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Optimal Operation of Macroscopic Gas Transport

Networks Over Time

Kai Hoppmann

June 28, 2019

Abstract

In this report we introduce a hierarchical MIP formulation for an opti-
mal macroscopic operation of transient gas transport networks. We call it
macroscopic operation, since we use a simplified model for the highly com-
plex intersection areas of the gas network, which we call navi stations in the
following. Their capabilities are modelled using artificial links, which can
in- or decrease the gas pressure or act as short connecting pipes. Deciding
on a predefined flow direction for each station, which describes where gas
enters and leaves it, for each step in time we additionally have to choose a
so-called simple state, which corresponds to a subset of the artificial links
that can be used for gas transport. Further, in order to derive a linear
model for the transient gas flow between navi stations, we linearize the Eu-
ler equations describing the gas flow in pipes. In particular, we simplify
the pressure loss due to friction by fixing the absolute velocity in the corre-
sponding equation. In order to make up for this crucial simplification, an
iterative adjustment procedure follows as postprocessing with a subsequent
solution smoothening. The goal of our optimization problem is to ensure
that all demands are satisfied, while the usage of technical and non-technical
measures is minimized, i.e., by minimizing the change of simple states over
time and the manipulation of supplies and demands via slack variables.

1 General Concepts and Definitions

1.1 Network Topology

The Netmodel is based on a directed graph G = (V,Api∪Arg∪Ava∪Aar), where
V denotes the set of nodes, Api the set of pipes, Arg the set of regulators, Ava

the set of valves, and Aar the set of so-called artificial links. We allow parallel
and antiparallel arcs, but we do not allow loops. Furthermore, there are two
sets V+ ⊆ V and V− ⊆ V called entries and exits of the network, respectively.
Additionally, Vb := V+∪V− is called the set of boundary nodes, while V0 := V\Vb

is called the set of inner nodes.

1.2 Navi Stations

Within G there exist m ∈ N subgraphs Gi = (Vi,Aar
i ) with Vi ⊆ V0 and

Aar
i ⊆ Aar for each i ∈ {1, . . . ,m}, which are called navi stations. It holds

that
⋃m
i=1Aar

i = Aar. Further, each artificial link is contained in exactly one navi
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station and navi stations do not share common nodes, i.e., Aar
i ∩ Aar

j = ∅ and
Vi ∩ Vj = ∅ for i, j ∈ {1, . . . ,m} with i 6= j.

1.3 Remaining Network

The remaining network (Ṽ, Ã := Api ∪ Arg ∪ Ava) consists of pipes, regulators,
and valves, together with the set of all nodes that are incident to at least one
of the former elements, i.e., Ṽ := {v ∈ V | δ(v) ∩ Ã 6= ∅} ⊆ V. The nodes
V fn := Ṽ ∩

⋃m
i=1 Vi connecting the navi stations with the remaining network

are called fence nodes while Var := V \ Ṽ are called artificial nodes. Hence, a
navi station consists of fence nodes V fn

i and artificial nodes Var
i , i.e., we have

Vi = V fn
i ∪̇Var

i .

1.4 Timesteps and Granularity

For the Netmodel we are given a set of timesteps T0 := {0, . . . , k} together with
a monotonically increasing function τ : T0 → N, i.e., τ(t − 1) < τ(t) for all
t ∈ T0 \ {0}, with τ(0) = 0. Here, τ(t) describes the number of seconds that pass
until time step t ∈ T0 w.r.t. 0. For notational purposes we define T := T0 \ {0}
as the set of timesteps without zero.

2 Node-Related Variables and Constraints

2.1 Supply and Demand Variables

For each each entry u ∈ V+ and each t ∈ T we are given a supply value Du,t ∈ R≥0

and for each exit w ∈ V− and each t ∈ T we are given a demand value Dw,t ∈ R≤0.
These supplies and demands can be adjusted using slack variables. Thus, for each
boundary node v ∈ Vb and each t ∈ T we introduce two continuous variables
σd+
v,t , σ

d−
v,t ∈ R≥0. The actual supplies considered in the model are then given by

variables du,t ∈ [0, D̄u,t] and the actual demands by dw,t ∈ [
¯
Dw,t, 0]. Here, Du is

an upper bound on u’s supply and Dw is a lower bound on w’s demand. Finally,
we introduce the following constraints:

du,t + σd+
u,t − σd−u,t =Du,t ∀u ∈ V+, ∀t ∈ T and (1)

dw,t + σd+
w,t − σd−w,t =Dw,t ∀w ∈ V−, ∀t ∈ T . (2)

The slack variables σd+
v,t and σd−v,t contribute to the objective function with cost

wσ-d ∈ R≥0.

