
Takustrasse 7
D-14195 Berlin-Dahlem

Germany
Zuse Institute Berlin

AMBROS GLEIXNER, LEON EIFLER, TRISTAN GALLY, GERALD
GAMRATH, PATRICK GEMANDER, ROBERT LION GOTTWALD,
GREGOR HENDEL, CHRISTOPHER HOJNY, THORSTEN KOCH,

MATTHIAS MILTENBERGER, BENJAMIN MÜLLER, MARC E. PFETSCH,
CHRISTIAN PUCHERT, DANIEL REHFELDT, FRANZISKA SCHLÖSSER,

FELIPE SERRANO, YUJI SHINANO, JAN MERLIN VIERNICKEL, STEFAN
VIGERSKE, DIETER WENINGER, JONAS T. WITT, JAKOB WITZIG

The SCIP Optimization Suite 5.0

ZIB Report 17-61 (December 2017)

Zuse Institute Berlin
Takustrasse 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

The SCIP Optimization Suite 5.0

Ambros Gleixner1, Leon Eifler1, Tristan Gally2,

Gerald Gamrath1, Patrick Gemander3, Robert Lion Gottwald1,

Gregor Hendel1, Christopher Hojny2, Thorsten Koch1,

Matthias Miltenberger1, Benjamin Müller1, Marc E. Pfetsch2,

Christian Puchert4, Daniel Rehfeldt1, Franziska Schlösser1,

Felipe Serrano1, Yuji Shinano1, Jan Merlin Viernickel1, Stefan Vigerske1,

Dieter Weninger3, Jonas T. Witt4, Jakob Witzig1

December 20, 2017

Abstract This article describes new features and enhanced algorithms made available
in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint
integer programming solver SCIP, remarkable performance improvements have been
achieved for solving mixed-integer linear and nonlinear programs. On mixed-integer
linear programs, SCIP 5 is about 41% faster than SCIP 4 and over twice as fast on
instances that take at least 100 seconds to solve. For mixed-integer nonlinear programs,
SCIP 5 is about 17% faster overall and 23% faster on instances that take at least
100 seconds to solve. This boost is due to algorithmic advances in several parts of the
solver such as cutting plane generation and management, a new adaptive coordination of
large neighborhood search heuristics, symmetry handling, and strengthened McCormick
relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background
and the implementational aspects of these developments, the report describes recent
additions for the other software packages connected to SCIP, in particular for the linear
programming solver SoPlex, the Steiner tree solver SCIP-Jack, the mixed-integer
semidefinite programming solver SCIP-SDP, and the parallelization framework UG.

Keywords Constraint integer programming · linear programming · mixed-integer lin-
ear programming · mixed-integer nonlinear programming · optimization solver · branch-
and-cut · branch-and-price · column generation framework · parallelization · mixed-
integer semidefinite programming · Steiner tree optimization

Mathematics Subject Classification 90C05 · 90C10 · 90C11 · 90C30 · 90C90 ·
65Y05
1Zuse Institute Berlin, Department of Mathematical Optimization, Takustr. 7, 14195 Berlin,
Germany, { gleixner,eifler,gamrath,robert. gottwald,hendel,koch,miltenberger,benjamin.

mueller,rehfeldt,schloesser,serrano,shinano,viernickel,vigerske,witzig}@ zib. de
2Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, 64293 Darmstadt, Ger-
many, { gally,hojny,pfetsch}@ mathematik. tu-darmstadt. de

3Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik, Cauerstr. 11, 91058
Erlangen, Germany, { patrick. gemander,dieter. weninger}@ fau. de

4RWTH Aachen University, Chair of Operations Research, Kackertstr. 7, 52072 Aachen, Germany,
{ puchert,witt}@ or. rwth-aachen. de

The work for this article has been partly conducted within the Research Campus MODAL funded
by the German Federal Ministry of Education and Research (BMBF grant number 05M14ZAM). It
has also been partly supported by the German Research Foundation (DFG) within the Collaborative
Research Center 805, Project A4, and the EXPRESS project of the priority program CoSIP (DFG-
SPP 1798).

1

1 Introduction

The SCIP Optimization Suite is a collection of software packages for modeling and solv-
ing a large variety of mathematical optimization problems. It consists of five individual
tools, all of which are available in source code and can be downloaded free for usage in
academic research:

− the modeling language Zimpl [59],

− the linear programming (LP) solver SoPlex [106], which provides an implementation
of the revised simplex method with support for arithmetically exact optimization over
the rational numbers [43],

− the constraint integer programming solver SCIP [3], which is built on a modular
branch-cut-and-price framework fully equipped to function as a fast standalone solver
for mixed-integer linear and nonlinear programs,

− the UG framework for parallelization of branch-and-bound solvers [94], and

− the generic branch-cut-and-price solver GCG [37].

This paper gives an overview of new features and improved algorithms provided by
version 5.0 of the SCIP Optimization Suite.

Background The common release and distribution is motivated by the close interaction
between the different components. A problem formulated with the modeling language
Zimpl can directly be loaded into SCIP. By default, SCIP is linked to SoPlex for
solving linear programs (LPs) as subproblems. GCG builds on the plugin-based design
of SCIP in order to extend it by generic column generation routines on automatically
detected problem decompositions. And finally, the UG framework can be linked to
SCIP in order to create a parallel branch-and-bound solver on shared and distributed
memory architectures.

While the scope of the SCIP Optimization Suite is certainly broader, a major focus
lies on the solution of mixed-integer linear programs (MIPs) and more generally mixed-
integer nonlinear programs (MINLPs). MIPs are optimization problems of the form

min c>x

s.t. Ax ≤ b,
`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(1)

defined by c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ R̄n, and I ⊆ N := {1, . . . , n} being the
index set of integer variables. The usage of R̄ := R∪ {−∞,∞} allows for variables that
are unbounded or bounded only in one direction. MIPs are a special case of MINLPs,
which can be written in the form

min f(x)

s.t. gk(x) ≤ bk for all k ∈M,

`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(2)

where f : Rn → R and gk : Rn → R, k ∈ M := {1, . . . ,m} are possibly nonconvex
functions. Within SCIP, we assume that f and gk are given explicitly in algebraic form,
using only operators that are known to SCIP.

The core of SCIP implements a centrally coordinated branch-cut-and-price algo-
rithm into which advanced techniques can be integrated via predefined callback mecha-
nisms. Details on the organization of the solving process are described by Achterberg [2]
and, specifically for the MINLP extensions, by Vigerske and Gleixner [100].

2

SCIP actually is a solver for an even larger class of optimization problems named
constraint integer programs (CIPs). Inspired by the modeling flexibility known from
constraint programming, the definition of constraint integer programming, however, is
driven by algorithmic consideration. CIPs may be defined by arbitrary constraints as
long as the following property holds: If all integer variables are fixed, the remaining
problem must take the form of a standard linear or nonlinear program. In hindsight,
this open, yet solver-oriented perspective, that was taken from the very beginning, has
enabled SCIP to evolve into a highly flexible tool for diverse research interests. Only
two examples that serve to demonstrate this point are PolySCIP, an extension for
multicriteria MIPs by Schenker et al. [15], and SCIP-SDP, a solver for problems with
positive-semidefiniteness constraints by Gally et al. [36].

Summary of New Developments Although less than a year has passed since the previous
major release, SCIP 5 features a long list of algorithmic enhancements. The following
is a selection of only the most important ones:

− a major revision of the generation and management of MIP cutting planes (Sec-
tions 2.4.1, 2.4.2, and 2.4.3),

− a new technique to analyze and exploit dual solutions from bound exceeding LP
relaxations (Sections 2.5),

− a new coordination scheme for large neighborhood search heuristics (Sections 2.6.3),

− for the first time, automatic detection and breaking of symmetry, either by classical
orbital fixing or by a newly developed polyhedral technique (Sections 2.3),

− strengthened McCormick relaxations for bilinear terms in MINLPs (Section 2.4.4),

− improved and enabled solution polishing when using SCIP with SoPlex (Sec-
tion 3.1), and

− new interfaces to the NLP solvers FilterSQP and WORHP (Section 2.7.7).

The impact of these improvements is reflected in large gains regarding MIP and MINLP
solver performance, detailed in Section 2.1.

In addition, in its latest version, the Steiner tree extension SCIP-Jack shows no-
table performance gains, both for the overall solver engine and specifically for the class
of maximum-weight connected subgraph problems. The mixed-integer semidefinite pro-
gramming (MISDP) solver SCIP-SDP, released in parallel with the SCIP Optimization
Suite, now features a battery of warmstart techniques to reduce the solving time of the
underlying SDP solvers.

The Zimpl version has not been updated in the current release and GCG 2.1.3 mainly
provides smaller bugfixes and necessary adjustments to the new SCIP API. Last, not
least, UG 0.8.5 now comes with a new parallization for SCIP-SDP and a small revision
of the parallelization for the Steiner tree solver SCIP-Jack.

Structure of the Paper The paper is mostly organized according to the different compo-
nents of the SCIP Optimization Suite. Section 2 describes new features and algorithmic
advancements in SCIP itself, accompanied by computational results that analyze the
performance progress of SCIP as MIP and MINLP solver. Section 3 details improve-
ments in the LP solver SoPlex. Updates to the SCIP extensions SCIP-SDP and
SCIP-Jack as well as the newly added SCIP application CycleClustering are pre-
sented in Section 4. Developments in the context of the UG framework are described in
Section 5.

3

2 Advances in SCIP

2.1 Overall Performance Improvements for MIP and MINLP

One of the main modes of using SCIP is to employ it as a standalone solver for mixed-
integer linear and nonlinear programs out-of-the-box. This section gives a summary of
the overall improvements in solving performance that were achieved for this use case.

2.1.1 Computational Setup

Obtaining indicative performance results for MIP and MINLP solvers requires a careful
benchmarking methodology. As first observed by Danna [23], small and from a mathe-
matical point of view neutral changes to the problem formulation or the algorithm can
have a large impact on the behavior and performance of a MIP or MINLP solver. Lodi
and Tramontani [66] provide a recent overview of this phenomenon, which is called per-
formance variability and poses a challenge to the accurate evaluation of deterministic,
that is, systematic changes in the algorithm.

One important enhancement for robust performance experimentation was already
introduced with the previous release SCIP 4: a centralized random seed that influences
numerical perturbations in the LP solver as well as tie breaking and heuristic decision
rules that necessarily occur in many parts of modern MINLP solvers [68]. Changing the
value of this centralized random seed is one possibility to trigger performance variability
systematically. The same holds for changing the permutation seed, which affects the
order of variables and constraints in the formulation. In the following, we detail our
standard computational setup used when comparing different solver versions.

Testsets A reasonably large and diverse testset is the basis for hedging against per-
formance variability. As an example, the 87 instances of the MIPLIB 2010 benchmark
selection often are too few in order to obtain robust results. Hence, the starting point
for compiling the MIP testset were the publicly available instances of the COR@L test-
set [22] and the five MIPLIB versions up to MIPLIB 2010 [60], including all 361 in-
stances of MIPLIB 2010. Instances that are marked as “numerically unstable” in the
MIPLIB 2010 classification were removed and duplicate instances excluded, leaving in
total 666 instances. In order to use available computing resources most efficiently and
to increase the amount of experiments that can be performed during development, we
decided to reduce this testset further by excluding instances that regularly exceed the
time limit. Specifically, SCIP 4.0.0, SCIP 4.0.1, and intermediate development versions
of SCIP 5 were run using five different random seeds. From these runs, all “solvable”
instances for which at least one solver succeeded on at least one seed were selected. This
yielded a final testset of 417 MIPs including 19 instances known to be infeasible.

For MINLP a similar procedure was followed, starting from the publicly available
instances in MINLPLib2 [77]. Accounting for the fact that some instance types are
overrepresented and some instances are known to be numerically troublesome by con-
struction, 143 instances were selected from the base set, after applying manual inspection
and heuristic filtering. Again, SCIP 4.0.0 and an advanced release candidate of SCIP 5
was run and all instances that could be solved within the time limit using at least one
of five different random seeds were included. The resulting MINLP testset consists of
105 instances.

Note that, both for MIP and MINLP, the last step may have excluded instances
that might be solved by the final release version of SCIP 5. However, all instances that
can be solved with SCIP 4 are included. Thus, the performance results reported below
provide a conservatively biased evaluation, that is, possibly, a slight underestimation of
the improvements achieved by SCIP 5 for instances that can be solved to optimality.

4

Unless specified otherwise, these testsets are simply referred to as the MIP and the
MINLP testset.

Hardware and Software The MIP experiments were performed on a cluster of machines
with Intel Xeon E5-2670 v2 CPUs with 2.50 GHz and 128 GB main memory. For the
MINLP experiments, a slightly faster cluster was used, which is equipped with Intel
Xeon E5-2660 v3 CPUs at 2.60 GHz and 128 GB main memory. For all performance
results, each instance was solved exclusively on one machine in order to ensure accurate
time measurements. Only for the runs that were used to collect the MIP and MINLP
testsets of “solvable” instances described above, non-exclusive runs were employed with
a slightly increased time limit in order to account for a potential slowdown due to cache
sharing.

SCIP interfaces to a set of external software packages. For the following performance
results, SCIP 5.0.0 was built with GCC 5.4 and linked to

− the simultaneously released SoPlex 3.1.0 as underlying LP solver (see Section 3),

− the NLP solver Ipopt 3.12.5 [54] built with linear algebra package MUMPS 4.10 [7],

− the algorithmic differentiation code CppAD 20160000.1 [21], and

− the graph automorphism package bliss 0.73 [55] for detecting symmetry (with a
patch, see Section 2.3.1).

