
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

ANTONIA CHMIELA1,GONZALO MUÑOZ2,FELIPE
SERRANO3

On the implementation and
strengthening of intersection cuts

for QCQPs

1 0000-0002-4809-2958
2 0000-0002-9003-441X
3 0000-0002-7892-3951

The described research activities are funded by the German Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID: 03ET1549D). The
work for this article has been (partly) conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF
grant number 05M14ZAM).

ZIB Report 20-29 (11 2020)

https://orcid.org/0000-0002-4809-2958
https://orcid.org/0000-0002-9003-441X
https://orcid.org/0000-0002-7892-3951

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

On the implementation and

strengthening of intersection cuts for

QCQPs

Antonia Chmiela∗, Gonzalo Muñoz†, Felipe Serrano‡

November 12, 2020

Abstract

The generation of strong linear inequalities for QCQPs has been re-
cently tackled by a number of authors using the intersection cut paradigm
—a highly studied tool in integer programming whose flexibility has trig-
gered these renewed efforts in non-linear settings. In this work, we con-
sider intersection cuts using the recently proposed construction of maxi-
mal quadratic-free sets. Using these sets, we derive closed-form formulas
to compute intersection cuts which allow for quick cut-computations by
simply plugging-in parameters associated to an arbitrary quadratic in-
equality being violated by a vertex of an LP relaxation. Additionally, we
implement a cut-strengthening procedure that dates back to Glover and
evaluate these techniques with extensive computational experiments.

1 Introduction

Nowadays, the reach of state-of-the-art optimization solvers is vast, and certain
classes of non-convex optimization problems that years ago seemed impenetrable
can now be solved in moderate running times. The current state-of-the-art
can be roughly described as a combination of outer-approximation techniques
that can provide strong dual bounds, heuristics that can find strong feasible
solutions and spatial branch-and-bound—a generalization of the classical integer
programming method that allows branching on continuous variables. However,
we still encounter computational challenges preventing us to solve many non-
convex optimization instances to provable optimality.

In this work, we focus on obtaining dual bounds by constructing linear outer-
approximation to a rich family of non-convex optimization problems: quadrat-

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, chmiela@zib.de
†Universidad de O’Higgins, Rancagua, Chile, gonzalo.munoz@uoh.cl
‡Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, serrano@zib.de

1

-1 0 1 2 3

-2

-1

0

1

2

K

S

s̄

C

-1 0 1 2 3

-2

-1

0

1

2

C ′

C

Figure 1: On the left, an intersection cut (red) separating s̄ from S (blue). The cut
is computed using the intersection points of an S-free set C (green) and the rays of a
simplicial cone K ⊇ S (boundary in orange) with apex s̄ 6∈ S. On the right, the effect
of using another S-free set C′) C.

ically constrained quadratic programs (QCQPs). These are optimization prob-
lems whose objective and constraints are defined solely in terms of quadratic
functions. One can assume, without loss of generality, that the objective func-
tion is linear, thus we refer as QCQP a problem of the form

min c̄Ts (1a)

s.t. s ∈ S ⊆ Rp, (1b)

where
S = {s ∈ Rp : sTQis+ bTi s+ ci ≤ 0, i = 1, . . . ,m}.

In order to find linear outer-approximations to (1) we follow the intersection cut
paradigm [35, 4, 21] which requires the following ingredients. We assume we
have s̄ 6∈ S, a basic optimal solution of a linear programming (LP) relaxation
of (1)1. Additionally, we require a simplicial conic relaxation K ⊇ S with
apex s̄, and an S-free set C—a convex set satisfying int(C) ∩ S = ∅—such
that s̄ ∈ int(C). With these ingredients, we can find a cutting plane: a valid
inequality guaranteed to separate s̄ from S. In Figure 1(left) we show a simple
intersection cut in the case when all p rays of K intersect the boundary of the S-
free set C. In such case, the intersection cut is simply defined by the hyperplane
containing all such intersection points (hence its name).

When the intersection cuts are computed using the intersection points between
the S-free set and the extreme rays of K, the larger the S-free set the better. In
other words, if two S-free sets C,C ′ are such that C (C ′, the intersection cut
derived from C ′ is stronger than the one derived from C [12]. In Figure 1(right)
we show this phenomenon. This makes inclusion-wise maximality of an S-free
set a desirable goal. We provide the appropriate details of this procedure in
Section 2.1, and we also refer the reader to [13] for additional background.

Note that if s̄ 6∈ S, there exists i ∈ {1, . . . ,m} such that

s̄ 6∈ Si := {s ∈ Rp : sTQis+ bTi s+ ci ≤ 0},
1If s̄ ∈ S the problem would be solved.

2

and constructing an Si-free set containing s̄ suffices to ensure separation. We
refer to these sets as quadratic-free sets. Recently, Muñoz and Serrano [28] pro-
vided a method for constructing maximal quadratic-free sets for any arbitrary
quadratic inequality. The focus of [28] lies on the structure, construction and
maximality proofs for quadratic-free sets, leaving aside the actual calculation of
the intersection cut and its computational impact.

1.1 Contribution

The first contribution of this work is an implementation and extensive testing of
intersection cuts based on the maximal quadratic-free sets proposed by Muñoz
and Serrano. In [28], they showed how to construct maximal Sh-free and Sg-free
sets for the quadratic-representable sets

Sh := {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖} (2)

Sg := {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖, aTx+ dTy = −1}, (3)

where max{‖a‖, ‖d‖} = 1. They also argued that one can always transform

S := {s ∈ Rp : sTQs+ bTs+ c ≤ 0}, (4)

a generic quadratic set, into Sh or Sg and use the maximal Sh-free and Sg-
free to construct maximal S-free sets. The maximal S-free sets of Muñoz and
Serrano, however, are described only with respect to Sh and Sg.

Here, we provide transformations from S into Sh and Sg explicitly, and show
descriptions of the resulting S-free sets. Moreover, we derive closed-form ex-
pressions to compute a valid inequality violated by s̄ 6∈ S.

Additionally, we implement and test a well known cut strengthening procedure
designed to improve the intersection cut coefficient of an extreme ray of K
that never intersects the boundary of the S-free set. We show that to compute
the strengthened cuts one needs to solve single-variable convex optimization
problems, which we provide explicitly.

In our computational experiments, not only we consider the quadratic con-
straints that appear in a QCQP instance, but we also implemented a family of
cuts obtained from implied quadratic constraints in an extended space. These
were used in the construction of maximal outer-product-free sets by Bienstock
et al. [8, 7], which here we reinterpret as maximal quadratic-free sets. All our
ideas are tested using the general-purpose solver SCIP [30].

1.2 Literature review

The basic idea behind intersection cuts can be traced back to Tuy [35]. These
cuts, also known as Tuy cuts or concavity cuts, were introduced for the problem
of minimizing a concave function over a polytope. Later on, intersection cuts
were introduced in integer programming by Balas [4] and have been largely

3

studied since. Intersection cuts deduced from arbitrary convex S-free set is due
to Glover [21], although the term S-free was coined by Dey and Wolsey [16].

Intersection cuts has been an active research stream in the mixed-integer linear
programming literature for decades. See e.g. [12, 14, 6] for in-depth analyses of
the relation of intersection cuts using maximal Zn-free sets and the generation
of facets of conv(S), when S is a mixed-integer set. We also refer the reader
to [3, 5, 2, 10, 15, 22] and references therein. Intersection cuts have also been
extended to the mixed-integer conic case: see e.g. [1, 23, 26, 27]. A different,
but related, method was recently proposed by Towle and Luedtke [34].

Lately, there has been a number of methods proposed for the use of the inter-
section cut framework in non-linear non-convex settings. Fischetti et al. [17]
applied intersection cuts to bilevel optimization. Bienstock et al. [8, 7] stud-
ied outer-product-free sets, which can be used for generating intersection cuts
for polynomial optimization when using an extended formulation. Serrano [33]
showed how to construct a concave underestimator of any factorable function
and from them one can build intersection cuts for factorable mixed integer non-
linear programs. Fischetti and Monaci [18] constructed bilinear-free sets through
a bound disjunction and, in each term of the disjunction, underestimating the
bilinear term with McCormick inequalities [24]. The complement of this dis-
junction is the bilinear-free set. Finally, Muñoz and Serrano [28] constructed
multiple families of maximal quadratic-free sets that can be used to compute
intersection cuts for a QCQP.

Alternative cutting-plane-generation approaches to intersection cuts can be seen
in [23, 11], and in [29], where the authors show that the convex hull of a single
quadratic constraint over a polytope is second-order cone representable. We
refer to the survey [9] and the references therein for other efforts of extending
cutting planes to the non-linear setting.

1.3 Notation

We mostly follow standard notation. ‖ · ‖ is the euclidean norm in Rn. Br(x)
and Dr(x) denote the euclidean ball centered at x of radius r and its boundary,
respectively, i.e., Br(x) = {y ∈ Rn : ‖y − x‖ ≤ r} and Dr(x) = {y ∈ Rn :
‖y − x‖ = r}. conv(·), int(·), and rec(·) denote the convex hull, interior and
recession cone of a set, respectively.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we review the concepts
of intersection cuts, the negative edge extension strengthening and maximal
quadratic-free sets. In Section 3 we show transformations mapping S to a set
Sh or Sg, and use these to explicitly construct maximal S-free sets. We also
discuss how to use implied quadratic constraints to obtain cutting planes. In
Section 4 we show the computations needed for obtaining the intersection cut

4

coefficients and their strengthening using the maximal S-free sets. Finally, in
Section 5 we show our computational results.

