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Introduction
 Much of NLP can be seen as making decisions 

 About structured analyses (sequences, trees, graphs)
 On the basis of multiple information sources (words, word classes, 

tree configurations, etc)

 Widespread adoption of discriminative methods
 Use of arbitrary features
 Various formulations: maxent, SVM, perceptron
 Common use: local discriminative decisions, possibly chained
 Newer: global methods which exploit model structure (CRFs, max-

margin networks)

 This tutorial will cover the core ideas behind:
 Part I: Basic Linear Classification
 Part II: Kernels and Structure

 Non-goals: not an overview of NLP applications, not at all 
complete coverage of the huge literature on classification!

Outline

 Part I: Basic Linear Classification
 Multiclass linear decision rules
 Approaches: perceptron, maximum likelihood, 

maximum margin
 Advantages / disadvantages / tradeoffs

 Part II: Kernels and Structure
 Kernels and kernelization of classifiers
 Basic structured classification
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Example: Text Classification

 We want to classify documents into categories

 Classically, do this on the basis of words in the document, but 
other information sources are potentially relevant:
 Document length
 Average word length
 Document’s source
 Document layout

… win the election …

… win the game …

… see a movie …

SPORTS

POLITICS

OTHER

DOCUMENT CATEGORY

Some Definitions

INPUTS

OUTPUTS

FEATURE 
VECTORS

… win the election …

SPORTS, POLITICS, OTHEROUTPUT 
SPACE

SPORTS

SPORTS  “win” POLITICS  “election”
POLITICS  “win”

TRUE 
OUTPUTS

POLITICS

Either x is implicit, 
or y contains x

Sometimes, we want Y 
to depend on x
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Block Feature Vectors
 Sometimes, we think of the input as having features, 

which are multiplied by outputs to form the candidates

… win the election …

“win” “election”

Non-Block Feature Vectors
 Sometimes the features of candidates cannot be 

decomposed in this regular way
 Example: a parse tree’s features may be the 

productions present in the tree

 Different candidates will thus often share features
 We’ll return to the non-block case later
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Linear Models: Scoring

 In a linear model, each feature gets a weight w

 We compare hypotheses on the basis of their linear scores:

Linear Models: Prediction Rule
 The linear prediction rule:

 We’ve said nothing about where weights come from!
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Binary Decision Rule

 Heavily studied case: binary classification
 Simplifed: only class “1” has features

 Decision rule is a hyperplane
 One side will be class 1
 Other side will be class 0

BIAS  : -3
free  :  4
money :  2
the   :  0 
...

0 1
0

1

2

free

m
on

ey

SPAM

HAM

Multiclass Decision Rule

 If more than two 
classes:
 Highest score wins
 Boundaries are more 

complex
 Harder to visualize

 There are other ways: e.g. reconcile pairwise decisions
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Learning Classifier Weights
 Two broad approaches to learning weights

 Generative: work with a probabilistic model of the data, 
weights are (log) local conditional probabilities
 Advantages: learning weights is easy, smoothing is well-

understood, backed by understanding of modeling

 Discriminative: set weights based on some error-
related criterion
 Advantages: error-driven, often weights which are good for 

classification aren’t the ones which best describe the data

 We’ll mainly talk about the latter

Example: Stoplights

Lights Working Lights Broken

P(g,r,w) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7

Working?

NS EW

NB Model

Reality

NB FACTORS:
 P(w) = 6/7 
 P(r|w) = 1/2 
 P(g|w) = 1/2

 P(b) = 1/7 
 P(r|b) = 1 
 P(g|b) = 0
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Example: Stoplights

 What does the model say when both lights are red?
 P(b,r,r) = (1/7)(1)(1) = 1/7 = 4/28
 P(w,r,r) = (6/7)(1/2)(1/2) = 6/28 = 6/28
 P(w|r,r) = 6/10!