SCIP 4.0.0 uses SoPlex 3.0.0, the same Ipopt and CppAD version, and no bliss.

Evaluation In the overall performance experiments, for each solver version each in-
stance was run with five different random seed values in order to account for the effect
of performance variability, including the default settings (seed of zero) of each version.
For the MIP experiments we changed the random seed, for the MINLP experiments we
used the permutation seed because this yielded a higher variability.

We compare the average performance of two solver versions following a similar
methodology as described, for example, by Achterberg and Wunderling [4]. It is based
on the shifted geometric mean of solving times and number of branch-and-bound nodes
using a shift of 1 second and 100 nodes, respectively. The shifted geometric mean of
values t1, . . . , tn is (∏

(ti + s)
)1/n − s

with shift s. Beforehand, we increase solving times below 0.5 seconds to 0.5 seconds in
order to ensure that small inaccuracies in time measurement for these very fast instances
don’t affect the evaluation. Normalizing solving time and number of nodes with respect
to SCIP 5.0 yields speedup and tree size reduction factors. In addition, the number of
instances that could not be solved within the given time or memory limit is reported for
each solver. (In the latter case the time limit is used when computing the mean solving
times.)

As can be seen in Table 1 and 2, these statistics are displayed for different sets of
instances. Both tables summarize results that treat every pair (instance,seed) as an
individual observation. The subset “all” contains all instances of the “solvable” testsets,
only excluding those for which one of the solvers encountered an error, including cases
where the primal and dual bounds returned were inconsistent with a known optimal ob-
jective value. Additionally, we consider a hierarchy of filtered instance sets of increasing
difficulty. The notation [s, t] denotes the set of instances for which the maximum solving
time between both solver versions lies between s and t seconds and at least one solver
solved the instance. Hence, it excludes instances that cannot be solved by either version
and those that can be solved in less than s seconds by both versions. Excluding the
first set of instances is motivated by the fact that treating both solvers equally (with the
time limit) may arbitrarily over- or underestimate their relative performance and only

5

Table 1: Performance comparison of SCIP 5 versus SCIP 4 on the MIP testset
using five different seeds.

SCIP 4.0.0+SoPlex 3.0.0 SCIP 5.0.0+SoPlex 3.1.0 relative

Subset instances timeout time nodes timeout time nodes time nodes

all 2069 403 131.6 4497 217 93.1 1699 1.41 2.65

[0,7200] 1878 212 88.2 3024 26 60.5 1087 1.46 2.78

[1,7200] 1734 212 123.9 3997 26 82.3 1343 1.50 2.98

[10,7200] 1413 212 282.5 7966 26 166.9 2299 1.69 3.47

[100,7200] 972 212 832.8 18715 26 402.4 4325 2.07 4.33

[1000,7200] 494 212 3197.5 71004 26 904.7 8546 3.53 8.31

diff-timeouts 238 212 5930.2 197521 26 854.6 10828 6.94 18.24

MIPLIBs 949 182 148.4 6282 120 116.6 2718 1.27 2.31

COR@L 1195 236 131.8 3910 117 87.0 1311 1.52 2.98

acts as a constant scalar on the relative performance comparison. Excluding the second
set of instances selects harder instances in an unbiased way: if they are hard for any of
the solvers. Achterberg and Wunderling [4] call these sets “brackets”. Furthermore the
tables show the degenerate time bracket “diff-timeouts”, which contains all instances
that can be solved by at least one of the solvers, but not both.

In addition, the MIP results are stated specifically for the instances contained in one
of the MIPLIB versions and for the instances contained in the COR@L testset. (Note
that some instances are contained in both testsets.) For MINLP, the table distinguishes
also between MINLPs with integer variables (“integer”) and pure NLPs (“continuous”).

2.1.2 MIP Performance

For MIP experiments we use a time limit of 7200 seconds per instance and a zero gap
limit. Table 1 provides a comparison of SCIP 4 and SCIP 5 with LP solver SoPlex 3.0
and 3.1, respectively, regarding their performance on the MIP testset described above.
It can be seen that in all considered metrics—the number of solved instances, the mean
solving time, and the mean number of branch-and-bound nodes explored—quite remark-
able improvements have been achieved:

− Overall, SCIP 5 is about 41% faster than SCIP 4 and needs less nodes by a factor
of 2.65.

− Most importantly, the number of instances that could not be solved within the time
limit of two hours has been reduced almost by half from 403 to 217 instances.

− On the harder instances in the [100,7200] bracket, SCIP 5 is more than twice as fast
as SCIP 4. The tree sizes are reduced by a factor of 4.33.

− The improved performance is more pronounced on instances of the COR@L testset,
compared to the speedups on MIPLIBs.

Note that it is common to observe node reductions that exceed speedups, since often
smaller search trees can only be achieved by an increased computational effort per node.

2.1.3 MINLP Performance

The MINLP experiments are performed with a time limit of 3600 seconds, because the
number of instances solved between one and two hours currently is too small in order
to justify the increased usage of computing time. In contrast to the MIP runs, we set
a relative gap limit of 0.0001. Although we have not quantified this systematically, this
choice is motivated by our repeated observation that spatial branch-and-bound solvers

6

Table 2: Performance comparison of SCIP 5 versus SCIP 4 on the MINLP
testset using five different seeds.

SCIP 4.0.0+SoPlex 3.0.0 SCIP 5.0.0+SoPlex 3.1.0 relative

Subset instances timeout time nodes timeout time nodes time nodes

all 515 125 177.5 39490 105 152.1 16010 1.17 2.47

[0,3600] 447 57 135.8 35708 37 118.2 15732 1.15 2.27

[1,3600] 442 57 143.0 37849 37 124.2 16634 1.15 2.28

[10,3600] 412 56 180.6 46063 36 153.8 19800 1.17 2.33

[100,3600] 291 55 380.8 99049 34 310.5 36694 1.23 2.70

[1000,3600] 117 48 1097.0 277998 32 631.2 69720 1.74 3.99

diff-timeouts 94 57 949.8 240517 37 257.3 26131 3.69 9.20

continuous 114 39 169.8 46495 38 138.4 23218 1.23 2.00

integer 401 86 179.8 37698 67 156.2 14403 1.15 2.62

suffer even more from performance variability, in particular, during this last solving
phase when trying to close remaining gaps below this value.

As can be seen in Table 2, SCIP 5 outperforms SCIP 4 also on the MINLP testset:

− Overall, SCIP 5 is about 17% faster than SCIP 4, which can be observed almost
equally on purely continuous and mixed-integer instances. The number of nodes
decreased by a factor of 2.47.

− The number of instances that timed out decreased by 20 instances. This was mostly
achieved on mixed-integer instances.

− On the harder instances in the [1000,3600] bracket SCIP 5 is even 74% faster and
the tree sizes are reduced by a factor of 3.99.

Naturally, these MINLP results need to be taken with more caution since the bench-
mark sets available to us are significantly smaller and certainly less diverse and repre-
sentative than for MIP. This is a difficulty that the MINLP solver community faces in
general and will hopefully be improved over time. Nevertheless, although the precise
quantification of the performance improvements should be read with care, the results
give a strong indication that SCIP 5 has qualitatively improved in MINLP performance.

The remainder of Section 2 is dedicated to the description of new and improved
features in SCIP 5 that contributed to the observed improvements. Where possible,
their performance impact is quantified by similar experiments. However, note that some
of these experiments were performed in slightly different setups. Some experiments
could only be conducted with intermediate versions of the code. For some methods
different testsets may be more indicative. And last, but not least, limited computing
resources prohibited us from repeating each experiment with five seeds or permutations
before finalizing the release and this report. Hence, not all of the results reported in
the following may be reproducible in the most strict sense using the final release version
of SCIP 5. Nevertheless, the results were included because they still help to give the
reader an indication of how the individual improvements contributed to the whole.

2.2 Presolving

SCIP 5 implements three new presolving methods that are—in concert with the exist-
ing methods—applied before starting the branch-and-bound process in order improve
the problem formulation: an analysis of the clique table for computing aggregations of
variables, a sparsification method to reduce the number of nonzeros in linear constraints,
and an improved disaggregation option for quadratic constraints.

7

2.2.1 Clique Table Analysis

The clique table in SCIP represents set packing conditions on binary variables. These
may be given explicitly in the model or extracted during presolving. The clique table is
another representation of the conflict graph [9] and used for cutting plane separation and
propagation of linear constraints [9] as well as primal heuristics, see Section 2.6.1 and the
recent technical report by Gamrath et al. [39]. The following description of the analysis
of the clique table introduced in SCIP 5.0 uses the implication graph representation of
the data stored in the clique table. The implication graph captures how the value of a
binary variable implies values of other variables. Let B be the set of binary variables
and L = {xi : i ∈ B} ∪ {x̄i : i ∈ B} the set of literals, where x̄i is the complemented
variable x̄i = 1 − xi, i ∈ B. In the following, literals are referenced by u and v, where
u = xi or u = x̄i for some i ∈ B, so u may be an original or a complemented variable.
It follows that the complemented literal ū = 1 − u gives ū = x̄i if u = xi and ū = xi
if u = x̄i. The same applies to v. The implication graph G = (L,A) on the binary
variables is a directed graph with a node for each literal and arcs (u, v) ∈ A that encode
the implication u = 1 ⇒ v = 1. Each clique C of binary literals can be represented in
the implication graph by |C|(|C| − 1) arcs (u, v̄), u 6= v ∈ C.

SCIP 5.0 uses Tarjan’s algorithm [98] to compute strongly connected components
(SCCs) in the implication graph G. Recall that an SCC is a subgraph GS = (VS , AS) of
a directed graph such that for each pair u, v of vertices in VS , there exists a directed path
in GS from u to v. In the implication graph, this means that for each pair of variables
u, v in an SCC, it holds u = 1 ⇒ v = 1 and v = 1 ⇒ u = 1. The latter implication
is equivalent to u = 0 ⇒ v = 0, thus u = v. Based on this argument, all variables of
an SCC can be aggregated to a single one. Moreover, during the SCC computation, a
directed path from a node u to its complement ū may be found. In this case, u can be
fixed to 0.

While the computation of SCCs is independent of the order in which Tarjan’s algo-
rithm traverses the graph, the identification of possible fixings depends on it and thus
on the start node(s) chosen for Tarjan’s algorithm. In order to find more fixings, the
SCC computation returns a topological order of the graph as a side product (note that
after the aggregation of SCCs, the graph is cycle-free and such an order is guaranteed
to exist). SCIP performs a second run of Tarjan’s algorithm afterwards, starting from
the last node in the topological order, to increase the chance to identify variable fixings.

The effort for Tarjan’s algorithm is linear in the number of nodes and arcs of the
graph. The explicit representation of each clique by a quadratic number of arcs, however,
can turn this into a quadratic running time which is too expensive for large instances
with many large cliques. A remedy for this situation is the observation by Achterberg [4]
that a careful implementation only enters each clique at most twice. Therefore, SCIP
works on the clique level and treats the arcs implicitly to make use of this observation
and keep the effort for the clique table analysis reasonable. The clique table analysis is
enabled by default in SCIP 5.0. At the time of addition, activating the feature resulted
in a speedup of 1.8 % for the MIP testset and 5.7 % for the [100,7200] bracket.

2.2.2 Nonzero Cancellation

The basic idea of nonzero cancellation is to add an appropriately scaled linear equality
to other constraints in order to improve the nonzero pattern of the constraint matrix
A ∈ RM×N . This approach to reduce the number of nonzeros in A has already been used
by Chang and McCormick [20], Gondzio [44] and, more recently, Achterberg et. al. [5].
More precisely, assume two constraints

8

AiUxU + AiV xV + AiWxW = bi,
ArUxU + ArV xV + ArY xY ≤ br,

with i, r ∈ M and disjoint subsets of the column indices U , V , W , Y ⊆ N . Further,
assume there exists a scalar λ ∈ Q such that λAiU − ArU = 0 and λAik − Ark 6= 0 for
all k ∈ V . Subtracting λ times the equality i from constraint r yields

AiUxU + AiV xV + AiWxW = bi
(ArV − λAiV)xV − λAiWxW + ArY xY ≤ br − λbi.

(3)

The difference in the number of nonzeros of A is |U | − |W |. The case |U | − |W | ≤ 0
does not seem to offer any advantage. Thus, the remainder of this section assumes
|U | − |W | > 0, which means that the number of nonzeros actually decreases.

For mixed-integer programming, reducing the number of nonzeros of A has two main
advantages. First, many subroutines in a MIP solver depend on this number. Especially
the LP-solver benefits from sparse basis matrices. Secondly, nonzero cancellation may
open up possibilities for other presolving techniques to perform useful reductions or
improvements on the formulation. One special case occurs if W = ∅, that is, the column
indices of the equality are a subset of the column indices of the other constraint. This
case is of particular interest because decompositions may take place. The current default
parameters restrict the nonzero cancellation to this case.