2.2 Initial Pressure and Pressure Variables

For each node v ∈ V we are given an initial nonnegative pressure value pv,0 ∈ R≥0.
Further, for each node v ∈ V and each point in time t ∈ T we introduce a
nonnegative pressure variable pv,t ∈ [

¯
pv,t, p̄v,t] ⊆ R≥0, where

¯
pv,t is a lower and

p̄v,t an upper bound on the pressure at node v and time t. These bounds we call
technical pressure bounds.
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2.3 Inflow Pressure Bounds and Slacks

For each boundary node v ∈ Vb and each point in time t ∈ T we are given so-
called inflow pressure bounds. These pressure bounds are in general tighter than
the technical pressure bounds and have to be respected if a boundary node has
nonzero supply or demand. We denote them by

¯
pact
v,t and p̄act

v,t .
These bounds may be be relaxed using slack to ensure feasibility and therefore

we introduce two variables σp−v,t ∈ [0, p̄v,t − p̄act
v,t ] and σp+v,t ∈ [0,

¯
pact
v,t −

¯
pv,t] and the

following two types of constraints:

pv,t − σp−v,t ≤ p̄act
v,t ∀v ∈ Vb with Dv,t 6= 0, ∀t ∈ T and (3)

pv,t + σp+v,t ≥
¯
pact
v,t ∀v ∈ Vb with Dv,t 6= 0, ∀t ∈ T . (4)

The variables σp−v,t and σp+v,t contribute to the objective function with cost wσ-p ∈
R≥0.

Note: We currently do not enforce the inflow pressure bounds dynamically.
This means that if, for example, Du,t = 0 and du,t > 0 for some source u ∈ V+

and some point in time t ∈ T , then the inflow pressure bounds are not enforced.
Conversely, if, for example, Dw,t < 0 but dw,t = 0 for some sink w ∈ V− and
some point in time t ∈ T , then the inflow pressure bound constraints (3) and
(4) still have to be satisfied. To model a dynamical behaviour, we would need to
introduce a new class of binary variables, which would serve as indicator whether
or not there is in- or outflow at a boundary node, together with the corresponding
constraints.

3 Elements in the Remaining Network

3.1 Pipes

Let a = (`, r) ∈ Api be a pipe in G. The flow on it is described by two types of
constraints, which we introduce for each timestep t ∈ T . They are derived from
the continuity equation (5), which captures the transient behaviour of the gas
flow, and the momentum equation (6), which determines the pressure loss, of the
Euler equations.

p`,t − p`,t−1 + pr,t − pr,t−1 +
2Rs ∆t

LaAa
(Tr zr qr,a,t − T` z` q`,a,t) = 0

(5)

pr,t − p`,t +
λa La

4AaDa
(|v`,0| q`,a,t + |vr,0| qr,a,t) +

g sa La
2Rs

(T` z` p`,t + Trzrpr,t) = 0

(6)

The variable q`,a,t ∈ [
¯
qa,t, q̄a,t] ⊆ R describes the flow into the pipe at node `

while qr,a,t ∈ [
¯
qa,t, q̄a,t] ⊆ R is the flow out of the pipe at node r. The parameters

¯
qa,t, q̄a,t ∈ R denote technical lower and upper bounds on the flow. Note that
both variables may take on negative values meaning that flow is going out of the
pipe at node ` or into the pipe at node r, respectively. The parameters used in
the constraints are (equivalently for node r if applicable):

• Rs := specific gas constant
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• ∆t = τ(t)− τ(t− 1) := length of considered time interval in s

• La := length of the pipe in m

• Aa := area of the pipe in m2

• T` := gas temperature in K at ` (constant here - depends on pressure)

• z` := compressibility factor at ` (constant here - depends on pressure)

• λa := friction factor of the pipe (constant here - depends on flow)

• Da := diameter of the pipe in m

• |v`,0| := absolute velocity at ` and t = 0 (constant here - depends on flow
and pressure)

• g := gravitational acceleration 9.81ms2

• sa = hr−h`

La
:= slope of pipe a with h` being the altitude at `

Remark: An important simplification we are making is that we fix the absolute
velocity in the friction term of the momentum equation (6) to the absolute velocity
at the corresponding node at time 0. To overcome this simplification, the iterative
algorithmic procedure in Section 6.4 is introduced.

3.2 Regulators

Let a = (`, r) ∈ Arg be a regulator in G. For each step in time t ∈ T we have
a flow variable qa,t ∈ [0, q̄a,t] ⊆ R≥0, i.e., only flow from ` towards r is possible.
Further, the pressure at ` is not allowed to be smaller than the pressure at r:

p`,t − pr,t ≥ 0 ∀t ∈ T . (7)

Note: In order to model flap traps, i.e., that the pressure at r can be larger than
at ` if there is no flow, we would need to introduce an additional class of binary
variables, indicating whether or not there is flow on the regulator. If there is flow,
(7) would be active, and if not, the pressures at ` and r would be decoupled. But
since all regulators in the network are bordering elements to distribution networks
or are located directly behind an entry, there is no need to capture this feature
so far.