2 Preliminaries

In this section we review the main tools we work with in this paper, namely the
notions of intersection cuts, negative edge extension and quadratic-free-sets.

2.1 Intersection cuts

Suppose we have a vector s̄ 6∈ S, a simplicial cone K ⊇ S with apex s̄ and an
S-free set C containing s̄ in its interior. As briefly described in the introduction,
what the intersection cut paradigm provides is a way of separating s̄ from S by
computing an inequality separating s̄ from conv(K \ int(C)).

This tool is typically used from a linear programming perspective. In this case,
the vector s̄ is a basic solution of a polyhedron P ⊇ S. Since separation from
conv(P \ int(C)) is NP-hard [19], a simplicial conic relaxation K is used instead
of P to alleviate the computational burden. This simplicial cone is normally
obtained from a basis defining s̄, and thus there is a correspondence between
rays and nonbasic variables.

2.1.1 Basic intersection cut

Since K is a simplicial cone with apex s̄, it can be described as

K = {s ∈ Rp : A(s− s̄) ≤ 0},

where A is an invertible matrix. Using this notation, the extreme rays of K are
simply given by the columns of −A−1. Let us call these rays rj , j ∈ [p]. Define
α∗j ∈ (0,∞] as

α∗j = sup
α≥0
{α : s̄+ αrj ∈ C}. (5)

These are simply the step-lengths required to reach the intersection points of the
rays rj and C. The intersection cut is defined as the hyperplane that contains
all points of the form s̄+ α∗jr

j when α∗j < ∞, and that is parallel to every ray

rj when α∗j =∞.

The following closed-form expression for the inequality πTz ≤ π0 describing the
intersection cut can be obtained (see [4]):

p∑
i=1

1

α∗i
Ai(s− s̄) ≤ −1. (6)

5

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

S

x̄

C

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

S

x̄

C

Figure 2: On the left, an intersection cut (red) separating x̄ from S (blue) in a case
a ray of K (orange arrows) is contained in C (green). On the right, the strengthened
cut when taking an appropriate negative step.

where 1/∞ := 0 and Ai is the i-th row of A. This formula shows that all
computational burden of computing an intersection lies on computing the cor-
responding step-lengths α∗i defined in (5).

For the sake of completeness, we describe two important properties of inter-
section cuts that can be considered folkore results in optimization nowadays.
Proofs can be found e.g. in [4].

Lemma 1. Let πTz ≤ π0 represent the inequality in (6). This inequality is
valid for S:

{z : πTz > π0} ∩K ⊇ int(C).

Additionally, if all step-lengths are finite, i.e. α∗i <∞ ∀j ∈ [p], then

{z : πTz ≤ π0} ∩K = conv(K \ int(C)).

The second statement of the lemma shows that, when all rays of K intersect the
boundary of C, the intersection cut is, in a sense, the best we can hope for. This
is not always the case, however, especially when the S-free sets are unbounded
as they are in our setting.

2.1.2 Strengthening intersection cuts

In the case a ray of K does not intersect the boundary of the S-free set C, i.e.
when rj ∈ rec(C) for some j, the resulting intersection cut may not define a
facet of conv(K \ int(C)) and strengthening it may be possible. In Figure 2(left)
we illustrate this situation.

Glover [20] proposed using negative step-lengths for rays rj ∈ rec(C) as a way of
strengthening the intersection cut. This would replace the terms 1/α∗j = 0 in (6)
with a negative value, thus improving the cut coefficients. This idea is known
as negative edge extension, and it has been carefully studied since, showing that
choosing the right negative steplegths can provide facets of conv(K \ int(C))

6

[31, 32, 8]. In Figure 2(right) we show the resulting strengthened cut after
applying the negative edge extension.

In [31], the authors show how to use the negative edge extension in order to
obtain facets of conv(K \ int(C)) when C is a polyhedron. Later on, in [32] it
was shown that for a non-polyhedral S-free set C, there is always a polyhedron
C ′ such that conv(K \ int(C ′)) = conv(K \ int(C)), thus providing a way of
obtaining facets of conv(K \ int(C)). Finally, in [8] it was shown how to obtain
a facet of conv(K \ int(C)) directly, without going through an intermediate
polyhedron. This last derivation is the one we use here.

Let F = {i : α∗i <∞}. The negative edge extension technique aims at finding
ρi < 0 such that ∑

i∈F

1

α∗i
Ai(s− s̄) +

∑
i6∈F

1

ρi
Ai(s− s̄) ≤ −1. (7)

is a valid cut. We know that ρi = −∞ provides a valid cut, since we recover (6)
in such case. Moreover, it can be proved that, as long as α∗i r

i − ρirj ∈ rec(C)
∀i ∈ F, j 6∈ F , the cut is valid. This can be seen in Figure 2(right): a “more
negative” step on the vertical ray maintains validity of the cut, while a “less
negative” step yields a non-valid cut. We define the strengthened cut as (7)
with

ρj = max
ρ<0
{ρ : α∗i r

i − ρrj ∈ rec(C) ∀i ∈ F}. (8)

The resulting cut is a facet of conv(K \ int(C)). For details we refer the reader
to [31, 32, 8].

For the purposes of this article, the main takeaway message of Section 2.1 is
that, for computing an intersection cut and a potential strengthening, one needs
to solve problems (5) and (8) efficiently. To achieve this, counting with adequate
descriptions of the S-free set C and of rec(C) is key.

2.2 Maximal quadratic-free sets

Here, we review the maximal quadratic-free sets proposed by Muñoz and Ser-
rano [28]. As mentioned before, these sets are constructed explicitly for the sets

Sh := {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖} (9a)

Sg := {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖, aTx+ dTy = −1}, (9b)

with max{‖a‖, ‖d‖} = 1. For a generic quadratic set

S = {s ∈ Rp : sTQs+ bTs+ c ≤ 0}

the authors argue that a maximal S-free set can be obtained from Sh and Sg

by noting that one can always map S to a set of either of the following forms

{(x, y, z) ∈ Rn+m+l : ‖x‖ ≤ ‖y‖}, (10a)

{(x, y, z) ∈ Rn+m+l : ‖x‖ ≤ ‖y‖, aTx+ dTy + hTz = −1}, (10b)

7

depending on whether the quadratic function defining S is homogeneous or not.
Such a transformation guarantees that constructing a maximal (10a)- or (10b)-
free sets yields a maximal S-free set. Since one of these sets is contained in a
hyperplane, we need the following definition in order to avoid trivial (10b)-free
sets such as {(x, y) ∈ Rn+m : aTx+ dTy + hTz ≤ −1}.

Definition 1. Given S,C,H ⊆ Rn where S is closed, C is closed and convex
and H is an affine hyperplane, we say that C is S-free with respect to H if C∩H
is S ∩H-free w.r.t the induced topology in H. We say C is maximal S-free with
respect to H, if for any C ′ ⊇ C that is S-free with respect to H it holds that
C ′ ∩H ⊆ C ∩H.

To complete the transformation to Sh and Sg and discard the z variables, Muñoz
and Serrano argue the following.

Proposition 1. Let C be a maximal Sh-free. Then, C ×Rl is maximal (10a)-
free and maximal (10b)-free (with respect to the corresponding hyperplane).

As for the vector s̄ 6∈ S, applying the same reductions from S to either Sh or
Sg, we can transform a vector s̄ to a vector (x̄, ȳ) ∈ Rn+m such that ‖x̄‖ > ‖ȳ‖.
We can further assume aTx̄+ dTȳ = −1 when considering Sg.

The following result shows a family of maximal Sh-free sets

Theorem 1. [28] Consider the set Sh defined in (9a). For any λ ∈ D1(0), the
set

Cλ = {(x, y) ∈ Rn+m : ‖y‖ ≤ λTx}, (11)

is maximal Sh-free. Moreover, if λ = x̄
‖x̄‖ then Cλ contains (x̄, ȳ) in its interior.

To list the maximal Sg-free sets we need the following definition

Definition 2. Let a ∈ Rn, d ∈ Rm and λ ∈ D1(0). We define the function
φλ,a,d : Rm → R as

φλ,a,d(y) =

{
‖y‖, if λTa‖y‖+ dTy ≤ 0√

(‖y‖2 − (dTy)2)(1− (λTa)2)− dTyλTa, otherwise.

(12)

Additionally, the following lemma will be of use later.

Lemma 2. Let φλ,a,d defined as (12), with max{‖a‖, ‖d‖} = 1. Then

φλ,a,d(y) ≤ ‖y‖ ∀y ∈ Rm.

Moreover, if λTa‖y‖+ dTy > 0, this inequality is strict.

Proof. The non-strict bound can be deduced from the construction of the func-
tion φλ,a,d in [28]. We provide a direct proof here.

8

Clearly, it suffices to show that√
(‖y‖2 − (dTy)2)(1− (λTa)2)− dTyλTa ≤ ‖y‖

Since max{‖a‖, ‖d‖} = 1, by Cauchy-Schwarz

|dTyλTa| ≤ ‖y‖ ⇒ ‖y‖+ dTyλTa ≥ 0

and thus it suffices to show that

(‖y‖2 − (dTy)2)(1− (λTa)2) ≤
(
‖y‖+ dTyλTa

)2
.