An exhaustive search for suitable pairs (i, r) ∈ M ×M for A is usually too inef-
ficient, since it is of quadratic complexity in the number of constraints. To achieve a
favorable trade-off between search time and effectiveness, a hashing mechanism on vari-
able pairs is used. For each pair of variable indices j, k in each equality i, the quadruple
(aij , j, aik, k), consisting of the variable indices and their coefficients, is hashed using an
open surjective hash function H. The quintuple (i, aij , j, aik, k) is then saved using the
key H(aij , j, aik, k). If H(aij , j, aik, k) is already contained in the hashtable, then the
entry corresponding to the sparser row is kept. Afterwards, for each pair of variable
indices j, k in each inequality r, the hashtable is queried for H(arj , j, ark, k). If the
conditions aij = arj , aik = ajk, W = ∅ hold for the corresponding entry (i, aij , j, aik, k),
then reformulation (3) is applied. To further decrease search time, certain limits are
used to heuristically prevent unrewarding investigations.

In addition, it seems important to preserve special structures by not applying cancel-
lation if it would destroy one of the following properties in the row r above: integrality
of the coefficients; more specifically coefficients +1 and −1; setpacking, setcovering, set-
partitioning, or logicor constraint types; variables with no or only one lock. Finally, it
should be mentioned that adding scaled equations to other constraints needs to be done
with care. In particular, too large or too small scaling factors λ can lead to numerical
problems. Currently, as in [5], a limit of |λ| ≤ 1000 is used.

The performance impact of this feature on the complete MIP testset was neutral at
the time of merging this feature, but two more instances where solved within the time-
limit. In fact, only few instances are affected significantly. On the subsets [1000,7200]
and MIPLIB, however, a performance improvement between 3% and 6% was observed.

2.2.3 Disaggregation of Quadratic Constraints

In a mixed-integer nonlinear program, quadratic constraints may appear in a block-
separable form, that is, the quadratic function can be split into a sum of quadratic func-
tions, such that no two functions share any variable. Disaggregating such constraints
can improve performance, since the linear relaxation for each of the disaggregated con-
straints has to take less variables into account.

9

Formally, consider a quadratic constraint of the form

g(x) = ā>x+
∑
i∈I

ai xi +
∑
i,j∈I

qij xi xj ≤ β, (4)

with ā ∈ Rn, I ⊆ N , a ∈ RI , (qij) ∈ RI×I , β ∈ R, and āi = 0 for i ∈ I. Further, let
{Ip}p∈P be a partitioning of I (∪p∈P Ip = I, Ip ∩ Ip′ = ∅ for p, p′ ∈ P , p 6= p′) such that
qij = 0 for all i ∈ Ip, j ∈ Ip′ , p, p′ ∈ P , p 6= p′.

Then the disaggregated formulation

ā>x+
∑
p∈P

zp ≤ β, (5)

∑
i∈Ip

ai xi +
∑
i,j∈Ip

qij xi xj ≤ zp, p ∈ P, (6)

is equivalent to (4). This reformulation can be advantageous when constructing a tight
linear relaxation of the feasible set. For example, assume that mp linear inequalities
are used to relax each inequality in (6). To formulate the same relaxation without
the additional variables zp, p ∈ P , that is, based on the original formulation (4), all
possible aggregations of (5) with the inequalities that relax equations (6) might be
necessary. This may require

∏
p∈P mp inequalities in the worst case. Hijazi, Bonami,

and Ouorou [50] provide an example where a simple outer approximation algorithm can
profit considerably from disaggregation of quadratic constraints.

Since SCIP version 2.1.0, the parameter constraints/quadratic/disaggregate

has allowed to enable the reformulation (5)–(6), using the finest possible partitioning of I.
With this release, we have revised the disaggregation algorithm. The size of the partition
(|P |) can now be bounded by the parameter constraints/quadratic/maxdisaggrsize
(which replaces constraints/quadratic/disaggregate) and is set to 127 by default.
Further, the constraints (5) and (6) are now scaled up sufficiently to ensure that a
solution that is feasible for the reformulated constraints is also feasible for the original
constraint.

It would also be possible to consider a disaggregation of (4) in which a variable can
appear in more than one of the inequalities (6), thereby dropping the condition qij = 0 for
variables i and j from different partition elements. For example, a constraint x2 +2xy+
y2 ≤ 1 could be disaggregated into z1 + z2 ≤ 1, x2 + 2xy ≤ z1, and y2 ≤ z2. However,
while the original constraint is convex, this does not hold anymore for x2 + 2xy ≤ z1.
Additionally, stronger propagation might be applied to the original constraint, since
interaction of variables can better be taken into account, see also Vigerske and Gleixner
[100, Section 2.2.1.2].

2.3 Symmetry Handling

Let Sn be the symmetric group, i.e., the set of all permutations, on {1, . . . , n}. For a
given a mixed-integer program (MIP)

min {c>x : Ax ≤ b, `i ≤ xi ≤ ui ∀ i ∈ N , xi ∈ Z ∀ i ∈ I}, (7)

a symmetry is a permutation γ ∈ Sn, acting on x ∈ Rn via γ(x) := (xγ−1(1), . . . , xγ−1(n)),
that maps feasible solutions onto feasible solutions preserving the objective value. If such
symmetries are present in a MIP, this typically has a negative effect on the performance
of branch-and-bound procedures, because symmetric solutions are inspected repeatedly
during the solution process. For this reason, several symmetry handling techniques were
discussed in the literature, see, for example, [34, 51, 58, 57, 62, 71, 72] and the overview
by Margot [73].

10

To be able to handle symmetries in SCIP, a symmetry detection mechanism (Sec-
tion 2.3.1) as well as two symmetry handling approaches have been implemented for the
release of version 5.0. The first approach is based on separating and propagating valid
inequalities for certain symmetry breaking polytopes (Section 2.3.2), whereas the sec-
ond approach is a pure propagation approach to handle symmetries (Section 2.3.3). It
is worth to point out that both approaches can exclusively handle symmetries of binary
variables. Nevertheless, these approaches can also be used in general MIPs by ignoring
symmetries of non-binary variables. Thus, symmetries of non-binary variables are not
handled.

2.3.1 Symmetry Detection

To be able to handle symmetries, one first has to detect which symmetries are present in
a MIP. However, computing all symmetries of a MIP is NP-hard, see [73]. Therefore, one
typically refrains from computing symmetries of the feasible region of (7). Instead, one
computes symmetries that keep a specific MIP formulation Ax ≤ b and its objective vec-
tor c invariant. These permutations form the so-called formulation group Γ = Γ(A, b, c)
of a MIP, which can be computed by determining the automorphism group of a suitably
defined graph, see [90]. Consequently, Γ can be found by solving a graph automorphism
problem, which is not known to be either NP-hard or solvable in polynomial time.
However, it can typically be solved efficiently in practice by software like bliss [55],
nauty [76], or saucy [25]. With SCIP 5.0, users have the opportunity to link SCIP
against bliss to compute symmetries.

2.3.2 Symmetry Breaking Polytopes

Let Γ be the symmetry group of a binary program. A polyhedral approach to handle
symmetries of Γ is given by adding for each γ ∈ Γ the so-called fundamental domain
(FD) inequality

c̄>x ≥ c̄>γ(x), where c̄ := (2n−1, 2n−2, . . . , 2, 1)>,

since these inequalities force a solution to be lexicographically maximal in its Γ-orbit,
see [34]. However, this approach is impractical due to the large coefficients in c̄, which
may cause numerical instabilities in applications. To avoid this problem, a different
approach considers the convex hull of the binary points fulfilling all these inequalities.
This leads to so-called symmetry breaking polytopes (symretopes)

S(Γ) = conv
({
x ∈ {0, 1}n : c̄>x ≥ c̄>γ(x), γ ∈ Γ

})
,

which were introduced in [51].
The resulting polyhedral approach either uses a complete linear description of S(Γ)

or derives an IP formulation with small coefficients to avoid the exponential coefficients
of FD-inequalities. By adding valid inequalities for either formulation, one can han-
dle symmetries in a binary program, because these inequalities enforce lexicographical
maximality of a solution. However, complete linear descriptions of symretopes are, in
general, not available. For this reason, the focus of the next section is on IP formulations
of symretopes. Afterwards, a special symretope, the so-called full orbitope, is discussed
in more detail.

IP Formulations with {0,±1}-coefficients To obtain IP formulations of symretopes S(Γ)
with left hand side coefficients in {0,±1}, so-called ternary IP formulations, the ap-
proach of [51] is to combine IP formulations for different single FD-inequalities. This

11

leads to the notion of symresacks corresponding to a permutation γ ∈ Γ:

Pγ := conv({x ∈ {0, 1}n : c̄>x ≥ c̄>γ(x)}).

FD-inequalities may contain positive and negative coefficients. Thus, flipping vari-
ables xi 7→ 1 − xi with a negative coefficient turns Pγ into a classical knapsack poly-

tope P̃γ . This allows for deriving a ternary IP formulation for P̃γ based on minimal
cover inequalities.

Given a knapsack polytope P = conv({x ∈ {0, 1}n : a>x ≤ β}) for some a ∈ Rn+,
β > 0, a cover is a set C ⊆ {1, . . . , n} such that

∑
i∈C ai > β. A cover C is called

minimal if every proper subset of C is not a cover. A classical result in the literature is
that minimal cover inequalities

∑
i∈C xi ≤ |C| − 1 for all minimal covers C of P define

an IP formulation of P , i.e.,

P ∩ {0, 1}n =
{
x ∈ {0, 1}n :

∑
i∈C

xi ≤ |C| − 1 for all minimal covers C
}
, (8)

see Balas and Jeroslow [10]. Hence, a ternary IP formulation P̃γ is given by (8). In

particular, by reverting the transformation xi 7→ 1− xi, the IP formulation of P̃γ turns
into a ternary IP formulation of Pγ . In general, this IP formulation consists of expo-
nentially many inequalities. For the particular case of symresacks, the formulation can
be separated in O(nα(n)) time, where α is the inverse Ackermann function, see [51].
Consequently, a ternary IP formulation for S(Γ) is given by combining the ternary IP
formulations of Pγ for every γ ∈ Γ, which can be separated in O(|Γ|nα(n)) time.

Of course, the above IP formulation for S(Γ) can be strengthened by replacing min-
imal cover inequalities for Pγ with tighter cutting planes, for example, facet defining
inequalities of symresacks. However, such facets are in general unknown. But for the
particular case in which the underlying permutation γ is a composition of m disjoint 2-
cycles, a facet description of Pγ is available, see Kaibel and Loos [56]. The facets of the
corresponding symresacks, so-called orbisacks Om, can be separated in linear time, see
Loos [67], and the separation routine of minimal cover inequalities can implemented to
run in linear time as well, see [51].

To be able to handle arbitrary symmetries via minimal cover inequalities in SCIP,
version 5.0 contains a constraint handler for symresacks that implements the separa-
tion routine of minimal cover inequalities. Moreover, the constraint handler contains a
propagation routine for the FD-inequality associated with the symresack Pγ that runs
in linear time and which was described in [51]. Furthermore, a constraint handler for
orbisacks was included in SCIP. This constraint handler consists of the separation rou-
tine for both minimal cover and facet inequalities as well as a propagation routine for
the corresponding FD-inequality.

Full Orbitopes The full orbitope Om,n is the convex hull of all binary (m×n)-matrices
whose columns are sorted lexicographically non-increasing, see [57]. Thus, it is the
symretope for the group Γ that acts on the order of the columns of such matrices. To
be able to handle symmetries related to full orbitopes, the existing orbitope constraint
handler has been extended by separation and propagation routines for full orbitopes,
which will be discussed in turn.

Since a complete linear description of full orbitopes is unknown, the separation rou-
tine of the orbitope constraint handler separates an IP formulation of Om,n. However,
the separation routine does not separate the IP formulation described in the last sec-
tion, because this formulation would consist of the intersection of n! symresacks. In-
stead, it uses the observation that a binary matrix X is contained in Om,n if and only
if the j-th column X·j of X is not lexicographically smaller than the (j + 1)-st col-
umn X·j+1. Furthermore, note that X·j is not lexicographically smaller than X·j+1

12

if and only if (X·j , X·j+1) is contained in the symresack of the permutation γj which
swaps Xij and Xi,j+1 for every i ∈ [m]. Since γj is a composition of disjoint 2-cycles,
Pγj is linearly equivalent to the orbisack Om. As a consequence, the separation routine
implemented in the orbitope constraint handler separates the minimal cover inequalities
of the n− 1 orbisacks Pγj . The running time of this routine is in O(mn).

Let L and U ∈ {0, 1}m×n encode local lower and upper bounds of entries of X,
respectively. Then the propagation algorithm for full orbitopes and bounds L and U is
based on the observation that a binary matrix X ∈ Om,n has the following structure,
see [67]. The first row of X consists of j ∈ {0, 1, . . . , n} 1-entries which are followed
by (n− j) 0-entries. Moreover, the same structure holds recursively for all submatrices
of rows 2 to m and column index sets {1, . . . , j} and {j+1, . . . , n}. Thus, if the first i−1
rows were already propagated, the above observation can be used to set

− Lij′ = 1 for all j′ < j with Lij = 1 for some j ∈ {1, . . . , n},
− Uij′ = 0 for all j′ > j with Uij = 0 for some j ∈ {1, . . . , n}, and

− declaring the bound pair (L,U) as infeasible if either of the fixings lead to a contra-
diction Uij′ < Lij′ .

Afterwards, the same routine can be called recursively for row i + 1 within column
ranges

{1, . . . ,max{j : Lij = 1}} and {min{j : Uij = 0}, . . . , n}.