3.3 Valves

Let a = (`, r) ∈ Ava be a valve in G. For each step in time t ∈ T we have a
forward and a backward flow variable q→a,t, q

←
a,t ∈ [0, q̄a,t] ⊆ R≥0. Further, we

introduce a binary variable za,t ∈ {0, 1} indicating whether the valve is open or
not. If the valve is open, the pressure have to be equal and there can be flow
in an arbitrary direction. If it is closed, there is no flow and the pressures are
decoupled.

p`,t − pr,t ≤ (1− za,t)(p̄`,t −
¯
pr,t) ∀a = (`, r) ∈ Ava, ∀t ∈ T (8)

p`,t − pr,t ≥ (1− za,t)(
¯
p`,t − p̄r,t) ∀a = (`, r) ∈ Ava, ∀t ∈ T (9)

q→a,t ≤ q̄a,tza,t ∀a ∈ Ava, ∀t ∈ T (10)

q←a,t ≤ q̄a,tza,t ∀a ∈ Ava, ∀t ∈ T (11)
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4 Navi Stations

Recall, that within G there are subgraphs Gi = (Vi,Aar
i ) with i ∈ {1, . . . ,m}

called navi stations, see Section 1.2. We demonstrate the following definitions all
with an example.

Vi = V fn
i ∪ Var

i ⊆ V0 are the fence and artificial nodes the station consists of.

• Example: Vi = {nord, sued, remich, gerns,medel, creos, t,m} with
V fn
i = {nord, sued, remich, gerns,medel, creos} and Var

i = {t,m}

Aar
i ⊆ Vi × Vi ⊆ Aar is the set of artificial links of the navi station. There are

seven types of artificial links:

• Aar-sc-bi
i ⊆ Aar

i the set of (bidirected) shortcuts of the navi station.

• Aar-rg
i ⊆ Aar

i the set of (directed) regulating links of the navi station.

• Aar-rg-bi
i ⊆ Aar

i the set of bidirected regulating links of the navi station.

• Aar-cp
i ⊆ Aar

i the set of (directed) compressing links of the navi station.

• Aar-cp-bi
i ⊆ Aar

i the set of bidirected compressing links of the navi station.

• Aar-cb
i ⊆ Aar

i the set of (directed) combined links of the navi station.

• Aar-cb-bi
i ⊆ Aar

i the set of bidirected combined links of the navi station.

Example:

• Aar-sc-bi
i = {n := (nord, sued), hinter := (t,medel), vor := (m, t),

gm := (gerns,m), bp := (gerns,medel), cs := (creos, sued)}

• Aar-rg
i = {rem := (gerns, remich)}

• Aar-rg-bi
i = {ms := (t, sued), mn := (t,nord)}

• Aar-cp
i = {vst := (nord, sued), gs := (t, sued), vsm := (m,medel)}

• Aar-cp-bi
i = Aar-cb

i = Aar-cb-bi
i = ∅

By Aar-di
i := Aar-rg

i ∪Aar-cp
i ∪Aar-cb

i we denote the set of all directed artificial
arcs of navi station Gi, where only flow into the forward direction possible. By
Aar-bi
i := Aar-sc-bi

i ∪Aar-rg-bi
i ∪Aar-cp-bi

i ∪Aar-cb-bi
i we denote the set of all bidirected

artificial arcs, where flow into both directions, forward and backward, is possible.
Furthermore, by Aar-co

i := Aar-cp
i ∪Aar-cp-bi

i ∪Aar-cb
i ∪Aar-cb-bi

i we denote the set
of links, that are able to compress gas.

Fi ⊆ P(Vi) × P(Vi), where P denotes the powerset, is called the set of flow
directions of navi station Gi. A flow direction f = (f+, f−) ∈ Fi consists of
entry fence nodes f+ and exit fence nodes f− and we assume that f+ ∩ f− = ∅.
Example:

• ng := ({nord, gerns}, {sued,medel, remich, creos})
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• n-g := ({nord}, {gerns, sued,medel, remich, creos})

• g-n := ({gerns}, {nord, sued,medel, remich, creos})

Let NS := {0, . . . , 400}. The set Si ⊆ NS ×P(Fi)×P(Aar
i )×P(Aar

i ) is called
the set of simple states of navi station Gi. A simple state s = (ws, sf , son, soff ) ∈
Si consists of its initialization cost ws, its supported flow directions sf , its set of
active artificial links son, and its set of inactive artificial links soff . Note, that
sf 6= ∅. Example:

• TB-MB := (320, {ng}, {n, cs, bp, rem}, {vsm, gm, vor, hinter, vst, gs,ms,mn})

• TVvo-MBvo := (145, {ng}, {vst, cs,mn, vor, gm, bp, rem}, {vsm, hinter, n, gs,ms})

• TBhi-MBvo := (5, {ng, g-n}, {n, cs,ms, vor, gm, bp, rem}, {vsm, hinter, vst, gs,mn})

4.1 Configuration Choosing

Next, for each station, at each point in time exactly one flow direction f ∈ Fi
has to be active. Given such a flow direction, one must choose exactly one simple
state s ∈ Si for which f ∈ sf (except for t = 0, where the flow direction and the
simple state are decoupled). Given a decision on the simple state, all the active
links of the simple state son must be active, while all the inactive links soff must
be inactive. All remaining (optional) artificial links a ∈ Aar

i \ (son ∪ soff ) may
be active, but do not have to. We model these requirements using the following
variables