Rearranging terms this becomes

0 ≤ 2‖y‖dTyλTa+ (dTy)2 + ‖y‖2(λTa)2.

Since the right-hand side is (λTa‖y‖+dTy)2 , we conclude the desired statement.
For the strict inequality, we can follow the same procedure.

The maximal Sg-free sets we work with are as follows.

Theorem 2. [28] Consider a non-convex set Sg defined as in (9b), with max{‖a‖, ‖d‖} =
1, and (x̄, ȳ) satisfying ‖x̄‖ > ‖ȳ‖ and aTx̄+dTȳ = −1. Consider φλ,a,d defined
in (12). Let H = {(x, y) ∈ Rn+m : aTx+ dTy = −1}, and λ = x̄

‖x̄‖ .

If ‖a‖ ≤ ‖d‖ = 1, the set

Cφλ,a,d := {(x, y) ∈ Rn : φλ,a,d(y) ≤ λTx} (13)

is maximal Sg-free with respect to H and contains (x̄, ȳ) in its interior.

If ‖d‖ < ‖a‖ = 1, the set

Cgφλ,a,d :=

(x, y) :

‖y‖ ≤ λTx if λTa‖y‖+ dTy ≤ 0

φλ,a,d

(
y − d

1− ‖d‖2

)
≤ λT

(
x+

a

1− ‖d‖2

)
otherwise

 .

is maximal Sg-free with respect to H and contains (x̄, ȳ) in its interior.

Remark 1. In [28] the authors show that the set Cφλ,a,d is also maximal S≤0-
free for

S≤0 = {(x, y) ∈ Rn+m : ‖x‖ ≤ ‖y‖, aTx+ dTy ≤ 0}. (14)

which allows the computation of intersection cuts for a set defined using a
homogeneous quadratic intersected with a linear homogeneous inequality. While
most of our constructions below only use Sh and Sg, the set S≤0 will be of use
when we implement cutting planes using implied quadratic inequalities in an
extended space. We provide more details in Section 3.1

This completes the description of the base sets we use. These represent the
building blocks in our construction below.

9

3 Explicit computation of maximal quadratic-
free sets

In this section, we show how to use the maximal Sh- and Sg-free sets in order
to construct a maximal quadratic-free for an arbitrary quadratic. The overall
strategy is to first diagonalize and then homogenize the quadratic inequality in
order to map S onto the desired sets. In what follows, we explicitly compute
such transformations and show the resulting maximal S-free sets. Let

S = {s ∈ Rp : sTQs+ bTs+ c ≤ 0},

with Q a symmetric matrix, and let Q = VΘV T be its eigenvalue decomposition.
Then,

S = {s ∈ Rp : sTVΘV Ts+ bTs+ c ≤ 0}.

Defining ψ(s) := V Ts and b̄ = V Tb, we have

S = {s ∈ Rp : ψ(s)TΘψ(s) + b̄Tψ(s) + c ≤ 0}.

Let θi i = 1, . . . , p be the eigenvalues of Q, and define I+ = {i : θi > 0},
I− = {i : θi < 0}, and I0 = {i : θi = 0}. Then,

S ={s ∈ Rp :
∑

i∈I+∪I−

(θiψi(s)
2 + b̄iψi(s)) +

∑
i∈I0

b̄iψi(s) + c ≤ 0}

={s ∈ Rp :
∑
i∈I+

(√
θi

(
ψi(s) +

b̄i
2θi

))2

−
∑
i∈I−

(√
−θi

(
ψi(s) +

b̄i
2θi

))2

+
∑
i∈I0

b̄iψi(s) +

c− 1

4

∑
i∈I+∪I−

b̄2i
θi

 ≤ 0}

From this last expression, we obtain the following equivalent description of S

S = {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + (b̄I0)Tz(s) + κ ≤ 0}.

where b̄I0 is the sub-vector of b̄ with entries in I0 and

xi(s) =
√
θi(ψi(s) +

b̄i
θi

) =
√
θiv

T
i (s+

b

2θi
), ∀i ∈ I+,

yi(s) =
√
−θi(ψi(s) +

b̄i
θi

) =
√
−θivTi (s+

b

2θi
), ∀i ∈ I−,

zi(s) = ψi(s) = vTi s ∀i ∈ I0,

κ = c− 1

4

∑
i∈I+∪I−

b̄2i
θi

= c− 1

4

∑
i∈I+∪I−

(vTi b)
2

θi
,

where vi is the i-th eigenvector, that is, the i-th column of V .

Remark 2. If the quadratic expression sTQs+ bTs+ c has some purely linear
variables, i.e., it can be written as sTqQqsq + bTq sq + bTl sl + c, then we only need

10

to compute the factorization of Qq and we can just place sl as the definition of
z(s). This is correct since in such a case,

Q =

(
Qq 0
0 0

)
and its eigenvalue decomposition is

Q =

(
Vq 0
0 I

)(
Θq 0
0 0

)(
Vq 0
0 I

)T

.

Remark 3. We would like to point out that using an eigenvalue decomposition
is not crucial. Other factorizations of the Q matrix can have the same effect,
and can potentially lead to other maximal quadratic-free sets. We chose the
eigenvalue decomposition since it can be computed efficiently, and it is available
within SCIP without extra computations.

Let us assume now that we have a point s̄ /∈ S. In the following, we construct
a maximal S-free containing s̄ by distinguishing four different scenarios of S.

Case 1: b̄I0 = 0 and κ = 0. In this case, S simplifies to

S = {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 ≤ 0}.

Note that since s̄ 6∈ S,
‖x(s̄)‖2 > ‖y(s̄)‖2 ≥ 0.

Given that the map s → (x(s), y(s), z(s)) is affine and invertible, Theorem 1
along with Proposition 1 imply that

C =

{
s ∈ Rp :

x(s̄)T

‖x(s̄)‖
x(s) ≥ ‖y(s)‖

}
is a maximal S-free set and contains s̄ in its interior.

Case 2: b̄I0 = 0 and κ > 0. In this case we homogenize the quadratic
expression using a new variable ζ.

S = {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + κ ≤ 0}.

=

{
s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + ζ2 ≤ 0,

ζ√
κ

= 1

}
.

Let

x̂(s) =
x(s)√
κ
, ŷ(s) =

y(s)√
κ
, and ζ̂ =

ζ√
κ
.

Then, the following reformulation of S has the form Sg:

S = {s ∈ Rp : ‖(x̂(s), ζ̂)‖2 − ‖ŷ(s)‖2 ≤ 0, aT(x̂(s), ζ̂) + dTŷ(s) = −1},

11

where a = −ep++1, d = 0, and p+ = |I+|. Note that in this case ‖a‖ =
1 > ‖d‖ = 0. Since the map s → (x̂(z), ŷ(z), z(s), 1) is affine and one-to-one,
Theorem 2 and Proposition 1 imply that

C =

s :

‖ŷ(s)‖ ≤ λT(x̂(s), 1) if λTa‖ŷ(s)‖+ dTŷ(s) ≤ 0

φλ,a,d

(
ŷ(s)− d

1− ‖d‖2

)
≤ λT

(
x̂(s) +

a

1− ‖d‖2

)
otherwise

,
where λ = (x̂(s̄),1)

‖(x̂(s̄),1)‖ = (x(s̄),
√
κ)

‖(x(s̄),
√
κ)‖ , is a maximal S-free set and contains s̄ in its

interior.

We can greatly simplify this expression and obtain a computationally more

appealing description of C. First, note that λTa = −λp++1 = −
√
κ

‖(x(s̄),
√
κ)‖ .

Thus, λTa < 0. Since d = 0, we conclude λTa‖ŷ(s)‖ + dTŷ(s) ≤ 0 for every s.
This implies that

C =
{
s ∈ Rp : φλ,a,d(ŷ(s)) ≤ λT(x̂(s), 1)

}
.

Furthermore, as

φλ,a,d(y) =

{
‖y‖, if λTa‖y‖+ dTy ≤ 0√

(‖y‖2 − (dTy)2)(1− (λTa)2)− dTyλTa, otherwise.

a similar analysis allows us to conclude that φλ,a,d(y) = ‖y‖. Hence,

C =
{
s ∈ Rp : ‖ŷ(s)‖ ≤ λT(x̂(s), 1)

}
=
{
s ∈ Rp : ‖y(s)‖ ≤ λT(x(s),

√
κ)
}

is a maximal S-free set.

Case 3: b̄I0 = 0 and κ < 0. This case requires a similar homogenization to
the last case, although the sign of κ yields a different expression of the maximal
S-free set. As before, we rewrite S using an additional variable ζ

S = {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + κ ≤ 0}.

= {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 − ζ2 ≤ 0,
ζ√
−κ

= 1}.

Then,

S = {s ∈ Rp : ‖x̂(s)‖2 − ‖(ŷ(s), ζ̂)‖2 ≤ 0, aTx̂(s) + dT(ŷ(s), ζ̂) = −1},

where a = 0, d = −ep−+1, p− = |I−| and

x̂(s) =
x(s)√
−κ

, ŷ(s) =
y(s)√
−κ

, and ζ̂ =
ζ√
−κ

.