The running time of this procedure is in O(mn).
Besides these routines for full orbitopes, the orbitope constraint handler is also able to

handle orbitopes with additional structure, so-called packing and partitioning orbitopes.
These orbitopes are defined as the convex hull of all vertices of Om,n whose rows contain
at most one 1-entry. In contrast to full orbitopes, a complete linear description of packing
and partitioning orbitopes is known, and it can be separated and propagated in linear
time, see [57, 58]. Both the separation and propagation routine are available in the
orbitope constraint handler.

2.3.3 Orbital Fixing

For a binary program that is solved by branch-and-bound, denote for a given node of
the branch-and-bound tree the sets of variables that were branched to 0 and 1 by B0

and B1, respectively. Moreover, let F0 and F1 be the set of variables that were fixed
to 0 and 1, respectively, by some reason different from a branching decision. The idea of
orbital fixing is to find further variables that can be fixed to 0 or 1 due to symmetries of a
group Γ. To be able to formulate orbital fixing, the (set-wise) stabilizer of a set S, that is,
all permutations that keep S invariant, is denoted by StabΓ(S) := {γ ∈ Γ : γ(S) = S}.
The orbit Γ(i) := {γ(i) : γ ∈ Γ} of a variable i contains all variables that can be the
image of i with respect to permutations in Γ.

Lemma 2.1 (Orbital Fixing [72, 81, 82]). Let F0 and F1 be obtained by symmetry
independent methods, and let O = StabΓ(B1)(i) for some variable i.

− If O ∩ (B0 ∪ F0) 6= ∅, all variables in O \ (B0 ∪ F0) can be fixed to 0.

− If O ∩ F1 6= ∅, all variables in O \ F1 can be fixed to 1.

Thus, to make orbital fixing work, in each node of the branch-and-bound tree the
stabilizer group StabΓ(B1) has to be determined; alternatively, one may compute the
local symmetry group at the corresponding node. However, both approaches are rel-
atively costly. For this reason, the implementation of orbital fixing in SCIP uses the
following heuristic to find a subgroup Σ of StabΓ(B1): Let G = {γ1, . . . , γm} be a set
of generators of Γ. In each node of the branch-and-bound tree, the heuristic filters out

13

generators γ ∈ Γ that do not keep B1 invariant. The remaining generators generate the
subgroup Σ, which is used as an approximation of StabΓ(B1) within orbital fixing. This
approach is valid since Σ(i) ⊆ StabΓ(B1)(i) for every variable i.

2.3.4 Using Symmetry Handling in SCIP

Based on the implementation of symmetry handling routines described in [83], both
orbital fixing and the polyhedral approach to handle symmetries were implemented in
SCIP 5.0 and can be activated by setting the parameter misc/usesymmetry to 1 (sym-
retopes) or 2 (orbital fixing, default). To deactivate symmetry handling in SCIP, the
parameter has to be set to 0. Moreover, the user has the opportunity to decide whether
symmetries are computed before or after the presolving methods of SCIP by setting the
parameter presolving/symmetry/computepresolved to FALSE or TRUE, respectively.
By default, symmetries are computed after presolving.

If either of the symmetry handling approaches is activated, the symmetry presolver
of SCIP is called exactly once to compute symmetries (before or after the remaining
presolving steps). Furthermore, if the symretope approach is used, the symbreak pre-
solver is called exactly once at the very end of all presolving steps to determine whether
a part of the symmetry group Γ can be handled by full/packing/partitioning orbitopes,
and adds the corresponding constraints. For the generators of Γ that do not contribute
to symmetries handable by orbitopes, the presolver adds either symresack or orbisack
constraints.

After presolving has finished, the actual symmetry handling methods are called at
the nodes of the branch-and-bound tree. Orbital fixing uses the symmetry group com-
puted by the symmetry presolver to fix variables. The symretope approach separates
inequalities for the different constraint handlers that were added by the symbreak pre-
solver. Moreover, propagation methods of these constraint handlers are called. Note,
however, that if either of the symmetry handling methods is activated, all other com-
ponents of SCIP that might break symmetry have to be deactivated. Otherwise, SCIP
may declare a feasible but non-optimal solution as optimal. In particular, if user plugins
are added to SCIP that might affect the symmetry group of the problem, the symmetry
handling routines of SCIP should be deactivated.

Computational Results To evaluate the impact of symmetry handling on the perfor-
mance of SCIP, we first conducted experiments on the MIPLIB 2010 benchmark testset
and 16 highly symmetric instances taken from Margot [72].1 In comparison to SCIP
without symmetry handling methods, orbital fixing achieves a speedup of about 13.0%
and solves 2 more instances (77 instead of 75) on the MIPLIB 2010 benchmark set.
The speedup of the polyhedral approach is about 9.5% with the same number of solved
instances. On Margot’s highly symmetric instances, however, the picture is different:
Orbital fixing leads to a speed-up of 72.9% and solves 5 more instances (11 instead of 6).
The polyhedral approach achieves a speedup of 91.6%, solving 8 more instances.

In order to investigate the impact on the full MIP testset described in Section 2.1,
default SCIP with orbital fixing was compared against SCIP without symmetry han-
dling.2 This shows that turning off symmetry handling leads to an increase of running
time by about 12% on the instances that can be solved by one of the solvers. On harder
instances of the [1000,7200] bracket, deactivating symmetry handling even leads to a 57%
slowdown of SCIP. Furthermore, if also those instances are taken into account that are

1These experiments were run on a Linux cluster with Intel i3 3.2GHz dual core processors and 8GB
memory using a time limit of one hour and the default seed zero. Note that using a smaller time limit
dampens the influence of unsolved instances and hence slightly favors the weaker solver.

2This was performed with a time limit of two hours and the hardware and computational setup
described in Section 2.1, using the default seed zero.

14

solved by neither of these settings, deactivating symmetry handling leads to an overall
slowdown of 10% on MIPLIB instances and 15% on COR@L instances.

2.4 Separation and Convexification

SCIP 5 includes numerous improvements for several aspects of the cutting plane sep-
aration. This includes algorithmic improvements and bugfixes for the separators for
Gomory, StrongCG, CMIR, flowcover, and {0, 1

2}-cuts. In addition, the management
of cutting planes, fundamental for a good performance of branch-and-cut codes, has
also been revised and improved. For MINLPs, SCIP 5 provides a novel technique to
strengthen the convexification of bilinear terms.

In a nutshell, the separation of cutting planes in SCIP works as follows. It is imple-
mented in terms of separation rounds. Within a single separation round the goal is to
find cuts that are violated by the current LP solution. All the cuts found in one separa-
tion round are added to the separation storage. When the separation round is finished,
the separation storage selects a subset of its cuts for entering the LP relaxation, because
it is usually not a good idea to select all cuts, see, e.g., [1, 8, 3, 101]. Still, the cuts that
are not added to the LP should not be discarded immediately, as they might turn out
to be violated in future LP solutions. Therefore, globally valid cuts—cuts that are valid
in all nodes of the branch-and-bound tree—are kept in a different cut storage, the cut
pool. The cut pool adds violated cuts again to the separation storage and filters cuts,
for instance if they are duplicates of other cuts.

This strategy involves several decisions about individual cuts, therefore, different
properties of the cuts are taken into consideration. The efficacy of a separating cut
a>x ≤ b is the Euclidean distance between the current LP solution x∗ and the half-
space defined by that cut, that is, a>x∗−β

‖a‖ . The parallelism between two vectors u and

v is defined as 〈u,v〉
‖u‖·‖v‖ and is used to measure the similarity between two cuts, or a cut

and the objective function.

2.4.1 Cut Management

The cut management includes the filtering and selection of cuts, when to add or remove
cuts from the LP, and how often cutting planes are separated. This sections describes
the differences between SCIP 4 and SCIP 5 in this matter.

Cut Filtering and Cut Selection The separation storage aims to select a subset of cuts
that are of high quality and dissimilar. To achieve this, the selected subset of cuts
must satisfy a maximum parallelism constraint. The selection is performed greedily, the
best cut by some quality measure is selected first and all inferior cuts that violate the
maximum parallelism constraint are removed from the separation storage. The process
is iterated until no cuts are left, or the maximum number of cuts has been selected.
SCIP 4 and SCIP 5 differ in their quality measure and parallelism constraint.

SCIP 4 computes the score as a weighted sum of the efficacy, the parallelism to the
objective function, and the parallelism between cuts that have already been selected
in the current separation round. The latter property scores a cut higher if it has a
low parallelism to already selected cuts, but can cause the scores to change after each
selected cut. The maximum parallelism in SCIP 4 is 0.5 by default.

Following suggestions of Wesselmann and Suhl [101], the score of a cut in SCIP 5
is computed as a convex combination of its efficacy, objective parallelism, and integral
support—the percentage of its support that is on integer variables. Moreover, the par-
allelism to other cuts is not included in the score anymore, instead the cuts are filtered
with a stricter default value of 0.1 for the maximum parallelism. For cuts of relatively

15

high quality, however, there is an exception: If the score of a cut is at least 0.9 times the
highest score of all cuts found in that separation round, the maximum allowed parallelism
is still 0.5.

Besides, the cut pool in SCIP 5 applies some filtering steps. It detects parallel cuts
with a hashing approach and only adds cuts to the separation storage if their efficacy is
above a certain threshold η. The value of η is initialized relative to the highest efficacy
seen so far. If in several rounds the cut pool contained violated cuts, but none of them,
or too many, had an efficacy above η, then η is adjusted as suggested by Andreello
et. al. [8].

Adding and Removing Cuts from the LP SCIP 4 separates general MIP cuts only in
the root node. Most separators add globally valid cuts to both, the cut pool and the
separation storage. The cut pool is also only separated in the root node by default
and therefore solely takes care of adding cuts found in earlier separation rounds of the
root node again. SCIP 5 uses the cut pool and the separation storage differently. The
separators for general MIP cuts now add all the globally valid cuts exclusively to the
cut pool. Global cuts that enter the LP relaxation at local nodes are not removed from
the LP anymore when switching to a different node. By default, SCIP 5 separates the
cut pool at every node whose depth is a multiple of 10 and also calls the separators at
local nodes. For separation at nodes that are not dual-bound-defining, the separators
are requested to only add globally valid cuts.

2.4.2 General Improvements of Separators

The separation algorithms of the most important MIP cuts have many similarities.
Usually LP rows are aggregated according to some rule to obtain a base inequality.
Then a relaxation is created from the base inequality for which different kinds of cuts
can be separated. In SCIP 4 these steps are implemented as a single routine which leads
to inefficiencies, because it is not possible to reuse the same base inequality and try to
generate different kinds of cutting planes.

Therefore, SCIP 5 adds an API for computing an aggregation of LP rows, which bet-
ter exploits sparsity and can be used independently of the cut generation routines. The
routines for aggregation and cut generation both use double-double arithmetic internally
to achieve roughly twice the precision and mostly avoid numerical rounding errors, see
Section 2.7.3. Moreover, a post-processing step is applied after the cut generation. It
entails the enforcement of a maximal dynamism by cancelling small coefficients with
bound constraints, appropriate scaling, and coefficient strengthening [91], a technique
known from presolving. The improved accuracy and numerics due to these changes allow
to remove several checks for rejecting cuts because of numerical considerations, such as
limiting the rank of cuts or only accepting cuts that can be scaled to integral coefficients
with small scaling factors.

Additionally, SCIP 5 includes a new implementation of the separator for {0, 1
2}-

cuts [18], which is now enabled by default. At the time of incorporating the new imple-
mentation, it gave a modest improvement of the solving time by 3% to 5%. On a few
instances, however, it is a key component: SCIP 5 solves the instance macrophage from
the MIPLIB 2010 benchmark set in under 200 seconds consistently over several random
seeds, whereas SCIP 4 does not solve it within 2 hours.

2.4.3 Complemented Mixed-Integer Rounding (CMIR) and Flowcover Separation

The class of complemented mixed-integer rounding (CMIR) cuts [70] is one of the most
important classes of cutting planes for solving MIP problems [4]. In the separation

16

Table 3: Performance comparison of SCIP 4 and SCIP 5 on UFCN [80] and
ULSB [61] instances.

SCIP 5.0.0+SoPlex 3.1.0 SCIP 4.0.1+SoPlex 3.0.1 relative

Testset instances timeout time nodes timeout time nodes time nodes

UFCN 83 8 42.0 657 22 134.7 13444 3.21 20.45
ULSB 65 0 5.1 6 9 1155.0 1074292 227.36 195.33

procedure, a base inequality is generated by aggregating rows heuristically with the
aim of projecting out active continuous variables—continuous variables that are strictly
between their bounds in the current LP solution. Subsequently, a bound substitution
step is performed to obtain a mixed knapsack relaxation from the base inequality, in
other words, variables are complemented or shifted with their bounds so that they have
a lower bound of zero. Finally, different scaling factors are tested and an MIR cut is
generated for the scaling factor that yields the best cut.

For SCIP 5, the aggregation heuristic and the cut generation heuristic have been
improved. The scoring of rows is now based on a measure that indicates how much
the activity of a row is influenced by the fractionality of the current LP solution x∗.
Particularly, let a>x + c>y ≤ b be a row with x integer and y continuous. Then the
integral variables contribute a>min(x∗ − bx∗c, dx∗e − x∗) to the score. Furthermore,
all yi, which appear in a constraint of the form yi ≤ dixi + b with xi integer such that
y∗i = dix

∗
i + b, contribute ci di min(x∗i − bx∗i c, dx∗i e − x∗i) to the score. After a cut was

generated from an aggregation of rows, the scores for these rows are decreased based on
their parallelism to the generated cut. Additionally, the aggregation heuristic prefers
equalities that only contain a single active continuous variable, since such an equality
can always be used to project this variable out of other rows without introducing new
active continuous variables.