• xf,t ∈ {0, 1} if flow direction f ∈ Fi is active at time t ∈ T0

• xs,t ∈ {0, 1} if simple state s ∈ Si is active at time t ∈ T0

• xa,t ∈ {0, 1} if artificial link a ∈ Aar
i is active at time t ∈ T0

and the following constraints∑
f∈Fi

xf,t = 1 ∀t ∈ T0 (12)

∑
f∈sf

xf,t ≥ xs,t ∀s ∈ Si, ∀t ∈ T (13)

∑
s∈Si

xs,t = 1 ∀t ∈ T0 (14)

xs,t ≤xa,t ∀s ∈ Si, ∀a ∈ son, ∀t ∈ T0 (15)

1− xs,t ≥xa,t ∀s ∈ Si, ∀a ∈ soff , ∀t ∈ T0. (16)

In order to account for changes in the flow direction, simple state, and artificial
links over time, we introduce the following variables

• δf,t ∈ {0, 1} for each f ∈ Fi and each t ∈ T

• δs,t ∈ {0, 1} for each s ∈ Si and each t ∈ T

• δon
a,t, δ

off
a,t ∈ {0, 1} for each a ∈ Aar

i and each t ∈ T

6



and add the following constraints

xf,t−1 − xf,t + δf,t ≥ 0 ∀f ∈ Fi, ∀t ∈ T (17)

xs,t−1 − xs,t + δs,t ≥ 0 ∀s ∈ Si, ∀t ∈ T (18)

xa,t−1 − xa,t + δon
a,t − δoff

a,t = 0 ∀a ∈ Aar
i , ∀t ∈ T (19)

While δf,t, δs,t, δ
on
a,t indicate whether or not a flow direction, simple state, or arti-

ficial link has been switched on, δoff
a,t indicates whether or not an artificial link has

been switched off. For the flow directions and simple states we do not need the
ladder variable, since we know that exactly one of them is active at each point in
time.

The variables δf,t contribute to the objective function for each station with

some fixed cost parameter wfi ∈ [0, 1000]. The variables δs,t contribute to the
objective function each with the initialitzation cost ws ∈ NS . The variables δon

a,t

and δoff
a,t contribute to the objective function all with the same cost parameter

wa ∈ R≥0, currently wa := 5.0 for all a ∈ Aar. Additionally, there is some cost
for each compressing link a ∈ Aar-co

i to be active, i.e., wcp-act
i ∈ R≥0.

4.2 Modelling Artificial Links

4.2.1 Bidirected Links

For bidirected links a ∈ Aar-bi
i , we introduce two additional binary variables

x←a,t, x
→
a,t ∈ {0, 1} for each t ∈ T0 which encode the direction of the flow. Thus,

we introduce the following constraint

x←a,t + x→a,t =xa,t ∀a ∈ Aar-bi
i , ∀t ∈ T0 (20)

After the direction is chosen, the arcs are modelled like their monodirected coun-
terparts around the corresponding binary variable.

4.2.2 Shortcut

For a shortcut a = (`, r) ∈ Aar-sc-bi
i the following equations hold:

p`,t − pr,t ≤ (1− xa,t)(p̄`,t −
¯
pr,t) ∀t ∈ T (21)

p`,t − pr,t ≥ (1− xa,t)(
¯
p`,t − p̄r,t) ∀t ∈ T (22)

q→a,t ≤ q̄a,tx
→
a,t ∀t ∈ T (23)

q←a,t ≤ q̄a,tx
←
a,t ∀t ∈ T (24)

If the shortcut is active at some point in time t ∈ T , i.e., xa,t = 1, the pressures
at ` and r have to be equal and the flow can take an arbitrary direction and value,
i.e., there may be forward flow q→a,t ∈ [0, q̄a,t] or backward flow q←a,t ∈ [0, q̄a,t]. If
the shortcut is not active, the pressure values are decoupled and there is no flow
on a.

4.2.3 Regulating Links

For a regulating link a = (`, r) ∈ Aar-rg
i , the following equations hold

p`,t − pr,t ≥ (1− xa,t)(
¯
p`,t − p̄r,t) ∀t ∈ T (25)

q→a,t ≤ q̄a,txa,t ∀t ∈ T (26)
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where q→a,t ∈ [0, q̄a,t] is the corresponding forward flow variable. If the regulator
is active at some point in time t ∈ T , i.e., xa,t = 1, then the pressure at ` has to
be greater or equal than the pressure at r. If it is not active, the pressure values
are decoupled and there is no flow. For a bidirected regulating link a = (`, r) ∈
Aar-rg-bi
i , we derive the following corresponding constraints

p`,t − pr,t ≥ (1− x→a,t)(
¯
p`,t − p̄r,t) ∀t ∈ T (27)

pr,t − p`,t ≥ (1− x←a,t)(
¯
pr,t − p̄`,t) ∀t ∈ T (28)

q→a,t ≤ q̄a,tx→a,t ∀t ∈ T (29)

q←a,t ≤ q̄a,tx←a,t ∀t ∈ T (30)

4.2.4 Assigning Machines to Compressing Links

For a link a = (`, r) ∈ Aar-co
i , which is able to compress gas, there are a number

of constraints which depend on the assignment of so-called compressing machines
to them.

