
10 years of Windows Privilege Escalation

with Potatoes

Antonio Cocomazzi
Staff Offensive Security Researcher, SentinelOne

Andrea Pierini
Sr. Security Consultant, Semperis

Whoami
➔ Offensive Security Researcher @

SentinelOne

➔ Coding offensive tools + deepin

into Windows internals

➔ Independent vulnerability

researcher

➔ Gamer, League Of Legends fan, peak

rank Diamond 1

@splinter_code

@antonioCoco

Why this talk
➔ Privilege escalation in Windows has always been our

favorite pastime... well not exactly ;)

➔ We spent a lot of time trying to violate Windows safety

and security boundaries by inventing new *potato

techniques

➔ This is the story of our crazy ideas and sleepless nights

:)

Agenda
➔ Privilege Escalation in Windows

➔ Where it all began - The RPC/DCOM trigger

➔ From Service -> SYSTEM
◆ Rotten/JuicyPotato

◆ RoguePotato

◆ JuicyPotatoNG

➔ From User -> Admin
◆ RemotePotato0

◆ LocalPotato SMB edition

◆ LocalPotato HTTP/WebDAV edition

➔ Conclusion

Privilege Escalation / Elevation of Privilege / EoP
➔ “An elevation-of-privilege occurs when an application gains

rights or privileges that should not be available to them”

MSDN [1]

➔ Violation of a security boundary

➔ Security boundaries and features Microsoft intends to service

[2]
◆ Security boundaries (Process boundary, User boundary, AppContainer sandbox

boundary, …)

◆ Non-boundaries (Windows Server Containers, Administrator to Kernel, …)

◆ Security features (Bitlocker, Secure Boot, WDAC, …)

◆ Defense-in-depth security features (UAC, AppLocker, PPL, …)

[1] https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/elevation-of-privilege
[2] https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria

Layered Security model in Windows

Kernel

Protected Process

Administrator

User Account Control

Standard User

NT AUTHORITY\SYSTEM

Windows Service
Hardening

Sandbox (AppContainer, LPAC, Capabilities…)

Anonymous

Layered Security model in Windows

Kernel

Protected Process

Administrator

User Account Control

Standard User

NT AUTHORITY\SYSTEM

Windows Service
Hardening

Sandbox (AppContainer, LPAC, Capabilities…)

Anonymous

Security Boundary
Reward: 20k$ (sometimes)

Security Boundary
Reward: 2k$

Not a Security Boundary
Reward: Swag Points

Not a Security Boundary
??? “Safety Boundary” ???

Reward: Swag Points

Layered Security model in Windows

Kernel

Protected Process

Administrator

User Account Control

Standard User

NT AUTHORITY\SYSTEM

Windows Service
Hardening

Sandbox (AppContainer, LPAC, Capabilities…)

Anonymous

Security Boundary
Reward: 2k$

Not a Security Boundary
??? “Safety Boundary” ???

Reward: Swag Points

This talk

This talk

Where it all began

CVE-2015-2370 - DCOM DCE/RPC Local NTLM Reflection Elevation of Privilege

https://bugs.chromium.org/p/project-zero/issues/detail?id=325

☠
Attacker

IObjectExporter::ResolveOxid2()

OLE Packager

Trigger DCOM

NTLM
Reflection

CVE-2015-2370 - Attack flow

CVE-2015-2370 - Microsoft Fix

☠
Attacker

IObjectExporter::ResolveOxid2()

OLE Packager

Trigger DCOM

NTLM
Reflection

The RPC/DCOM trigger
➔ It abuses the standard COM marshalling

➔ Craft a malicious OBJREF_STANDARD marshalled interface

➔ The malicious marshalled object contains the address+port of an

attacker controller RPC server as the Oxid Resolver address

➔ Oxid Resolution is needed for locating the binding information

of the COM object. This needs to be authenticated.