 We’ll guess that (r,r) indicates lights are working

 Imagine if P(b) were boosted higher, to 1/2:
 P(b,r,r) = (1/2)(1)(1) = 1/2 = 4/8
 P(w,r,r) = (1/2)(1/2)(1/2) = 1/8 = 1/8
 P(w|r,r) = 1/5!

 Non-generative values can give better classification

Linear Models: Naïve-Bayes
 (Multinomial) Naïve-Bayes is a linear model, where:

y

d1 d2 dn
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How to pick weights?
 Goal: choose “best” vector w given training data

 For now, we mean “best for classification”

 The ideal: the weights which have greatest test set 
accuracy / F1 / whatever
 But, don’t have the test set
 Must compute weights from training set

 Maybe we want weights which give best training set 
accuracy?
 Hard discontinuous optimization problem
 May not (does not) generalize to test set
 Easy to overfit

Though, min-error 
training for MT 

does exactly this.

Minimize Training Error?
 A loss function declares how costly each mistake is

 E.g. 0 loss for correct label, 1 loss for wrong label
 Can weight mistakes differently (e.g. false positives worse 

than false negatives or Hamming distance over structured 
labels)

 We could, in principle, minimize training loss:

 This is a hard, discontinuous optimization problem
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Linear Models: Perceptron
 The perceptron algorithm

 Iteratively processes the training set, reacting to training errors
 Can be thought of as trying to drive down training error

 The (online) perceptron algorithm:
 Start with zero weights
 Visit training instances one by one

 Try to classify

 If correct, no change!
 If wrong: adjust weights

Examples: Perceptron

 Separable Case
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Examples: Perceptron

 Separable Case

Perceptrons and Separability

 A data set is separable if some 
parameters classify it perfectly

 Convergence: if training data 
separable, perceptron will 
separate (binary case)

 Mistake Bound: the maximum 
number of mistakes (binary case) 
related to the margin or degree of 
separability

Separable

Non-Separable
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Examples: Perceptron

 Non-Separable Case

Examples: Perceptron

 Non-Separable Case
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Issues with Perceptrons

 Overtraining: test / held-out accuracy 
usually rises, then falls
 Overtraining isn’t quite as bad as 

overfitting, but is similar

 Regularization: if the data isn’t 
separable, weights often thrash 
around
 Averaging weight vectors over time 

can help (averaged perceptron)
 [Freund  & Schapire 99, Collins 02]

 Mediocre generalization: finds a 
“barely” separating solution

Problems with Perceptrons

 Perceptron “goal”: separate the training data

1. This may be an entire 
feasible space

2. Or it may be impossible
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Linear Separators

 Which of these linear separators is optimal? 

Objective Functions

 What do we want from our weights?
 Depends!
 So far: minimize (training) errors:

 This is the “zero-one loss”
 Discontinuous, minimizing is NP-complete
 Not really what we want anyway

 Maximum entropy and SVMs have other 
objectives related to zero-one loss
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Classification Margin (Binary)

 Distance of xi to separator is its margin, mi

 Examples closest to the hyperplane are support vectors
 Margin  of the separator is the minimum m

m



Classification Margin

 For each example xi and possible mistaken candidate y, we 
avoid that mistake by a margin mi(y) (with zero-one loss)

 Margin  of the entire separator is the minimum m

 It is also the largest  for which the following constraints 
hold
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 Separable SVMs: find the max-margin w

 Can stick this into Matlab and (slowly) get an SVM
 Won’t work (well) if non-separable

Maximum Margin

Why Max Margin?
 Why do this?  Various arguments:

 Solution depends only on the boundary cases, or support vectors
(but remember how this diagram is broken!)

 Solution robust to movement of support vectors
 Sparse solutions (features not in support vectors get zero weight)
 Generalization bound arguments
 Works well in practice for many problems

Support vectors



17

Max Margin / Small Norm

 Reformulation: find the smallest w which separates data

  scales linearly in w, so if ||w|| isn’t constrained, we can 
take any separating w and scale up our margin

 Instead of fixing the scale of w, we can fix  = 1

Remember this 
condition?