For each navi station, we are given a set of compressing machines Mi :=
{m1, . . . ,mh} and for each compressing arc a ∈ Aar-co

i , there is a subsetMa
i ⊆Mi

of machines that can be assigned to it.
Each machine can be assigned cumulatively to at most one compressing link

in each timestep t ∈ T . Hence, we introduce variables ymj ,a,t ∈ [0, 1] and a
constraint ∑

a∈Aar-co
i :mj∈Ma

i

ymj ,a,t ≤ 1 ∀mj ∈Mi, ∀t ∈ T . (31)

Additionally, for each compressing link a maximum number of machines Mmax
a ,

that may be assigned to it, is given and we introduce the following constraint∑
mj∈Ma

i

ymj ,a,t ≤Mmax
a xa,t ∀a ∈ Aar-co

i , ∀t ∈ T . (32)

Further, each compressing machine has an associated maximum compression ratio
Rmj ,t > 1, a maximum power value Pmj ,t ∈ R≥0 and a maximum volumetric flow
Qmj ,t ∈ R≥0 for each t ∈ T . Thus, for each compressing link we derive the
following three types of constraints∑

mj∈Ma
i

Pmj ,tymj ,a,t = π̃a,t ∀a ∈ Aar-co
i , ∀t ∈ T (33)

∑
mj∈Ma

i

Qmj ,tymj ,a,t = q̃a,t ∀a ∈ Aar-co
i , ∀t ∈ T (34)

1 +
∑

mj∈Ma
i

(Rmj ,t − 1)ymj ,a,t = ra,t ∀a ∈ Aar-co
i , ∀t ∈ T (35)

The first constraint (33) determines the power that may be used on this link to
compress the gas, i.e.,
tildeπa,t. The second constraint (56) calculates the maximum amount of flow
that can be compressed if the assigned machines run in parallel, i.e., q̃a,t. On
the other hand, the third constraint (35) is a (conservative) approximation of
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the maximum compression ratio if the assigned machines run in serial. i.e., ra,t.
It is an approximation, because the compression ratios of serial machines would
be multiplied. But since we want to avoid nonlinearities in our formulation, we
choose this approximating constraint instead.

Since we assume to have both entities simultaneously at hand, maximum flow
and maximum compression ratio at the same time, we probably overestimate the
capabilities of the compressing link.

For the three variables introduced above, we add the following additional
constraints

π̃a,t ≥πa,t ∀a ∈ Aar-co
i , ∀t ∈ T (36)

q̃a,t ≥ q→a,t ∀a ∈ Aar-co
i , ∀t ∈ T (37)

p`,0ra,t − pr,t ≥ (1− xa,t)(p`,0 − p̄r,t) ∀a ∈ Aar-co
i , ∀t ∈ T (38)

The last constraint (38) bounds the outgoing pressure by the maximum compres-
sion ratio, while the first two constraints (36) and (37) choose flow or power values
within the corresponding bounds, respectively. These values play an important
role in the highly nonlinear power bound equation, which we approximate by the
following two constraints:

α1p`,t + α2pr,t + α3q
→
a,t + α4πa,t ≤β + (1− xa,t)(α1

¯
p`,t + α2p̄`,t − β) ∀t ∈ T

(39)

α1p`,t + α2pr,t + α3q
→
a,t + α4πa,t ≥β + (1− xa,t)(α1p̄`,t + α2

¯
p`,t − β) ∀t ∈ T .

(40)

Note that α2, α3 ∈ R≥0 and α1, α4 ∈ R≤0. To derive the α-coefficients, we sample
10.000 variable triples (pu, pv, πa) and calculate the maximum possible flow q→a
using the original power bound equation. With the resulting 4-tuples we run a
linear regression algorithm and derive the linear approximation

α1p` + α2pr + α3q
→
a + α4πa =β.

If the corresponding compression arc is active, this equation is enforced by con-
staints 39 and 40. The power, which is used to compress the gas in a navi station,
i.e., πa,t contributes with cost wcp-val

i to the objective function.