The cut generation heuristic for CMIR cuts now also separates lifted flow cover in-
equalities [47] for the same base inequality. SCIP 4, on the contrary, uses a CMIR-based
approach for separating flowcover inequalities [69, 104] only from single rows. Moreover,
the cut generation heuristic runs considerably faster, since the base inequality is only
computed once and the testing of different scaling factors improved algorithmically. In
particular, by exploiting the observation that the efficacies of MIR cuts obtained from
one base inequality with n integer variables and m continuous variables for k different
scaling factors can be computed in O(k ·n+m) instead of O(k · (n+m)) by aggregating
the continuous variables. Eventually, only the cut with the highest efficacy is considered
to be added to the LP relaxation, namely either the lifted flowcover cut or the MIR cut
obtained with the best scaling factor.

The improvements of the CMIR and flowcover separation can have a tremendous
impact on problem instances that contain fixed charge network structure, such as the
MIP formulations for many network design, lot-sizing, and unit commitment problems:
Table 3 lists computational results for instances of the uncapacitated lot-sizing problem
with backlogging (ULSB) from Küçükyavuz et. al. [61] and of the uncapacitated fixed
charge network flow problem (UFCN) from Ortega et. al. [80]. SCIP 5 achieves a speed-
up of 3.2 on the UFCN and 227.3 on the ULSB instances. The latter ones are mostly
solved in the root node with SCIP 5 and always faster than SCIP 4. Also note that
on UFCN every instance solved by SCIP 4 is solved by SCIP 5 as well, and SCIP 4 is
only faster on a few easier instances that are solved quickly by branching and therefore
the increased time spent in separation does not pay off.

17

2.4.4 Stronger Relaxations for Bilinear Terms Using Linear Inequalities

The well-known McCormick relaxation [75, 6] describes the convex hull of the graph
of xi xj on a box [`i, ui] × [`j , uj] and is of major importance for creating linear relax-
ations for nonconvex constraints involving bilinear terms. Even though the McCormick
relaxation is best possible for [`i, ui] × [`j , uj], it does not yield the convex hull when
considering additional, for example, linear constraints on xi and xj . The tighter convex
hull of the graph of xi xj has been described by Linderoth [64] for triangular domains,
by Hijazi [49] on sets defined by a single constraints xi ≤ xj , and by Locatelli [65] on
general polytopes P ⊂ R2.

However, in order to apply these results, it is necessary to identify valid inequali-
ties containing only the variables of bilinear terms automatically in the solver. These
inequalities could be already present in the MINLP (2), but could also be derived from
exploiting a linear relaxation R. A simple example is optimization-based bound tighten-
ing (OBBT), which yields the best possible variable bounds, i.e., singleton inequalities,
over R. (See Gleixner et al. [42] for details on the OBBT implementation in SCIP.)

In order to find other non-axis parallel inequalities, SCIP 5.0 solves for each bilinear
term xi xj that appears in at least one nonconvex quadratic constraint auxiliary LPs of
the form

max

{
λ :

(
xi
xj

)
=

(
si
sj

)
+ λ

(
ti − si
tj − sj

)
, x ∈ R, λ ∈ [0, 1]

}
. (9)

Here si, ti ∈ {`i, ui} and sj , tj ∈ {`j , uj} are chosen such that si 6= sj and ti 6= tj
holds. Let x∗ be the optimal solution of the LP (9). If (x∗i , x

∗
j) 6= (ti, tj) then there

exists an inequality that separates the point t from R. Using LP duality, one can show
that aggregating the constraints of the linear relaxation weighted by the optimal dual
multipliers results in a valid inequality of the form

αi xi + αj xj ≤ α0 (10)

with αi, αj 6= 0. These up to four inequalities per bilinear term form a polytope Pi,j ⊆
[`i, ui]× [`j , uj], that constitutes a relaxation of the projection of R onto xi and xj . It
can be used in order to separate the convex hull of the graph of xi xj according to the
formulas given by Locatelli [65].

In SCIP 5.0, all LPs (9) are solved in the already existing prop obbt propagator.
Note that the LPs depend on the current bounds of the variables appearing bilinearly
and thus are solved after the classical OBBT-LPs. SCIP uses for each call of the
propagator the same iteration limit as for OBBT, but bounds the total number of LP
iterations for solving (9) via the parameter propagating/obbt/itlimitfactorbilin.
Each inequality of the type (10) is passed to cons quadratic through a new interface
function SCIPaddBilinearIneqQuadratic. The inequalities are only used during the
term-wise separation of nonconvex quadratic constraints whenever a bilinear term needs
to over- or underestimated.

The new feature is enabled per default and operates on bilinear terms that appear in
at least one nonconvex quadratic constraint. Overall, 398 instances of the MINLPLib2
are potentially affected by this technique in the sense that at least one nontrivial in-
equality for at least one bilinear term could be derived in an experiment without working
limits on the solution ofthe auxiliary LPs. On this set of instances, the root gap could
be reduced by 40% when setting the separation emphasis to aggressive. A thorough
evaluation of the overall performance impact is still to be conducted. When activating
the feature, the number of instances solved over five permutations on the MINLP testset
increased by two.

18

2.5 Conflict and Dual Proof Analysis

During branch-and-bound, SCIP analyzes subproblems that are infeasible due to con-
tradicting bound changes, infeasible LP relaxations, or LP relaxations that exceed the
objective cutoff bound provided by the incumbent solution. In SCIP 4.0, dual ray
analysis was introduced to extend the analysis of infeasible LP relaxations, see [103].
Vaguely speaking, dual ray analysis amounts to converting the Farkas proof that is valid
under local bounds into a globally valid inequality that is used for propagation dur-
ing the subsequent tree search. Prior to SCIP 4.0, only conflict graph analysis was
available, which is a generalization of SAT techniques [74] to MIP developed by Achter-
berg [3]. For SCIP 4.0, the addition of dual ray analysis yielded a speedup of 1.05 on
the MIPLIB 2010 benchmark set and 1.19 on hard instances, i.e., those instances that
take more than 1000 seconds solving time [68].

In SCIP 5.0 the conflict graph analysis for bound exceeding LPs is now complemented
by the so-called dual solution analysis. Consider a subproblem of form

min {c>x : Ax ≤ b, `′ ≤ x ≤ u′, xi ∈ Z ∀i ∈ I} (11)

with local bound vectors ` ≤ `′ ≤ u′ ≤ u. The subproblem can be pruned if the LP
relaxation value of (11) exceeds the current objective cutoff bound z?. This holds if and
only if there exists a feasible solution (y′, r′, r′) of the LP dual

max {r>`′ − r>u′ − b>y : r − r −A>y = c, y, r, r ≥ 0} (12)

such that (r′)>`′ − (r′)>u′ − b>y′ > z?. From this dual solution the inequality

(c+A>y′)>x ≤ b>y′ + z? (13)

can be constructed, which is globally valid, but violated for all x ∈ [`′, u′]. SCIP 5.0
collects and uses inequalities of type (13) for propagation in order to avoid exploring
suboptimal subproblems. By default, both conflict graph and dual solution analysis are
enabled for bound exceeding LPs. Modifying the parameter conflict/useboundlp, the
analysis for this kind of infeasibility can be disabled completely or changed to use only
one of conflict graph or dual solution analysis.

Note that dual ray analysis may be considered a special case of dual solution analysis
when setting c = 0 and z? = 0 in (13). Indeed, while both cases are distinguished,
SCIP internally uses the same implementation for filtering, storing, propagating, and
dynamically removing useless inequalities.

In SCIP 4.0 and prior versions, the analysis of bound exceeding LPs was disabled by
default. In SCIP 5.0, extended by dual solution analysis, its activation yielded a speedup
of 1.02 on the MIP testset and 1.06 on the [1000,7200] bracket. On MIPLIB 2010, dual
solution analysis improved the solving time by a factor of 1.07 and reduced the tree size
by a factor of 1.12.

2.6 Primal Heuristics

The current SCIP release contains two new primal heuristics as well as improvements
to two existing pre-root heuristics. The first new addition is a dedicated method to
construct integer-feasible solutions to mixed-binary MINLPs, which is based on solving
a sequence of mathematical programs with equilibrium constraints and goes back to
Schewe and Schmidt [92]. The second new heuristic implements a novel scheme to
coordinate many of the existing large neighborhood search heuristics in a more dynamic
manner.

19

2.6.1 Improved Structure-driven Fix-and-Propagate Heuristics

After the addition of the variable locks heuristic in the last release [68], SCIP 5.0
features a rework of the other two structure-based pre-root heuristics clique and variable
bound [38].

Both heuristics employ a fix-and-propagate scheme. In a first step, they fix variables
based on structures in the problem and apply domain propagation after each fixing to
identify implied bound changes. In SCIP 5.0, infeasible fixings in this phase are now
undone by a backtracking step and the fixing phase is continued. By this, higher final
fixing rates are reached. Consequently, the solution of the reduced LP solved after the
fixing phase can be rounded to an integer feasible solution more often. This allows to
skip the more expensive sub-MIP solve in many cases and even if the sub-MIP is solved,
the problem is smaller and therefore faster to solve.

The clique heuristic uses a different fixing scheme now. Instead of computing a
clique partition at the beginning, it selects a clique with the highest number of unfixed
variables in each step. It then selects the cheapest among these variables and fixes
it to 1; all others are automatically fixed to 0 by domain propagation. The variable
bound heuristic now takes into account cliques when sorting the variable bound graph
topologically, since they represent a special form of variable bounds. Additionally, it was
extended by two more fixing scheme variants, which allow applying fixings only if they
correspond to the better or worse bound of the variable with respect to the objective
function, respectively. More details and extensive computational experiments for all
three structure-driven heuristics are provided in the technical report [39].

The updated clique and variable bounds heuristic are both enabled by default in
SCIP 5.0. Although the average solving time stayed unchanged, other measures showed
improvements in computational experiments: four more instances of out MIP test set
were solved within the time limit of two hours, the primal integral was reduced by 3 %
and the time to the first solution by 11 %. For instances with more inherent structure, as
is the case for the instances in the MIP testset that originate from the COR@L testset,
larger improvements can be observed: solving time and primal integral are reduced by
4 % and 10 %, respectively.

2.6.2 The MPEC Heuristic

A mathematical program with equilibrium constraints (MPEC) is an optimization prob-
lem with complementarity constraints or variational inequalities. For example, the con-
straint x ∈ {0, 1} can be modeled as a complementarity constraint x ⊥ 1 − x, i.e.,
x (1− x) = 0, and x, 1− x ≥ 0.

The basic idea of the MPEC heuristic, developed by Schewe and Schmidt [92], is
as follows. Given a mixed-binary nonlinear problem (MBNLP), reformulate it as an
MPEC and solve the MPEC to local optimality. The MPEC reformulation can itself be
reformulated to an NLP by writing x ⊥ 1−x as x (1−x) = 0. However, solving this NLP
reformulation with a generic NLP solver will often fail. One issue is that the reformulated
complementarity constraints will not, in general, satisfy constraint qualifications such
as the Linear Independence or Mangasarian-Fromovitz constraint qualifications.

Therefore, in order to increase the chances of solving the NLP reformulation of the
MPEC successfully, the heuristic solves regularized versions of the NLP by relaxing
x(1 − x) = 0 to x(1 − x) ≤ θ, for different, ever smaller θ > 0. Specifically, the
MPEC heuristic, as implemented in SCIP 5.0, proceeds as described in Algorithm 1. By
default, the starting values are θ = 1

8 and σ = 1
2 . These values can be modified with the

parameters heuristics/mpec/inittheta and heuristics/mpec/sigma, respectively.
Activating the MPEC heuristics did not have a major effect on the overall perfor-

mance of SCIP on the MINLP testset. By default, the heuristic is currently only applied

20

Algorithm 1: MPEC heuristic as implemented in SCIP 5.0

Input: MBNLP, θ ∈ (0, 1
4), σ ∈ (0, 1), current LP solution xLP

Output: feasible solution x∗ or “no solution found”
1 Build regularized NLP (rNLP);
2 x̂← xLP , re-initialized ← false, fixed ← false;
3 while true do
4 solve (rNLP) using x̂ as initial point;
5 if (rNLP) is feasible then
6 let x be the feasible solution of (rNLP);
7 if xi ≈ 0 ∨ xi ≈ 1 for all i ∈ I then
8 call sub-NLP heuristic with x as initial solution;
9 if sub-NLP heuristic succeeded then

10 return solution found by sub-NLP heuristic;

11 else
12 θ ← θ · σ, x̂← x, re-initialized ← false, fixed ← false

13 else
14 if (rNLP) is infeasible then
15 let x be the returned infeasible point of (rNLP);
16 if xi ≈ 0 ∨ xi ≈ 1 for all i ∈ I then
17 return no solution found

18 if not re-initialized then
19 for all i ∈ I set x̂i to 1 if x̂i < 0.5, otherwise to 0;
20 re-initialized ← true;
21 continue;

22 if not fixed then
23 for all i ∈ I fix x̂i to 1 if x̂i < 0.5, otherwise to 0;
24 fixed ← true;
25 continue;

26 return solution found by sub-NLP heuristic;

27 update (rNLP) with new θ;

with conservative working limits. However, out of 42 calls on the whole testset it found
improving solutions in 6 cases, two of which were an optimal solution.