Gamma to w
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Soft Margin Classification  
 What if the training set is not linearly separable?
 Slack variables ξi can be added to allow misclassification of 

difficult or noisy examples, resulting in a soft margin classifier

ξi

ξi

Maximum Margin

 Non-separable SVMs
 Add slack to the constraints
 Make objective pay (linearly) for slack:

 C is called the capacity of the SVM – the 
smoothing knob

 Learning:
 Can still stick this into Matlab if you want
 Constrained optimization is hard; better methods!
 We’ll come back to this later

Note: exist other 
choices of how to 
penalize slacks!
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Maximum Margin

Linear Models: Maximum Entropy

 Maximum entropy (logistic regression)
 Use the scores as probabilities:

 Maximize the (log) conditional likelihood of training data

Make positive
Normalize

Really, we should all stop calling this maximum 
entropy – it’s multiclass logistic regression or a 

maximum likelihood log-linear model…



20

Maximum Entropy Separators

Maximum Entropy II

 Motivation for maximum entropy:
 Connection to maximum entropy principle (sort of)
 Might want to do a good job of being uncertain on 

noisy cases…
 … in practice, though, posteriors are pretty peaked

 Regularization (smoothing)
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Maximum Entropy Separators

Maximum Entropy
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Log-Loss

 If we view maxent as a minimization problem:

 This minimizes the “log loss” on each example

 One view: log loss is an upper bound on zero-one loss

Unconstrained Optimization
 The maxent objective is an unconstrained optimization problem

 Basic idea: move uphill from current guess
 Gradient ascent / descent follows the gradient incrementally
 At local optimum, derivative vector is zero
 Will converge if step sizes are small enough, but not efficient
 All we need is to be able to evaluate the function and its derivative
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Derivative for Maximum Entropy

Big weights are bad

Total count of feature n 
in correct candidates

Expected count of 
feature n in predicted 

candidates

Convexity
 The maxent objective is nicely behaved:
 Differentiable (so many ways to optimize)
 Convex (so no local optima)

Convex Non-Convex
Convexity guarantees a single, global maximum value 

because any higher points are greedily reachable
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Unconstrained Optimization
 Once we have a function f, we can find a local optimum by 

iteratively following the gradient

 For convex functions, a local optimum will be global
 Basic gradient ascent isn’t very efficient, but there are 

simple enhancements which take into account previous 
gradients: conjugate gradient, L-BFGs

 There are special-purpose optimization techniques for 
maxent, like iterative scaling, but they aren’t better

Remember SVMs…

 We had a constrained minimization

 …but we can solve for i

 Giving
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Hinge Loss

 This is called the “hinge loss”
 Unlike maxent / log loss, you 

stop gaining objective once the 
true label wins by enough

 You can start from here and 
derive the SVM objective

 Consider the per-instance objective:

Plot really only right 
in binary case

Max vs “Soft-Max” Margin

 SVMs:

 Maxent:

 Very similar!  Both try to make the true score 
better than a function of the other scores
 The SVM tries to beat the augmented runner-up
 The Maxent classifier tries to beat the “soft-max”

You can make this zero

… but not this one
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Loss Functions: Comparison

 Zero-One Loss

 Hinge

 Log

Separators: Comparison
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Status Check

 We’ve covered:
 Basics
 What the perceptron does and how to train it
 The max margin objective (but not how to optimize it)
 The maximum entropy objective and how to optimize it

 Next:
 “Dual classification” with perceptrons
 Dual optimization, how to optimize SVMs
 Kernel methods
 Structured classification

Part II

 Kernels
 Dual algorithms
 Kernels and kernelization

 Structured classification
 Structured inputs
 Structured learning
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Nearest-Neighbor Classification

 Nearest neighbor, e.g. for digits:
 Take new example
 Compare to all training examples
 Assign based on closest example