➔ Use CoGetInstanceFromIStorage to perform the resolution in the

security context of a privileged service. (DCOM activation)

➔ Privileged Oxid Resolution occurs from

IObjectExporter::ResolveOxid2() -> privileged authentication

comes to the attacker -> Profit!

https://www.youtube.com/watch?v=dfMuzAZRGm4 (James Forshaw - COM in Sixty Seconds! @ Infiltrate 2017)

CVE-2015-2370 - after the fix
➔ Reflect the NTLM back to a local RPC TCP endpoint

➔ Use the NTLM for reflection back to the local SMB service

➔ Locally negotiate the NTLM which will give you back a

full impersonation level token of SYSTEM and can break

WSH through Impersonation privileges

The link between Services and Impersonation privileges

☹

Windows Service Hardening (WSH)
➔ Limited Service Accounts

◆ Introduction of the LOCAL SERVICE and NETWORK SERVICE accounts, less

privileges than SYSTEM account.

➔ Reduced Privileges
◆ Services run only with specified privileges (least privilege)

➔ Write-Restricted Token

➔ Per-Service SID
◆ Service access token has dedicated and unique owner SID. No SID

sharing across different services

➔ Session 0 Isolation

➔ System Integrity Level

➔ UIPI (User interface privilege isolation)

https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html
https://downloads.immunityinc.com/infiltrate-archives/WindowsServicesHacking.pdf

From Service -> SYSTEM

RottenPotato
➔ Released by @breenmachine and @vvalien1 in Sep 2016

➔ First potato exploit which leverages the DCOM trigger

with the Impersonation privileges.

➔ Use fixed BITS CLSID to trigger a SYSTEM auth

➔ Use fixed 6666 port for the relay server

➔ Relay to local Oxid Resolver (port 135) and perform a

MITM:
◆ Intercept NTLM SSP exchange and negotiate a SYSTEM token

➔ Initially designed to be run through

incognito+meterpreter shell

https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://www.youtube.com/watch?v=8Wjs__mWOKI

JuicyPotato (abusing the golden privileges)
➔ Released by @decoder_it and @Giutro in Aug 2018

➔ A sugared version of RottenPotatoNG, with a bit of juice:
◆ Removed limitation of fixed 6666 port for the relay server

◆ A lot of COM servers to abuse, not only BITS

◆ Use CreateProcessAsUser() or CreateProcessWithTokenW() for arbitrary

process creation as SYSTEM

➔ A lot of fun when doing post-exploitation on IIS or MSSQL

services

https://decoder.cloud/2018/08/10/juicy-potato/
https://github.com/ohpe/juicy-potato

Demo 1 - JuicyPotato

JuicyPotato - the silent fix

https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/
https://twitter.com/decoder_it/status/1493916092493877248

~4 Years

~8 Years

JuicyPotato - the silent fix
➔ The ninja patch is inside rpcss.dll

➔ In unpatched versions the Oxid binding was created through

the function MakeBinding():
◆ Manually crafts the string binding with {address} + ‘[‘ + {port} + ‘]’

◆ The string binding become ncacn_ip_tcp:127.0.0.1[6666][135]

◆ RpcBindingFromStringBinding() will use ncacn_ip_tcp:127.0.0.1[6666]

➔ In patched versions a new dedicated function is used

CreateRemoteBindingToOr():
◆ It crafts the string binding through RpcStringBindingCompose()

◆ The string binding become ncacn_ip_tcp:127.0.0.1\[6666\][135]

◆ RpcBindingFromStringBinding() fails due to the ‘\’ chars -> Exploit breaks

JuicyPotato - the silent fix
➔ The ninja patch is inside rpcss.dll

➔ In unpatched versions the Oxid binding was created through

the function MakeBinding():
◆ Manually crafts the string binding with {address} + ‘[‘ + {port} + ‘]’

◆ The string binding become ncacn_ip_tcp:127.0.0.1[6666][135]

◆ RpcBindingFromStringBinding() will use ncacn_ip_tcp:127.0.0.1[6666]

➔ In patched versions a new dedicated function is used

CreateRemoteBindingToOr():
◆ It crafts the string binding through RpcStringBindingCompose()

◆ The string binding become ncacn_ip_tcp:127.0.0.1\[6666\][135]