In this case ‖d‖ = 1 > ‖a‖ = 0. Since the map s→ (x̂(s), ŷ(s), z(s), 1) is affine
and one-to-one, Theorem 2 and Proposition 1 imply that a maximal S-free set
is given by

C =
{
s ∈ Rp : φλ,a,d((ŷ(s), 1)) ≤ λTx̂(s)

}
,

12

where λ = x̂(s̄)
‖x̂(s̄)‖ = x(s̄)

‖x(s̄)‖ . As before, using the definition of φλ,a,d we can

greatly simplify this expression. First, note that dT(ŷ(s), 1) = −1 < 0. Since
a = 0, we conclude λTa‖(ŷ(s), 1)‖ + dT(ŷ(s), 1) ≤ 0 for every s. This implies
that

C =
{
s ∈ Rp : ‖(ŷ(s), 1)‖ ≤ λTx̂(s)

}
=
{
s ∈ Rp : ‖(y(s),

√
−κ)‖ ≤ λTx(s)

}
.

Case 4: b̄I0 6= 0. In this case, we rely on the following fact:

Lemma 3. Let

S1 = {(x, y, z) ∈ Rn+m+l : ‖x‖2 − ‖y‖2 + βTz + γ ≤ 0},
S2 = {(x, y, w) ∈ Rn+m+1 : ‖x‖2 − ‖y‖2 + w + γ ≤ 0},

with β 6= 0 and consider a maximal S2-free set C2. Then

C1 := {(x, y, z) ∈ Rn+m+l : (x, y, βTz) ∈ C2}

is maximal S1-free.

Proof. The set C1 is clearly S1-free. Maximality follows from the projection
argument in [28, Theorem 3.6], as the set C1 has a lineality space given by
{0} × {0} × 〈β〉⊥

This last lemma, and the fact that b̄I0 6= 0, motivate the following definition

w(s) := (b̄I0)Tz(s)

We rewrite S using w(s) and homogenize

S = {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + w(s) + κ ≤ 0}.
= {s ∈ Rp : ‖x(s)‖2 − ‖y(s)‖2 + w(s)ζ + κζ2 ≤ 0, ζ = 1}.

Notice that

w(s)ζ + κζ2 =
1

4
√

1 + κ2
(w(s) + (κ+

√
1 + κ2)ζ)2

− 1

4
√

1 + κ2
(w(s) + (κ−

√
1 + κ2)ζ)2.

Let

x̂(s) =
1

4
√

1 + κ2

(
x(s),

1

2 4
√

1 + κ2
(w(s) + (κ+

√
1 + κ2)ζ)

)
ŷ(s) =

1
4
√

1 + κ2

(
y(s),

1

2 4
√

1 + κ2
(w(s) + (κ−

√
1 + κ2)ζ)

)

Noting that
ζ = eTp++1x̂− eTp−+1ŷ

13

we obtain the following representation of S

S = {s ∈ Rp : ‖x̂(s)‖2 − ‖ŷ(s)‖2 ≤ 0, aTx̂(s) + dTŷ(s) = −1},

where a = −ep++1, d = ep−+1, p+ = |I+|, and p− = |I−|. At this point we
would like to summarize how we use the construction on [28], since we have
accumulated several transformations. The sequence of variable changes can be
represented as

s
Aff. inv.−−−−−→ (x, y, z)

Lemma 3−−−−−−→ (x, y, w)
Homog.−−−−−→ (x, y, w, ζ)

Linear inv.−−−−−−−→ (x̂, ŷ)

In all affine one-to-one transformations, maximality clearly follows through. We
remark that mapping a set to a homogenized version of it is an affine and one-
to-one transformation. The only transformation that is not one-to-one is the
one given by Lemma 3, but in this case simply replacing the w variable with
the corresponding expression involving z suffices to maintain maximality.

In summary, Theorem 2 implies that a maximal S-free set is given by

C =
{
s ∈ Rp : φλ,a,d(ŷ(s)) ≤ λTx̂(s)

}
,

where λ = x̂(s̄)
‖x̂(s̄)‖ . From the definition of a and d, we have

φλ,a,d(y) =

{
‖y‖, if − λp++1‖y‖+ yp−+1 ≤ 0√

(1− λ2
p++1)(‖y‖2 − y2

p−+1) + λp++1yp−+1, otherwise.

Note that
√
‖ŷ(s)‖2 − ŷp−+1(z)2 = ‖y(s)‖

4√1+κ2
and

√
1− λ2

p++1 = 1
4√1+κ2

‖x(s̄)‖
‖x̂(s̄)‖ ,

thus

C =

s :

‖ŷ(s)‖ ≤ λTx̂(s), if − λp++1‖ŷ(s)‖+ ŷp−+1(s) ≤ 0

‖x(s̄)‖√
1 + κ2

‖y(s)‖+ x̂p++1(s̄)ŷp−+1(s) ≤ x̂(s̄)Tx̂(s), otherwise

 .

3.1 Implied quadratics in an extended space

As we mentioned in the introduction, we additionally incorporated cutting
planes obtained with our approach using implied quadratic constraints of an
extended formulation. Most LP relaxations for QCQPs involve linearizing bi-
linear terms xixj using a new variable Xi,j = xixj , therefore these variables
must satisfy the following quadratic equality:

Xi1,j1Xi2,j2 = Xi1,j2Xi2,j1 . (15)

We interpret (15) as two inequalities which fall into our Case 1 above. Whenever
i1 6= j1, i1 6= j2, i2 6= j1 and i2 6= j2, the maximal quadratic-free set we
construct, which is based on Cλ (11), is exactly one of the maximal outer-
product-free sets constructed by Bienstock et al. [8, 7].

On the other hand if, for instance, i1 = j1, Bienstock et al. show that the (15)-
free we would construct with Cλ is not maximal unless λ is chosen appropriately.

14

From the perspective of maximal quadratic-free sets, we can use the extra valid
inequality Xi1,j1 ≥ 0 to enlarge the set. Consider

SM :={s ∈ R4 : s1s2 − s3s4 ≤ 0, s1 ≥ 0}
={s ∈ R4 : ‖x(s)‖ − ‖y(s)‖ ≤ 0, aTx(s) + dTy(s) ≤ 0}

where x(s) = (s1 + s2, s3 − s4), y(s) = (s1 − s2, s3 + s4), a = (−1, 0) and d =
(−1, 0). The last description is of the form S≤0, and we thus construct a maximal
SM -free set from our discussion in Remark 1. This construction is analogous to
Case 4 above, and we can thus use the same upcoming computations for Case
4 in order to handle these special sets.

This completes the description of our maximal S-free sets. In what follows, we
provide the closed-form expressions for computing the cutting planes obtained
from each one of these sets.

4 Intersection cuts coefficients and their strength-
ening

4.1 Cut coefficient computations

All our maximal S-free sets are described as C = {s : g(s) ≤ 0}. For a ray
r of the simplicial conic relaxation obtained from a basis associated to s̄, the
cut coefficient of the non-basic variable associated to r is found through the
smallest t > 0 such that g(s̄ + tr) = 0 (recall that g(s̄) < 0). As described in
Section 2.1, if t∗ is such a root (the step-length), the cut coefficient is 1/t∗. If
no such t exists, then t∗ = ∞ and the cut coefficient is 0. For convenience, we
uniformly use the term “smallest positive root”, defining it as ∞ if none exists
and consider 1/∞ := 0. Here we make explicit what needs to be computed in
order to find t∗.

Case 1: b̄I0 = 0 and κ = 0. In this case the maximal S-free set is given by

C = {s ∈ Rp :
x(s̄)T

‖x(s̄)‖
x(s) ≥ ‖y(s)‖}.

Then, we need to find the smallest positive solution to

‖y(s̄+ tr)‖ − x(s̄)T

‖x(s̄)‖
x(s̄+ tr) = 0. (16)

Note that this yields an equation of the form√
Art2 +Brt+ Cr − (Drt+ Er) = 0.

Let τ(t) =
√
Art2 +Brt+ Cr− (Drt+Er). By construction, τ is convex. Since

s̄ ∈ int C, we have that τ(0) < 0, that is,√
Cr − Er < 0. (17)

15

This implies, in particular, that there is at most one positive root. Additionally,
it is not hard to see that

lim
t→∞

τ(t) =


∞, if

√
Ar > Dr

−∞, if
√
Ar < Dr

Br
2
√
Ar
− Er, if

√
Ar = Dr.

We claim that the limit in the case
√
Ar = Dr must be negative. To see this,

note that since the radicand Art
2 +Brt+Cr is always nonnegative, its minimum

value is nonnegative as well, that is, Cr ≥ B2
r

4Ar
. This implies that

√
Cr ≥ Br

2
√
Ar

.

Therefore,
Br

2
√
Ar
− Er <

Br

2
√
Ar
−
√
Cr ≤ 0,

where the first inequality follows from (17).

From this, we conclude that τ has a positive root if and only if
√
Ar −Dr > 0.

Assume that
√
Ar − Dr > 0 and let t̄ be the positive root. Since τ(t) < 0 for

all t ∈ [0, t̄),
√
Art2 +Brt+ Cr < (Drt+ Er) for all t ∈ [0, t̄). Thus,

0 ≤ 2
√
Art2 +Brt+ Cr <

√
Art2 +Brt+ Cr + (Drt+ Er), ∀t ∈ [0, t̄).

Hence, the first positive root of

τ(t)(
√
Art2 +Brt+ Cr + (Drt+ Er)) = Art

2 +Brt+ Cr − (Drt+ Er)
2

is t̄. This means that we can find t̄ by finding the smallest positive root of the
last quadratic equation.

