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Abstract

In this paper we introduce a trilevel MILP formulation for the optimal
operation of transient gas transport networks. Real-world gas transport
networks are controlled through operating complex pipeline intersection
areas, which comprise multiple compressor units, regulators, and valves.
In the following, we use so-called network stations to model them. The
technical capabilities of a station, in particular the increase of pressure
through compression, are represented by purpose-built artificial arcs. Their
interplay is described using the concepts of flow directions and co-called
simple states. For each station and each timestep we choose a predefined
flow direction, which determines where gas enters and leaves. Additionally,
we choose a fitting simple state, which consists of two subsets of artificial
arcs: Arcs that must and arcs that cannot be used. The objective of the
overall optimization problem is to ensure that all supplies and demands
are satisfied. This model was designed to make important transient global
control decisions, i.e., how to route the flow and at which places to compress
the gas. Afterwards, detailed technical control measures realizing them can
be determined in a subsequent step. This describes the solution approach
for the NAVI project conducted within the GasLab of the Research Campus
MODAL, where a decision support system for dispatchers is developed.

1 Introduction

Natural gas still is and will remain one of the major energy sources in Europe
[12]. Furthermore, it is often considered an important transit medium towards
a low- or no-carbon future [38]. While the overall gas consumption in Germany
is assumed to be constant in the future, the hourly supplies and demands at the
sources and sinks of the network are expected to become more volatile. One
example reason for this behaviour is the growing usage of renewable energy, e.g.,
solar and wind power. While their share in the energy mix is going to increase
due to the planned nuclear and coal phase-outs, the production is unstable and
has to be supported by natural gas fired power plants, which can be ramped-up
on short notice. Hence, for the Open Grid Europe GmbH (OGE) [3], one of the
largest transport system operators in Germany [2], a more robust, secure, and
stable control of the network becomes inevitable in order to guarantee security of
supply. Thus, the idea of a NAVI, a decision-support system for the dispatchers,
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who operate the gas network, was created and realized within the GasLab of
the Research Campus MODAL [1]. Given the current state of the network and a
prognosis for future supplies and demands [9, 25] as well as the expected pressures
at the source nodes, the goal is to determine technical control decisions realizing
transport while minimizing scenario deviations and maximizing the stability of
the network.

The optimization of natural gas transport through pipeline networks is a chal-
lenging task due to two crucial aspects: The physics of the gas flow and the com-
binatorics behind the setup of compressor units together with imposed technical
restrictions and limitations. The gas flow is described by the so-called Euler equa-
tions [33], a set of non-linear hyperbolic partial differential equations (PDEs). On
the other hand, compressor units can run sequentially or in parallel by opening
and closing surrounding valves in order to achieve the required compression ra-
tio and flow rate. Additionally, the compressor units feature feasible operating
ranges and are subject to a non-linear power bound. More detailed explanations
regarding these topics are given by Koch et al. [26].

While the stationary case, i.e., determining a feasible network state given
the necessary boundary values, has gained a lot of attention in recent years, see
[26] for an extensive overview, research regarding the transient case is still in
the early stages. One of the first papers on transient gas transport optimization
is [30]. Here, a mixed integer linear program (MILP) featuring independent single
compressor units is introduced. Furthermore, the gas flow in pipelines is modelled
using piecewise linear functions. Pure non-linear programs (NLPs) are considered
in [28] and [39], which decide on the compression ratios of compressors, while
minimizing the fuel consumption. Very recent publications are [17] and [7], both
making use of special discretization schemes for the Euler equations and again
considering independent single compressor units. [17] features a linear feasible
region for the compressors and minimizes the deviation from the future flow and
pressure values by iteratively solving a MILP and a NLP model for each timestep.
In contrast, [7] imposes lower and upper bounds on the compression ratios as well
as on the achievable pressure differences of the compressor units and maximizes
the amount of gas stored in the network by alternatingly solving a MILP and a
NLP formulation.

However, the NAVI software developed within the GasLab of the Research
Campus MODAL is supposed to solve a transient gas network control problem
on a large real-world network. As input, it receives the current state of the net-
work together with future gas supplies and demands and the expected pressures
at the sources. As output, highly detailed technical control recommendations,
i.e., so-called technical measures, for all remotely controllable elements shall be
given. Deviations from the given supply, demand, and pressure values, so-called
non-technical measures, are only allowed if there exists no solution when using
technical measures only. Additionally, the model has to incorporate a complete
formulation of the combinatorics behind the setup of compressor stations to-
gether with an as accurate as possible physical model for the transient gas flow
in pipelines. The goal is to determine a solution meeting the supplies and de-
mands while maximizing the stability of the network. A network is considered to
be stable if no control measures have to be used. Finally, due to the nature of
the underlying real time application, the problem formulation has to be solvable
within minutes.
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Our first experiments showed that formulations satisfying all needs simultane-
ously were either computationally intractable or not solvable within a reasonable
amount of time. Hence, we decided to split the complexity and introduced a two-
stage approach. First, a transient control problem is solved using hand-tailored
simplified models for the complex pipeline intersection areas, which contain all
compressor stations and a majority of all other remotely controllable elements.
These simplified models are called network stations and the resulting network
macroscopic. The paper at hand deals with formulating and solving exactly this
problem.

Afterwards, the resulting flow and pressure values at the boundaries of each
network station are considered in a highly detailed model for the original complex
pipeline intersection areas. It validates whether there exist actual technical con-
trol decisions realizing them or not [20]. Here, in a first step stationary models
focusing on the combinatorics and technical restrictions of compressor stations
are solved. The rationale is that the considered intersection areas contain only
pipelines of short length, which cannot store or provide much gas for future usage,
i.e., which do not feature a lot of linepack, and therefore the transient aspect can
be neglected. However, the transient behaviour is included in a second step, where
a corresponding mathematical model is solve using a rolling horizon approach.

In this paper, the considered transient flow problem on the macroscopic gas
transport network is modelled as a trilevel program. The third level features
the actual control problem and tries to maximize the stability by minimizing
changes in the operation of the network stations, i.e., by minimizing the usage of
technical measures. The second level minimizes the deviation from the supplies
and demands necessary to guarantee feasibility for the third level. Analogously,
the first level pursues the same goal but minimizes the deviation from the expected
source pressures instead. In other words, the first and the second level minimize
the extent of necessary non-technical measures.

Hierarchical optimization models have been used to model a variety of real
world applications. Areas include but are not limited to network design [14],
capacity planning [15], toll setting [6], robust unit commitment [22], or criti-
cal infrastructure protection problems [5]. More detailed overviews on possible
applications can be found in [8, 23, 27]. Due to the liberalization of many en-
ergy markets, where so-called entry-exit models were introduced, new kinds of
optimization problems arose in these areas. See for example [34] for a detailed
description of the entry-exit model for the European natural gas market. For
these new problems, hierarchical optimization turned out to be well suited for
modelling purposes, not only because the entry-exit model itself can be described
using a multilevel formulation [16]. For the US market for example, a discrete
bilevel programming approach is used to solve a cash-out problem, where a gas
shipper has to weigh daily delivery imbalances against penalties claimed by the
transport company [11, 24]. For theoretical details on hierarchical and bilevel
optimization we recommend [10, 29].

The remainder of this paper is structured as follows: In Section 2 we introduce
the network station concept and explain how their mathematical modelling is
derived. Next, in Section 3 we introduce the trilevel macroscopic transient gas
flow MILP formulation, for which we present a solution approach in Section 4.
We conclude with computational experiments conducted on real-world instances
in Section 5 and an outlook on future improvements and extensions in Section 6.
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(a) Original pipeline intersection area (b) Corresponding network station E

Figure 1: The colored triangles represent sources and sinks , which are closely
located to the network station. Further, the other single network elements are depicted
as (pipe), (valve/shortcut), (regulator/regulating arc), (compressor
station/compressing arc), and (bidirected regulating arc).

2 Network Stations

The majority of so-called active elements within gas networks, i.e., elements whose
behaviour can be remotely controlled by the dispatchers, such as compressor sta-
tions, regulators, and valves, are located at intersections of major transportation
pipelines. For each of these intersection areas and each point in time, exactly
one so-called operation mode, a combination of discrete control settings for all
valves and compressor stations, is in use and the settings for all other close-
by active elements follow accordingly. Due to the amount of possible operation
modes and the induced complexity, we developed hand-tailored simplified graph
representations called network stations, which approximate the technical control
capabilities, together with experts from OGE. While the detailed mathematical
formulations and explanations regarding network stations can be found in Sec-
tion 3.9, we briefly explain the basic idea and the process of their derivation here.
An example for a simplification is depicted in Figure 1.

First, the intersection areas are identified as connected subgraphs of the net-
work. Their layouts are created with the goal in mind to include as many active
elements as possible while only containing few pipelines of significant length. The
nodes at the boundaries of these subgraphs are called fence nodes. If a subset of
the fence nodes features the same behaviour, e.g., all are connected to pipelines of
large diameter, which run in parallel and nearly always possess the same pressure
level as well as the same direction and amount of flow, they are merged.

Next, the interior of the subgraph is removed and auxiliary nodes together
with so-called artificial arcs, which connect them and the fence nodes, are added.
There are four types of artificial arcs: Shortcuts, which can be seen as the equiva-
lents of valves, regulating arcs, which can be seen as regulators, compressor arcs,
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which shall capture the pressure increasing capabilities of compressor stations,
and combined arcs, which can work as either regulating or compressor arcs. Fur-
ther, for each of these arc types with the exception of shortcuts there exists a
bidirected version, where the gas can flow and the mentioned capabilities can be
applied in both directions. Shortcuts are always bidirected by definition.

Finally, the experts from OGE looked at the possible operation modes and
identified a set of so-called possible flow directions. A flow direction consists of
two subsets of fence nodes: Entries, where gas enters, and exits, where gas leaves.
Additionally, they developed so-called simple states. Each simple state consists
of a subset of flow directions it supports and two subsets of artificial arcs: Arcs
that have to be active and arcs that cannot be active. While an inactive arc can
conceptually be viewed as a closed valve, active arcs have to be used according
to their corresponding models, which are described in Section 3.12. The goal for
the design of the simple states is to summarize and approximate the technical
capabilities at the original intersection area.

3 Macroscopic Transient Gas Flow Model

In this section, we define our macroscopic transient gas flow model. We describe
the entities of the underlying network and introduce variables and constraints
representing their behaviour. Additionally, we explain the concepts describing
their interplay and derive mathematical models for them. In the remainder of
this paper, a gas network is modelled as a directed graph G = (V,A), where V
denotes the set of nodes and A the set of arcs.

3.1 Timesteps and Granularity

Additionally, we are given a set of timesteps T0 := {0, . . . , k} together with a
monotonically increasing function τ : T0 → N, called granularity. We assume
that τ(0) = 0. In this context, τ(t) represents the number of seconds that have
passed until timestep t ∈ T0 w.r.t. timestep 0. For notational purposes we define
T := T0 \ {0}.

3.2 Boundary Values

Furthermore, V+ ⊆ V and V− ⊆ V denote the sources and sinks of the network,
respectively, and we assume that V+ ∩ V− = ∅. While Vb := V+ ∪ V− is called
the set of boundary nodes, V0 := V \ Vb denotes the set of inner nodes.

