h:538
TypeSpecTypeLoc pushTypeSpec(QualType T)
Represents the this expression in C++.
Definition: ExprCXX.h:770
TyLocType push(QualType T)
ImplicitCaptureStyle ImpCaptureStyle
Definition: ScopeInfo.h:373
AnnotatingParser & P
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:258
bool isFunctionDeclarator(unsigned &idx) const
Definition: DeclSpec.h:2009
bool Mutable
Whether this is a mutable lambda.
Definition: ScopeInfo.h:640
SmallVector< ReturnStmt *, 4 > Returns
The list of return statements that occur within the function or block, if there is any chance of appl...
Definition: ScopeInfo.h:143
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1737
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:442
bool isGenericLambda() const
Determine whether this class describes a generic lambda function object (i.e. function call operator ...
Definition: DeclCXX.cpp:985
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI)
Note that we have finished the explicit captures for the given lambda.
Definition: SemaLambda.cpp:470
ASTContext * Context
SmallVector< LambdaCapture, 4 > Captures
Definition: DeclSpec.h:2274
SourceLocation PotentialThisCaptureLocation
Definition: ScopeInfo.h:689
unsigned NumExplicitCaptures
The number of captures in the Captures list that are explicit captures.
Definition: ScopeInfo.h:637
unsigned getNumExprs() const
Definition: Expr.h:4386
DeclContext * getLexicalParent()
Definition: DeclBase.h:1190
CXXMethodDecl * CallOperator
The lambda's compiler-generated operator().
Definition: ScopeInfo.h:626
QualType getAutoDeductType() const
C++11 deduction pattern for 'auto' type.
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:5495
const Expr * getExpr(unsigned Init) const
Definition: Expr.h:4388
This file defines the classes used to store parsed information about declaration-specifiers and decla...
void setInit(Expr *I)
Definition: Decl.cpp:2047
void setInvalidDecl(bool Invalid=true)
Definition: DeclBase.cpp:96
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:812
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:1968
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3142
void setRetValue(Expr *E)
Definition: Stmt.h:1368
DeclContext * getDeclContext()
Definition: DeclBase.h:381
static TemplateParameterList * getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef)
Definition: SemaLambda.cpp:225
MangleNumberingContext * createMangleNumberingContext() const
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable)
Endow the lambda scope info with the relevant properties.
Definition: SemaLambda.cpp:435
CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef< ParmVarDecl * > Params)
Start the definition of a lambda expression.
Definition: SemaLambda.cpp:353
Capture & getCapture(VarDecl *Var)
Retrieve the capture of the given variable, if it has been captured already.
Definition: ScopeInfo.h:533
bool isDependentType() const
Definition: Type.h:1727
bool isFunctionOrMethod() const
Definition: DeclBase.h:1223
static bool isInInlineFunction(const DeclContext *DC)
Determine whether the given context is or is enclosed in an inline function.
Definition: SemaLambda.cpp:264
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1174
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.h:1976
struct CXXOpName CXXOperatorName
Represents a C++ conversion function within a class.
Definition: DeclCXX.h:2405
The result type of a method or function.
bool hasNameForLinkage() const
Definition: Decl.h:2924
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:611
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:204
static InitializationKind CreateCopy(SourceLocation InitLoc, SourceLocation EqualLoc, bool AllowExplicitConvs=false)
Create a copy initialization.
bool isAmbiguous() const
Definition: Lookup.h:241
FieldDecl * buildInitCaptureField(sema::LambdaScopeInfo *LSI, VarDecl *Var)
Build the implicit field for an init-capture.
Definition: SemaLambda.cpp:823
void setIsVariadic(bool value)
Definition: Decl.h:3500
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI)
Complete a lambda-expression having processed and attached the lambda body.
Stmt * getBody(const FunctionDecl *&Definition) const
Definition: Decl.cpp:2405
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:208
SourceLocation DefaultLoc
Definition: DeclSpec.h:2272
Kind
void setIsConversionFromLambda(bool val)
Definition: Decl.h:3580
Encodes a location in the source. The SourceManager can decode this to get at the full include stack...
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
unsigned getNumParams() const
Definition: Decl.cpp:2651
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.h:2110
static InitializedEntity InitializeLambdaCapture(IdentifierInfo *VarID, QualType FieldType, SourceLocation Loc)
Create the initialization entity for a lambda capture.
CXXRecordDecl * Lambda
The class that describes the lambda.
Definition: ScopeInfo.h:623
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location, which defaults to the empty location.
void setReferenced(bool R=true)
Definition: DeclBase.h:532
Optional< unsigned > getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef< const sema::FunctionScopeInfo * > FunctionScopes, VarDecl *VarToCapture, Sema &S)
Examines the FunctionScopeInfo stack to determine the nearest enclosing lambda (to the current lambda...
Definition: SemaLambda.cpp:170
static InitializedEntity InitializeElement(ASTContext &Context, unsigned Index, const InitializedEntity &Parent)
Create the initialization entity for an array element.
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1717
ExprResult DefaultLvalueConversion(Expr *E)
Definition: SemaExpr.cpp:610
No ref-qualifier was provided.
Definition: Type.h:1202
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2003
CanQualType VoidTy
Definition: ASTContext.h:817
Describes the kind of initialization being performed, along with location information for tokens rela...
QualType performLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, IdentifierInfo *Id, Expr *&Init)
Perform initialization analysis of the init-capture and perform any implicit conversions such as an l...
Definition: SemaLambda.cpp:701
SmallVector< Capture, 4 > Captures
Captures - The captures.