We now find the coefficients of the equation we need to solve. Recall that,

x(s) =

(√
θiv

T
i

(
s+

b

2θi

))
i∈I+

y(s) =

(√
−θivTi

(
s+

b

2θi

))
i∈I−

.

Thus,

x(s̄+ tr) = x(s̄) + t
(√

θiv
T
i r
)
i∈I+

y(s̄+ tr) = y(s̄) + t
(√
−θivTi r

)
i∈I−

With this, we compute the components of (16).

‖y(s̄+ tr)‖2 =

∥∥∥∥y(s̄) + t
(√
−θivTi r

)
i∈I−

∥∥∥∥2

= ‖y(s̄)‖2 + 2ty(s̄)T
(√
−θivTi r

)
i∈I−

+ t2
∥∥∥∥(√−θivTi r)

i∈I−

∥∥∥∥2

.

16

On the other hand,

x(s̄)Tx(s̄+ tr) = x(s̄)T
(
x(s̄) + t

(√
θiv

T
i r
)
i∈I+

)
= tx(s̄)T

(√
θiv

T
i r
)
i∈I+

+ ‖x(s̄)‖2,

from where we obtain

x(s̄)T

‖x(s̄)‖
x(s̄+ tr) = t

x(s̄)T

‖x(s̄)‖

(√
θiv

T
i r
)
i∈I+

+ ‖x(s̄)‖.

Altogether, we see that

Ar =

∥∥∥∥(√−θivTi r)
i∈I−

∥∥∥∥2

= −
∑
i∈I−

θi(v
T
i r)

2 (18a)

Br = 2y(s̄)T
(√
−θivTi r

)
i∈I−

= −2
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (18b)

Cr = ‖y(s̄)‖2 = −
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)2

(18c)

Dr =
x(s̄)T

‖x(s̄)‖

(√
θiv

T
i r
)
i∈I+

=
1

E

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (18d)

Er = ‖x(s̄)‖ =

√√√√∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)2

(18e)

Remark 4. Computing these coefficients can be done efficiently. For the co-
efficients of the quadratic equation, we just need to compute and store vTi r,
vTi s̄, and vTi b for all i ∈ I+ ∪ I−. Basically, V Tr, V Ts̄, and V Tb. After com-
puting these coefficients, we just need to compute the roots of a single-variable
quadratic.

We summarize our discussion in the following lemma.

Lemma 4. Consider S and s̄ as defined above and r an arbitrary ray. The step-
length associated to r for Case 1 is the smallest positive root of a single-variable
quadratic equation of the form

Art
2 +Brt+ Cr − (Drt+ Er)

2 = 0, (19)

where the coefficients Ar, Br, Cr, Dr, Er for each case are displayed in (18).
Equation (19) has at most one positive root, and it has no such root if and only
if
√
Ar ≤ Dr.

Case 2: b̄I0 = 0 and κ > 0. In this case, we showed that a maximal S-free
set is given by

C =

{
s : ‖y(s)‖ ≤ (x(s̄),

√
κ)

‖(x(s̄),
√
κ)‖

T

(x(s),
√
κ)

}
.

17

Then, we need to find the smallest positive t such that

‖y(s̄+ tr)‖ − (x(s̄),
√
κ)

‖(x(s̄),
√
κ)‖

T

(x(s̄+ tr),
√
κ) = 0.

which is again an equation of the form√
Art2 +Brt+ Cr − (Drt+ Er) = 0,

as in the previous case. The same reasoning applies, which shows that we can
focus on the case

√
Ar > Dr and compute the smallest positive root of

Art
2 +Brt+ Cr − (Drt+ Er)

2

Actually, it is not hard to see that the Ar, Br, and Cr coefficients are the same
as in the previous case. For the rest, we compute the following

(x(s̄),
√
κ)T(x(s̄+ tr),

√
κ) = x(s̄)Tx(s̄+ tr) + κ

= tx(s̄)T
(√

θiv
T
i r
)
i∈I+

+ ‖x(s̄)‖2 + κ

thus,

(x(s̄),
√
κ)

‖(x(s̄),
√
κ)‖

T

(x(s̄+ tr),
√
κ) = t

x(s̄)T
(√
θiv

T
i r
)
i∈I+

‖(x(s̄),
√
κ)‖

+ ‖(x(s̄),
√
κ)‖.

Collecting all terms we obtain that in this case

Ar = −
∑
i∈I−

θi(v
T
i r)

2 (20a)

Br = −2
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (20b)

Cr = −
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)2

(20c)

Dr =
1

E

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (20d)

Er = ‖(x(s̄),
√
κ)‖ =

√√√√κ+
∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)2

. (20e)

Similarly to the previous case we summarize our discussion in the following
lemma.

Lemma 5. Consider S and s̄ as defined above and r an arbitrary ray. The
step-length associated to r for Case 2 is obtained as the smallest positive root
of a single-variable quadratic equation of the form (19) where the coefficients
Ar, Br, Cr, Dr, Er for each case are displayed in (20). Equation (19) has at
most one positive root, and it has no such root if and only if

√
Ar ≤ Dr.

18

Case 3: b̄I0 = 0 and κ < 0. In this case,

C =

{
s : ‖(y(s),

√
−κ)‖ ≤ x(s̄)

‖x(s̄)‖

T

x(s)

}
.

As before, we need to find the smallest positive solution of

‖(y(s̄+ tr),
√
−κ)‖ − x(s̄)T

‖x(s̄)‖
x(s̄+ tr) = 0.

This case is almost identical as the previous case. Indeed, only the expressions
defining the C and E coefficients change. As

‖(y(s̄+ tr),
√
−κ)‖2 = ‖y(s̄+ tr)‖2 − κ,

we have that

Ar = −
∑
i∈I−

θi(v
T
i r)

2 (21a)

Br = −2
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (21b)

Cr = −κ−
∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)2

(21c)

Dr =
1

E

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (21d)

Er =

√√√√∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)2

(21e)

As before, a summarizing lemma follows:

Lemma 6. Consider S and s̄ as defined above and r an arbitrary ray. The step-
length associated to r for Case 3 is the smallest positive root of a single-variable
quadratic equation of the form (19) where the coefficients Ar, Br, Cr, Dr, Er for
each case are displayed in (21). Equation (19) has at most one positive root,
and it has no such root if and only if

√
Ar ≤ Dr.

Case 4: b̄I0 6= 0. In this case, we constructed the following S-free set

C =
{
s ∈ Rp : φλ,a,d(ŷ(s)) ≤ λTx̂(s)

}
,

where λ = x̂(s̄)
‖x̂(s̄)‖ and

φλ,a,d(y) =

{
‖y‖, if − λp++1‖y‖+ yp−+1 ≤ 0√

(1− λ2
p++1)(‖y‖2 − y2

p−+1) + λp++1yp−+1, otherwise.

19

We also obtained the equivalent description,

C =

s :

‖ŷ(s)‖ ≤ λTx̂(s), if − λp++1‖ŷ(s)‖+ ŷp−+1(s) ≤ 0

‖x(s̄)‖√
1 + κ2

‖y(s)‖+ x̂p++1(s̄)ŷp−+1(s) ≤ x̂(s̄)Tx̂(s), otherwise

 .

(22)
We begin our computations using the first description. We need to find the
smallest positive root of φλ,a,d(ŷ(s̄+ tr))−λTx̂(s̄+ tr). This function is convex
and negative at t = 0, thus, it has at most one such root. Let us consider the
following two equations (one associated to each piece in the definition of C):

‖ŷ(s̄+ tr)‖ − λTx̂(s̄+ tr) = 0 (23)

‖x(s̄)‖√
1 + κ2

‖y(s̄+ tr)‖+ x̂p++1(s̄)ŷp−+1(s̄+ tr)− x̂(s̄)Tx̂(s̄+ tr) = 0. (24)

The following lemma indicates how to orderly use both parts in the definition
of C to compute the desired cut coefficient based on the solutions to (23) and
(24).

Lemma 7. Both (23) and (24) have at most one positive solution. If (23) does
not have a positive solution, neither does (24). If (23) has a positive solution
t̄1, then it is the desired step-length if and only if

− λp++1‖ŷ(s̄+ t̄1r)‖+ ŷp−+1(s̄+ t̄1r) ≤ 0. (25)

Lastly, if (25) does not hold, the smallest positive root t̄2 of (24) is the desired
step-length.

Proof. First, we note that both (23) and (24) have at most one root since the
left-hand side functions are convex and negative at t = 0. By Lemma 2, we
know that φλ,a,d(y) ≤ ‖y‖, thus, if ‖ŷ(s̄ + tr))‖ − λTx̂(s̄ + tr) does not have a
positive root, neither does φλ,a,d(ŷ(s̄+ tr))− λTx̂(s̄+ tr).

Now assume that t̄1 is a non-negative root of ‖ŷ(s̄+ tr))‖ − λTx̂(s̄+ tr). Using
the strict inequality in Lemma 2, t̄1 is also root of φλ,a,d(ŷ(s̄+ tr))−λTx̂(s̄+ tr)
if and only if (25) holds.