For each boundary node v ∈ Vb and each timestep t ∈ T we are given a so-
called boundary value Dv,t ∈ R. They represent the future requirements in terms
of supply (inflow), when v ∈ V+ is a source and we have Dv,t ∈ R≥0, and demand
(outflow), when v ∈ V− is a sink and we have Dv,t ∈ R≤0. The boundary values
may be adjusted dynamically to ensure the feasibility of the model. Thus, for each
boundary node v ∈ Vb and t ∈ T we introduce two continuous slack variables
σd+
v,t , σ

d−
v,t ∈ R≥0. The actual boundary values, which are then considered in the

model, are established through the additional variables dv,t ∈ R≥0 for each source
v ∈ V+ and dv,t ∈ R≤0 for each sink v ∈ V− and constraints

dv,t + σd+
v,t − σd−v,t =Dv,t ∀v ∈ Vb, ∀t ∈ T . (1)
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σd+
v,t and σd−v,t are called boundary value slack variables in the following. They

model a set of standardized non-technical control measures, e.g., contractual op-
tions of customer interruptions and the buying or selling of so-called balancing
energy.

3.3 Pressures and Pressure Bounds

Additionally, for each node v ∈ V we are given a non-negative pressure, which we
denote by pv,0 ∈ R≥0, representing the corresponding value in the initial state.
Furthermore, we introduce pressure variables pv,t ∈ [

¯
pv,t, p̄v,t] ⊆ R≥0 for each

point in time t ∈ T . Here
¯
pv,t is a lower and p̄v,t is an upper bound on the

pressure at node v and time t. These bounds are called technical pressure bounds.
For each boundary node v ∈ Vb and each point in time t ∈ T we are addi-

tionally given so-called inflow pressure bounds
¯
pact
v,t ∈ R≥0 and p̄act

v,t ∈ R≥0. These
bounds are tighter than the technical pressure bounds and have to be respected
if a boundary node has nonzero boundary value. They represent the expected
future pressure at the sources of the network. Nevertheless, in contrast to the
hard technical pressure bounds they may be relaxed using slack to ensure fea-
sibility. Thus, we introduce two continuous variables σp+v,t ∈ [0,

¯
pact
v,t −

¯
pv,t] and

σp−v,t ∈ [0, p̄v,t − p̄act
v,t ] as well as constraints

pv,t + σp−v,t ≥
¯
pact
v,t ∀v ∈ Vb with Dv,t 6= 0, ∀t ∈ T and (2)

pv,t − σp+v,t ≤ p̄act
v,t ∀v ∈ Vb with Dv,t 6= 0, ∀t ∈ T . (3)

σp+v,t and σp−v,t are called inflow pressure slack variables in the following. They
model the non-standardized non-technical control measure of calling neighbor-
ing transport system operators asking them to change their corresponding exit
pressures in the future to a beneficial level.

3.4 Massflows

Next, we introduce variables representing the flow of gas on arcs in massflow,
which we are going to call simply flow in the following. Therefore, the arc set
is partitioned into four sets A = Ava ∪̇Arg ∪̇Api ∪̇Aar, representing the different
network element we consider. Here, Ava denotes the set of valves, Arg the set
of regulators (often synonymously called control valves in the literature), Api

the set of pipes, and Aar the set of so-called artificial arcs. The artificial arcs
are further partitioned into monodirected arcs Aar-mo and bidirected arcs Aar-bi,
i.e., Aar = Aar-mo ∪̇Aar-bi, which is further discussed in Section 3.12. We allow
parallel and anti-parallel arcs, but we do not allow loops.

For each monodirected arc a ∈ Arg ∪ Aar-mo and each timestep t ∈ T we
introduce a variable qa,t ∈ [0, q̄a,t] representing the massflow on the corresponding
arc in forward direction. On the other hand, for valves and bidirected artificial
arcs we add two variables q→a,t, q

←
a,t ∈ [0, q̄a,t] representing massflow in forward

direction and backward direction on arc a ∈ Ava ∪ Aar-bi, respectively. For pipes
we distinguish in- and outflow to be able to account for changes in the amount of
gas which is currently stored in the pipe. Therefore, for each pipe a = (`, r) ∈ Api

and each timestep t ∈ T we introduce two variables q`,a,t, qr,a,t ∈ [−q̄a,t, q̄a,t]
representing the massflow into a at ` and out of a at r. Note that negative
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variable values represent massflow out of a at ` and into a at r, respectively. In
all of the previous definitions, q̄a,t represents a practically reasonable flow bound.

Finally, for timestep t = 0 and each of the variables introduced above we are
given an initial massflow value, which is denoted analogously with index 0.

3.5 Massflow Conservation

Next, for all nodes v ∈ V we introduce massflow conservation equations. For each
inner node v ∈ V0 and each timestep t ∈ T the amount of flow entering v has
to leave it and for a boundary node v ∈ Vb supply or demand must be satisfied.
Hence, we have∑
a=(`,v)∈Ava∪Aar-bi

(q←a,t − q→a,t) +
∑

a=(v,r)∈Ava∪Aar-bi

(q→a,t − q←a,t)

+
∑

a=(v,r)∈Arg∪Aar-mo

qa,t −
∑

a=(`,v)∈Arg∪Aar-mo

qa,t

+
∑

a=(v,r)∈Api

qv,a,t −
∑

a=(`,v)∈Api

qv,a,t = dv,t ∀v ∈ Vb, ∀t ∈ T . (4)

For each inner node v ∈ V0 we introduce the same constraints except for the right
side hand being 0.

3.6 Valves

Valves are network elements that can be used to link or unlink network parts
by either creating a connection between the two corresponding endnodes or by
disconnecting them. Thereby, a valve can be in one of two possible states. Either
it is open, which implies that the pressure values at both ends are equal and
massflow is allowed in arbitrary direction (one can think of the endnodes being
merged). Or it is closed, implying that there is no massflow and the pressure
values are independent or, as we synonymously call it, decoupled.

Thus, let a = (`, r) ∈ Ava be a valve in G. For each step in time t ∈ T we
introduce an additional binary variable za,t ∈ {0, 1} indicating whether the valve
is open or not. The behaviour described above can then be modelled using the
following constraints

p`,t − pr,t ≤ (1− za,t)(p̄`,t −
¯
pr,t) ∀a = (`, r) ∈ Ava, ∀t ∈ T (5)

p`,t − pr,t ≥ (1− za,t)(
¯
p`,t − p̄r,t) ∀a = (`, r) ∈ Ava, ∀t ∈ T (6)

q→a,t ≤ q̄a,t za,t ∀a ∈ Ava, ∀t ∈ T (7)

q←a,t ≤ q̄a,t za,t ∀a ∈ Ava, ∀t ∈ T . (8)

3.7 Regulators

Regulators can be seen as the continuous equivalent of valves. Besides being
completely open or closed, regulators can also be partially open. Thereby, they
generate friction due to which the gas pressure is decreased in the direction of
flow. To model this behaviour, consider some a = (`, r) ∈ Arg. For each t ∈ T
we add constraints
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p`,t − pr,t ≥ 0 ∀t ∈ T . (9)

It is important to note that thereby the pressure at r can never be greater than
the pressure at ` in our model, i.e., we do not model so-called flap traps here. This
mechanism closes the regulator if a pressure at r gets greater than the pressure
at l and makes flow in the backward direction impossible. The reason for not
including this mechanism in our model is that all regulators are considered to
be connections to distribution parts of the network, i.e., parts only consisting of
pipes, inner nodes and sinks, which are usually not at a higher pressure level than
the upstream transportation network.

3.8 Pipes

One-dimensional gas flow in cylindric pipelines is usually described by the so-
called Euler equations, a set of non-linear hyperbolic partial differential equations,
together with the equation of state for real gases. In our model, for which we
assume isothermality, we use the linearized formulation of Hennings [19].

Let a = (`, r) ∈ Api be a pipe in G. We describe the flow on a with two types
of constraints, which we introduce for each timestep.

2Rs (τ(t)− τ(t− 1))T za
LaAa

(qr,a,t − q`,a,t)

+ p`,t − p`,t−1 + pr,t − pr,t−1 = 0 ∀t ∈ T (10)

pr,t − p`,t +
λa La

4AaDa
(|v`,0| q`,a,t + |vr,0| qr,a,t)

+
g sa La

2Rs T za
(p`,t + pr,t) = 0 ∀t ∈ T (11)

The parameters within these constraints are the specific gas constant Rs, the
length La and the area of the pipe Aa, the gas temperature T , the compressibility
factor za of the gas in the pipe, the friction factor of the pipe λa, the diameter
Da of the pipe, the initial absolute velocities |v`,0|, |v`,0| of the gas flows at ` and
r, the gravitational acceleration g, and the slope of the pipe sa = hr−h`

La
, where

h` and hr are the altitude at ` and r, respectively. The first constraint (10)
is derived from the continuity equation of the Euler equations and captures the
transient behaviour of the flow through the pipe. The second (11), derived from
the momentum equation, determines the pressure loss due to friction and height
difference of the endnodes.

For the friction factor we use the formula of Nikuradse [13][32]. Furthermore,
we assume that the compressibility factor of the gas in the pipe is constant and
determine it as the average of the compressibility factors at both endnodes using
the initial pressure values and the formula of Papay [35]. Another crucial simpli-
fication to derive this linear formulation is the fixation of the absolute velocities
in the friction-based pressure difference term of the momentum equation to the
absolute velocities of timestep 0. If the velocity of the massflow in- or decreases
significantly, we might under- or overestimate the friction loss, respectively.
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3.9 Network Stations

The main idea behind the network station model and the process of how it is de-
rived are discussed in Section 2. Formally, within G there exist m ∈ N subgraphs
Gi = (Vi,Aar

i ) called network stations, which consist of inner nodes and artificial
arcs only, i.e., Vi ⊆ V0 and Aar

i ⊆ Aar for all i ∈ {1, . . . ,m}. Each artificial arc is
contained in exactly one station and each inner node is contained in at most one
station, i.e., Aar

i ∩ Aar
j = ∅ and Vi ∩ Vj = ∅ holds for i, j ∈ {1, . . . ,m} with i 6= j

and we have Aar =
⋃m
i=1Aar

i .
The node set Vi can be further partitioned into so-called fence nodes V fn

i

and auxiliary nodes Var
i , i.e., Vi := V fn

i ∪̇ Var
i . A node v ∈ Vi is a fence node

if it is connected to at least one arc outside the gas network station, i.e., if
δ(v) ∩ (Api ∪ Arg ∪ Ava) 6= ∅, where δ(v) denotes the set of arcs incident to v.
Otherwise, if δ(v) ⊆ Aar

i , it is an auxiliary node.
Additionally, Fi ⊆ P(V fn

i )×P(V fn
i ) denotes the set of so-called flow directions

of gas network station Gi, where P is the powerset operator. A flow direction
f = (f+, f−) ∈ Fi consists of its entry fence nodes f+ ⊆ V fn

i and its exit fence
nodes f− ⊆ V fn

i and it holds that f+ ∩ f− = ∅.
Furthermore, the set Si ⊆ P(Fi)× P(Aar

i )× P(Aar
i ) containing the so-called

simple states is given for each gas network station Gi. A single simple state
s = (sf , son, soff) ∈ Si is composed of the set of flow directions sf it supports as
well as the set of its active son and its inactive artificial arcs soff.

3.10 Controlling Network Stations

In each timestep t ∈ T0 := {0, . . . , k} three types of control decisions have to be
taken for a gas network station Gi. These decisions impact each other and can
be put into a hierarchical order. Here, we describe an order in a top to bottom
fashion and introduce the variables and constraints modelling the decisions and
their interplay.