2.6.3 Adaptive Large Neighborhood Search

Large Neighborhood Search (LNS) heuristics for MIP and MINLP explore an auxiliary
problem around a (set of) reference points or solutions. For MIP, auxiliary problems
are usually defined by fixing a subset of the integer variables directly to some reference
solution values such as in RINS [24], or by adding additional inequalities as in Local
Branching [29]. Sometimes the original objective function is replaced by an artificial
objective function. Adaptive Large Neighborhood Search (ALNS) is a novel framework
to coordinate eight LNS heuristics: Crossover and Mutation [87], DINS [41], Local
Branching, Proximity [30], RENS [14], RINS, and Zero Objective.

Inside ALNS, all these LNS heuristics are subject to a single computational budget,
which makes it easier to restrict or emphasize the use of LNS techniques in SCIP
altogether. In addition, the selection of the next LNS technique to run is centralized.
The selection is inspired by algorithms for multi armed bandit problems (see [16] and

21

the reference therein). By default, ALNS selects the next LNS heuristic based on upper
confidence bounds [16] around an LNS specific reward function, which weighs the success
of a run against its computational cost.

The difficulty of the auxiliary problem is used by the ALNS framework to adapt the
minimum improvement, the node budget, and the target fixing rate between runs. If
the auxiliary problem is solved to optimality or proven to be infeasible, the target fixing
rate is reduced. If the solution process terminated without a solution, the target fixing
rate is increased because the auxiliary problem was too hard. Adjusting the target fixing
rate has been originally proposed by [87].

On the algorithmic side, ALNS combines the variable fixings of an LNS heuristic
with a generic variable fixing priorization to (un)fix additional integer variables if the
heuristic misses (exceeds) its individual target fixing rate. Fixings are prioritized to keep
the auxiliary problem as connected as possible by considering proximity in the variable
constraint graph. In case of a tie, reduced costs and pseudo costs of the fixings are
compared to prioritize between two variables. It is noteworthy that this generic variable
priorization allows to run LNS heuristics such as Local Branching that originally do not
fix variables on their own. Such heuristics have been previously deactivated in SCIP
because of their expensive runtime behavior. Inside ALNS, these heuristics are started
conservatively, requiring about 45 % of the variables fixed. Only if they are successful,
the target fixing rate is gradually reduced to 0 %.

ALNS is now activated as one of the default primal heuristics of SCIP. By default,
it uses all LNS heuristics whose auxiliary problem definitions modify the source MIP at
hand. The first 8 runs call all neighborhoods in a randomized order once. After that,
the selection process is determined by upper confidence bounds based on the observed
rewards.

An overall speedup on the MIP testset of 2 % has been obtained, in particular a 4 %
speedup on MIPLIB 2010. The benefit of ALNS increases with the instance difficulty.
On harder instances that take 1000 seconds or more, the speedup is even 8 %. The
performance on MIPLIB 2010 is better if only the already active primal heuristics RENS,
RINS, and Crossover were used for ALNS. However, the performance on other instances
improved more by the help of additional, previously deactivated neighborhoods. In the
future, the selection of algorithmic solver strategies via bandit selection may extend to
other components of SCIP. As a first step, all three bandit routines have therefore been
made available through the public API, see also Section 2.7.1.

2.7 Technical Improvements and New User Features

In this section, a list of smaller algorithmic enhancements, new data structures, and user
features are described that come with the current release of SCIP:

− central data structures for bandit algorithms as used, for example, by the ALNS
heuristics described above (Section 2.7.1),

− a new “union find” data structure for maintaining connected components information
(Section 2.7.2),

− a fast software-side implementation for quadruple precision (Section 2.7.3),

− a new plugin type that allows users to add tables to SCIP’s statistics output (Sec-
tion 2.7.4),

− the possibility to query maximum violations of constraints, variable bounds, and
integrality requirements (Section 2.7.5),

− the functionality to display a classification of linear constraints (Section 2.7.6), and
last, not least,

− two new interfaces to the NLP solvers FilterSQP and WORHP (Section 2.7.7).

22

2.7.1 Bandit Algorithms

The introduction of the ALNS heuristic (Section 2.6.3) required an algorithmic compo-
nent that selects among several LNS heuristics under the uncertainty which of them will
perform best. Such a selection problem is referred to as multi armed bandit problem [16].
In its basic version, the multi armed bandit problem is often presented as a game, in
which the player has to select between a finite set of actions and receives a reward for
the selected action only. The player’s goal is to maximize their total reward. Clearly,
the challenge lies in a careful balance between exploration over the entire set of available
actions, and the greedy exploitation of the action that performed well on average.

The SCIP API has been extended by three selection algorithms for multi armed
bandit problems, namely upper confidence bounds, ε-greedy, and Exp.3, see [16] for de-
tails. Except for their creation, which requires a set of one or two individual parameters
to control their selection behavior, the algorithms use the same interface and can be
exchanged easily. In every round, a selection is made by the bandit algorithm using
the method SCIPbanditSelect. Second, the reward is returned via SCIPbanditUpdate.
In the future, the bandit routines might also be applied in other parts of SCIP that
repeatedly require a coordinated choice among a class of similar algorithms.

2.7.2 Disjoint Set Data Structure

The core data structures of SCIP have been extended by a disjoint set data structure for
a fast update of graph connectedness information. Disjoint sets (also known as “union
find”) maintain a representative of the connected component of every node of a graph.
Whenever an edge is inserted, only the representatives of the two end nodes have to be
merged.

Connectedness information is used by several default plugins and core technologies of
SCIP. The connected components of the clique table are now maintained with a disjoint
set data structure, which provides memory and performance benefits compared to the
previous implementation using a directed graph. Most notably, it allows a fast update
of connectedness information when a new clique enters the clique table.

2.7.3 Double-double Arithmetic

SCIP uses double-precision (64bit) floating-point arithmetics and therefore can solve
problem instances only up to certain numerical tolerances. Moreover, the potential
accumulation of round-off errors can compromise the correctness of results regarding
feasibility and optimality. Therefore it is important to perform critical computations
defensively and to discard results if there are indications that the desired accuracy
cannot be reached. Another solution in such cases would be to switch to a higher level
of precision, for example by using arbitrary precision libraries such as GMP [46]. These
libraries, however, are usually orders of magnitudes slower than computations in double
precision, which would affect performance.

Hence, starting with version 5, SCIP provides routines that use so-called double-
double arithmetic due to Rump [89], which achieves roughly twice the precision, that is,
quadruple precision. These routines can be implemented in terms of standard double-
precision operations where each number is represented as an unevaluated sum of two
double-precision floating-point values. The operations are implemented without branches
and use only ordinary arithmetic instructions. As a result, they are well optimized by
modern compilers and very fast in practice. The exact sum of two double-precision
numbers requires only 6 additions. In SCIP 5 double-double arithmetic is used during
the separation of MIP cutting planes.

23

2.7.4 Statistics Tables

For the current release a further plugin type has been added to SCIP: the statistics
table. This plugin type controls the output of statistics within SCIP. Whenever the
statistics output is requested from SCIP through the console or some other filestream,
the TABLEOUTPUT callback of all active statistics tables will be called in order of increasing
position parameters. With the addition of the statistics table plugin type, also all
default SCIP statistics have been changed to statistics tables, so that they can now be
enabled or disabled directly through their corresponding active parameter. Additional
sections can also be easily added to the SCIP statistics by users through writing their
own SCIP TABLE. For details on the implementation of new statistics tables, see the
corresponding how-to article in the online documentation.

2.7.5 Numerical Violations

Every constraint handler of SCIP must implement a callback to check the feasibility
of a solution, which reports either “feasible” or “infeasible” back to SCIP. Even if a
solution is reported feasible, slight violations below the tolerances may be present. With
version 5.0, SCIP allows to query this information for every solution. Numerical viola-
tions of LP rows, constraints, variable bounds and integrality are now computed when
a solution is checked. The maximum absolute and relative violations of the incumbent
solution are displayed upon calling checksol in the interactive shell. Even for feasible
solutions, displaying the violations may give an insight into possible numerical problems.

The implementation of the extended check is optional for constraint handlers. The
displayed violations should therefore be considered a lower bound to the actual maximum
violations. This bound is tight if the solution was checked completely and all involved
constraint handlers implement the update. All default constraint handlers support the
computation of numerical violations. Every constraint handler should use the following
methods if it detects a violation.

− SCIPsolUpdateIntegralityViolation,
− SCIPsolUpdateBoundViolation,
− SCIPsolUpdateLPRowViolation, and
− SCIPsolUpdateConsViolation.

As a convenience method, SCIPsolUpdateLPConsViolation can be used to update the
numerical violation of a constraint that is represented as an LP row.

2.7.6 Classification of Linear Constraint Types

Most MIP models feature linear constraints with a certain structure. With version 5.0,
SCIP can classify the linear part of a given MIP or MINLP. The classification recognizes
the different linear constraint types of the MIPLIB 2010 benchmark library, which it
extends by constraints of type PRECEDENCE. The resulting 17 types are given in Table 4.

After reading a problem, the linear classification is invoked from the SCIP interac-
tive shell with the command display linclass. This method applies the above clas-
sification hierarchy (from top to bottom) to every linear constraint of the problem. In
particular, neither nonlinear constraints are considered, nor linear constraints that have
been upgraded to more special types during presolving. In order to obtain a complete
constraint classification after presolving, all linear upgrades should be disabled.

It is important to emphasize that there is a difference between the definitions of car-
dinality constraints in the classification above and the corresponding constraint handler
of SCIP. The latter considers inequalities instead of equations and is not restricted to
binary variables.

24

Table 4: Classification of linear constraint types

Type Description

EMPTY linear constraint with no variables
FREE linear constraint with no finite side
SINGLETON linear constraint with a single variable
AGGREGATION equation with two variables
PRECEDENCE inequality where both variables have the same type and coefficient with

opposite sign (ax− ay ≤ b)
VARBOUND general inequality for two variables including a binary variable

(ax+ by ≤ c, x ∈ {0, 1})
SETPARTITION set partition constraint (

∑
i xi = 1, xi ∈ {0, 1} ∀i)

SETPACKING set packing constraint (
∑
i xi ≤ 1, xi ∈ {0, 1} ∀i)

SETCOVERING set covering constraint (
∑
i xi ≥ 1, xi ∈ {0, 1} ∀i)

CARDINALITY generalized set partition constraint (
∑
i xi = k, xi ∈ {0, 1} ∀i, k ≥ 2)

INVKNAPSACK generalized set packing constraint (
∑
i xi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N≥2)

EQKNAPSACK knapsack equation (
∑
i aixi = b, xi ∈ {0, 1}, ai ∈ N ∀i, b ∈ N≥2)

BINPACKING special knapsack constraint of the form (
∑
i aixi + ax ≤ a with x, xi ∈

{0, 1} ∀i, ai, a ∈ N≥2)
KNAPSACK general 0/1 knapsack inequality (

∑
i aixi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N≥2)

INTKNAPSACK general integer knapsack (
∑
i aixi ≤ b, xi ∈ Z ∀i, b ∈ N)

MIXEDBINARY inequality or equation for binary and continuous variables
(
∑
i aixi +

∑
i pisi{≤,=}b, xi ∈ {0, 1} ∀i)

GENERAL general linear constraint that matches none of the above types

In rare cases, a single linear constraint can be classified as two different types. An
example of this is a combination of set covering and and invariant knapsack inequalities
in a single ranged row. In such a case, the number of original constraints may be smaller
than the number of classified constraints.

2.7.7 New Interfaces to NLP Solvers FilterSQP and WORHP

New interfaces to the Nonlinear Programming solvers FilterSQP and WORHP have
been added to SCIP. FilterSQP is an implementation of the Sequential Quadratic
Programming (SQP) method by Fletcher and Leyffer [31, 32]. It is not publicly available,
but may be obtained from Sven Leyffer upon request. WORHP by Büskens and Wassel
[17] implements the SQP method and a Penalty-Interior-Point (IP) algorithm. It is
developed at the University of Bremen and is free for academic purposes [105].

SCIP can be compiled with multiple NLP solvers and selects the solver with the
highest priority at the beginning of the solving process. The priorities of FilterSQP
and WORHP’s IP and SQP implementations can be adjusted via the three parameters
nlpi/{filtersqp,worhp-ip,worhp-sqp}/priority. By default, the priorities of all
available NLP solvers are, in descending order: Ipopt, WORHP-IP, FilterSQP,
WORHP-SQP. If more than one solver is available, then it is possible to solve all
NLPs during the solving process with all available NLP solvers by setting the parameter
nlpi/all/priority to the highest value. In this case, SCIP uses the solution from the
solver that provides the best objective value. Other possible use cases for the availability
of multiple solvers have not been implemented yet.

An extensive performance comparison between Ipopt, WORHP, and FilterSQP in
SCIP is available in Müller et al. [79]. The results show that Ipopt is more successful in
finding local optimal points than the other NLP solvers, but SCIP is performing fastest
with FilterSQP.

25

3 SoPlex

SoPlex 3.1 is a minor update on the previous version and mainly includes internal
improvements on already existing features. Most notable are the improved solution
polishing implementation and a new aggressive scaling method.

3.1 LP Solution Polishing

LP solution polishing exploits degeneracy in the problem in order to choose an alternative
LP optimum, for instance one with less fractional variables. This technique was already
implemented in SoPlex 3.0 [68]. In this version the implementation is improved by
not simply looping over all nonbasic variables until no pivot step can be performed
anymore. Instead, we keep a candidate list of slack or continuous variables that may
be pivoted into the basis. This reduces the involved overhead while maintaining the
original algorithmic behavior.