If case (25) does not hold, we must compute the positive root using the second
case in the definition of φλ,a,d, which yields (24). Assume that t̄2 is such root.
We can immediately conclude that t̄2 is the root of φλ,a,d(ŷ(s̄+tr))−λTx̂(s̄+tr)
and that t̄2 > t̄1. This follows by Lemma 2, since φλ,a,d(ŷ(s̄ + t̄1r)) < 0 when
(25) does not hold.

In conclusion, we just need to find two positive roots, one for each part in the
definition of C, and take the smallest one that is valid.

Let us look at the equation induced by ‖ŷ(s̄ + tr))‖ − λTx̂(s̄ + tr). As before,
this is an expression of the form√

Art2 +Brt+ Cr − (Drt+ Er)

20

for which we compute the coefficients next. We have

x̂p++1(s) =
1

2
√

1 + κ2
(w(s) + κ+

√
1 + κ2)

ŷp−+1(s) =
1

2
√

1 + κ2
(w(s) + κ−

√
1 + κ2).

Thus,

x̂p++1(s̄+ tr) = t

(
w(r)

2
√

1 + κ2

)
+ x̂p++1(s̄)

ŷp−+1(s̄+ tr) = t

(
w(r)

2
√

1 + κ2

)
+ ŷp−+1(s̄)

Then,

‖(ŷ(s̄+ tr)‖2

=
1√

1 + κ2
‖y(s̄+ tr)‖2 +

(
t

(
w(r)

2
√

1 + κ2

)
+ ŷp−+1(s̄)

)2

=
1√

1 + κ2
‖y(s̄+ tr)‖2 + t2

(
w(r)2

4(1 + κ2)

)
+ 2t

(
w(r)

2
√

1 + κ2

)
ŷp−+1(s̄) + ŷp−+1(s̄)2

Thus,

Ar =
w(r)2

4(1 + κ2)
− 1√

1 + κ2

∑
i∈I−

θi(v
T
i r)

2 (26a)

Br = 2

(
w(r)

2
√

1 + κ2

)
ŷp−+1(s̄)− 2√

1 + κ2

∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (26b)

Cr = ŷp−+1(s̄)2 − 1√
1 + κ2

∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)2

(26c)

(26d)

For the other coefficients we compute:

x̂(s̄)Tx̂(s̄+ tr) =
1√

1 + κ2
x(s̄)Tx(s̄+ tr) + x̂p++1(s̄)x̂p++1(s̄+ tr)

=
1√

1 + κ2
x(s̄)Tx(s̄+ tr) + x̂p++1(s̄)

(
t

(
w(r)

2
√

1 + κ2

)
+ x̂p++1(s̄)

)
=

1√
1 + κ2

(
tx(s̄)T

(√
θiv

T
i r
)
i∈I+

+ ‖x(s̄)‖2
)

+ x̂p++1(s̄)

(
t

(
w(r)

2
√

1 + κ2

)
+ x̂p++1(s̄)

)
=

t√
1 + κ2

(
x(s̄)T

(√
θiv

T
i r
)
i∈I+

+ x̂p++1(s̄)
w(r)

2

)
+ ‖x̂(s̄)‖2

21

so

λTx̂(s̄+ tr)

=
t√

1 + κ2‖x̂(s̄)‖

(
x(s̄)T

(√
θiv

T
i r
)
i∈I+

+ x̂p++1(s̄)
w(r)

2

)
+ ‖x̂(s̄)‖

Thus,

Dr =
1

E
√

1 + κ2

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) + x̂p++1(s̄)

w(r)

2


=

1

E
√

1 + κ2

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) +

(w(s̄) + κ+
√

1 + κ2)w(r)

4
√

1 + κ2


(27a)

Er =
1

4
√

1 + κ2

√√√√ (w(s̄) + κ+
√

1 + κ2)2

4
√

1 + κ2
+
∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)2

(27b)

With these coefficients we obtain the root t̄1. After finding this root, we have
to check whether (25) holds, that is

−λp++1‖ŷ(s̄+ t̄1r)‖+ ŷp−+1(s̄+ t̄1r) ≤ 0.

With the same Ar, Br, Cr, Dr, and Er we have just computed, we have

‖ŷ(s̄+ tr)‖ =
√
Art2 +Brt+ Cr

and

ŷp−+1(s̄+ tr) = t

(
w(r)

2
√

1 + κ2

)
+ ŷp−+1(s̄)

λp++1 =
1

E

1

2
√

1 + κ2
(w(s̄) + κ+

√
1 + κ2).

Thus, we have to check that

− 1
Er

1
2
√

1+κ2
(w(s̄) + κ+

√
1 + κ2)

√
Art2 +Brt+ Cr + t

(
w(r)

2
√

1+κ2

)
+ ŷp−+1(s̄) ≤ 0.

fot t = t̄1. As ŷp−+1(s̄) = 1
2
√

1+κ2
(w(s̄) + (κ −

√
1 + κ2)), we can simplify the

above inequality to

− 1

Er
(w(s̄)+κ+

√
1 + κ2)

√
Art2 +Brt+ Cr+tw(r)+(w(s̄)+(κ−

√
1 + κ2)) ≤ 0.

We summarize our discussion up to here in the following lemma

Lemma 8. The smallest positive root t̄1 of (23) can be found using the quadratic
equation (19) with the coefficients displayed in (26) and (27). We have t̄1 =∞
if and only if

√
Ar ≤ Dr. Additionally, (25) holds if and only if

− 1
Er

(w(s̄) + κ+
√

1 + κ2)
√
Ar t̄21 +Br t̄1 + Cr + t̄1w(r) + (w(s̄) + (κ−

√
1 + κ2)) ≤ 0.

22

The last computation we need to perform is the root of the second case (24)
(which before we referred to as t̄2). For this, we look at the equation

‖x(s̄)‖√
1 + κ2

‖y(s̄+ tr)‖+ x̂p++1(s̄)ŷp−+1(s̄+ tr)− x̂(s̄)Tx̂(s̄+ tr) = 0.

We rewrite it as

‖x(s̄)‖√
1 + κ2

‖y(s̄+ tr)‖ − (x̂(s̄)Tx̂(s̄+ tr)− x̂p++1(s̄)ŷp−+1(s̄+ tr)) = 0.

which is also an equation of the form√
Art2 +Brt+ Cr − (Drt+ Er) = 0.

From the term involving ‖y(s̄+ tr)‖ we see that

Ar = −‖x(s̄)‖2

1 + κ2

∑
i∈I−

θi(v
T
i r)

2 (28a)

Br = −2
‖x(s̄)‖2

1 + κ2

∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (28b)

Cr = −‖x(s̄)‖2

1 + κ2

∑
i∈I−

θi

(
vTi (s̄+

b

2θi
)

)2

(28c)

To find the remaining coefficients, we compute the term

x̂(s̄)Tx̂(s̄+ tr)− x̂p++1(s̄)ŷp−+1(s̄+ tr)

=
1√

1 + κ2
x(s̄)Tx(s̄+ tr) + x̂p++1(s̄)(x̂p++1(s̄+ tr)− ŷp−+1(s̄+ tr))

=
1√

1 + κ2
x(s̄)Tx(s̄+ tr) + x̂p++1(s̄)

=
1√

1 + κ2

(
tx(s̄)T

(√
θiv

T
i r
)
i∈I+

+ ‖x(s̄)‖2
)

+ x̂p++1(s̄)

Thus,

Dr =
1√

1 + κ2

∑
i∈I+

θi

(
vTi (s̄+

b

2θi
)

)
(vTi r) (29a)

Er =
1√

1 + κ2

(
‖x(s̄)‖2 +

w(s̄) + κ+
√

1 + κ2

2

)
. (29b)

Lemma 9. The smallest positive root t̄2 of (24) can be found using the quadratic
equation (19) with the coefficients displayed in (28) and (29). We have t̄2 =∞
if and only if

√
Ar ≤ Dr.

4.2 Strengthening computations

As mentioned in Section 2.1.2, when a ray r of the simplicial conic relaxation
lies in rec(C), the corresponding cut-coefficient is 0 and may be strengthened

23

using a negative edge extension. Let ri, i = 1, . . . , p, be the extreme rays of the
simplicial conic relaxation, and α∗i ∈ (0,∞] the step-length computed for ri.
Let F = {i : α∗i <∞}. The negative edge extension computes, for each j 6∈ F ,

ρj = max
ρ<0
{ρ : α∗i r

i − ρrj ∈ rec(C) ∀i ∈ F}. (30)

and uses the cut-coefficient 1/ρj < 0 instead of 0. It is not hard to see that
ρj = min{ρij : i ∈ F}, where

ρij = max
ρ<0
{ρ : α∗i r

i − ρrj ∈ rec(C)}. (31)

Using what we describe below, we could solve (31) directly through a single-
variable convex optimization problem. However, we can reformulate the problem
so as to not consider all ρ < 0.

Lemma 10. If ri and rj are linearly independent2,

ρij = (µ̄− 1)
α∗i
µ̄
,

where
µ̄ := max{µ ∈ [0, 1] : µri + (1− µ)rj ∈ rec(C)}. (32)

Otherwise, ρij = −α∗i ‖ri‖/‖rj‖.

Proof. The case when ri and rj are linearly dependent follows by noting that,
since rj ∈ rec(C) and ri /∈ rec(C), it must be that

rj = −‖r
j‖
‖ri‖

ri.

and ρij must satisfy

α∗i r
i − ρijrj = 0.