First of all, exactly one flow direction f ∈ Fi has to be chosen for each Gi.
Given this flow direction, one must additionally choose exactly one simple state
s ∈ Si which supports this flow direction, i.e., f ∈ sf has to hold. Given a
decision on the simple state, all arcs in son must be active, while the inactive arcs
soff cannot be used. For all remaining artificial arcs a ∈ Aar

i \ (son ∪ soff), which
we call optional arcs, we independently choose whether they are active or not.

Thus, for each timestep t ∈ T0 we introduce binary variables xf,t ∈ {0, 1}
for each flow direction f ∈ Fi, xs,t ∈ {0, 1} for each simple state s ∈ Si, as
well as xa,t ∈ {0, 1} for each artificial link a ∈ Aar

i all indicating whether the
corresponding entity is active at that point in time or not. Furthermore, for each
network station Gi we add the following constraints
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∑
f∈Fi

xf,t = 1 ∀t ∈ T0 (12)

∑
s∈Si

xs,t = 1 ∀t ∈ T0 (13)

∑
f∈sf

xf,t ≥ xs,t ∀s ∈ Si, ∀t ∈ T (14)

xs,t ≤xa,t ∀s ∈ Si, ∀a ∈ son, ∀t ∈ T0 (15)

1− xs,t ≥xa,t ∀s ∈ Si, ∀a ∈ soff, ∀t ∈ T0. (16)

While constraints (12) and (13) ensure that exactly one flow direction and one
simple state are chosen for each timestep t ∈ T0, (14) guarantees that the chosen
simple state supports the chosen flow direction. Additionally, constraints (15)
and (16) make sure that the artificial arcs corresponding to the simple state are
active or not, respectively. No condition is imposed on the optional arcs.

Next, in order to penalize changes over time w.r.t. flow directions, simple
states, or artificial links in the objective function we introduce additional binary
variables. For each station Gi and each timestep t ∈ T we have δf,t ∈ {0, 1} for
each f ∈ Fi, δs,t ∈ {0, 1} for each s ∈ Si, and δon

a,t, δ
off
a,t ∈ {0, 1} for each a ∈ Aar

i .
Furthermore, we add constraints

xf,t−1 − xf,t + δf,t ≥ 0 ∀f ∈ Fi, ∀t ∈ T (17)

xs,t−1 − xs,t + δs,t ≥ 0 ∀s ∈ Si, ∀t ∈ T (18)

xa,t−1 − xa,t + δon
a,t − δoff

a,t = 0 ∀a ∈ Aar
i , ∀t ∈ T . (19)

While δf,t, δs,t, δ
on
a,t indicate whether or not a flow direction, simple state, or arti-

ficial link has been switched on in timestep t, δoff
a,t additionally indicates whether

or not an artificial link has been switched off. For the flow directions and simple
states we do not need such a variable, since we know that exactly one of them is
active in each timestep, but in the case of optional artificial arcs this does not ap-
ply. All variables δf,t are associated with an individual cost parameter wf ∈ R≥0,
the variables δs,t with ws ∈ R≥0, and the variables δon

a,t as well as δoff
a,t are assigned

a common cost parameter wa ∈ R≥0.

3.11 Flow Direction Related Constraints

Activating a flow direction imposes certain conditions on the massflow and pres-
sure values w.r.t. a gas network station Gi. Most importantly, for a flow direction
f = (f+, f−) ∈ Fi no outflow is allowed at its entry and no inflow at its exit fence
nodes. It is however allowed that there is no flow at all, which is the condition
that must hold for all other fence nodes v ∈ V fn

i \ (f+ ∪ f−). Furthermore, for
some of the fence nodes there exist additional pressure bounds if a flow direction
is chosen in which they serve as exits. And finally, there exist conditions on the
sums of absolute amounts of flow of subsets of fence nodes, which have to be
satisfied in order to activate certain flow directions.
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3.11.1 In- and Outflow Constraints

First of all, for each fence node v ∈ Vi and each point in time t ∈ T0 we introduce
two continuous variables qin

v,t, q
out
v,t ∈ R≥0 that, together with the following con-

straint, account for the total in- or outflow from outside the station, respectively∑
(`,v)∈Aar

qa,t−
∑

(v,r)∈Aar

qa,t+
∑

(`,v)∈Aar-bi

q→a,t

−
∑

(`,v)∈Aar-bi

q←a,t−
∑

(v,r)∈Aar-bi

q→a,t+
∑

(v,r)∈Aar-bi

q←a,t = qout
v,t − qin

v,t. (20)

Note that one could alternatively sum up the massflow values of the incident pipes,
regulators, and valves on the left hand side and switch the signs of the variables
on the right hand side of the equation. This is because flow conservation holds at
the fence nodes, since V fn

i ⊆ V0. Next, for each flow direction f = (f+, f−) ∈ Fi
we introduce the following constraints:

qin
v,t ≤ qin

v,t (1− xf,t) ∀f ∈ Fi, ∀v ∈ Vi \ f+, ∀t ∈ T (21)

qout
v,t ≤ qout

v,t (1− xf,t) ∀f ∈ Fi, ∀v ∈ Vi \ f−, ∀t ∈ T . (22)

Here, qin
v,t and qout

v,t are upper and lower bounds on the maximum possible in- and
outflow, respectively, which can be derived from constraints (20) together with
the above mentioned alternative constraint. If a flow direction is active, qin

v,t can
be nonzero for the entry and qout

v,t for the exit fence groups only.

3.11.2 Exit Pressure Bounds

Furthermore, for some fence nodes v ∈ V fn
i there exists an additional upper

pressure bound p̄exit
v , which is tighter than its technical upper bound and has to

be respected if a flow direction f = (f+, f−) ∈ Fi is active, for which v is an
exit fence node, i.e., for which v ∈ f−. This can be modelled via the following
constraints

pv,t ≤ p̄v,t + xf,t (p̄exit
v − p̄v,t) ∀f ∈ Fi with v ∈ f−, ∀t ∈ T . (23)

3.11.3 Flow Direction Conditions

Finally, for each network station, there exists a set of so-called flow direction
conditions Wi ⊆ Fi × P(V fn

i )× P(V fn
i ), demanding that the sum of the absolute

in- and outflows of the first set of fence nodes is less than or equal than the sum
of the in- and outflows of the second set in order to activate the corresponding
flow direction. Hence, for each w = (f,Vw1

,Vw2
) ∈ Wi we introduce∑

v∈Vw2

(qin
v,t + qout

v,t )−
∑
v∈Vw1

(qin
v,t + qout

v,t ) ≥ Mw,t (xf,t − 1) ∀t ∈ T0 (24)

where Mw,t :=
∑
v∈Vw1∩f+ qin

v,t +
∑
v∈Vw1

∩f− q
out
v,t . They are introduced because

certain simple states with the ability to compress need these conditions in order
to work.
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3.12 Artificial Arcs

The set of artificial arcs can be further partitioned into four disjoint subsets Aar =
Aar-sc∪̇Aar-rg∪̇Aar-co∪̇Aar-cb. Here, Aar-sc denotes the set of so-called shortcuts,
Aar-rg the set of so-called regulating arcs, Aar-co the set of so-called compressor
arcs, and Aar-cb the set of so-called combined arcs. Further, we denote the set
of pressure increasing arcs by Aar-pr = Aar-co ∪ Aar-cb. The sets Aar-sc

i ⊆ Aar-sc,
Aar-rg
i ⊆ Aar-rg, Aar-co

i ⊆ Aar-co, Aar-cb
i ⊆ Aar-cb, and Aar-pr

i ⊆ Aar-pr describe the
corresponding entities contained in gas network station Gi.

In this section we explain how the artificial arcs and their different capabilities
when controlling the gas flow through the station are modelled. But first, we
shortly explain the difference between bidirected and monodirected arcs.

3.12.1 Bidirected Arcs

In contrast to the monodirected arcs, massflow and pressure modifications ac-
cording to the corresponding artificial arc are possible into both directions on
bidirected arcs. Further, their capabilities, for example the compression of gas,
are also applicable in both directions. Thus, in our model we first decide into
which direction the massflow is going at each point in time.

Therefore, for each bidirected arc a ∈ Aar-bi and each timestep t ∈ T0 we
introduce two binary variables x→a,t, x

←
a,t ∈ {0, 1} encoding the direction of the

flow in case the arc is active and add constraints

x→a,t + x←a,t =xa,t ∀a ∈ Aar-bi, ∀t ∈ T (25)

to the model. Given this decision, bidirected arcs are modelled analogously to
their monodirected counterparts using the corresponding variable.

3.12.2 Shortcuts

All shortcuts are bidirected arcs and massflow is possible into both directions.
They can conceptually be seen as the equivalent of valves (see Section 3.6) inside
a station and are used to connect network parts if the corresponding pressure
levels are equal. Thus, for each shortcut a = (`, r) ∈ Aar-sc we add constraints

p`,t − pr,t ≤ (1− xa,t)(p̄`,t −
¯
pr,t) ∀t ∈ T (26)

p`,t − pr,t ≥ (1− xa,t)(
¯
p`,t − p̄r,t) ∀t ∈ T (27)

q→a,t ≤ q̄a,t x
→
a,t ∀t ∈ T (28)

q←a,t ≤ q̄a,t x
←
a,t ∀t ∈ T . (29)

If a shortcut is active at time t ∈ T , i.e., if xa,t = 1, the pressures at ` and r have to
be equal and massflow can go into an arbitrary direction with an arbitrary value,
i.e., there may be be forward flow q→a,t ∈ [0, q̄a,t] or backward flow q←a,t ∈ [0, q̄a,t]
depending on the decision made in constraint (25). If the shortcut is not active,
the pressure values are decoupled and there is no flow.

3.12.3 Regulating Arcs

Regulating arcs can conceptually be seen as the equivalent of regulators (see
Section 3.7) inside a gas network station. They are used to decrease the gas
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pressure in the direction of the massflow, which is needed if, for example, gas
enters a distribution network, which is technically not suited for the high pressure
of the transportation network. Hence, for regulating arcs a = (`, r) ∈ Aar-rg we
introduce the following constraints

p`,t − pr,t ≥ (1− xa,t)(
¯
p`,t − p̄r,t) ∀t ∈ T (30)

q→a,t ≤ q̄a,t xa,t ∀t ∈ T . (31)

If a regulating arc is active at some point in time t ∈ T , i.e., if xa,t = 1, the
pressure at ` has to be greater or equal than the pressure at r. Otherwise, the
pressure values are decoupled and there is no massflow. For bidirected regulating
arcs a = (`, r) ∈ Aar-rg ∩ Aar-bi, we derive an analogous set of constraints using
x→a,t and x←a,t instead of xa,t.

3.12.4 Pressure Increasing Arcs

The pressure increasing arcs Aar-pr, i.e., the compressor arcs Aar-co and the com-
bined arcs Aar-cb, are key elements when it comes to control a macroscopic gas
network. They are able to compress gas and thereby increase its pressure, which
makes up for pressure loss due to friction in the pipes or height differences that
have to be overcome.

In our model, one can conceptually think of one (big) compressor unit being
installed at each arc a ∈ Aar-pr

i of each gas network station Gi. The maximum
power it has available for compression π̃a,t ∈ R≥0, the maximum amount of
massflow that can pass through it q̃a,t ∈ R≥0, and its maximum compression ratio
r̃a,t ∈ [1,∞) are dynamically determined in each timestep through an assignment
of approximations of real-world compressor units, simply called machines in the
following, and a linear combination of their corresponding values.