Most importantly, LP solution polishing has been activated inside SCIP 5.0 during
probing and diving mode in order to decrease fractionality. This can positively affect the
success of primal heuristics that iteratively solve LPs, possibly interleaved with rounding
and propagation steps, in order to arrive at an integer feasible solution. Prominent ex-
amples are the feasibility pump heuristic and many diving heuristics. Polishing remains
deactivated during strong branching and OBBT propagation, which are not focused at
finding primal solutions.

At the time of activating this feature, an experiment on the MIP testset with random
seed zero showed a SCIP speedup of 6%. Especially harder instances in the [100,7200]
bracket were positively affected with a speedup of over 10%.

3.2 A New Aggressive Scaling Method

Matrix scaling is a widely used means to improve the conditioning of linear programs,
see, e.g., [27, 84]. SoPlex 3.1 features a new method that combines two existing
scaling variants, geometric and equilibrium scaling. While equilibrium scaling divides
all coefficients in each nonzero row and column of the constraint matrix by the ab-
solute largest entry within this vector, geometric scaling uses a simplified geomet-
ric mean of the absolute vector entries as divisor: For each column Aj of the con-
straint matrix A the divisior is

√
maxi:aij 6=0 |aij | ·mini:aij 6=0 |aij |, for each row ai· it is√

maxj:aij 6=0 |aij | ·minj:aij 6=0 |aij |.
Geometric mean scaling is computationally more expensive than equilibrium scaling,

since it is applied iteratively (up to eight times in SoPlex); equilibrium scaling on
the other hand always converges in one step. While geometric scaling attempts to
reduce the maximum absolute coefficient ratio within each column and row, equilibrium
scaling yields a matrix such that the largest entry in each nonzero row and column is
of magnitude one. The new scaling method performs geometric followed by equilibrium
scaling. Like least-squares scaling it is mostly recommended for numerically difficult
instances and can be activated with the command line parameter -g6. More information
about the scaling procedure implemented in SoPlex can be found in Maher et al. [68].

3.3 Technical Improvements

The stability and reliability of the solver has been improved by fixing several bugs and
numerical issues. Furthermore, SoPlex 3.1 comes with two smaller modifications. First,
the maximum number of updates to the LU factorization before can now be set via a

26

parameter from within SCIP (lp/refactorinterval). This allows to tune the solver
more easily to problems where a larger or smaller refactorization interval is desirable.

Second, in the sparse data structures entries with value zero are now automatically
removed when creating or modifying a vector. This gave a minimal performance im-
provement and complies with newly added checks in the LP solver interface of SCIP,
which forbid the introduction of structural nonzero entries with value zero. This is mo-
tivated by the desire to make behavior of different LP solvers as consistent as possible.

4 Applications and Extensions

The SCIP Optimization Suite comes with a series of applications and extensions that
have been developed to solve various classes of mathematical programming problems.
The current release contains a new application CycleClustering for a graph partition-
ing problem motivated by the analysis of Markov processes [102, 26] and improvements
to the Steiner tree solver SCIP-Jack [40] and the MISDP extension SCIP-SDP [36].

4.1 CycleClustering

The CycleClustering application is an implementation of a clustering problem that
detects cyclic behavior in Markov processes [102]. Given a discrete set of states S =
{1, . . . , n} and a set of clusters K = {1, . . . ,m}, a clustering is defined as a partitioning
of the set of states into m pairwise disjoint clusters

S =

m⋃
t=1

Ct, Ct ∩ Ct′ = ∅ for all t 6= t′.

This can be modeled by introducing binary decision variables xit for each state i ∈ S
and each cluster t ∈ K with

xit = 1⇐⇒ i ∈ Ct ⇐⇒ state i is assigned to cluster t.

In cycle clustering, the goal is to identify an ordered set of clusters (C1, . . . , Cn) with
high net flow ft between consecutive clusters and high coherence gt within clusters. A
scaling parameter α > 0 is used to control the emphasis on coherence in the objective
function. The cycle clustering problem can be formulated as the MINLP

max
∑
t∈K

ft + α ·
∑
t∈K

gt

s.t.
∑
t∈K

xit = 1 for all i ∈ S,∑
i∈S

xit ≥ 1 for all t ∈ K,

gt =
∑
i,j∈S
i<j

(qij + qji)xitxjt for all t ∈ K,

ft =
∑
i,j∈S,
i 6=j

(qij − qji)xitxjφ(t) for all t ∈ K,

xit ∈ {0, 1} for all t ∈ K, i ∈ S,
ft, gt ≥ 0 for all t ∈ K,

where φ(t) = t+ 1, if t < m and φ(m) = 1 otherwise.

27

The CycleClustering application solves the above MINLP by using a branch-and-
cut approach on a problem-specific, compact linearization. Problem-specific heuristics,
valid inequalities, and specific branching rules were implemented to improve the perfor-
mance on these challenging MIP models. Further details can be found in [26].

4.2 SCIP-Jack: Steiner Tree and Related Problems

Given an undirected, connected graph G = (V,E), costs (or weights) c : E → R+ and
a set T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) asks for a tree
S = (VS , ES) ⊆ G such that T ⊆ VS holds and

∑
e∈ES

c(e) is minimized.
The SPG is a classical optimization problem, being the subject of hundreds of re-

search articles, see [52] for an overview. It also has real-world applications, albeit rarely
in pristine form. However, there are many applications that involve problems closely
related to the SPG. To handle such problems, the SCIP Optimization Suite contains
SCIP-Jack, an exact solver for the SPG and 11 of its variants.

The latest version SCIP-Jack 1.2 comes with a number of generic improvements,
such as its own solution pool and cache-optimized graph routines. Compared to SCIP-
Jack 1.1, which was released with the SCIP Optimization Suite 4.0, SCIP-Jack 1.2 de-
livers notable performance gains. Many instances can be solved more than twice as fast.
A striking example of the improved performance is the degree-constrained Steiner tree
problem: Although SCIP-Jack 1.2 does not include any new problem-specific features
for this variant, it solves almost twice as many instances in two hours. With this it even
outperforms other, more specialized solvers such as the one described by Liers et al. [63].

In addition to the significant speedup provided by generic implementation improve-
ments, the main advances have been problem-specific, most notably for the maximum-
weight connected subgraph problem (MWCSP). These improvements include new pre-
processing techniques, new heuristics, and a new IP formulation, see [86] for a detailed
description. SCIP-Jack 1.2 is for many MWCSP instances more than three orders of
magnitude faster than other solvers and is able to solve formerly unsolved problems in
less than a minute.

While the focus of the recent developments has been on variants of the SPG such
as the maximum-weight connected subgraph problem, the next year will see a return to
the roots: the classical SPG. The aim is to improve performance not only by enhancing
existing implementations, but by implementing a number of new techniques—a few
having been published for instance in Rehfeldt and Koch [85].

4.3 SCIP-SDP

SCIP-SDP is an external plugin for solving mixed-integer semidefinite programming
(MISDP) in SCIP. It uses either a cutting plane approach, similarly to how SCIP solves
MINLPs, or a nonlinear branch-and-bound approach using interfaces to interior-point
SDP solvers. SCIP-SDP solves MISDPs in the (dual) form

inf b>y

s.t.

m∑
i=1

Ai yi − C � 0,

y ∈ Rp ×Zm−p,

(MISDP)

with symmetric matrices C, Ai ∈ Rn×n for all i = 1, . . . ,m. For a general description
of SCIP-SDP see [36].

28

For Version 3.1 the possibility to warmstart interior-point solvers within the nonlinear
branch-and-bound approach was added. The main effort of the nonlinear branch-and-
bound approach consists of solving the primal-dual pair

inf b>y

s.t.

m∑
i=1

Ai yi − C � 0,

y ∈ Rm

(SDP-D)

sup C •X
s.t. Ai •X = bi for all i = 1, . . . ,m,

X � 0
(SDP-P)

in each node of the branch-and-bound tree. For the simplex algorithm for linear problems
many iterations can be saved by starting the solving process of each node after the root
from the optimal basis of the parent node, since the optimal basis of the parent node
is always dual feasible for the child and therefore a valid starting point for the dual
simplex algorithm. For interior-point algorithms warmstarting is much harder. Feasible
interior-point algorithms require the initial point to lie in the relative interior of the
feasible region, preferably close to the central path, but the final iterates of the parent
node will usually be close to the boundary, since a linear function is optimized over a
convex set. Infeasible primal-dual interior-point-methods can compensate for the need
of the solution to be feasible for the new variable bounds after branching, but they
still require the solution to be sufficiently centered, which is not the case for optimal
solutions.

Warmstarting techniques for interior-point algorithms can be grouped into three
main categories. Either the interior-point methods themselves are adjusted, or earlier
iterates of the solving process of the parent node are used, or the optimal solutions of the
parent node are adjusted in an additional preprocessing step. While adjusted interior-
point methods using penalty techniques have already been successfully implemented in
solvers for mixed-integer nonlinear programs, for example by Benson and Shanno [12]
in the MINLP solver MILANO [11] using the interior-point solver LOQO [99], they
are not really usable for SCIP-SDP, which interfaces existing SDP solvers. Therefore
these will not be discussed in the following and the reader is referred to the overview
article by Engau [28] for an extension of those methods to mixed-integer semidefinite
programming.

Starting from Earlier Iterates One possibility to find a solution in the relative interior,
first proposed by Gondzio [45], is to use an earlier iterate of the interior-point algorithm,
which may still have a larger duality gap, but is still strictly feasible. In this approach
the interior-point solver is stopped once the duality gap has reached a predetermined
value ε1, at which point the primal and dual solutions for the current iterate are stored,
before continuing until the desired final gap tolerance ε2 has been reached.

Convex Combination with Interior-Point For restoring strict feasibility for the optimal
solution, one possibility is to take a convex combination with a point in the relative
interior. Since the optimal solution has to be primal and dual feasible, taking the
convex combination with a primal and dual strictly feasible point will lead to a solution
that is again primal and dual strictly feasible, but also close to the optimal solution.
This kind of technique was already used by Helmberg and Rendl in 1998 [48], but has
recently been further investigated by Skajaa et al. [97] in the context of the homogeneous
self-dual embedding.

The strictly feasible solution can be chosen as a scaled identity matrix, similar to the
usual default initial point of most interior-point solvers, with scaling factors depending
on the largest entries of either both primal and dual matrix, or with different factors for
the primal and dual matrix, respectively. A more involved choice for the solution in the

29

relative interior would be to compute the analytic center of the feasible set once in the
root node and use this throughout the tree (the true analytic center might change, but
since the computation may be as costly as solving the SDP-relaxation, it is not feasible
to compute it anew in each node).

Projection onto Positive Definite Cone Instead of moving the solution of the parent
node towards some more or less arbitrary point within the cone of positive definite
matrices, it is also possible to project it, to find a positive definite matrix that is as close
as possible to the original solution. Of course such a projection onto the cone of positive
definite matrices cannot exist, since the cone is not closed. From a computational point
of view, however, it is also not sufficient for the matrix to be positive definite, it needs to
be sufficiently far away from the boundary. Therefore, SCIP-SDP uses the projection
Pλ onto the set of all symmetric matrices with all eigenvalues larger than or equal to
some λ > 0. Given an eigenvector decomposition VDiag(λ)V > = X with V ∈ Rn×n
(which exists because X is real, symmetric and positive semidefinite), this projection
can be computed explicitly as

Pλ(X) = VDiag((max{λi, λ})i≤n)V >, (14)

which is a generalization of the well-known projection onto the set of positive semidefinite
matrices proposed by Schwertman and Allen [93].

Rounding Problems Çay et al. [19] proposed a warmstarting approach for mixed-integer
second-order cone programming based on Jordan frames, which are an extension of
eigenvector decompositions to general Jordan algebras. Applied to MISDPs, the general
idea of the approach is to fix the eigenvector decomposition of the parent node and
optimize over the corresponding eigenvalues, which becomes a linear program, to restore
feasibility for the adjusted bounds and afterwards use a convex combination again to
move the solution to the interior. In the first step, feasibility of the primal solution
will be restored. For this, given an eigenvector decomposition VDiag(λ̂)V > = X̂ of
the optimal primal solution of the parent node, the following linear so-called “rounding
problem” is solved:

sup C • (VDiag(λ)V >)

s.t. Ai • (VDiag(λ)V >) = bi for all i = 1, . . . ,m,

λi ≥ 0 for all i ≤ n.
(P-R)

Since (P-R) is a restriction of (SDP-P) to matrices with the same eigenvectors as X̂,
the optimal objective value of (P-R) gives a lower bound on the optimal objective value
of (SDP-P) and therefore, by weak duality, also on the optimal objective of (SDP-D).
This implies that if (P-R) is unbounded (or more generally dual infeasible), so is (SDP-P)
and therefore (SDP-D) has to be infeasible and can be cut off without having to solve
an SDP. Furthermore, as mentioned in the conclusion of [19], by the same arguments
it can be shown that if the optimal objective of (P-R) is larger than the cutoff bound
of (MISDP), e.g., the best known integer solution, the node can also be cut off via
bounding.