4.2.5 Compressing Links

For a directed compressing link a = (`, r) ∈ Aar-cp
i , the following equations hold:

p`,t − pr,t ≤ (1− xa,t)(p̄`,t −
¯
pr,t) ∀t ∈ T (41)

R̄a,tp`,t − pr,t ≥ (1− xa,t)(R̄a,t
¯
p`,t − p̄r,t) ∀t ∈ T (42)

If the compressor is active at some point in time t ∈ T , i.e., xa,t = 1, the pressure
at ` has to be smaller or equal than the pressure at r. But pr,t can be at most
R̄a,tp`,t where R̄a,t is the maximum compression ratio of a at time t, which can
be determined, for example, from the corresponding constraints (32) and (38). If
it is not active, the pressure values are decoupled and there is no flow on a due
to constraints (37) and (56).
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Further, there may be an additional restriction on the pressure at node r, up
to which the pressure can be increased. Let p̄out

r,t be this upper bound. This can
be modelled by the following constraint:

pr,t ≤ p̄r,t − xa,t(p̄r,t − p̄out
r,t ) ∀t ∈ T (43)

For a bidirected compressing arc a = (`, r) ∈ Aar-cp-bi
i , which can compress in

forward and backward direction, we derive the following constraints

p`,t − pr,t ≤ (1− x→a,t)(p̄`,t −
¯
pr,t) ∀t ∈ T (44)

pr,t − p`,t ≤ (1− x←a,t)(p̄r,t −
¯
p`,t) ∀t ∈ T (45)

R̄a,tp`,t − pr,t ≥ (1− x→a,t)(R̄a,t
¯
p`,t − p̄r,t) ∀t ∈ T (46)

R̄a,tpr,t − p`,t ≥ (1− x←a,t)(R̄a,t
¯
pr,t − p̄`,t) ∀t ∈ T (47)

q→a,t ≤x→a,tq̄a,t ∀t ∈ T (48)

q←a,t ≤x←a,tq̄a,t ∀t ∈ T (49)

pr,t ≤ p̄r,t − x→a,t(p̄r,t − p̄out
r,t ) ∀t ∈ T (50)

p`,t ≤ p̄`,t − x←a,t(p̄`,t − p̄out
`,t ) ∀t ∈ T (51)

Furthermore, the constraints explained in Section 4.2.4 regarding the power, com-
pression ratio, volumetric flow, and machine assignment obviously apply to com-
pressing links.

4.2.6 Combined Links

A combined link a = (`, r) ∈ Aar-co
i can work as regulating link or a compressing

link. Hence, first of all we introduce two decision variables, which encode in which
mode the combined link is running.

xrg
a,t + xcp

a,t =xa,t ∀a ∈ Aar-bi
i , ∀t ∈ T0 (52)

For the regulating mode, we get one additional constraint regarding the pressur
coupling

p`,t − pr,t ≥ (1− xrg
a,t)(

¯
p`,t − p̄r,t) ∀t ∈ T , (53)

while for the compressing mode we have

p`,t − pr,t ≤ (1− xcp
a,t)(p̄`,t −

¯
pr,t) ∀t ∈ T (54)

R̄a,tp`,t − pr,t ≥ (1− xcp
a,t)(R̄a,t

¯
p`,t − p̄r,t) ∀t ∈ T . (55)

Additionally, the constraints explained in Section 4.2.4 regarding the power, com-
pression ratio, volumetric flow, and machine assignment apply as well (replacing
variable xa,t by xcp

a,t of course), except for (37), which has to be changed to

q̄a,tx
rg
a,t + q̃a,t ≥ q→a,t ∀t ∈ T (56)

in order to allow for flow in the regulating mode.

10



4.3 Flow Directions Constraints

4.3.1 In- and Outflow Constraints

For each fence node v ∈ Vi and each point in time t ∈ T we introduce a variable
qfn
v,t counting the total in- or outflow from the remaining network∑

(`,v)∈Aar

q→a,t −
∑

(v,r)∈Aar

q→a,t +
∑

(v,r)∈Aar-bi

q←a,t −
∑

(`,v)∈Aar-bi

q←a,t =−qfn
v,t (57)

Next, for a flow direction f = (f+, f−) ∈ Fi we introduce the following two
types of constraints:

−qfn
v,t +Mvxf,t ≤Mv + ε ∀f ∈ Fi, ∀v ∈ Vi \ f−, ∀t ∈ T (58)

qfn
v,t +Mvxf,t ≤Mv + ε ∀f ∈ Fi, ∀v ∈ Vi \ f+, ∀t ∈ T . (59)

Here, Mv is an upper bound on the total outflow and inflow (for example the

sum of the upper flow bounds of all incident pipes) and ε currently is 5.000m
3

h .
By the construction of the constraints, for each entry fence node v ∈ f+ we have
qfn
v,t ∈ [−ε,Mv] and for each exit fence node v ∈ f− we have qfn

v,t ∈ [−Mv, ε], while

for all other fence nodes we have qfn
v,t ∈ [−ε, ε].

4.3.2 Flow Direction Conditions

For each navi station, there exist so-called flow direction conditions Wi. These
conditions on the in- and outflows at fence nodes have to be satisfied, if a certain
flow direction shall be active.

To define them formally, let f = (f+, f−) ∈ Fi be a flow direction and let
Q := {≥,≤} be the set of supported mathematical operators. Currently, there
are two types of flow directions conditions that we support:

• Flow conditions c := (f,Vc1i ,∼,Mc) ∈ Fi × P(Vi)×Q× R≥0 and

• comparison conditions c := (f,Vc1i ,∼,V
c2
i ) ∈ Fi × P(Vi)×Q× P(Vi).