Thus, for each station Gi we are given a set of machinesMi and each machine
m ∈ Mi possesses an associated power value Pm,t ∈ R≥0, a maximum massflow
Qm,t ∈ R≥0, and a maximum compression ratio Rm,t > 1 for each timestep
t ∈ T . Further, for each pressure increasing arc a ∈ Aar-pr

i there exists a subset
of machines Ma

i ⊆ Mi that can potentially be assigned to it and a maximum
number of assignable machines Mmax

a . Since each machine can be assigned to at
most one compressing link in each timestep t ∈ T , we introduce binary variables
ym,a,t ∈ {0, 1} indicating whether machine m ∈ Mi is assigned to arc a ∈ Aar-pr

i

or not, and add constraints∑
a∈Aar-pr

i :m∈Ma
i

ym,a,t ≤ 1 ∀m ∈Mi, ∀t ∈ T (32)

∑
m∈Ma

i

ym,a,t ≤Mmax
a xa,t ∀a ∈ Aar-pr

i , ∀t ∈ T . (33)

In the real world, compressor units are operated alone, in parallel, sequentially
or in a parallel-sequential setting. This is achieved by the opening and closing of
valves in the surrounding piping. By setting them up in parallel, a larger amount
of massflow can be compressed, while in serial a higher compression ratio can
be achieved. In our model, we refrain from choosing a setup for the machines
and overestimate the capabilities of pressure increasing arcs in that sense, that
we assume that the maximum amount of flow (parallel setting) and the highest
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compression ratio (sequential setting) are available at the same time. Thus, we
add the following constraints∑

m∈Ma
i

Pj,t ym,a,t = π̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (34)

∑
m∈Ma

i

Qj,t ym,a,t = q̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (35)

1 +
∑

m∈Ma
i

(Rj,t − 1) ym,a,t = r̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T . (36)

The first constraint (34) determines the power available on arc a ∈ Aar-pr by
adding up the maximum power of the assigned machines. Analogously, the sec-
ond constraint (35) determines the maximum amount of massflow that can be
compressed. On the other hand, the third constraint (36) is a (conservative) ap-
proximation of the maximum compression ratio, which is used in order to avoid
non-linear constraints.

Finally, the connection between pressure difference, the amount of massflow
passing through a compressor machine, and the power necessary to realize it is
given by the non-linear power equation for compressor machines

π̃a,t ≥ πa,t =
qa,t
ηad

RsTzl
κ

κ− 1

[(
pr,t
p`,t

)κ−1
κ

− 1

]
,

where πa,t ∈ R≥0 is the variable representing the necessary power when a massflow
of qa,t with initial pressure p`,t shall be compressed up to pr,t. Here, ηad is the
adiabatic efficiency of the compression, which we assume to be constant for all
existing compressor machines, and κ = 1.296 [13].

To avoid introducing this non-linear constraint we determine a linear approx-
imation as follows. For each artificial compressing link a ∈ Aar-pr and each

t ∈ T , we sample N points (p`,t, pr,t, πa,t) ∈ [
¯
p`,t, p̄`,t]× [

¯
pr,t, p̄r,t]× [

πmax
a,t

4 , πmax
a,t ],

where πmax
a,t is the maximum possible power for a at t derived from (32) and

(33), such that p`,t ≤ pr,t and determine the corresponding massflow qa,t using
the original power equation. To the resulting set of 4-tuples we apply an ordi-
nary least-squares method and determine coefficients (α0, α1, α2, α3) for a linear
approximation, which gives rise to constraints

α0 + α1 p`,t + α2 pr,t + α3 qa,t ≤ πa,t + (1− xa,t)(α0 + α1
¯
p`,t + α2 p̄r,t), (37)

α0 + α1 p`,t + α2 pr,t + α3 qa,t ≥ πa,t + (1− xa,t)(α0 + α1 p̄`,t + α2
¯
pr,t), (38)

where we assume that α1 ∈ R≤0 and α2 ∈ R≥0 (otherwise we use the correspond-
ing other bound for the coefficients of xa,t on the right hand sides). If the pressure
increasing arc is active, it has to respect this linear approximation. Otherwise,
there is no flow and the pressures at both ends are decoupled. Finally, we add
the following set of constraints

πa,t ≤ π̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (39)

qa,t ≤ q̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (40)

p`,0r̃a,t − pr,t ≥ (1− xa,t)(p`,0 − p̄r,t) ∀a ∈ Aar-pr
i , ∀t ∈ T . (41)
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The first two constraints (39) and (40) ensure that the massflow and power used
for compression do not violate the upper bounds given by the machine assign-
ments. Finally, the outgoing pressure is bounded by the product of the initial
ingoing pressure at t = 0 and the current maximum compression ratio (41) if
the corresponding arc is active. Using the pressure variables instead would again
result in non-linear constraints.

3.12.5 Compressor Arcs

Besides constraints (32) – (41), for each compressor arc a = (`, r) ∈ Aar-co and
each timestep t ∈ T we add constraints

p`,t − pr,t ≤ (1− xa,t)(p̄`,t −
¯
pr,t) ∀t ∈ T (42)

rmax
a,t p`,t − pr,t ≥ (1− xa,t)(rmax

a,t
¯
p`,t − p̄r,t) ∀t ∈ T . (43)

If the arc is active at some point in time t ∈ T , i.e., xa,t = 1, the pressure at
` has to be smaller than or equal to the pressure at r. Further, we bound pr,t
by rmax

a,t p`,t where rmax
a,t is the maximum possible compression ratio of a at time

t, which can be derived from constraints (33) and (41). If it is not active, the
pressure values are decoupled and there is no massflow due to constraints (40)
and (35).

Further, there may be an additional upper bound on the pressure at node r,
which has to be respected if the arc is active. Let p̄out

r,t denote this upper bound.
We can model this requirement by:

pr,t ≤ p̄r,t − xa,t(p̄r,t − p̄out
r,t ) ∀t ∈ T . (44)

If such a bound is given, we shrink the sample space described in the previous
section, accordingly.

3.12.6 Combined Arcs

A combined arc a = (`, r) ∈ Aar-cb
i can be used as a regulating or a compressor

arc. Hence, we first of all introduce two binary decision variables encoding in
which mode it is activated.

xrg
a,t + xcp

a,t =xa,t ∀a ∈ Aar-cb
i , ∀t ∈ T (45)

All constraints (32) – (41), where xa,t is replaced by xcp
a,t in (33), (37), (38), and

(41), are added for each combined arcs except for (40), which is replaced by

qa,t ≤ q̃a,t + q̄a,tx
rg
a,t ∀a ∈ Aar-cb

i , ∀t ∈ T , (46)

since q̃a,t = 0 holds if xrg
a,t = 1. To capture the behaviour as regulating arc, we

add constraints

p`,t − pr,t ≥ (1− xrg
a,t)(

¯
p`,t − p̄r,t) ∀t ∈ T (47)

analogously to (9), while for the pressure increasing arc we additionally have

p`,t − pr,t ≤ (1− xcp
a,t)(p̄`,t −

¯
pr,t) ∀t ∈ T (48)

rmax
a,t p`,t − pr,t ≥ (1− xcp

a,t)(r
max
a,t

¯
p`,t − p̄r,t) ∀t ∈ T , (49)
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analogously to (42) and (43). Further, as for the compressor arcs, there may
be an additional upper bound on the pressure at node r, if compression is used.
Thus, we add

pr,t ≤ p̄r,t − xcp
a,t(p̄r,t − p̄out

r,t ) ∀t ∈ T , (50)

similar to (44), and also shrink the sample space from the previous section, ac-
cordingly.

3.13 Objectives

As mentioned in the introduction, we solve a hierarchical MILP formulation con-
sisting of three levels, i.e., a trilevel mixed-integer linear program. This is moti-
vated by the following rationale. In the real-world dispatchers first of all try to
control the network by using technical measures only, i.e., by using and changing
the setting of the active elements in order to satisfy the supplies and demands
desired by the customers. If this does not seem to work, they have standardized
some non-technical measures at hand. The most common ones are the change of
supplies and demands by either by buying or selling gas, i.e., using so-called bal-
ancing energy, or by using contractual options like the interruption of customers.
If changing the supplies and demands alone does not work out, the last option is
to ask other transport system operator for pressure changes of the future supply
at some source nodes. In practice, this is done by phone calls and can therefore
be seen as the last possible non-standardized option.

Thus, the complete trilevel MILP formulation can be stated as

min
σp

∑
t∈T

∑
v∈Vb

(σp+v,t + σp−v,t ) (51)

min
σd

∑
t∈T

∑
v∈Vb

(σd+
v,t + σd−v,t ) (52)

min
δ

∑
t∈T

(
∑
f∈F

wfδf,t +
∑
s∈S

wsδs,t +
∑
a∈Aar

wa(δon
a,t + δoff

a,t)) (53)

s.t. (1)− (50)

In our model the first level controls the slack variables for the inflow pressure
bounds, while the second level controls the slack variables for the boundary values.
The goal of both levels is to minimize the sum of the corresponding slack variables.
The third level, which can be seen as the level actually controlling the network
while the other two only ensure feasibility, controls the remaining variables and
minimizes the total cost, which is given as the weighted sum of flow direction,
simple state and auxiliary link changes.
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4 Algorithmic Framework

To formally define the algorithmic framework for solving the trilevel MILP model,
we define three closely connected (single level) MILP models: First, the MILP
consisting of objective function (53) and constraint set (1)–(50) with all slack
variables being fixed to zero we call L3. Second, objective function (52) together
with (1)–(50) as well as all inflow pressure slack variables being fixed to zero we
denote by L2. And third, (51) combined with (1)–(50) describes MILP formula-
tion L1, which is often called high point relaxation in the context of hierarchical
optimization. The algorithmic framework is stated in Algorithm 1.

Input : Trilevel MILP
Output: An optimal solution or INFEASIBLE

1 Solve L3

2 if L3 is infeasible then
3 Solve L2

4 if L2 is infeasible then
5 Solve L1

6 if L1 is infeasible then
7 return INFEASIBLE

8 else
9 SOL1 ← Optimal solution for L1

10 L̃2 ← L2 but inflow pressure slacks fixed to SOL1

11 Solve L̃2

12 ˜SOL2 ← Optimal solution for L̃2

13 L̃3 ← L3 but both slack types fixed to ˜SOL2

14 Solve L̃3

15 return Optimal solution for L̃3

16 else
17 SOL2 ← Optimal solution for L2

18 L̂3 ← L3 but both slack types fixed to SOL2

19 return Optimal solution for L̂3

20 else
21 return Optimal solution for L3

Algorithm 1: Algorithmic Framework

If there exists a feasible solution with no slacks, i.e., for L3, an optimal solution
is returned as an optimal solution for the trilevel MILP in line (21). Otherwise, if
there exists a feasible solution for L2, we subsequently solve L̂3, i.e., L3 with the
all slack variables fixed to an optimal solution of L2. Doing this, we determine
an optimal solution for the overall trilevel program, see lines (17)–(19). Finally,
if L2 does not admit a feasible solution, we consider the high point relaxation L1.
If it is infeasible, the whole problem is infeasible (7). Otherwise, we subsequently
solve L̃2 and L̃3 to determine an overall optimal solution, see lines (9)–(15).
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4.1 Heuristics for MILP Formulations

Next, we introduce two heuristics that can be applied to the MILP models from
the previous section, i.e., to L1,L2, L̃2,L3, L̃3, or L̂3.

