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researcher

➔ Gamer, League Of Legends fan, peak 

rank Diamond 1

@splinter_code

@antonioCoco



Why this talk
➔ Privilege escalation in Windows has always been our 

favorite pastime... well not exactly ;)

➔ We spent a lot of time trying to violate Windows safety 

and security boundaries by inventing new *potato 

techniques

➔ This is the story of our crazy ideas and sleepless nights 

:)



Agenda
➔ Privilege Escalation in Windows

➔ Where it all began - The RPC/DCOM trigger

➔ From Service -> SYSTEM
◆ Rotten/JuicyPotato

◆ RoguePotato

◆ JuicyPotatoNG

➔ From User -> Admin
◆ RemotePotato0

◆ LocalPotato SMB edition

◆ LocalPotato HTTP/WebDAV edition

➔ Conclusion



Privilege Escalation / Elevation of Privilege / EoP
➔ “An elevation-of-privilege occurs when an application gains 

rights or privileges that should not be available to them” 

MSDN [1]

➔ Violation of a security boundary

➔ Security boundaries and features Microsoft intends to service 

[2]
◆ Security boundaries (Process boundary, User boundary, AppContainer sandbox 

boundary, …)

◆ Non-boundaries (Windows Server Containers, Administrator to Kernel, …)

◆ Security features (Bitlocker, Secure Boot, WDAC, …)

◆ Defense-in-depth security features (UAC, AppLocker, PPL, …)

[1] https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/elevation-of-privilege
[2] https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria 
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Where it all began



CVE-2015-2370 - DCOM DCE/RPC Local NTLM Reflection Elevation of Privilege

https://bugs.chromium.org/p/project-zero/issues/detail?id=325
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Reflection

CVE-2015-2370 - Attack flow



CVE-2015-2370 - Microsoft Fix
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The RPC/DCOM trigger
➔ It abuses the standard COM marshalling

➔ Craft a malicious OBJREF_STANDARD marshalled interface

➔ The malicious marshalled object contains the address+port of an 

attacker controller RPC server as the Oxid Resolver address

➔ Oxid Resolution is needed for locating the binding information 

of the COM object. This needs to be authenticated.

➔ Use CoGetInstanceFromIStorage to perform the resolution in the 

security context of a privileged service. (DCOM activation)

➔ Privileged Oxid Resolution occurs from 

IObjectExporter::ResolveOxid2() -> privileged authentication 

comes to the attacker -> Profit!

https://www.youtube.com/watch?v=dfMuzAZRGm4 (James Forshaw - COM in Sixty Seconds! @ Infiltrate 2017)



CVE-2015-2370 - after the fix
➔ Reflect the NTLM back to a local RPC TCP endpoint

➔ Use the NTLM for reflection back to the local SMB service 

➔ Locally negotiate the NTLM which will give you back a 

full impersonation level token of SYSTEM and can break 

WSH through Impersonation privileges



The link between Services and Impersonation privileges

☹



Windows Service Hardening (WSH)
➔ Limited Service Accounts

◆ Introduction of the LOCAL SERVICE and NETWORK SERVICE accounts, less 

privileges than SYSTEM account.

➔ Reduced Privileges
◆ Services run only with specified privileges (least privilege)

➔ Write-Restricted Token

➔ Per-Service SID
◆ Service access token has dedicated and unique owner SID. No SID 

sharing across different services

➔ Session 0 Isolation

➔ System Integrity Level

➔ UIPI (User interface privilege isolation)

https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html
https://downloads.immunityinc.com/infiltrate-archives/WindowsServicesHacking.pdf



From Service -> SYSTEM



RottenPotato
➔ Released by @breenmachine and @vvalien1 in Sep 2016

➔ First potato exploit which leverages the DCOM trigger 

with the Impersonation privileges.

➔ Use fixed BITS CLSID to trigger a SYSTEM auth

➔ Use fixed 6666 port for the relay server

➔ Relay to local Oxid Resolver (port 135) and perform a 

MITM:
◆ Intercept NTLM SSP exchange and negotiate a SYSTEM token

➔ Initially designed to be run through 

incognito+meterpreter shell

https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://www.youtube.com/watch?v=8Wjs__mWOKI



JuicyPotato (abusing the golden privileges)
➔ Released by @decoder_it and @Giutro in Aug 2018

➔ A sugared version of RottenPotatoNG, with a bit of juice:
◆ Removed limitation of fixed 6666 port for the relay server

◆ A lot of COM servers to abuse, not only BITS 

◆ Use CreateProcessAsUser() or CreateProcessWithTokenW() for arbitrary 

process creation as SYSTEM

➔ A lot of fun when doing post-exploitation on IIS or MSSQL 

services

https://decoder.cloud/2018/08/10/juicy-potato/
https://github.com/ohpe/juicy-potato