Definition: ScopeInfo.h:486
SourceLocation getBegin() const
const T * castAs() const
Definition: Type.h:5586
MangleNumberingContext * getCurrentMangleNumberContext(const DeclContext *DC, Decl *&ManglingContextDecl)
Compute the mangling number context for a lambda expression or block literal.
Definition: SemaLambda.cpp:277
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1297
lookup_result lookup(DeclarationName Name) const
Definition: DeclBase.cpp:1339
const SourceRange & getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1707
bool isFileContext() const
Definition: DeclBase.h:1239
SourceLocation CaptureDefaultLoc
Source location of the '&' or '=' specifying the default capture type, if any.
Definition: ScopeInfo.h:633
Expr ** getExprs()
Definition: Expr.h:4398
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:261
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:68
static EnumDecl * findEnumForBlockReturn(Expr *E)
Definition: SemaLambda.cpp:496
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
param_range params()
Definition: Decl.h:1951
QualType getType() const
Definition: Expr.h:125
This file provides some common utility functions for processing Lambdas.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2276
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
void setBody(CompoundStmt *B)
Definition: Decl.h:3504
LambdaCaptureDefault Default
Definition: DeclSpec.h:2273
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI)
Deduce a block or lambda's return type based on the return statements present in the body...
Definition: SemaLambda.cpp:615
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.h:4403
static __inline__ uint32_t volatile uint32_t * p
Definition: arm_acle.h:75
bool isInvalidDecl() const
Definition: DeclBase.h:498
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:104
static void addBlockPointerConversion(Sema &S, SourceRange IntroducerRange, CXXRecordDecl *Class, CXXMethodDecl *CallOperator)
Add a lambda's conversion to block pointer.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
MangleNumberingContext & getManglingNumberContext(const DeclContext *DC)
Retrieve the context for computing mangling numbers in the given DeclContext.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Decl.h:633
const Expr * getRetValue() const
Definition: Stmt.cpp:1013
bool isCaptured(VarDecl *Var) const
Determine whether the given variable has been captured.
Definition: ScopeInfo.h:524
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:1855
void setInitCapture(bool IC)
Definition: Decl.h:1245
Capturing variable-length array type.
Definition: Lambda.h:38
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:279
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
Definition: SemaLambda.cpp:838
const T * getAs() const
Definition: Type.h:5555
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.h:2114
CanQualType DependentTy
Definition: ASTContext.h:832
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
static CXXMethodDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation)
Definition: DeclCXX.cpp:1467
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1228
static LambdaExpr * Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, ArrayRef< Capture > Captures, bool ExplicitParams, bool ExplicitResultType, ArrayRef< Expr * > CaptureInits, ArrayRef< VarDecl * > ArrayIndexVars, ArrayRef< unsigned > ArrayIndexStarts, SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack)
Construct a new lambda expression.
Definition: ExprCXX.cpp:987
Capturing the this pointer.
Definition: Lambda.h:35
void markUsed(ASTContext &C)
Mark the declaration used, in the sense of odr-use.
Definition: DeclBase.cpp:316
Capture & getCXXThisCapture()
Retrieve the capture of C++ 'this', if it has been captured.
Definition: ScopeInfo.h:518
void setSignatureAsWritten(TypeSourceInfo *Sig)
Definition: Decl.h:3506
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:3884
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS=nullptr)
Definition: SemaExpr.cpp:1648
Describes the sequence of initializations required to initialize a given object or reference with a s...
Represents a C++ struct/union/class.
Definition: DeclCXX.h:285
CallingConv getDefaultCallingConvention(bool isVariadic, bool IsCXXMethod) const
Retrieves the default calling convention for the current target.
Capturing by reference.
Definition: Lambda.h:37
TryCaptureKind
Definition: Sema.h:3535
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:307
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:335
Defines the clang::TargetInfo interface.
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1290
Represents a complete lambda introducer.
Definition: DeclSpec.h:2255
bool HasImplicitReturnType
Whether the target type of return statements in this context is deduced (e.g. a lambda or block with ...
Definition: ScopeInfo.h:490
ExprResult ExprError()
Definition: Ownership.h:267
bool isRecord() const
Definition: DeclBase.h:1247
A reference to a declared variable, function, enum, etc. [C99 6.5.1p2].
Definition: Expr.h:899
SourceLocation getLocation() const
Retrieve the location at which this variable was captured.
Definition: ScopeInfo.h:456
void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy)
Definition: ScopeInfo.h:496
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:99
bool isParameterPack() const
Whether this declaration is a parameter pack.
Definition: DeclBase.cpp:165
A trivial tuple used to represent a source range.
SourceLocation getLocation() const
Definition: DeclBase.h:372
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:230
ASTContext & Context
Definition: Sema.h:295
void setAccess(AccessSpecifier AS)
Definition: DeclBase.h:411
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit=false, bool BuildAndDiagnose=true, const unsigned *const FunctionScopeIndexToStopAt=nullptr)
Make sure the value of 'this' is actually available in the current context, if it is a potentially ev...
bool isNull() const
isNull - Return true if this QualType doesn't point to a type yet.
Definition: Type.h:633
Describes an entity that is being initialized.
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:3319
Wrapper for source info for pointers.
Definition: TypeLoc.h:1122
No in-class initializer.
Definition: Specifiers.h:198
Declaration of a template function.
Definition: DeclTemplate.h:821
bool hasLocalStorage() const
Definition: Decl.h:887
Expr * IgnoreParens() LLVM_READONLY
Definition: Expr.cpp:2408
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef< ReturnStmt * > returns, QualType returnType)
Definition: SemaLambda.cpp:589
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)