First, we introduce a rolling horizon approach. We start by solving the model
for variables and constraints corresponding to t = 0 only. Then, in each of the
following n iterations we solve the model where the next timestep is added and
the binary decisions of all but the newly added timestep are fixed to the solution
values from the previous iteration.

The second heuristic initially solves a specially designed Min-Cost-Flow (MCF)
problem defined on G = (V,A) for each timestep t ∈ T . Analyzing the in- and
outflows at the fence nodes of each station in the optimal solutions, we reduce the
number of possible flow directions by fixing binary variables of those flow direc-
tions for this timestep to zero, which are not consistent with the MCF solution.

4.1.1 Rolling Horizon Heuristic

The first idea to determine a feasible solution for any of the MILP models is
to use a rolling horizon approach, i.e., to iteratively consider the model with
an additional timestep, solve it, and fix the binary decision variables of the next
iteration to the values of the corresponding binary variables of an optimal solution
of the current iteration. The procedure is described in Algorithm 2.

If any of the models MIPk is infeasible, we stop the heuristic and return
UNSUCCESSFUL. Otherwise, the heuristic terminates with a feasible solution. Rolling
horizon style approaches have been widely used to find feasible solutions for time-
depending optimization problems, for example for disruption management in the
railway industry [31] or for scheduling problems [4][36].

Input : MILP model L1,L2, L̃2,L3, L̃3, or L̂3

Output: Feasible solution SOLn or UNSUCCESSFUL
1 for k ← 0 to n do
2 MIPk ← model for T0 := {0, . . . , k}
3 for i← 0 to k − 1 do
4 Fix binary variables for timestep i in MIPk to SOLk−1

5 Solve MIPk
6 if MIPk is infeasible then
7 return UNSUCCESSFUL

8 else
9 SOLk ← Optimal solution for MIPk

10 return SOLn
Algorithm 2: Rolling Horizon Heuristic (RHH)

4.1.2 A Min-Cost-Flow Based Heuristic

The idea behind the MCF heuristic is to decrease the number of binary variables
regarding the flow directions in the MILP formulation by fixing a subset of them
for each timestep to zero. Due to the hierarchical structure of the decisions in a
station, further fixations, for example for binary variables corresponding to simple
states, may follow. In order to exclude certain flow directions, we solve a specially
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designed MCF problem on the underlying graph for each timestep and analyze
the in- and outflows at the fence nodes. Besides the existence of fast algorithms
for solving it, MCF is often used in practice by transport system operators to
approximate the flow of natural gas, see for example [21][37], where it is used to
determine worst case transport scenarios.

For each arc a ∈ Arg ∪ Aar-mo we introduce a non-negative flow variable
fa ∈ R≥0 and for each a ∈ Ava ∪ Api ∪ Aar-bi we introduce two non-negative
flow variables f→a , f←a ∈ R≥0 describing the forward and the backward flow,
respectively. Further, consider some t ∈ T and w.l.o.g. we have

∑
v∈V+ Dv,t ≥∑

v∈V− |Dv,t| > 0 and let χt :=
∑
v∈V+ Dv,t∑
v∈V− |Dv,t|

. Additionally, recall that for each

pipe a ∈ A we are given its length `a ∈ R≥0. Finally, the MCF we solve for each
timestep t can be formulated as the following linear program (LP)

min
∑
a∈Api

La(f→a + f←a ) (54)

∑
(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

(f→a − f←a )

−
∑

(`,v)∈Arg∪Aar-mo

fa +
∑

(`,v)∈Ava∪Api∪Aar-bi

(f←a − f→a ) = 0 ∀v ∈ V0 (55)

∑
(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

(f→a − f←a )

−
∑

(`,v)∈Arg∪Aar-mo

fa +
∑

(`,v)∈Ava∪Api∪Aar-bi

(f←a − f→a ) =Dv,t ∀v ∈ V+ (56)

∑
(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

(f→a − f←a )

−
∑

(`,v)∈Arg∪Aar-mo

fa +
∑

(`,v)∈Ava∪Api∪Aar-bi

(f←a − f→a ) =χtDv,t ∀v ∈ V−. (57)

Note that if there is no supply or demand in a timestep, we define the right hand
sides of all constraints to be 0. Now, given an optimal solution, for each gas
network station Gi and each of its fence nodes v ∈ V fn

i we check whether there is
in- or outflow w.r.t. to Gi at v. If for

fv :=
∑

(v,r)∈Aar-mo

fa +
∑

(v,r)∈Aar-bi

(f→a − f←a )−
∑

(`,v)∈Aar-mo

fa +
∑

(`,v)∈Aar-bi

(f←a − f→a )

we have fv ∈ R≥0 \ [0, ε) we call v a MCF entry fence node and if fv ∈ R≤0 \ (ε, 0]
we call it an MCF exit fence node. The idea to use some ε ∈ R≥0 in this definition
is that small in- and outflows could be realized by using the gas stored in adjacent
pipelines, i.e., linepack.

Next, we call a flow direction f = (f+, f−) MCF-valid for station Gi and
timestep t, if for each MCF entry fence node v we have v ∈ f+ and for each MCF
exit fence node v we have v ∈ f−. As the final step of the heuristic, we solve
the MIP model as described in Section 3, where we fix for each station Gi and
each timestep t ∈ T all binary variables corresponding to flow directions which
are not MCF-valid to zero, if there exists at least one MCF-valid flow direction.
Otherwise, we do not apply any fixations.
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5 Computational Results

In this section we present computational experiments, which were conducted in
order to check whether the presented model is suitable to make important tran-
sient global control decisions in the first stage of the NAVI algorithm or not.
First, we describe the set of our test instances, followed by the computational
setup. We conclude the section with an analysis of the obtained results.

|V| |V+| |V−| |Api| |Arg| |Ava| |Aar|
179 12 89 149 5 1 67

Table 1: Composition of the macroscopic gas network.

5.1 Instances

For our computations we used 333 instances provided by our project partner OGE,
which are based on a real-world network and the corresponding historically mea-
sured data. Thus, the initial state, the boundary values, and the source pressures
represent feasible network states. Non-technical control decisions, which were
undertaken by the dispatchers during the considered time horizon, are already
included in this data. Hence, if the model would perfectly capture reality, we
expect it to find feasible solutions without using slack.

While the overall composition of the network is depicted in Table 1, the prop-
erties of the 7 network stations, which it features, are shown in Table 2. In
the following, we considered two different datasets. Dataset 1 consists of 168
instances in 30 minute intervals starting at noon of a virtual day 1 and ending
of 23:30pm of virtual day 4. The other set consists of 165 instances starting at
midnight of a virtual day 6 and ending at 10:00am on virtual day 9. Furthermore,
we considered a granularity of 4 · 15 minutes and 11 · 60 minutes, i.e., we have
n = 15 timesteps and cover a time horizon of 12 hours. The cost parameters were
set to wff = 500.0 for all f ∈ F and waa = 5.0 for all a ∈ Aar. For each simple
state s ∈ S an individual cost ws ∈ {0, . . . , 200} for a change into it was fixed
according to expert opinions.

Name |V fn
i | |Var

i | |Aar
i | |A

ar-pr
i | |Fi| |Si|

A 2 0 3 2 3 5
B 2 0 4 3 2 5
C 6 1 10 1 4 4
D 3 0 5 3 6 10
E 6 0 9 2 12 13
F 6 2 12 3 3 14
G 10 2 24 5 18 32

Table 2: Overview of the properties of the 7 network stations A to G.
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Figure 2: Runtimes of PURE (blue) and HEUR (orange). Each dot represents one
instance, however dots may overlap when too many have similar run time. For the
solution times, a logarithmic scale is used on the y-axis.

5.2 Computational Setup

We performed our computations on a cluster of machines composed of two Intel
Xeon Gold 5122 running at 3.60 GHz, which provide in total 8 cores and 96 GB
of RAM. As solver for the underlying MILP problems we used Gurobi in version
8.1.0 [18], which was accessed via the native C interface. Since the corresponding
MILP models turned out to be numerically challenging, we set the NumericFocus
parameter to the maximum value and used the standard settings otherwise.

To each test instance we applied two versions of our solution approach. First,
a pure approach, as it is described in the pseudocode (PURE) in Algorithm 1.
And second, a version where both the RHH and the MCF heuristic were run
before every MILP of the overall solving process (HEUR). In both cases, we set
a cumulative timelimit of 3600 seconds for all MILPs. For HEUR, we additional
imposed a sub-timelimit of 300 seconds to each single MIP solve performed by
RHH or MCF.

5.3 Results

Detailed computational results for all our testruns can be found in the table
in Appendix A. First of all, for all but one instance, namely 6-0630, an optimal
solution could be found by either the PURE or the HEUR approach. Additionally,
for all but two instances feasible solutions without the usage of any slack could
be found. For these two instances, namely 6-1530 and 7-2230, small amounts of
boundary value slacks were needed at a single boundary node in one of the first
two timesteps. A deeper analysis showed, that these small slacks were needed
close to network stations, suggesting that a deeper investigation regarding the
corresponding network stations is necessary. Interestingly, instance 6-1530 was
solved much faster by PURE, even though the two heuristics found the optimal
solution beforehand.

Next, we compare the performance of the PURE and the HEUR approach.
The runtimes of the instances of the two data sets are plotted in Figure 2. As
a first observation, both models were able to solve all instances within the time-
limit. Additionally, the network seems to be somewhat stable w.r.t. to the nec-
essary control decision considering the optimal solution values of first data set.
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Figure 3: Objective values of the best found solutions for the instances ordered by time
and linearly interpolated.

At a first glance PURE seems to outperform HEUR, although there are two in-
stances, namely 3-2130 and 3-2200, where it needs 883 and 2863 seconds to solve
in contrast to 173 and 155 seconds used by the HEUR approach, respectively.
Interestingly, these are the two instances in the data set having the highest opti-
mal solution value, i.e., the ones needing most control switches, see also Figure 3.
However, a closer look on all results reveals, that most of the time used in the
HEUR approach for instances with a runtime above 100 seconds was spent for the
MCF heuristic, which does not seem to perform well here, as the results show.
There are two exceptions, namely instances 3-2130 and 3-2200 again. Here, MCF
seems to decrease the overall solution time by determining an optimal solution in
67 and 41 seconds, respectively.

For the second data set the analysis is a lot harder. First of all, there are 6
instances for which the PURE model fails to find a feasible solution, while HEUR
is able to solve them to optimality. Additionally, besides the already mentioned
instance 6-0630, there are 11 instances, which PURE could not solve within the
timelimit. Overall, HEUR seems to have a slight advantage w.r.t. the running
times and it is definitely more robust, as it always finds a feasible and except for
two instances even an optimal one within the timelimit.