 Encoding: image is vector of intensities:

 Similarity function:
 E.g. dot product of two images’ vectors

Non-Parametric Classification

 Non-parametric: more examples means 
(potentially) more complex classifiers

 How about K-Nearest Neighbor?
 We can be a little more sophisticated, 

averaging several neighbors
 But, it’s still not really error-driven learning
 The magic is in the distance function

 Overall: we can exploit rich similarity 
functions, but not objective-driven 
learning
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A Tale of Two Approaches…
 Nearest neighbor-like approaches
 Work with data through similarity functions
 No explicit “learning”

 Linear approaches
 Explicit training to reduce empirical error
 Represent data through features

 Kernelized linear models
 Explicit training, but driven by similarity!
 Flexible, powerful, very very slow

The Perceptron, Again
 Start with zero weights
 Visit training instances one by one

 Try to classify

 If correct, no change!
 If wrong: adjust weights

mistake vectors



30

Perceptron Weights

 What is the final value of w?
 Can it be an arbitrary real vector?
 No!  It’s built by adding up feature vectors (mistake vectors).

 Can reconstruct weight vectors (the primal representation) 
from update counts (the dual representation) for each i

mistake counts

Dual Perceptron
 Track mistake counts rather than weights

 Start with zero counts ()
 For each instance i

 Try to classify xi,

 If correct, no change!
 If wrong: raise the mistake count for this example and prediction
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Dual / Kernelized Perceptron
 How to classify an example x?

 If someone tells us the value of K for each pair of 
candidates, never need to build the weight vectors

Issues with Dual Perceptron
 Problem: to score each candidate, we may have to 

compare to all training candidates

 Very, very slow compared to primal dot product!
 One bright spot: for perceptron, only need to consider 

candidates we made mistakes on during training
 Slightly better for SVMs where the alphas are (in theory) 

sparse

 This problem is serious: fully dual methods (including 
kernel methods) tend to be extraordinarily slow

 Of course, we can (so far) also accumulate our weights 
as we go...
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Kernels: Who Cares?
 So far: a very strange way of doing a very 

simple calculation

 “Kernel trick”: we can substitute any* similarity 
function in place of the dot product

 Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain 
technical requirements, lots of proofs break.  
E.g. convergence, mistake bounds.  In practice, 
illegal kernels sometimes work (but not always).

Some Kernels

 Kernels implicitly map original vectors to higher 
dimensional spaces, take the dot product there, and 
hand the result back

 Linear kernel:

 Quadratic kernel:

 RBF: infinite dimensional representation

 Discrete kernels: e.g. string kernels, tree kernels
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Example: Kernels

 Quadratic kernels

Non-Linear Separators
 Another view: kernels map an original feature space to 

some higher-dimensional feature space where the 
training set is (more) separable

Φ:  y→φ(y)
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Some Structured Kernels
 PCFG Tree Kernels 

[Collins and Duffy 02]
 Function of two trees
 Measures the number of 

tree fragments in common 
(weighted by fragment 
size)

 Computed by a dynamic 
program

 Dependency Tree 
Kernels [Culotta and 
Sorensen 04]

 Many more…

Why Kernels?
 Can’t you just add these features on your own (e.g. 

add all pairs of features instead of using the quadratic 
kernel)?
 Yes, in principle, just compute them
 No need to modify any algorithms
 But, number of features can get large (or infinite)
 Some kernels not as usefully thought of in their expanded 

representation, e.g. RBF or data-defined kernels [Henderson 
and Titov 05]

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much 

less space and time per dot product
 Of course, there’s the cost for using the pure dual algorithms…
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Kernels vs. Similarity Functions

 Q: What does it take for a similarity 
function to be a kernel?