◆ RpcBindingFromStringBinding() fails due to the ‘\’ chars -> Exploit breaks

RoguePotato
➔ Instead of using a custom local port, it uses a remote IP

as a custom Oxid Resolver
➔ Implements a fake Oxid Resolver which returns a poisoned

answer:
◆ ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]
◆ Pipe used become \\localhost\pipe\roguepotato\pipe\epmapper due to a

bug in converting the ‘/’ char [1]

➔ Intercept authentication to custom named pipe
➔ Authentication is performed by rpcss service as NETWORK

SERVICE, but with the RpcSs LUID
➔ Token Kidnapping a SYSTEM token from the rpcss service
➔ Create a new process with the stolen token

[1] https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://github.com/antonioCoco/RoguePotato

Demo 2 - RoguePotato

JuicyPotatoNG
➔ Uses RPC over TCP (ncacn_ip_tcp)

➔ Removed requirement for an external Oxid Resolver, fully

local exploit, trick by James Forshaw [1]

➔ Uses a trick to recover INTERACTIVE sid and unlock

interesting CLSIDs, e.g. PrintNotify service

➔ Basically we revived JuicyPotato [2]

[1] https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
[2] https://decoder.cloud/2022/09/21/giving-juicypotato-a-second-chance-juicypotatong/

JuicyPotatoNG - trick to recover INTERACTIVE sid
➔ LogonUserW documentation about NewCredentials logon type:

◆ “This logon type allows the caller to clone its current token and

specify new credentials for outbound connections…” MSDN

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw

Demo 3 - JuicyPotatoNG

JuicyPotatoNG - the silent fix
➔ Starting from Win 11 22H2 a new change in

lsasrv.dll!LsapAuAddStandardIds():

https://github.com/antonioCoco/JuicyPotatoNG/issues/4

JuicyPotatoNG - the silent fix???
➔ Starting from Win 11 / Server 2022 a new available CLSID:

◆ Universal Print Management Service (McpManagementService) - CLSID:

{A9819296-E5B3-4E67-8226-5E72CE9E1FB7}

https://twitter.com/decoder_it/status/1602673748234190848

JuicyPotatoNG - the silent fix???

➔ Use the CLSID {A9819296-

E5B3-4E67-8226-5E72CE9E1FB7}

in JuicyPotatoNG and it will

work also on patched Win 11

22H2 systems!

JuicyPotatoNG - the silent fix
➔ Starting from Win 11 22H2 a new change in

lsasrv.dll!LsapAuAddStandardIds():

https://github.com/antonioCoco/JuicyPotatoNG/issues/4

And the Potato dynasty is not over…
➔ SweetPotato

◆ https://github.com/CCob/SweetPotato

➔ GodPotato
◆ https://github.com/BeichenDream/GodPotato

➔ PrintNotifyPotato
◆ https://github.com/BeichenDream/PrintNotifyPotato

➔ PetitPotato
◆ https://github.com/wh0amitz/PetitPotato

➔ EfsPotato
◆ https://github.com/zcgonvh/EfsPotato

➔ DCOMPotato
◆ https://github.com/zcgonvh/DCOMPotato

➔ Thanks to the community and keep them coming!

From Safety Boundary -> Security Boundary
Violation

RemotePotato0
➔ Abuses COM servers configured with RunAs “Interactive

User” and performs cross session activation [1]

➔ Downgrade attack in NTLM to bypass MIC and SIGNING

through ResolveOxid2() response

➔ Relay NTLM to LDAP to elevate your privileges (main

scenario)

➔ Particularly effective when exploiting terminal servers

and multiple users are logged on

[1] https://www.tiraniddo.dev/2021/04/standard-activating-yourself-to.html
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://github.com/antonioCoco/RemotePotato0
https://www.youtube.com/watch?v=vfb-bH_HaW4 - BlueHat IL 2022 - Antonio Cocomazzi & Andrea Pierini - Relaying to Greatness

Demo 4 - RemotePotato0 relay to LDAP

RemotePotato0 - Disclosure
➔ Bounty awarded: 2.000 $

➔ “After an extensive review, we determined that servers

must defend themselves against NTLM relay attacks” MSRC

RemotePotato0 - the silent fix

https://twitter.com/splinter_code/status/1583555613950255104

18 Months

RemotePotato0 - the silent fix

https://twitter.com/splinter_code/status/1583555613950255104

RemotePotato0 - the ?accidental? fix

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/dcom-authentication-hardening-what-you-need-to-know/ba-p/3657154