We did not expect that many jumps in the solution value curves in Figure 3,
especially in data set 2. This is because the scearios of two consecutive instances
are closely connected and therefore we would expect constant objective values
over longer time intervals. These abrupt changes suggest that a refinement of
the network station model is necessary. For instances with high solution values
in particular, we observed that flow direction changes happen very often between
timesteps 0 and 1. This may indicate that the initially given flow values at the
fence nodes call for a different flow direction than the one actually necessary
for a stable network control. Thus, the mathematical formulation for the flow
directions needs some improvement regarding noise in the data or the possible
usage of the linepack in neighboring pipelines. Additionally, for network station
D flow direction changes happened very often. Talking directly to dispatchers at
OGE, this does not necessarily suggest an unstable behaviour and is actually very
common. Hence, a refinement of the corresponding objective function parameter
is necessary.
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Figure 4: The dots represent the test instances, which are chronologically ordered on the
x-axis. Each of them is assigned the value of that heuristic on the y-axis, which found
a solution having smaller objective value. If both heuristics found solutions having the
same objective value, its called a draw. The five dots on the top of the diagrams indicate
instances for which only RHH found a feasible solution within the timelimit.

Finally, we compare the two heuristics within the HEUR approach. The
plots in Figure 4 show which heuristic found a solution with smaller solution
value. The five dots on the top show instances, for which MCF even failed to
determine a feasible solution. Overall, RHH finds the better solution or at least
draws with MCF and its runtime outperforms the runtime of MCF. Since MCF
heavily relies on the concept of flow directions, this may be the reason for its
weak performance. However, for some instances, for example instances 3-2130
and 3-2200 from data set 1 or instances 7-0030 to 07-0930 in data set 2, MCF
finds better solutions. Since these are the ones with many control decisions to be
taken, a further developement of the heuristic seems to be a worhtwhile idea

6 Conclusion and Outlook

In this paper we presented an optimization model for the control of transient gas
transport networks. Here, complex pipeline intersection areas have been replaced
by so-called network stations, i.e., by simplified hand-tailored graph representa-
tions modelling their technical control capabilities. This formulation represents
the first stage within a two stage approach for the NAVI, a decision support tool
giving future non-technical and technical control recommendations for dispatch-
ers. The goal of the model is to make important transient global control decisions,
i.e., to determine the directions of the flow and where compression is necessary,
which can later on be verified in a more detailed model described in [20]. Using
a linearization of the Euler equations for the gas flow in pipelines and further ap-
proximations in particular regarding the compressor stations, we derive a trilevel
MILP formulation, which can be solved using a sequence of (single-level) MILP
formulations. For these MILPs, we developed heuristics, which determine initial
solutions of good quality in rather short amounts of time and have a positive im-
pact on the overall running times. Our computational experiments using actual
historic flow and pressure values suggest that our model represents a valuable
basis for further developments and extensions within the NAVI.
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Regarding the model itself, the analysis of our computational results shows
that a deeper investigation of the solutions w.r.t. the hand-tailored network sta-
tions has to follow. Further, an automated process to create these descriptions
from the stations topology and the corresponding operations mode would improve
the overall robustness and correctness of the approach. Another major point for
further research is the currently used linearization of the Euler equations, where
the absolute velocities in the friction term are fixed to a constant. While in
many cases, when the gas flow on the pipelines is steady in speed over time, this
does not affect the solution quality, it leads to problems in more vivid scenarios.
Additionally, there is further potential for the modelling of the compressor arcs.
Besides the obvious improvement of the approximation of the power bound, it
would for example be nice to dynamically adapt the compression ratio in (41).
Furthermore, it may be beneficial to increase the solving time by extending the
model with a formulation for parallel and sequential setting choices to improve
the overall quality of the solutions. From the application point of view, we cur-
rently aim at applying the model to larger parts of the network including more
intersection areas. Finally, additional features like ramp-up times of compressor
units and in general more detailed modelling approaches for the active elements
could be added.
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Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Physical and
technical fundamentals of gas networks. In: Koch et al. [26]

25

http://forschungscampus-modal.de/
https://www.open-grid-europe.com/cps/rde/oge-internet/hs.xsl/Strukturdaten-gemass-27-Abs-2-GasNEV-654.htm?rdeLocaleAttr=de
https://www.open-grid-europe.com/cps/rde/oge-internet/hs.xsl/Strukturdaten-gemass-27-Abs-2-GasNEV-654.htm?rdeLocaleAttr=de
https://www.open-grid-europe.com/cps/rde/oge-internet/hs.xsl/Strukturdaten-gemass-27-Abs-2-GasNEV-654.htm?rdeLocaleAttr=de
https://www.open-grid-europe.com/
https://www.bmwi.de/Redaktion/EN/Dossier/conventional-energy-sources.html
https://www.bmwi.de/Redaktion/EN/Dossier/conventional-energy-sources.html


[14] Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network
design problem. Transportation Research Part B: Methodological 39(6),
479–495 (2005)

[15] Garcia-Herreros, P., Zhang, L., Misra, P., Arslan, E., Mehta, S., Grossmann,
I.E.: Mixed-integer bilevel optimization for capacity planning with rational
markets. Computers & Chemical Engineering 86, 33–47 (2016)

[16] Grimm, V., Schewe, L., Schmidt, M., Zöttl, G.: A multilevel model of the
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A Appendix

The columns of the following tables contain the results of the computational ex-
periments discussed in Section 5. In the following, the solution values here are
stated w.r.t. the objective function of the third level (53), i.e., the cost of the slacks
is excluded. The 1st column contains the name of the instance. They consist of
the virtual day together with the time in hours and minutes of corresponding
initial state, i.e., 2-0400 is the instance having the initial state from virtual day 2
at 4am. The 2nd column denotes the runtime of the PURE solution algorithm.
The 3rd and 4th column show the value of the best solution found and the final
MILP gap. In case these columns contain a hyphen, the approach did not find a
feasible solution within the timelimit. The 5th, 6th and 7th column contain the
corresponding entities for the HEUR approach. Furthermore, the 8th and the 9th
as well as the 10th and the 11th column display the accumulated runtimes and
values of the solution obtained by the RHH and the MCF heuristics, respectively.
Again, a hyphen indicates that no solution was found within the timelimit. For the
two underlined instances, flow slack had to be used to derive a feasible solution.
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Inst PURE Val Gap HEUR Val Gap RHH Val MCF Val

1-1200 10.6 0 0 11.9 0 0 5.0 0 6.9 605
1-1230 9.0 0 0 10.7 0 0 4.9 0 5.8 605
1-1300 10.4 0 0 11.5 0 0 5.1 0 6.4 605
1-1330 10.3 0 0 10.7 0 0 4.6 0 6.1 605
1-1400 15.5 0 0 11.8 0 0 4.5 0 7.3 605
1-1430 10.1 0 0 12.5 0 0 5.2 0 7.2 605
1-1500 10.8 0 0 11.8 0 0 4.9 0 6.9 605
1-1530 9.9 0 0 13.0 0 0 5.1 0 7.9 605
1-1600 13.0 0 0 13.0 0 0 5.5 0 7.6 605
1-1630 10.8 0 0 11.3 0 0 5.2 0 6.1 605
1-1700 10.7 0 0 12.8 0 0 5.3 0 7.4 605
1-1730 10.1 0 0 11.9 0 0 5.3 0 6.6 605
1-1800 9.5 0 0 11.9 0 0 5.3 0 6.7 605
1-1830 10.1 0 0 11.8 0 0 4.8 0 7.1 605
1-1900 21.5 0 0 12.6 0 0 5.3 0 7.3 605
1-1930 9.9 0 0 11.8 0 0 5.2 0 6.6 605
1-2000 11.3 0 0 12.5 0 0 4.9 0 7.6 605
1-2030 11.9 0 0 9.7 0 0 4.8 0 4.9 605
1-2100 10.6 0 0 13.1 0 0 4.7 0 8.4 605
1-2130 1 0.0 0 0 11.6 0 0 5.3 0 6.3 605
1-2200 12.3 0 0 11.3 0 0 5.4 0 5.9 605
1-2230 9.5 0 0 11.5 0 0 5.5 0 6.0 605
1-2300 9.7 0 0 14.0 0 0 5.3 0 8.7 605
1-2330 10.1 0 0 12.7 0 0 5.3 0 7.4 605
2-0000 11.0 0 0 12.5 0 0 5.2 0 7.2 605
2-0030 13.0 0 0 12.0 0 0 5.2 0 6.9 605
2-0100 10.6 0 0 12.9 0 0 5.5 0 7.4 605
2-0130 10.6 0 0 11.8 0 0 4.8 0 7.0 605
2-0200 11.3 0 0 12.8 0 0 5.1 0 7.7 605
2-0230 10.6 0 0 12.7 0 0 5.4 0 7.3 605
2-0300 10.5 0 0 19.2 0 0 5.0 0 14.2 605
2-0330 10.7 0 0 13.0 0 0 5.4 0 7.6 605
2-0400 13.4 0 0 12.9 0 0 4.8 0 8.0 605
2-0430 1 0.0 0 0 18.8 0 0 5.2 0 13.5 605
2-0500 24.5 0 0 12.6 0 0 5.0 0 7.6 605
2-0530 11.4 0 0 12.5 0 0 5.4 0 7.2 605
2-0600 10.3 0 0 12.0 0 0 5.2 0 6.7 605
2-0630 16.0 0 0 11.2 0 0 4.7 0 6.5 605
2-0700 9.9 0 0 11.9 0 0 5.2 0 6.7 605
2-0730 10.1 0 0 13.2 0 0 5.3 0 7.9 605
2-0800 10.9 0 0 16.4 0 0 5.3 0 11.1 605
2-0830 9.4 0 0 12.6 0 0 4.8 0 7.8 605
2-0900 9.7 0 0 12.3 0 0 5.3 0 7.0 605
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Inst PURE Val Gap HEUR Val Gap RHH Val MCF Val