 A: It must satisfy some technical 
conditions:
 Kernel matrix must be symmetric and 

positive semidefinite (e.g. self-similarity is 
high)
 Note: making diagonal very large can 

sometimes suffice

Dual Formulation for SVMs
 We want to optimize: (separable case for now)

 This is hard because of the constraints
 Solution: method of Lagrange multipliers
 The Lagrangian representation of this problem is:

 All we’ve done is express the constraints as an adversary which 
leaves our objective alone if we obey the constraints but ruins our 
objective if we violate any of them
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Lagrange Duality

 We start out with a constrained optimization problem:

 We form the Lagrangian:

 This is useful because the constrained solution is a 
saddle point of  (this is a general property):

Primal problem in w Dual problem in 

Dual Formulation II
 Duality tells us that

has the same value as

 This is useful because if we think of the ’s as constants, we have an 
unconstrained min in w that we can solve analytically.

 Then we end up with an optimization over  instead of w (easier).
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Dual Formulation III

 Minimize the Lagrangian for fixed ’s:

 So we have the Lagrangian as a function of only ’s:

Coordinate Descent I

 Despite all the mess, Z is just a quadratic in each i(y)
 Coordinate descent: optimize one variable at a time

 If the unconstrained argmin on a coordinate is negative, 
just clip to zero…

0 0
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Coordinate Descent II

 Ordinarily, treating coordinates independently is a bad idea, but here 
the update is very fast and simple

 So we visit each axis many times, but each visit is quick

 This approach works fine for the separable case
 For the non-separable case, we just gain a simplex constraint and 

so we need slightly more complex methods (SMO, exponentiated
gradient)

What are the Alphas?
 Each candidate corresponds to a primal 

constraint

 In the solution, an i(y) will be:
 Zero if that constraint is inactive
 Positive if that constrain is active
 i.e. positive on the support vectors

 Support vectors contribute to weights:

Support vectors
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Dual Linear Classifiers
 For SVMs and Perceptrons, we ended up with exactly 

the same rule:

 This form holds more generally (the Representer
Theorem gives conditions)
 Basically, components of the weight vector perpendicular to all 

training examples increase the norm of w without impacting 
training example scores

 E.g. one can show that all weight vectors learned by maxent
have the same form

 So we could kernelize maxent as well…

Structured Prediction
 So far: talked about candidates y as if from a fixed set of labels
 In principle, nothing at all changes if y’s have structure!
 In practice, big issues:

 Perceptron: argmax is hard because |Y| is big

 Maxent: expectations are hard because |Y| is big

 Max margin: too many constraints / alphas because |Y| is big
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Example: Parse Reranking

 If the candidate set |Y| is small, then no problem:
 [Collins 02] Reranking with perceptron
 [Charniak and Johnson 05] Reranking with maxent

 Start with the n-best outputs of a good base parser
 Define tons of features on a parses y
 No need to even make the feature local

 Learn classifier using only these candidates
 Everything works exactly as we’ve discussed!

Example: Structured Perceptron

 Perceptron is nice: only need structured inference:

 Can do this search with a dynamic program provided 
the features used decompose in appropriate local 
ways [Collins 02]

 Only need to be able to do Viterbi search (and even 
approximate search can work).  See also [Daume et al 
06])

 Online margin methods like MIRA [Crammer and 
Singer 03] get some of the margin effect with similar 
requirements by updating minimally
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Example: CRFs
 For maxent, we need feature expectations: 

 We can sometimes calculate these expectations with, 
e.g., dynamic programs

 For sequences, conditional random fields (CRFs) do 
exactly this computations [Lafferty et al 01]

 Trees work fine as well [Johnson 01]
 Much other CRF work in the ACL community!
 Good property: CRFs put probabilities over candidates

Example: Structured Margin
 For maximum margin, things are harder:

 One option: only use constraints as you find you need 
them [Tsochantaridis et al 05]

 A better option: the alphas often decompose along 
dynamic programming structures [Taskar et al 03, 05]
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Summary

 Basic feature-driven classification
 Perceptron
 Maximum entropy
 Maximum margin

 Kernels and Structure

 Much, much more on this topic!
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