For the other case, using a rescaling argument we can see that there must exist
β > 0 such that

µ̄ri + (1− µ̄)rj = (α∗i r
i − ρijrj)β

⇔ (µ̄− α∗i β)ri + (1− µ̄+ ρijβ)rj = 0

Since ri and rj are linearly independent, this last equality implies

µ̄− α∗i β = 1− µ̄+ ρijβ = 0.

Rearranging and combining these two equations yields

ρij = (µ̄− 1)
α∗i
µ̄
.

2Since we are considering rays of a simplicial cone of dimension p, they are all linearly
independent. However, in practice, the set S is usually of dimension � p. In these cases, one
can either extend the S-free set to dimension p, or restrict the rays to the support of S for
computational purposes. The latter might create linear dependence.

24

This last lemma shifts the computation of (31) to the computation of (32).
While these look similar, in our experiments the latter proved to be compu-
tationally better: the domain of the variable to optimize is bounded, which
resulted in a faster and numerically more stable strengthening routine.

Since (32) is a single-variable problem over a bounded domain, we use a binary-
search approach to solve it, and thus having an efficient membership oracle of
rec(C) suffices. Using that our S-free sets have the form C = {s : g(s) ≤ 0},
from our previous discussion we further note that r ∈ rec(C) if and only if
g(s̄+ tr) = 0 has no positive solution. What follows is based on this fact.

Cases 1, 2 and 3. Since r ∈ rec(C) is equivalent to determining if g(s̄+tr) = 0
has no positive solution, we see that r ∈ rec(C) if and only if

√
Ar ≤ Dr (see

Lemmas 4, 5 and 6). Let us denote Ai the coefficient Ari , and similarly for the
other coefficients. In order to solve (32) we show

Lemma 11. µri + (1− µ)rj ∈ rec(C) if and only if√
µ2Ai + (1− µ)2Aj + 2µ(1− µ)

∑
k∈I−

θk(vTk r
i)(vTk r

j)− µDi − (1− µ)Dj ≤ 0.

Proof. We know that r = µri + (1 − µ)rj ∈ rec(C) if and only if
√
Ar ≤ Dr.

From the expression of Ar and Dr in cases 1, 2 and 3, we see that

Ar = µ2Ai + (1− µ)2Aj + 2µ(1− µ)
∑
k∈I−

θk(vTk r
i)(vTk r

j)

Dr = µDi + (1− µ)Dj

which shows the result.

This results casts (32) as a single-variable single-constraint convex problem.

Case 4. In this case we have to proceed differently since C is piecewise-defined.
Using that each part of the definition is a convex function we can prove:

Lemma 12. Let τ(t) = −λp++1‖ŷ(s̄+ tr)‖+ ŷp−+1(s̄+ tr). If limt→∞ τ(t) > 0,
then r ∈ rec(C) if and only if (23) has a positive root. Otherwise, r ∈ rec(C) if
and only if (24) has a positive root.

This lemma frames how we can check for a ray r to be in rec(C). The two
following results show precisely how to verify each condition.

25

Lemma 13. Let Ar, Br, Cr, Dr, Er be defined as in (26) and (27), and τ(t) as
in the previous lemma. Then

lim
t→∞

τ(t) =


sgn(−λp++1)∞, if

√
Ār > D̄r

sgn(λp++1)∞, if
√
Ār < D̄r

sgn(−λp++1)(B̄r

2
√
Ār
− Ēr), if

√
Ār = D̄r.

where

Ār := λ2
p++1Ar, B̄r := λ2

r+1Br, C̄r := λ2
p++1Cr, D̄r := − w(r)

2 4
√

1− κ2
, Ēr := ŷp−+1(s̄).

Proof. Recall that ‖ŷ(s̄+tr)‖ =
√
Art2 +Brt+ Cr. Therefore, τ(t) = −λp++1‖ŷ(s̄+

tr)‖+ ŷp−+1(s̄+ tr) is of the form

τ(t) =
√
Ārt2 + B̄rt+ C̄r − (D̄rt+ Ēr)

with Ār, B̄r, C̄r, D̄r, Ēr defined in the lemma statement. Depending on the sign
of λr+1, the function τ(t) is either convex or concave. Hence, using the same
reasoning as in Section 4.1, we obtain the desired limits.

Finally, the only missing ingredient is the verification of when (23) or (24) have
a positive root for the ray r = µri + (1− µ)rj . We show

Lemma 14. Let r = µri + (1−λ)rj. Then, (23) has a positive root if and only
if√
µ2Ai + (1− µ)2Aj + 2µ(1− µ)

(
||x(s̄)||2
4(1+κ)2

∑
k∈I− θk(vTk r

i)(vTk r
j)
)
− µDi + (1− µ)Dj ≤ 0.

where the coefficients are defined as in (26) and (27). Similarly, (24) has a
positive root if and only if√
µ2Ai + (1− µ)2Aj − 2µ(1− µ)

(
ω(ri)ω(rj)
4(1+κ)2 −

1√
1+κ2

∑
k∈I− θk(vTk r

i)(vTk r
j)
)
− µDi + (1− µ)Dj ≤ 0.

where the coefficients are defined as in (28) and (29).

Proof. The results follow from computing the condition
√
Ar ≤ Dr in each

corresponding case.

5 Computational Results

In this section we show our computational experiments testing the efficacy of
the cutting planes we propose. In all our cutting plane computations we use the
formulas we describe in this article within the SCIP optimization suite.

To test our approach, we use what is commonly known as root node experi-
ments: we start from an LP relaxation of a QCQP (providing a dual bound

26

Table 1: Summary of gap closed in root node experiments between intersection cuts
and default SCIP. The columns rel denote the corresponding relative improvement
with respect to default SCIP. The #solved row shows the number of instances solved
in the root node.

DEFAULT ICUTS ICUTS-S MINOR

subset mean mean rel mean rel mean rel

clean 0.56 0.61 1.08 0.60 1.07 0.59 1.04

affected 0.52 0.59 1.12 0.58 1.11 0.55 1.06

#solved 90 116 114 92

MINOR-S ICUTS+MINOR ICUTS+MINOR-B

subset mean rel mean rel mean rel

clean 0.58 1.04 0.61 1.09 0.62 1.09

affected 0.55 1.06 0.60 1.14 0.60 1.15

#solved 91 116 117

d1) and incorporate our cutting planes to SCIP via a separator. After SCIP
stops, we compute the gap closed measure of performance: if d2 is the dual
bound obtained when the algorithm finishes, and p a reference primal bound,
the function GC(p, d1, d2) = d2−d1

p−d1 is the gap closed improvement of d2 with
respect to d1.

We embedded the computation of the intersection cuts in a developement version
of SCIP with CPLEX 12.10.0.0 as the underlying LP solver. For testing, we
used a Linux cluster of Intel Xeon CPU E5-2660 v3 2.60GHz with 25MB cache
and 128GB main memory. The time limit in all experiments was set to one
hour. The test set we used consists of the publicly available instances of the
MINLPLib [25]. We selected all non-convex instances with at least one quadratic
constraint, leaving us with 705 out of 1625 instances. Since we are interested
in the amount of primal-dual gap closed, we discarded instances for which no
primal solution was available (including infeasible instances) or no dual solution
was found. Furthermore, we filtered-out instances where SCIP failed with at
least one setting. This resulted in a test set of 587 instances.

We refer to the following settings: DEFAULT refers to SCIP’s default settings,
ICUTS refers to including our intersections cuts, MINOR refers to including the
cuts in extended space obtained from (15), ICUTS-S and MINOR-S refers to
their strengthened versions. Finally, MINOR-B refers to cuts obtained from (15)
including the non-negativity bounds in the extended space, when appropriate,
as discussed in Section 3.1. Combinations of these settings are displayed with
a ‘+’ sign. The overall best performing setting was ICUTS+MINOR-B, thus we
mainly report comparisons of this setting with respect to variations of it.

In Table 1 we show summarized results for various settings. First of all, we can
observe the improvement of ICUTS+MINOR-B with respect to DEFAULT. On aver-
age, we see an improvement of 8% in the gap closed. This improvement becomes
12% if we restrict to affected instances, i.e., instances for which at least one of
the non-default settings added cutting planes. Considering the heterogeneity
of these instances, these improvements are significant. Additionally, using our
cutting planes SCIP was able to solve 27 more instances in the root node.

27

When comparing ICUTS-S and MINOR-S with their non-strengthened versions
ICUTS and MINOR, respectively, we can see a (slightly) negative effect of the
strengthening. This was an unexpected phenomenon, which we examined in
detail on a number of instances. From these, we observe that the cut coeffi-
cients are not improved significantly in many cases. If we also consider that the
strengthening increases the density of a cut, we come to the conclusion that,
overall, the coefficient’s modest improvement does not compensate the extra dif-
ficulties associated to a dense LP. Preliminary experiments we conducted with
these cutting planes in spatial branch-and-bound support this claim: when us-
ing the strengthening routine, around 10% less LP iterations where executed
per second compared to default. This means that each iteration when solv-
ing LPs gets slower. In contrast, applying the intersection cuts without the
strengthening reduced the LP iterations in only 4%.

When comparing ICUTS+MINOR-B and ICUTS, as well as ICUTS+MINOR-B and
MINOR we see that both cutting plane families are complementing each other
well. Although most of the improvement is due to ICUTS, the contribution of
MINOR-B is non-negligible. This good complementary behavior was expected:
these two families are using quadratic inequalities that lie in different spaces,
hence combining them provide significantly different violated constraints to sep-
arate.