2-0930 10.6 0 0 13.1 0 0 5.3 0 7.7 605
2-1000 1 0.0 0 0 13.1 0 0 5.3 0 7.7 605
2-1030 20.7 0 0 12.2 0 0 5.6 0 6.7 605
2-1100 12.2 0 0 13.3 0 0 5.3 0 8.0 605
2-1130 12.6 0 0 29.9 0 0 5.4 0 24.5 1245
2-1200 9.9 0 0 118.4 0 0 5.4 0 113.1 1245
2-1230 13.3 0 0 83.7 0 0 5.5 0 78.2 1245
2-1300 10.0 0 0 208.2 0 0 5.3 0 202.9 1245
2-1330 13.7 0 0 249.5 0 0 5.7 0 243.8 1245
2-1400 11.0 0 0 305.3 0 0 5.3 0 300.0 1245
2-1430 12.3 0 0 208.0 0 0 5.5 0 202.5 1245
2-1500 1 0.0 0 0 306.1 0 0 6.1 0 300.0 1245
2-1530 9.8 0 0 149.0 0 0 5.6 0 143.3 1245
2-1600 1 0.0 0 0 305.8 0 0 5.8 0 300.0 -
2-1630 9.9 0 0 23.4 0 0 6.2 0 17.3 1245
2-1700 10.8 0 0 96.9 0 0 5.7 0 91.2 1245
2-1730 9.0 0 0 306.2 0 0 6.1 0 300.0 1250
2-1800 13.7 0 0 86.0 0 0 5.9 0 80.1 1245
2-1830 10.7 0 0 190.4 0 0 5.1 0 185.3 1245
2-1900 8.6 0 0 305.7 0 0 5.7 0 300.0 -
2-1930 1 0.0 0 0 62.0 0 0 5.5 0 56.5 1245
2-2000 8.7 0 0 67.6 0 0 5.6 0 62.0 1245
2-2030 10.1 0 0 82.2 0 0 5.4 0 76.8 1245
2-2100 10.1 0 0 54.3 0 0 5.4 0 48.9 1245
2-2130 1 0.0 0 0 12.8 0 0 5.5 0 7.3 1245
2-2200 9.9 0 0 95.6 0 0 5.6 0 90.0 1245
2-2230 9.8 0 0 55.3 0 0 6.0 0 49.2 635
2-2300 10.0 0 0 48.8 0 0 5.8 0 43.0 635
2-2330 14.6 0 0 110.8 0 0 5.5 0 105.3 635
3-0000 11.5 0 0 79.8 0 0 5.1 0 74.7 635
3-0030 12.1 0 0 57.8 0 0 5.1 0 52.7 635
3-0100 11.6 0 0 57.2 0 0 5.7 0 51.5 635
3-0130 14.6 0 0 24.4 0 0 4.9 0 19.5 635
3-0200 1 0.0 0 0 99.6 0 0 5.8 0 93.8 635
3-0230 12.8 0 0 55.9 0 0 5.6 0 50.3 635
3-0300 10.6 0 0 114.8 0 0 4.8 0 110.0 635
3-0330 11.0 0 0 53.2 0 0 5.1 0 48.1 635
3-0400 12.2 0 0 14.5 0 0 5.7 0 8.8 635
3-0430 11.4 0 0 59.4 0 0 4.9 0 54.5 635
3-0500 8.6 0 0 51.9 0 0 4.8 0 47.1 635
3-0530 11.8 0 0 47.4 0 0 5.5 0 41.9 635
3-0600 12.7 0 0 67.2 0 0 5.3 0 61.9 635
3-0630 17.5 0 0 36.3 0 0 5.7 0 30.5 635
3-0700 10.1 0 0 40.5 0 0 5.2 0 35.3 1245
3-0730 20.4 0 0 20.9 0 0 5.8 0 15.2 1245
3-0800 11.5 0 0 90.5 0 0 5.8 0 84.8 1245
3-0830 11.6 0 0 90.0 0 0 5.8 0 84.2 1245
3-0900 11.0 0 0 14.2 0 0 5.5 0 8.6 1245
3-0930 11.5 0 0 50.9 0 0 5.9 0 45.0 1245
3-1000 12.2 0 0 25.1 0 0 5.7 0 19.4 1245
3-1030 10.1 0 0 97.9 0 0 5.4 0 92.5 1245
3-1100 10.8 0 0 55.4 0 0 6.1 0 49.4 1245
3-1130 9.7 0 0 11.9 0 0 4.4 0 7.5 1245
3-1200 11.8 0 0 57.3 0 0 5.4 0 51.9 1245
3-1230 10.9 0 0 44.7 0 0 6.7 0 38.0 1245
3-1300 22.4 0 0 306.3 0 0 6.2 0 300.0 -
3-1330 23.6 0 0 181.5 0 0 5.5 0 175.9 1245
3-1400 11.4 0 0 161.9 0 0 5.3 0 156.6 1245
3-1430 22.7 0 0 209.0 0 0 5.5 0 203.5 1245
3-1500 11.4 0 0 109.1 0 0 5.6 0 103.6 1245
3-1530 9.1 0 0 129.4 0 0 5.0 0 124.3 1245