Thus, Wi ⊆ (Fi × P(Vi)×Q× R≥0) ∪ (Fi × P(Vi)×Q× P(Vi)).
For each c ∈ Wi we have that either Vc1i ⊆ f+ or Vc1i ⊆ f− and analogously

that either Vc2i ⊆ f+ or Vc2i ⊆ f− in case of a comparison condition. Next, given
a flow direction and a fence node, the function sgn returns 1, if the node is an
entry w.r.t. the flow direction, −1, if it is an exit, and 0 otherwise:

sgn : Fi × Vi → {−1, 0, 1} , (f, v)→


1 if v ∈ f+

−1 if v ∈ f−

0 otherwise.

Using the definitions from above, for each t ∈ T we can write the flow conditions
as follows∑
v∈Vc1

i

sgn(f, v)qfn
v,t ≥ −

∑
v∈Vc1

i

Mv + xf,t(Mc +
∑
v∈Vc1

i

Mv) ∀(f,Vc1i ,≥,Mc) ∈ Ci

(60)∑
v∈Vc1

i

sgn(f, v)qfn
v,t ≤

∑
v∈Vc1

i

Mv + xf,t(Mc −
∑
v∈Vc1

i

Mv) ∀(f,Vc1i ,≤,Mc) ∈ Ci

(61)
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while the comparison conditions can be written as∑
v∈Vc1

i

sgn(f, v)qfn
v,t −

∑
v∈Vc2

i

sgn(f, v)qfn
v,t ≥

−
∑

v∈Vc1
i ∪V

c2
i

Mv + xf,t
∑

v∈Vc1
i ∪V

c2
i

Mv ∀(f,Vc1i ,≥,V
c2
i ) ∈ Ci (62)

∑
v∈Vc2

i

sgn(f, v)qfn
v,t −

∑
v∈Vc1

i

sgn(f, v)qfn
v,t ≥

−
∑

v∈Vc1
i ∪V

c2
i

Mv + xf,t
∑

v∈Vc1
i ∪V

c2
i

Mv ∀(f,Vc1i ,≤,V
c2
i ) ∈ Ci (63)

4.3.3 Exit Pressure Constraints

For some fence nodes v ∈ Vi, there is an additional upper (tighter) pressure bound
p̄exit
v if a flow direction f = (f+, f−) ∈ Fi is chosen, where v is an exit fence node,

i.e., v ∈ f−. We can model this condition via the following constraint:

pv,t ≤ p̄v,t + xf,t(p̄
exit
v − p̄v,t) ∀f ∈ Fi with v ∈ f−, ∀t ∈ T . (64)

5 Connecting Variables and Constraints

5.1 Massflow Conservation Equation

For all nodes v ∈ V we introduce the so-called massflow conservation equations.
For each inner node v ∈ V0 and each timestep t ∈ T the amount of flow entering
v has to leave it, too. Thus, for each inner node v ∈ V0 we have∑

a=(`,v)∈Api

qv,t,a −
∑

a=(v,r)∈Api

qv,t,a

+
∑

a=(`,v)∈Arg

qa,t −
∑

a=(v,r)∈Arg

qa,t

+
∑

x=(`,v)∈Ava

qx,t −
∑

x=(v,r)∈Ava

qx,t

+
∑

(`,v)∈Aar

q→a,t −
∑

(v,r)∈Aar

q→a,t

+
∑

(v,r)∈Aar-bi

q←a,t −
∑

(`,v)∈Aar-bi

q←a,t = 0 ∀v ∈ V0, ∀t ∈ T . (65)

For a boundary node v ∈ Vb, the supply or demand must be satisfied. Hence, for
each boundary node v ∈ Vb we have∑

a=(`,v)∈Api

qv,t,a −
∑

a=(v,r)∈Api

qv,t,a

+
∑

a=(`,v)∈Arg

qa,t −
∑

a=(v,r)∈Arg

qa,t

+
∑

x=(`,v)∈Ava

qx,t −
∑

x=(v,r)∈Ava

qx,t = dv,t ∀v ∈ Vb, ∀t ∈ T . (66)
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Since boundary nodes are not part of navi stations by definition, i.e., Vi ⊆ V0 for
all i ∈ {1..m}, we do not need to consider flows of artificial links for the ladder
constraints.

6 The Netmodel-Algorithm

Currently, the algorithm for solving the Netmodel MIP works as follows:

6.1 Stage NO SLACKS

In the first stage we try to solve the Netmodel MIP without using any slack. This
is done by fixing the slack variables on the demand and the inflow pressures to
zero, in particular:

σd+
v,t = σd−v,t = σp+v,t = σp−v,t = 0 ∀v ∈ Vb and ∀t ∈ T. (67)

We run the MIP with a time limit of 3600 seconds. If any feasible solution
is found within this time limit, we tag the instance with NO SLACKS and go
into the Iterative Velocity Adjustment Procedure in Section 6.4. Otherwise, we
proceed with Stage FLOW SLACKS.