RemotePotato0 - the ?accidental? fix

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/dcom-authentication-hardening-what-you-need-to-know/ba-p/3657154

RemotePotato0 - exploitation scenarios
➔ Relay to an LDAP remote server with cross session

activation

➔ Steal NTLMv2 response “hash” from a logged on user in

another session for offline password cracking

➔ Relay to a remote SMB server with cross session

activation

RemotePotato0 - after the ?accidental? fix
➔ Relay to an LDAP remote server with cross session

activation

➔ Steal NTLMv2 response “hash” from a logged on user in

another session for offline password cracking

➔ Relay to a remote SMB server with cross session

activation

RemotePotato0 - after the ?accidental? fix
➔ Relay to an LDAP remote server with cross session

activation

➔ Steal NTLMv2 response “hash” from a logged on user in

another session for offline password cracking

➔ Relay to a remote SMB server with cross session

activation

Demo 5 - RemotePotato0 relay to SMB

LocalPotato
➔ Logic bug we discover in NTLM local authentications:

◆ Get a privileged user to authenticate on our server.

◆ Start our client's NTLM authentication against a server service.

◆ Intercept "B" context from the NTLM Type 2 message of our

unprivileged client.

◆ Get "A" context from the NTLM Type 2 message when the privileged

client authenticates on our server.

◆ Exchange context A and B, making privileged client authenticate as

unprivileged, and vice versa.

◆ Capture both NTLM Type 3 responses, and forward correctly to finish

both authentications.

◆ Due to the context swap bug in LSASS, our malicious client appears as

the privileged user.

https://www.localpotato.com/localpotato_html/LocalPotato.html
https://github.com/decoder-it/LocalPotato

LocalPotato - attack flow
➔ Again, using the DCOM trigger locally to coerce a SYSTEM

authentication, trick by James Forshaw [1]

➔ Targets the local SMB server to perform an arbitrary file

write

➔ Specify the SPN “cifs/127.0.0.1” in the COM server

authentication information [1] -> bypass NTLM Anti-

Reflection SMB protection

➔ Exploit the context swap bug to authenticate as SYSTEM

➔ Hijack a dll from a privileged service and start the

service, e.g. PrintConfig.dll

[1] https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://www.localpotato.com/localpotato_html/LocalPotato.html
https://github.com/decoder-it/LocalPotato

Demo 6 - LocalPotato SMB edition

LocalPotato - CVE-2023-21746 fix
➔ The fix is in lsasrv.dll and function

SsprHandleChallengeMessage()

➔ Ensures if ISC_REQ_UNVERIFIED_TARGET_NAME is set by the
client with an SPN, it zeroed out to NULL

➔ Previously checked for "cifs/127.0.0.1" SPN to grant/deny
access. Now, NULL SPN denies access

➔ Before patch, ISC_REQ_UNVERIFIED_TARGET_NAME was
overlooked in NTLM authentication but was used by DCOM
privileged client

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21746

LocalPotato - exploitation scenarios
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses

SSPI

LocalPotato - after the CVE-2023-21746 fix
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses

SSPI

LocalPotato - CVE-2023-21746 fix
➔ The fix is in lsasrv.dll and function

SsprHandleChallengeMessage()

➔ Ensures if ISC_REQ_UNVERIFIED_TARGET_NAME is set by the
client with an SPN, it zeroed out to NULL

➔ Previously checked for "cifs/127.0.0.1" SPN to grant/deny
access. Now, NULL SPN denies access

➔ Before patch, ISC_REQ_UNVERIFIED_TARGET_NAME was
overlooked in NTLM authentication but was used by DCOM
privileged client

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21746

RemotePotato0 - after the CVE-2023-21746 fix
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses

SSPI

Demo 7 - LocalPotato HTTP/WebDAV edition

LocalPotato - Disclosure
➔ Context swap vs SMB (CVE-2023-21746)

◆ Bounty awarded: 2.000 $

◆ Time of fix ~3 months, well done 👍

➔ Context swap vs HTTP/WebDAV (CVE-404-NotFound)
◆ Bounty awarded: 2.000 $

◆ After 1 month: “We were having extensive internal conversations

regarding your report … we are downgrading this report to a Moderate

severity.” MSRC

LocalPotato - Microsoft will kill NTLM?