30



Inst PURE Val Gap HEUR Val Gap RHH Val MCF Val

3-1600 10.5 0 0 127.4 0 0 4.4 0 122.9 1245
3-1630 11.8 0 0 118.8 0 0 5.5 0 113.2 1245
3-1700 9.6 0 0 109.0 0 0 5.2 0 103.7 1245
3-1730 59.4 0 0 13.5 0 0 5.3 0 8.2 605
3-1800 31.0 0 0 13.9 0 0 5.4 0 8.5 605
3-1830 10.1 0 0 19.2 0 0 5.3 0 13.9 605
3-1900 10.2 0 0 50.5 0 0 5.0 0 45.4 605
3-1930 30.0 0 0 13.3 0 0 5.4 0 7.9 605
3-2000 1 0.0 0 0 32.6 0 0 5.1 0 27.5 605
3-2030 12.2 0 0 18.2 0 0 4.9 0 13.4 605
3-2100 70.1 110 0 27.8 110 0 7.3 110 14.2 110
3-2130 882.9 610 0 173.4 610 0 8.6 736 67.4 610
3-2200 2 862.9 610 0 155.1 610 0 9.1 736 41.6 610
3-2230 10.2 110 0 17.6 110 0 8.0 110 8.1 110
3-2300 65.5 110 0 16.7 110 0 7.7 110 7.8 110
3-2330 78.8 110 0 58.9 110 0 9.4 110 48.3 110
4-0000 30.9 0 0 13.5 0 0 5.2 0 8.3 0
4-0030 20.1 0 0 22.9 0 0 5.1 0 17.9 0
4-0100 10.6 0 0 53.2 0 0 5.4 0 47.8 0
4-0130 11.1 0 0 25.5 0 0 6.0 0 19.5 0
4-0200 19.5 0 0 13.4 0 0 4.8 0 8.6 0
4-0230 10.6 0 0 13.2 0 0 5.3 0 7.9 0
4-0300 23.9 0 0 13.3 0 0 5.4 0 7.9 0
4-0330 11.5 0 0 12.7 0 0 4.7 0 8.0 0
4-0400 10.6 0 0 13.2 0 0 4.8 0 8.4 0
4-0430 10.7 0 0 13.4 0 0 4.8 0 8.5 0
4-0500 10.6 0 0 14.6 0 0 5.1 0 9.5 0
4-0530 9.3 0 0 14.9 0 0 4.9 0 1 0.0 0
4-0600 11.3 0 0 14.7 0 0 5.4 0 9.3 0
4-0630 8.5 0 0 13.3 0 0 5.2 0 8.1 0
4-0700 9.7 0 0 12.9 0 0 5.1 0 7.8 0
4-0730 16.9 0 0 13.9 0 0 4.6 0 9.3 0
4-0800 10.8 0 0 12.9 0 0 5.1 0 7.8 0
4-0830 11.2 0 0 12.7 0 0 5.3 0 7.5 0
4-0900 12.5 0 0 14.2 0 0 5.0 0 9.3 0
4-0930 13.4 0 0 23.4 0 0 4.6 0 18.8 0
4-1000 12.9 0 0 16.4 0 0 4.9 0 11.5 0
4-1030 11.9 0 0 12.7 0 0 4.7 0 8.0 0
4-1100 12.9 0 0 13.2 0 0 5.1 0 8.1 0
4-1130 29.2 0 0 19.8 0 0 5.3 0 14.5 0
4-1200 12.3 0 0 13.6 0 0 5.0 0 8.6 0
4-1230 24.3 0 0 12.9 0 0 5.0 0 7.9 0
4-1300 11.5 0 0 14.8 0 0 5.7 0 9.1 0
4-1330 10.3 0 0 12.6 0 0 5.0 0 7.6 0
4-1400 10.6 0 0 14.4 0 0 5.1 0 9.3 0
4-1430 12.4 0 0 13.9 0 0 5.6 0 8.2 0
4-1500 11.3 0 0 24.1 0 0 5.0 0 7.7 0
4-1530 11.0 0 0 36.8 0 0 5.7 0 20.0 0
4-1600 10.4 0 0 23.8 0 0 5.6 0 7.9 0
4-1630 188.8 110 0 29.7 110 0 7.7 110 17.0 110
4-1700 81.8 110 0 67.2 110 0 7.7 110 53.1 110
4-1730 209.5 110 0 53.5 110 0 7.6 110 39.7 110
4-1800 21.6 110 0 42.9 110 0 7.5 110 34.2 110
4-1830 183.2 110 0 29.5 110 0 7.4 110 15.6 110
4-1900 92.0 110 0 31.3 110 0 7.6 110 16.9 110
4-1930 83.6 110 0 28.4 110 0 7.1 110 20.0 110
4-2000 40.9 110 0 46.4 110 0 7.8 110 37.2 110
4-2030 25.3 110 0 44.4 110 0 7.4 110 35.8 110
4-2100 12.3 0 0 12.7 0 0 5.5 0 7.2 0
4-2130 12.3 0 0 15.4 0 0 5.6 0 9.8 0
4-2200 11.6 0 0 13.0 0 0 4.6 0 8.4 0
4-2230 12.1 0 0 13.5 0 0 5.7 0 7.9 0
4-2300 11.3 0 0 13.8 0 0 5.0 0 8.9 0
4-2330 11.3 0 0 24.0 0 0 5.0 0 7.8 0
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6-0000 897.1 110 0 166.4 110 0 12.9 115 52.7 500
6-0030 1 514.7 655 0 683.3 655 0 11.3 765 56.4 1010
6-0100 3 218.0 655 0 319.1 655 0 13.1 765 69.5 1010
6-0130 1 009.8 1155 0 506.6 1155 0 13.0 1265 37.6 1510
6-0200 895.4 1155 0 1 060.2 1155 0 13.5 1260 40.4 1510
6-0230 3 600.0 1155 0.11 896.4 1155 0 11.3 1260 64.3 1510
6-0300 1 758.2 1155 0 418.2 1155 0 11.9 1260 42.8 1510
6-0330 3 600.0 1155 0.087 1 149.5 1155 0 12.1 1260 41.1 2190
6-0400 1 410.0 1155 0 732.4 1155 0 11.1 1260 7.6 2190
6-0430 1 652.9 1155 0 1 217.2 1155 0 12.4 1260 300.0 2335
6-0500 3 600.0 1275 0.21 812.5 1155 0 12.1 1260 300.0 2345
6-0530 3 600.0 2161 0.522 457.6 1250 0 18.0 1260 300.0 4010
6-0600 1 926.9 1250 0 403.9 1250 0 16.9 1260 300.0 4560
6-0630 3 600.0 1760 0.13 3 600.0 1760 0.134 13.1 1770 165.9 3330
6-0700 3 600.0 - - 3 397.3 1760 0 12.9 1770 291.4 3330
6-0730 3 600.0 - - 2 610.2 1660 0 12.5 1770 300.0 2970
6-0800 258.4 1786 0 324.0 1786 0 12.6 1786 300.0 3485
6-0830 3 600.0 2910 0.478 1 059.8 1665 0 13.0 1775 300.0 -
6-0900 3 600.0 1770 0.146 2 247.1 1665 0 12.9 1775 300.0 3330
6-0930 1 754.6 1665 0 570.2 1665 0 12.8 1775 300.0 3330
6-1000 2 347.1 1650 0 3 487.2 1650 0 12.3 1775 245.3 2955
6-1030 2 667.7 1650 0 361.8 1650 0 12.8 1665 300.0 3455
6-1100 1 051.9 1515 0 535.1 1515 0 12.2 1770 161.8 2820
6-1130 1 353.9 1515 0 453.1 1515 0 8.8 1880 64.9 2820
6-1200 2 076.0 1650 0 408.3 1650 0 8.5 1930 109.7 2955
6-1230 3 600.0 - - 399.3 1290 0 18.6 1935 137.3 2610
6-1300 2 169.0 1150 0 366.5 1150 0 18.2 1655 103.6 2470
6-1330 3 600.0 - - 548.1 1150 0 18.0 1795 162.6 2470
6-1400 548.4 645 0 374.1 645 0 15.9 645 300.0 645
6-1430 584.8 650 0 232.5 650 0 16.1 650 161.1 1970
6-1500 3 600.0 - - 597.0 650 0 16.3 650 300.0 -
6-1530 880.1 640 0 2 763.5 640.0 0 29.8 640 89.9 640
6-1600 85.4 0 0 79.1 0 0 6.1 500 44.5 1305
6-1630 106.1 0 0 71.6 0 0 8.8 0 62.8 0
6-1700 9.9 500 0 90.8 500 0 6.7 500 81.3 500
6-1730 163.0 0 0 13.5 0 0 6.3 0 7.3 1000
6-1800 9.1 500 0 116.7 500 0 5.7 500 109.6 500
6-1830 10.4 140 0 61.0 140 0 8.5 140 51.5 140
6-1900 11.1 140 0 84.5 140 0 8.6 140 74.9 140
6-1930 15.0 140 0 16.8 140 0 8.0 140 7.8 140
6-2000 109.7 140 0 25.1 140 0 8.1 140 12.6 140
6-2030 133.7 140 0 16.9 140 0 7.8 140 8.2 140
6-2100 14.9 140 0 80.4 140 0 8.4 140 71.0 140
6-2130 81.7 140 0 23.5 140 0 8.6 140 13.9 140
6-2200 214.8 140 0 55.7 140 0 7.8 140 46.9 140
6-2230 138.0 140 0 42.3 140 0 7.9 140 33.4 640
6-2300 201.2 140 0 68.1 140 0 8.1 140 58.9 640
6-2330 141.9 140 0 15.6 140 0 7.7 140 6.9 640
7-0000 147.3 140 0 15.0 140 0 7.7 140 6.3 640
7-0030 28.3 140 0 19.6 140 0 9.0 140 9.5 640
7-0100 1 005.4 510 0 1 017.2 510 0 9.5 650 8.9 510
7-0130 226.9 510 0 187.4 510 0 7.9 650 10.9 510
7-0200 424.2 510 0 138.5 510 0 11.9 650 27.8 510
7-0230 447.7 510 0 55.3 510 0 9.9 650 8.2 510
7-0300 523.5 510 0 160.7 510 0 11.8 650 70.4 510
7-0330 281.4 510 0 73.2 510 0 10.4 650 15.3 510
7-0400 316.2 510 0 168.1 510 0 10.5 650 9.6 510
7-0430 272.6 510 0 165.3 510 0 10.6 650 57.1 510
7-0500 367.7 510 0 132.0 510 0 10.8 650 8.0 510
7-0530 1 026.8 510 0 48.2 510 0 11.0 650 11.0 510
7-0600 1 563.6 1020 0 1 879.8 1020 0 13.0 1160 94.5 1020
7-0630 2 580.5 1020 0 1 543.0 1020 0 15.1 1160 181.5 1020
7-0700 1 152.5 1020 0 701.2 1020 0 17.0 1160 125.7 1020
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7-0730 2 691.0 1020 0 1 305.0 1020 0 16.6 1160 143.8 1020
7-0800 2 027.3 1020 0 684.1 1020 0 17.8 1160 25.5 1020
7-0830 1 652.8 1020 0 1 148.3 1020 0 18.5 1160 70.0 1020
7-0900 3 600.0 1030 0.511 282.2 1010 0 14.1 1150 76.2 1010
7-0930 1 427.5 1010 0 3 600.0 1010 0 12.8 1150 38.6 1010
7-1000 3 600.0 1020 0.195 2 483.1 1020 0 13.9 1020 88.8 1020
7-1030 340.6 510 0 203.4 510 0 12.9 510 45.9 1010
7-1100 745.3 1020 0 245.0 1020 0 20.6 1020 85.5 1020
7-1130 3 600.0 1020 0.009 775.4 1020 0 21.8 1020 101.1 1020
7-1200 2 163.7 1010 0 3 025.8 1010 0 13.1 1010 64.5 1010
7-1230 690.4 1010 0 495.2 1010 0 8.2 1010 8.8 1010
7-1300 12.7 510 0 33.3 510 0 12.0 510 9.6 510
7-1330 762.2 510 0 70.6 510 0 11.1 510 10.5 510
7-1400 11.7 510 0 98.3 510 0 14.2 510 75.2 510
7-1430 3 341.2 540 0 3 392.8 540 0 64.4 680 252.3 540
7-1500 905.8 540 0 402.9 540 0 99.8 540 279.5 540
7-1530 1 238.2 540 0 1 888.4 540 0 53.4 680 173.7 540
7-1600 360.5 540 0 278.3 540 0 99.0 540 150.3 540
7-1630 3 081.0 540 0 3 245.4 540 0 86.1 540 157.9 540
7-1700 1 223.9 540 0 274.8 540 0 94.4 540 153.0 540
7-1730 3 600.0 540 0.054 3 600.0 540 0 88.0 540 256.4 540
7-1800 3 600.0 - - 1 532.4 1050 0 92.4 1050 186.9 1050
7-1830 2 886.5 1040 0 2 944.5 1040 0 74.5 1040 233.8 1040
7-1900 3 600.0 1170 0.132 290.0 1040 0 67.4 1190 173.9 1040
7-1930 2 707.1 1040 0 3 600.0 1040 0.018 56.2 1190 214.5 1040
7-2000 278.9 1040 0 478.0 1040 0 125.5 1150 300.0 1080
7-2030 287.5 1010 0 138.4 1010 0 11.2 1120 13.2 1010
7-2100 231.6 1010 0 271.2 1010 0 19.2 1020 63.6 1010
7-2130 153.1 510 0 47.5 510 0 13.7 510 13.8 510
7-2200 139.0 510 0 100.5 510 0 13.8 510 68.5 510
7-2230 617.7 620 0 172.9 620 0 39.0 620 91.3 640
7-2300 90.5 500 0 16.0 500 0 8.0 610 6.9 500
7-2330 10.3 0 0 13.7 0 0 5.9 500 7.8 0
8-0000 9.7 0 0 13.9 0 0 6.3 0 7.6 1000
8-0030 99.1 500 0 14.5 500 0 7.5 500 6.0 500
8-0100 9.9 0 0 11.8 0 0 5.2 0 6.5 0
8-0130 11.7 0 0 12.1 0 0 5.9 0 6.2 0
8-0200 10.4 0 0 12.0 0 0 5.4 0 6.6 500
8-0230 10.1 0 0 10.4 0 0 4.7 0 5.6 0
8-0300 11.5 0 0 18.4 0 0 8.0 0 10.4 1000
8-0330 9.8 0 0 13.5 0 0 7.3 0 6.1 0
8-0400 10.9 0 0 12.1 0 0 5.5 0 6.6 1000
8-0430 10.5 0 0 12.7 0 0 6.4 0 6.3 0
8-0500 9.6 0 0 12.7 0 0 5.4 0 7.3 1000
8-0530 9.6 0 0 13.1 0 0 5.5 0 7.6 0
8-0600 10.6 0 0 12.3 0 0 5.2 0 7.1 1000
8-0630 9.2 0 0 13.1 0 0 6.0 0 7.1 0
8-0700 21.3 0 0 18.0 0 0 6.4 140 7.1 1000
8-0730 10.1 0 0 12.1 0 0 5.8 0 6.3 0
8-0800 10.7 0 0 14.1 0 0 5.8 0 8.3 1000
8-0830 10.1 0 0 13.6 0 0 6.2 0 7.4 0
8-0900 10.1 0 0 14.1 0 0 5.4 0 8.7 1000
8-0930 11.6 0 0 13.2 0 0 4.8 0 8.4 0
8-1000 13.3 0 0 25.5 0 0 7.4 140 9.8 1000
8-1030 10.2 0 0 12.5 0 0 5.2 0 7.3 0
8-1100 12.0 0 0 20.7 0 0 6.9 140 8.2 1000
8-1130 10.0 0 0 12.8 0 0 5.1 0 7.8 0
8-1200 18.9 0 0 12.6 0 0 5.3 0 7.4 1000
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8-1230 10.3 0 0 13.6 0 0 5.2 0 8.4 0
8-1300 588.9 1010 0 191.5 1010 0 8.4 1150 44.4 1010
8-1330 78.6 510 0 47.1 510 0 14.2 510 10.5 510
8-1400 12.0 0 0 13.4 0 0 5.3 0 8.1 0
8-1430 12.6 500 0 17.9 500 0 7.1 500 7.9 500
8-1500 11.7 0 0 16.1 0 0 4.9 0 11.2 0
8-1530 22.8 0 0 17.5 0 0 5.4 0 12.2 0
8-1600 21.1 0 0 15.0 0 0 5.6 0 9.4 0
8-1630 23.7 0 0 52.2 0 0 6.0 0 46.2 0
8-1700 25.4 0 0 13.9 0 0 5.5 0 8.4 0
8-1730 21.8 0 0 15.6 0 0 7.8 140 7.8 0
8-1800 24.7 0 0 14.7 0 0 5.8 0 8.9 0
8-1830 22.6 0 0 13.4 0 0 5.5 0 7.9 0
8-1900 11.7 0 0 20.2 0 0 4.8 0 15.5 0
8-1930 11.3 0 0 11.8 0 0 4.8 0 7.0 0
8-2000 9.9 0 0 11.1 0 0 5.1 0 6.0 0
8-2030 20.9 0 0 14.3 0 0 5.3 0 9.0 0
8-2100 23.1 0 0 13.6 0 0 6.2 0 7.4 0
8-2130 16.4 0 0 23.4 0 0 6.0 0 17.4 0
8-2200 22.2 0 0 12.7 0 0 5.1 0 7.6 0
8-2230 22.3 0 0 25.8 0 0 7.6 140 18.2 0
8-2300 24.1 0 0 39.9 0 0 6.3 0 33.5 0
8-2330 13.1 0 0 16.3 0 0 5.5 0 10.8 0
9-0000 11.1 0 0 12.9 0 0 6.1 0 6.8 0
9-0030 12.2 0 0 24.6 0 0 5.4 0 7.0 0
9-0100 9.8 0 0 13.2 0 0 6.1 0 7.0 0
9-0130 11.1 0 0 23.8 0 0 4.8 0 7.8 0
9-0200 11.7 0 0 13.2 0 0 5.3 0 7.9 0
9-0230 12.1 0 0 25.8 0 0 6.3 0 7.4 0
9-0300 10.8 0 0 13.7 0 0 6.9 0 6.8 0
9-0330 11.4 0 0 13.8 0 0 6.9 0 6.9 0
9-0400 12.7 0 0 26.0 0 0 6.4 0 7.0 0
9-0430 11.5 0 0 12.9 0 0 5.7 0 7.3 0
9-0500 9.7 0 0 12.8 0 0 5.9 0 6.9 0
9-0530 10.9 0 0 14.7 0 0 7.9 0 6.8 0
9-0600 18.5 0 0 16.0 0 0 9.3 0 6.7 0
9-0630 11.8 0 0 15.2 0 0 6.9 0 8.3 0
9-0700 11.7 0 0 13.8 0 0 5.5 0 8.2 0
9-0730 23.9 0 0 14.8 0 0 7.2 0 7.6 0
9-0800 20.6 0 0 33.2 0 0 5.9 0 6.8 0
9-0830 10.9 0 0 13.0 0 0 6.0 0 6.9 0
9-0900 18.7 0 0 32.0 0 0 5.7 0 7.7 0
9-0930 10.8 0 0 12.2 0 0 4.6 0 7.6 0
9-1000 20.7 0 0 13.7 0 0 6.2 0 7.5 0
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