6.2 Stage FLOW SLACKS

In the second stage we try to solve the Netmodel MIP without using any inflow
pressure slacks. This is done by fixing the slack variables on the inflow pressures
to zero, in particular:

σp+v,t = σp−v,t = 0 ∀v ∈ Vb and ∀t ∈ T. (68)

Note that demand/supply slacks are allowed now, i.e, the corresponding vari-
ables are not fixed to zero. We run the MIP with a time limit of 3600 seconds.
If any feasible solution is found within this time limit, we tag the instance with
FLOW SLACKS and go to the Iterative Velocity Adjustment Procedure in Sec-
tion 6.4. Otherwise, we proceed with Stage FLOW AND PRESSURE SLACKS.

6.3 Stage FLOW AND PRESSURE SLACKS

In the third stage we try to solve the Netmodel MIP as described in this document
without any modifications or fixations. Note that demand/supply- and inflow
pressure slacks are both allowed now. We run the MIP with a time limit of
3600 seconds. If any feasible solution is found within this time limit, we tag the
instance with FLOW AND PRESSURE SLACKS go to the Iterative Velocity
Adjustment Procedure in Section 6.4. Otherwise, we terminate the algorithm
and tag the instance as INFEASIBLE.

6.4 Iterative Velocity Adjustment Procedure

As mentioned in Section 3.1, in the initial Netmodel MIP we fix the absolute
velocity in the friction term of the momentum equation (6) to the absolute velocity
at the corresponding node v at time 0 for all timesteps. This is because up to
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this point we have no better estimate of what the velocity is going to be like
in the future. In order to improve the quality of our solution, given the best
solution sol0 from the previous stages, using the flow and pressure values at v
at a certain timestep t ∈ T , i.e., qa,t,v and pv,t, we can calculate an updated
(better?!) absolute velocity |vv,t| value for the future.

The idea now is to create a new MIP∗, where we fix we fix the binary variables
of the flow directions to the values in sol0, update the (6) with the newly calculated
absolute velocities, and resolve MIP∗ in the stage of the initial MIP. Thereby we
hope, that the assumed velocities and the velocities we can retrieve from a solution
lie closer together and the solution quality improves.

In order to avoid ”cycling” between solutions, we repeat this procedure k
times and use the average absolute velocity of the last j runs instead of only the
last one. The final solution after this iteration process is then passed on to the
smoothing stage. The complete Iterative Velocity Adjustment Procedure, with
all its different cases, that may happen, is described in Algorithm 1

Algorithm 1 Iterative Velocity Adjustment Procedure

1: sol0 ← solution of initial MIP
2: MIP∗ ← initial MIP with flow directions fixed as in sol0
3: tag∗ ← tag of initial MIP
4:

5: for i in 1 . . . k do
6: determine average gas velocities of last min{i, j} solutions
7: update constraints (6)
8: resolve MIP∗

9: if MIP∗ is infeasible then
10: if tag∗ = NO SLACKS then
11: tag∗ ← FLOW SLACKS
12: Add slack on supply/demands and go to 9
13: end if
14: if tag∗ = FLOW SLACKS then
15: tag∗ ← FLOW AND PRESSURE SLACKS
16: Add slack on pressure bounds and go to 9
17: end if
18: if tag∗ = FLOW AND PRESSURE SLACKS then
19: return soli−1

20: end if
21: else
22: soli ← solution of MIP∗

23: end if
24: end for
25:

26: return solk

6.5 Smoothing Stage

Due to the nature of many MIP solutions, it may happen, that in a solution the
pressure and flow values in the navi stations differ a lot from one time step to
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the next. In order to avoid this behaviour, we introduce the following smoothing
procedure as a postprocessing step.

Given a solution from the Iterative Velocity Adjustment Procedure, we fix all
binary variables to their solution values. Afterwards, we add some smoothing
constraints and variables to the model and solve the resulting LP. The idea is to
smooth the in- and outflow values and the pressures at the fence group nodes over
time, i.e., we try to change these values as few as possible while still operating
in the suggested flow directions, simple states, etc. Hence, for each navi station
Gi, each node v ∈ V fn

i , and each t ∈ T we add four variables δq+v,t , δ
q−
v,t ∈ R+ and

δp+v,t , δ
p−
v,t ∈ R+, while for all artificial nodes v ∈ Var

i we only add the ladder ones.
The smoothing constraints on the nodes are then the following.

pv,t − pv,t−1 + δp+v,t − δ
p−
v,t = 0 ∀v ∈ Vi, ∀t ∈ T (69)

qfn
v,t − qfn

v,t−1 + δq+v,t − δ
q−
v,t = 0 ∀v ∈ V fn

i , ∀t ∈ T (70)

Both types, the pressure smoothing and the flow smoothing variables, contribute
to the objective function with some value wsm-p and wsm-q, respectively.

If the smoothing LP is infeasible (may happen due to numerical issues when
fixing the binary variables), we return the input solution is used (probably not
very smooth) and add an SI to the tag of the last MIP∗. Otherwise, simply the
tag of the last MIP∗ is returned.
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