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/the-evolution-of-windows-authentication/ba-p/3926848

Conclusion
➔ Potatoes broke the boundaries!

◆ Safety

◆ Security

➔ Most MS fixes were always “partial”

➔ Future NTLM disablement will stop specific relay based

attacks
◆ What about Loopback authentication?

➔ Will potatoes be still alive and kicking?

Thank you for your attention!

@splinter_code

splintercod3@gmail.com

	Slide 1: 10 years of Windows Privilege Escalation with Potatoes
	Slide 2: Whoami
	Slide 3: Why this talk
	Slide 4: Agenda
	Slide 5: Privilege Escalation / Elevation of Privilege / EoP
	Slide 6: Layered Security model in Windows
	Slide 7: Layered Security model in Windows
	Slide 8: Layered Security model in Windows
	Slide 9: Where it all began
	Slide 10: CVE-2015-2370 - DCOM DCE/RPC Local NTLM Reflection Elevation of Privilege
	Slide 11: CVE-2015-2370 - Attack flow
	Slide 12: CVE-2015-2370 - Microsoft Fix
	Slide 13: The RPC/DCOM trigger
	Slide 14: CVE-2015-2370 - after the fix
	Slide 15: The link between Services and Impersonation privileges
	Slide 16: Windows Service Hardening (WSH)
	Slide 17: From Service -> SYSTEM
	Slide 18: RottenPotato
	Slide 19: JuicyPotato (abusing the golden privileges)
	Slide 20: Demo 1 - JuicyPotato
	Slide 21: JuicyPotato - the silent fix
	Slide 22: JuicyPotato - the silent fix
	Slide 23: JuicyPotato - the silent fix
	Slide 24: RoguePotato
	Slide 25: Demo 2 - RoguePotato
	Slide 26: JuicyPotatoNG
	Slide 27: JuicyPotatoNG - trick to recover INTERACTIVE sid
	Slide 28: Demo 3 - JuicyPotatoNG
	Slide 29: JuicyPotatoNG - the silent fix
	Slide 30: JuicyPotatoNG - the silent fix???
	Slide 31: JuicyPotatoNG - the silent fix???
	Slide 32: JuicyPotatoNG - the silent fix
	Slide 33: And the Potato dynasty is not over…
	Slide 34: From Safety Boundary -> Security Boundary Violation
	Slide 35: RemotePotato0
	Slide 36: Demo 4 - RemotePotato0 relay to LDAP
	Slide 37: RemotePotato0 - Disclosure
	Slide 38: RemotePotato0 - the silent fix
	Slide 39: RemotePotato0 - the silent fix
	Slide 40: RemotePotato0 - the ?accidental? fix
	Slide 41: RemotePotato0 - the ?accidental? fix
	Slide 42: RemotePotato0 - exploitation scenarios
	Slide 43: RemotePotato0 - after the ?accidental? fix
	Slide 44: RemotePotato0 - after the ?accidental? fix
	Slide 45: Demo 5 - RemotePotato0 relay to SMB
	Slide 46: LocalPotato
	Slide 47: LocalPotato - attack flow
	Slide 48: Demo 6 - LocalPotato SMB edition
	Slide 49: LocalPotato - CVE-2023-21746 fix
	Slide 50: LocalPotato - exploitation scenarios
	Slide 51: LocalPotato - after the CVE-2023-21746 fix
	Slide 52: LocalPotato - CVE-2023-21746 fix
	Slide 53: RemotePotato0 - after the CVE-2023-21746 fix
	Slide 54: Demo 7 - LocalPotato HTTP/WebDAV edition
	Slide 55: LocalPotato - Disclosure
	Slide 56: LocalPotato - Microsoft will kill NTLM?
	Slide 57: Conclusion
	Slide 58: Thank you for your attention!