In the comparison between ICUTS+MINOR-B and ICUTS+MINOR, we see that also
considering the non-negativity bounds when constructing the S-free sets has an
positive impact not only in theory, but also in practice.

In Figure 3 we show scatter plots comparing different settings. These plots
support our previous analysis, and also show that the results are stable: if
a setting improves the performance on average, the improvement is relatively
consistent among the whole test set.

Overall, we believe these results are encouraging and promising for our families
of cutting planes. Given the heterogeneity of the instances, and how generic the
cutting planes are, the results we are obtaining advocate for our approach as a
viable alternative for QCQPs.

6 Final remarks

In this work, we have shown an implementation of intersection cuts for QCQPs
using the newly developed maximal quadratic-free sets. We show a detailed
framework on how to construct cutting planes using any violated quadratic,
and the necessary results showing the correctness of our computations. Our
results allow for efficient cut computations that any researcher can embed in
their optimization routines by simply plugging into our formulas the necessary
parameters of a generic quadratic inequality.

Our careful implementation resulted in encouraging results: we were able to
close more gap in a significant number of instances, and we also showed that

28

0.0 0.2 0.4 0.6 0.8 1.0
DEFAULT

0.0

0.2

0.4

0.6

0.8

1.0

IC
UT

S+
M

IN
OR

-B

0.0 0.2 0.4 0.6 0.8 1.0
ICUTS

0.0

0.2

0.4

0.6

0.8

1.0

IC
UT

S+
M

IN
OR

-B

0.0 0.2 0.4 0.6 0.8 1.0
MINOR

0.0

0.2

0.4

0.6

0.8

1.0

IC
UT

S+
M

IN
OR

-B

0.0 0.2 0.4 0.6 0.8 1.0
ICUTS-S

0.0

0.2

0.4

0.6

0.8

1.0

IC
UT

S

Figure 3: Scatter plots showing comparisons of gap closed in root node experiments
between various pairs of settings.

these and the cuts proposed by Bienstock et al. are complementing each other
well. While, unfortunately, the strengthening procedure did not yield good
results, we believe it still provides valuable insights for the optimization com-
munity.

Our current and future work involves a full incorporation of these cutting planes
in spatial branch-and-bound. This will require a much more careful handling of
the density of the cuts we create, as well as special cut selection rules.

29

References

[1] Kent Andersen and Anders Nedergaard Jensen. Intersection cuts for mixed
integer conic quadratic sets. In M Goemans and J Correa, editors, Inte-
ger Programming And Combinatorial Optimization, pages 37–48. Springer,
2013.

[2] Kent Andersen, Quentin Louveaux, and Robert Weismantel. An analysis
of mixed integer linear sets based on lattice point free convex sets. Mathe-
matics of Operations Research, 35(1):233–256, 2010.

[3] Kent Andersen, Quentin Louveaux, Robert Weismantel, and Laurence A.
Wolsey. Inequalities from two rows of a simplex tableau. In Integer Pro-
gramming and Combinatorial Optimization, pages 1–15. Springer Berlin
Heidelberg, 2007.

[4] Egon Balas. Intersection cuts—a new type of cutting planes for integer
programming. Operations Research, 19(1):19–39, feb 1971.

[5] Amitabh Basu, Michele Conforti, Gérard Cornuéjols, and Giacomo Zam-
belli. Maximal lattice-free convex sets in linear subspaces. Mathematics of
Operations Research, 35(3):704–720, August 2010.

[6] Amitabh Basu, Michele Conforti, Gérard Cornuéjols, and Giacomo Zam-
belli. Minimal inequalities for an infinite relaxation of integer programs.
SIAM Journal on Discrete Mathematics, 24(1):158–168, 2010.

[7] Daniel Bienstock, Chen Chen, and Gonzalo Muñoz. Intersection cuts for
polynomial optimization. In Integer Programming and Combinatorial Op-
timization, pages 72–87. Springer International Publishing, 2019.

[8] Daniel Bienstock, Chen Chen, and Gonzalo Munoz. Outer-product-free
sets for polynomial optimization and oracle-based cuts. Mathematical Pro-
gramming, pages 1–44, 2020.

[9] Pierre Bonami, JT Linderoth, and Andrea Lodi. Disjunctive cuts for mixed
integer nonlinear programming problems. Progress in Combinatorial Opti-
mization, pages 521–541, 2011.

[10] Valentin Borozan and Gérard Cornuéjols. Minimal valid inequalities for
integer constraints. Mathematics of Operations Research, 34(3):538–546,
aug 2009.

[11] Samuel Burer and Fatma Kılınç-Karzan. How to convexify the intersection
of a second order cone and a nonconvex quadratic. Mathematical Program-
ming, 162(1-2):393–429, 2017.

[12] Michele Conforti, Gérard Cornuéjols, Aris Daniilidis, Claude Lemaréchal,
and Jérôme Malick. Cut-generating functions and S-free sets. Mathematics
of Operations Research, 40(2):276–391, may 2015.

[13] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Corner poly-
hedron and intersection cuts. Surveys in Operations Research and Man-
agement Science, 16(2):105–120, jul 2011.

30

[14] Gérard Cornuéjols, Laurence Wolsey, and Sercan Yıldız. Sufficiency of cut-
generating functions. Mathematical Programming, 152(1-2):643–651, 2015.

[15] Santanu S Dey and Laurence A Wolsey. Lifting integer variables in minimal
inequalities corresponding to lattice-free triangles. In A Lodi, A Panconesi,
and G Rinaldi, editors, Integer Programming and Combinatorial Optimiza-
tion, pages 463–475. Springer, 2008.

[16] Santanu S. Dey and Laurence A. Wolsey. Constrained infinite group re-
laxations of MIPs. SIAM Journal on Optimization, 20(6):2890–2912, jan
2010.

[17] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. Inter-
section cuts for bilevel optimization. In Integer Programming and Com-
binatorial Optimization, pages 77–88. Springer International Publishing,
2016.

[18] Matteo Fischetti and Michele Monaci. A branch-and-cut algorithm for
mixed-integer bilinear programming. European Journal of Operational Re-
search, sep 2019.

[19] Robert M Freund and James B Orlin. On the complexity of four polyhe-
dral set containment problems. Mathematical Programming, 33(2):139–145,
1985.

[20] F Glover. Polyhedral convexity cuts and negative edge extensions.
Zeitschrift für Operations Research, 18(5):181–186, 1974.

[21] Fred Glover. Convexity cuts and cut search. Operations Research,
21(1):123–134, feb 1973.

[22] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related
to corner polyhedra. Mathematical Programming, 3-3(1):23–85, dec 1972.

[23] Fatma Kılınç-Karzan. On minimal valid inequalities for mixed integer conic
programs. Mathematics of Operations Research, 41(2):477–510, 2015.

[24] Garth P. McCormick. Computability of global solutions to factorable non-
convex programs: Part i — convex underestimating problems. Mathemat-
ical Programming, 10(1):147–175, dec 1976.

[25] MINLP library. http://www.minlplib.org/.

[26] Sina Modaresi, Mustafa R Kılınç, and Juan Pablo Vielma. Split cuts and
extended formulations for mixed integer conic quadratic programming. Op-
erations Research Letters, 43(1):10–15, 2015.

[27] Sina Modaresi, Mustafa R Kılınç, and Juan Pablo Vielma. Intersection cuts
for nonlinear integer programming: Convexification techniques for struc-
tured sets. Mathematical Programming, 155(1-2):575–611, 2016.

[28] Gonzalo Muñoz and Felipe Serrano. Maximal quadratic-free sets. arXiv
preprint arXiv:1911.12341, 2019.

31

http://www.minlplib.org/

[29] Asteroide Santana and Santanu S Dey. The convex hull of a quadratic
constraint over a polytope. arXiv preprint arXiv:1812.10160, 2018.

[30] SCIP – Solving Constraint Integer Programs. http://scip.zib.de.

[31] S. Sen and Hanif D. Sherali. Facet inequalities from simple disjunctions in
cutting plane theory. Mathematical Programming, 34(1):72–83, jan 1986.

[32] Suvrajeet Sen and Hanif D Sherali. Nondifferentiable reverse convex pro-
grams and facetial convexity cuts via a disjunctive characterization. Math-
ematical Programming, 37(2):169–183, 1987.

[33] Felipe Serrano. Intersection cuts for factorable MINLP. In Integer Pro-
gramming and Combinatorial Optimization, pages 385–398. Springer Inter-
national Publishing, 2019.

[34] Eli Towle and James Luedtke. Intersection disjunctions for reverse convex
sets. arXiv preprint arXiv:1901.02112, 2019.

[35] Hoàng Tuy. Concave programming with linear constraints. In Doklady
Akademii Nauk, volume 159, pages 32–35. Russian Academy of Sciences,
1964.

32

http://scip.zib.de

	Introduction
	Contribution
	Literature review
	Notation
	Outline

	Preliminaries
	Intersection cuts
	Basic intersection cut
	Strengthening intersection cuts

	Maximal quadratic-free sets

	Explicit computation of maximal quadratic-free sets
	Implied quadratics in an extended space

	Intersection cuts coefficients and their strengthening
	Cut coefficient computations
	Strengthening computations

	Computational Results
	Final remarks