Demo 1 - JuicyPotato



JuicyPotato - the silent fix

https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/
https://twitter.com/decoder_it/status/1493916092493877248

~4 Years

~8 Years



JuicyPotato - the silent fix
➔ The ninja patch is inside rpcss.dll

➔ In unpatched versions the Oxid binding was created through 

the function MakeBinding():
◆ Manually crafts the string binding with {address} + ‘[‘ + {port} + ‘]’

◆ The string binding become ncacn_ip_tcp:127.0.0.1[6666][135]

◆ RpcBindingFromStringBinding() will use ncacn_ip_tcp:127.0.0.1[6666]

➔ In patched versions a new dedicated function is used 

CreateRemoteBindingToOr():
◆ It crafts the string binding through RpcStringBindingCompose()

◆ The string binding become ncacn_ip_tcp:127.0.0.1\[6666\][135]

◆ RpcBindingFromStringBinding() fails due to the ‘\’ chars -> Exploit breaks
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RoguePotato
➔ Instead of using a custom local port, it uses a remote IP 

as a custom Oxid Resolver
➔ Implements a fake Oxid Resolver which returns a poisoned 

answer:
◆ ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]
◆ Pipe used become \\localhost\pipe\roguepotato\pipe\epmapper due to a 

bug in converting the ‘/’ char [1]

➔ Intercept authentication to custom named pipe
➔ Authentication is performed by rpcss service as NETWORK 

SERVICE, but with the RpcSs LUID
➔ Token Kidnapping a SYSTEM token from the rpcss service
➔ Create a new process with the stolen token

[1] https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://github.com/antonioCoco/RoguePotato



Demo 2 - RoguePotato



JuicyPotatoNG
➔ Uses RPC over TCP (ncacn_ip_tcp)

➔ Removed requirement for an external Oxid Resolver, fully 

local exploit, trick by James Forshaw [1]

➔ Uses a trick to recover INTERACTIVE sid and unlock 

interesting CLSIDs, e.g. PrintNotify service

➔ Basically we revived JuicyPotato [2]

[1] https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
[2] https://decoder.cloud/2022/09/21/giving-juicypotato-a-second-chance-juicypotatong/



JuicyPotatoNG - trick to recover INTERACTIVE sid
➔ LogonUserW documentation about NewCredentials logon type:

◆ “This logon type allows the caller to clone its current token and 

specify new credentials for outbound connections…” MSDN

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw



Demo 3 - JuicyPotatoNG



JuicyPotatoNG - the silent fix
➔ Starting from Win 11 22H2 a new change in 

lsasrv.dll!LsapAuAddStandardIds():

https://github.com/antonioCoco/JuicyPotatoNG/issues/4



JuicyPotatoNG - the silent fix???
➔ Starting from Win 11 / Server 2022 a new available CLSID:

◆ Universal Print Management Service (McpManagementService) - CLSID: 

{A9819296-E5B3-4E67-8226-5E72CE9E1FB7}

https://twitter.com/decoder_it/status/1602673748234190848



JuicyPotatoNG - the silent fix???

➔ Use the CLSID {A9819296-

E5B3-4E67-8226-5E72CE9E1FB7}

in JuicyPotatoNG and it will 

work also on patched Win 11 

22H2 systems! 



JuicyPotatoNG - the silent fix
➔ Starting from Win 11 22H2 a new change in 

lsasrv.dll!LsapAuAddStandardIds():

https://github.com/antonioCoco/JuicyPotatoNG/issues/4



And the Potato dynasty is not over…
➔ SweetPotato

◆ https://github.com/CCob/SweetPotato

➔ GodPotato
◆ https://github.com/BeichenDream/GodPotato

➔ PrintNotifyPotato
◆ https://github.com/BeichenDream/PrintNotifyPotato

➔ PetitPotato
◆ https://github.com/wh0amitz/PetitPotato

➔ EfsPotato
◆ https://github.com/zcgonvh/EfsPotato

➔ DCOMPotato
◆ https://github.com/zcgonvh/DCOMPotato

➔ Thanks to the community and keep them coming!



From Safety Boundary -> Security Boundary 
Violation



RemotePotato0 
➔ Abuses COM servers configured with RunAs “Interactive 

User” and performs cross session activation [1]

➔ Downgrade attack in NTLM to bypass MIC and SIGNING 

through ResolveOxid2() response

➔ Relay NTLM to LDAP to elevate your privileges (main 

scenario)

➔ Particularly effective when exploiting terminal servers 

and multiple users are logged on

[1] https://www.tiraniddo.dev/2021/04/standard-activating-yourself-to.html 
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://github.com/antonioCoco/RemotePotato0
https://www.youtube.com/watch?v=vfb-bH_HaW4 - BlueHat IL 2022 - Antonio Cocomazzi & Andrea Pierini - Relaying to Greatness



Demo 4 - RemotePotato0 relay to LDAP



RemotePotato0 - Disclosure
➔ Bounty awarded: 2.000 $ 

➔ “After an extensive review, we determined that servers 

must defend themselves against NTLM relay attacks” MSRC



RemotePotato0 - the silent fix

https://twitter.com/splinter_code/status/1583555613950255104

18 Months



RemotePotato0 - the silent fix

https://twitter.com/splinter_code/status/1583555613950255104



RemotePotato0 - the ?accidental? fix

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/dcom-authentication-hardening-what-you-need-to-know/ba-p/3657154



RemotePotato0 - the ?accidental? fix

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/dcom-authentication-hardening-what-you-need-to-know/ba-p/3657154



RemotePotato0 - exploitation scenarios
➔ Relay to an LDAP remote server with cross session 

activation

➔ Steal NTLMv2 response “hash” from a logged on user in 

another session for offline password cracking

➔ Relay to a remote SMB server with cross session 

activation



RemotePotato0 - after the ?accidental? fix
➔ Relay to an LDAP remote server with cross session 
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Demo 5 - RemotePotato0 relay to SMB



LocalPotato
➔ Logic bug we discover in NTLM local authentications:

◆ Get a privileged user to authenticate on our server.

◆ Start our client's NTLM authentication against a server service.

◆ Intercept "B" context from the NTLM Type 2 message of our 

unprivileged client.

◆ Get "A" context from the NTLM Type 2 message when the privileged 

client authenticates on our server.

◆ Exchange context A and B, making privileged client authenticate as 

unprivileged, and vice versa.

◆ Capture both NTLM Type 3 responses, and forward correctly to finish 

both authentications.

◆ Due to the context swap bug in LSASS, our malicious client appears as 

the privileged user.

https://www.localpotato.com/localpotato_html/LocalPotato.html
https://github.com/decoder-it/LocalPotato



LocalPotato - attack flow
➔ Again, using the DCOM trigger locally to coerce a SYSTEM 

authentication, trick by James Forshaw [1]

➔ Targets the local SMB server to perform an arbitrary file 

write

➔ Specify the SPN “cifs/127.0.0.1” in the COM server 

authentication information [1] -> bypass NTLM Anti-

Reflection SMB protection 

➔ Exploit the context swap bug to authenticate as SYSTEM

➔ Hijack a dll from a privileged service and start the 

service, e.g. PrintConfig.dll

[1] https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://www.localpotato.com/localpotato_html/LocalPotato.html
https://github.com/decoder-it/LocalPotato



Demo 6 - LocalPotato SMB edition



LocalPotato - CVE-2023-21746 fix
➔ The fix is in lsasrv.dll and function 

SsprHandleChallengeMessage()

➔ Ensures if ISC_REQ_UNVERIFIED_TARGET_NAME is set by the 
client with an SPN, it zeroed out to NULL

➔ Previously checked for "cifs/127.0.0.1" SPN to grant/deny 
access. Now, NULL SPN denies access

➔ Before patch, ISC_REQ_UNVERIFIED_TARGET_NAME was 
overlooked in NTLM authentication but was used by DCOM 
privileged client

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21746



LocalPotato - exploitation scenarios
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses 

SSPI



LocalPotato - after the CVE-2023-21746 fix
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses 

SSPI
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RemotePotato0 - after the CVE-2023-21746 fix
➔ Context swap vs local SMB Server

➔ Context swap vs local HTTP Server

➔ Context swap vs custom authentication server which uses 

SSPI



Demo 7 - LocalPotato HTTP/WebDAV edition



LocalPotato - Disclosure
➔ Context swap vs SMB (CVE-2023-21746)

◆ Bounty awarded: 2.000 $ 

◆ Time of fix ~3 months, well done 👍

➔ Context swap vs HTTP/WebDAV (CVE-404-NotFound)
◆ Bounty awarded: 2.000 $

◆ After 1 month: “We were having extensive internal conversations 

regarding your report … we are downgrading this report to a Moderate 

severity.” MSRC



LocalPotato - Microsoft will kill NTLM?

https://techcommunity.microsoft.com/t5/windows-it-pro-blog/the-evolution-of-windows-authentication/ba-p/3926848



Conclusion
➔ Potatoes broke the boundaries!

◆ Safety 

◆ Security

➔ Most MS fixes were always “partial”

➔ Future NTLM disablement will stop specific relay based 

attacks
◆ What about Loopback authentication?

➔ Will potatoes be still alive and kicking?



Thank you for your attention!

@splinter_code

splintercod3@gmail.com
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