If the node could not be cut off via (P-R), as a second step the corresponding dual
rounding-problem

inf bT y

s.t.
∑
i≤m

Aiyi −WDiag(µ)WT = C,

µi ≥ 0 for all i ≤ n, y ∈ Rm,

(D-R)

30

Algorithm 2: Warmstart via rounding problems

Input: (bounded) SDP-relaxation (SDP-D), parentnode solution (X̂, ŷ, Ẑ), cutoff
bound U , strictly feasible solution (X0, y0, Z0), IP-weight γ

Output: optimal solution (X†, y†, Z†) or “cutoff” if (SDP-D) is infeasible or the
optimal objective is no better than the cutoff bound

1 compute eigenvector decomposition VDiag(λ̂)V > of X̂;
2 solve (P-R) for V ;
3 if (P-R) is primal feasible then
4 if (P-R) is dual infeasible then
5 return cutoff;
6 else
7 let p be the optimal objective value and λ̄ a solution of (P-R);
8 if p ≥ U then
9 return cutoff;

10 else

11 compute eigenvector decomposition WDiag(µ̂)W> of Ẑ;
12 solve (D-R) for W ;
13 if (D-R) is primal feasible then
14 let d be the optimal objective value and (ȳ, µ̄) a solution of (D-R);
15 if d = p then
16 return (X̄ := VDiag(λ̄)V >, ȳ, Z̄ := WDiag(µ̄)W>);
17 else

18 (X̃, ỹ, Z̃)← (1− γ)(VDiag(λ̄)V >, ȳ, WDiag(µ̄)W>)
19 +γ(X0, y0, Z0);

20 solve (SDP-D) with initial point (X̃, ỹ, Z̃);
21 return solution of (SDP-D);

22 else
23 solve (SDP-D) with coldstart;

24 else
25 solve (SDP-D) with coldstart;

has to be solved, where WDiag(µ̂)W> = Ẑ :=
∑
i≤mAiŷi −C is an eigenvector decom-

position of the optimal slack matrix of the parent node, which again is a linear program.
By the same arguments as before, (D-R) gives an upper bound on the optimal objective
value of (SDP-D), so

optval(P-R) ≤ optval(SDP-P) ≤ optval(SDP-D) ≤ optval(D-R).

Therefore, if optval(P-R) = optval(D-R), then also optval(SDP-D) = optval(D-R), and
since every feasible solution of (D-R) is also feasible for (SDP-D), an optimal solution
to (SDP-D) could be found by solving linear problems only. Otherwise, the optimal
solutions (λ̄, ȳ, µ̄) form primal and dual feasible solutions (X̄ := VDiag(λ̄)V >, ȳ, Z̄ :=
WDiag(µ̄)W>) of (SDP-P) and (SDP-D). To get a solution in the relative interior, a
convex combination with either a default initial point or an earlier iterate of the parent
node can be taken.

Note that since (P-R) and (D-R) are restrictions of (SDP-P) and (SDP-D), they
may be infeasible even though (SDP-P) and (SDP-D) are feasible, in which case no
information can be extracted from them. In this case the warmstarting procedure has
to be aborted and (SDP-P) and (SDP-D) have to be solved with a coldstart. The whole
procedure is given in Algorithm 2.

31

Table 5: Solving times for different warmstarting techniques for the complete
testset

settings solved time SDP-iter penalty unsolved

no warmstart 290 117.85 22 827.93 6.72 % 8.46 %
unadjusted warmstart 126 821.82 – 18.78 % 22.50 %
earlier iterate: gap 0.01 172 396.93 – 4.50 % 3.08 %
earlier iterate: gap 0.5 252 213.88 26 923.91 8.01 % 10.66 %
convcomb: 0.01 scaled (pdsame) id 288 113.60 19 697.25 8.65 % 10.90 %
convcomb: 0.5 scaled (pddiff) id 289 108.60 18 307.29 9.29 % 9.16 %
convcomb: 0.5 scaled (pdsame) id 290 109.92 19 684.70 6.05 % 8.60 %
convcomb: 0.5 analcent 288 140.21 25 351.48 13.55 % 10.65 %
projection 289 112.87 20 195.03 6.13 % 9.27 %
roundingprob 0.5 id 281 180.95 16 955.37 6.73 % 8.76 %
roundingprob inf only 289 159.66 18 521.50 6.76 % 8.50 %

Implementation and Numerical Results All of the described techniques have been im-
plemented for the SDPA [107, 108] interface of SCIP-SDP. The earlier iterate and
convex combination techniques have also been implemented for DSDP [13], while the
other techniques could not be implemented for DSDP, since it only allows to specify
the dual vector y for the initial point, but not the primal and dual matrices X and Z.
Since MOSEK 8 [78] does not allow to specify an initial point for its conic interior-point
solver, none of the techniques can currently be used in conjunction with MOSEK.

Numerical experiments have been conducted on the testset of all 194 MISDP in-
stances of the conic benchmark library [33], which were originally proposed in [36], and
an additional 126 instances from a compressed sensing application proposed in [35].
The tests were carried out on a cluster of 64-bit Intel Xeon E5-1620 CPUs running at
3.50GHz with 32GB RAM using SDPA 7.4.0 together with preliminary developer ver-
sions of SCIP 5.0 and SCIP-SDP 3.1. We omit results for DSDP, since only some of
the techniques could be compared and the effects of changing the initial point are greatly
diminished for DSDP because of its internal penalty formulation. The results for SDPA
are given in Table 5 with the number of solved instances, the time as shifted geometric
mean, the number of SDP-iterations as the shifted geometric mean (shift 1000) over all
instances solved to optimality by all settings except for the unadjusted warmstart and
the warmstart with a preoptimal solution of gap at most 10%, the average percentage
of SDP relaxations that could only be solved using the penalty formulation explained
in [36] and the amount of SDP relaxations that could not be solved at all.

The results show that a direct warmstart with the unadjusted solution of the parent
node, like for the dual simplex, is not a good idea. Also restarting with earlier iterations
did not work too well within SCIP-SDP, although using 50% gap solutions at least
led to a small speedup for the minimum-k-partitioning instances. Taking the convex
combination with a scaled identity matrix (with the scaling factors chosen dynamically
based on the specific instance and with either the same or different scaling factors for
the primal and dual problem) seemed to be the best approach for SCIP-SDP, with all
three variants given in Table 5 leading to small speedups overall. Looking at the specific
instance sets, there are even some quite significant speedups. Taking only 1% of the
interior-point is the fastest approach for both cardinality-constrained least-squares and
minimum-k-partioning, with speedups of 11% and 16%, respectively, but is 41% slower
than the coldstart for the truss topology instances. The 50% combination with different
scaling factors in the primal and dual leads to the largest speedup on any testset, with
28% on the compressed sensing instances, and is also the fastest version overall with
a speedup of 8%. The version with equal scaling factors for the primal and dual is a
bit more stable, however, leading only to a 15% slowdown for truss topology and being
significantly faster than the cold start on all other instance sets. Using the analytic
center of the root node relaxation instead of a scaled identity matrix did not seem to
work to well within SCIP-SDP, with a significantly increased percentage of relaxations

32

needing the penalty formulation. Projecting onto positive definite matrices again led to
a speedup, although a bit less than the convex combinations, but of all warmstarting
techniques, this was the one that led to the smallest slowdown on the truss topology
testset with only 8% in comparison to coldstarts.

The rounding problems led to the smallest amount of SDP iterations, showing that
they can indeed be used to reduce the amount of work spent in interior-point solvers, but
the additional LP solves turned out to be too expensive, even if only the primal round-
ing problems were solved to detect infeasibility or suboptimality. For the cardinality-
constrained least-squares instances, when solving both primal and dual rounding prob-
lems, more time was spent in the rounding problems than it takes to solve the MISDP
via coldstarts, and also for the compressed sensing instances more than 50% of the time
was spent in the rounding problems. For the other two instance sets with sparser matri-
ces the amount of time was much less, but the results were also quite disappointing, with
the solution of the dual rounding problem failing regularly, so that the problems had to
be coldstarted in the end. For the first two applications, however, the approach actually
succeeded cutting off a significant number of SDP-relaxations. For the cardinality-
constrained least-squares testset over 25% of all infeasible relaxations could be cut off
via the dual rounding problem, by solving a linear program only. For the compressed
sensing application over 50% of all relaxations could be cut off via bounding through
the primal rounding problem, and the dual rounding problem could be solved for a valid
initial point in almost all of the remaining cases. It should be noted, however, that these
numbers include all solved SDP-relaxations, including easier problems solved in heuris-
tics. Actually almost all of the infeasible problems cut off for the cardinality-constrained
least-squares applications came from heuristics, which would have been easier to solve
anyways, and also for the compressed sensing application, suboptimality was detected
much more often for the problems stemming from heuristics, but in this case still almost
30% of all nodes could be cut off via rounding problems. This shows that the rounding
problems could in theory lead to a speedup if the solving times for the rounding prob-
lems could be decreased in the implementation, for example by warmstarting them using
the dual simplex or by eliminating the smallest eigenvalues of the parent node from the
formulation.

Overall it can be seen that significant speedups can be gained from warmstarting, but
no approach seems to work well for all applications. Therefore, warmstarts are disabled
by default in SCIP-SDP 3.1, but can be activated by the corresponding parameters of
the SDP relaxation handler, for more details see the documentation of SCIP-SDP.

5 The UG Framework

The Ubiquity Generator framework UG is a generic framework to parallelize state-
of-the-art branch-and-bound solvers, which are referred to as the base solvers, from
“outside.” UG is composed of a collection of C++ base classes, which define interfaces
that can be customized for any base solver and communication library. Shinano [94]
gives a general overview of the UG framework. For SCIP, a UG parallelization has been
implemented both for shared and distributed memory computing environments, called
FiberSCIP [96] and ParaSCIP [95], respectively.

UG 0.8.5 provides minor modifications necessary to comply with changes in SCIP 5.0,
a small revision of the parallelization for the Steiner tree solver SCIP-Jack, and most
notably a first parallelization of the MISDP solver SCIP-SDP.

33

2 4 6 8 10 12 16 20 24 28 32 40 48 56 63
1

2

5

10

20

number of threads

fa
ct

or

Time
Nodes

Figure 1: Speedup factors and relative changes in the number of nodes for
increasing numbers of slave threads used by UG-MISDP on CBLIB instance
5x5 1bar.

5.1 Revisions to the Steiner Tree Parallelization

A parallel version of the Steiner tree problem solver SCIP-Jack (see Section 4.2) is
included as the UG application “STP”. After revising the interface with SCIP, the
current release provides improved stability of this parallelization. While SCIP-Jack
can handle a variety of different Steiner tree problem variants, the UG parallelization is
currently only supported for the classical Steiner tree problem in graphs.

In order to use parallel SCIP-Jack most efficiently, users are advised to tune the
UG parameters depending on the problem type they want to solve. The default param-
eter settings in this release package set racing ramp-up and disable presolving inside
the LoadCoordinator. These settings were selected for instances that can be solved al-
ready by sequential SCIP-Jack in at most one hour. In contrast, Gamrath et al. [40]
chose special settings targeted towards solving open instances. Here, each instance was
presolved once and solved at its root node in the LoadCoordinator. Then root node cuts
were added to the presolved instance and the parallel solving phase was initiated using
normal ramp-up.

5.2 A New Parallel MISDP Solver

UG 0.8.5 comes with a preliminary beta version of a new application to parallelize the
tree search of the MISDP solver SCIP-SDP described in Section 4.3 on both shared
memory and distributed memory computing environments. The parallelized tree search
can additionally be combined with the internal parallelization of some of the underlying
SDP solvers.

At this stage, a systematic performance analysis of this implementation, especially
in comparison to a parallelization of the SDP solving, is still pending. However, in order
to exemplify the potential gains, preliminary computational results on a single instance
of the conic benchmark library [33] with a single-threaded solving time of 4931 seconds
and 264 092 nodes are presented in Figure 1. The experiment was conducted on a
shared memory cluster of 64 Intel Xeon E3-4650 CPUs running at 2.7GHz with 1 TB
RAM. The underlying SDP solver used was MOSEK 8.1.0.25 [78]. As can be seen, the
parallelization can lead to speedup factors of up to 27 when employing 64 threads in
total (one master and 63 slave threads). However, as is to be expected when looking at
the behavior for just a single instance, a rather large variability can be observed in the
number of branch-and-bound nodes. This again leads to a large variability of speedup
factors.

34

6 Final Remarks

The goal of this article was to provide an overview of the SCIP Optimization Suite 5.0.
In particular, we highlighted the performance improvements and how they have been
achieved. Moreover, we presented changes in the framework that might be helpful for
users, and we hope that these are inspiring to the readers.

Of course, there are many ideas that we will work on in the future—not only with
respect to performance improvements, but also for extending the scope of the SCIP Op-
timization Suite and its related software packages. We are always happy for suggestions,
collaborations, and contributions.

Acknowledgements

The authors want to thank all contributors to the SCIP Optimization Suite. Special
thanks go to Roland Wunderling, the creator of SoPlex, to Tobias Achterberg, the
creator of SCIP, to Marco Lübbecke, who drives the GCG development, to Alexander
Martin who developed SIP, the predecessor of SCIP, and to all former and present
developers of SCIP, GCG, and SCIP-SDP.

We wish to thank Katsuki Fujisawa at IMI, Kyushu University, for allowing us to use
his computing factilities for the computations in Section 5.2, Chuen Teck See for creating
the first parallelized version of SCIP-SDP using UG, Renke Kuhlmann for supporting
us in writing and analyzing the NLP interface to WORHP, Stefan Heinz for maintaining
the LP interface to Xpress, and Tobias Achterberg and Michael Winkler for helping
with the LP interface to Gurobi. We are grateful to the HLRN III supercomputer staff,
especially Matthias Läuter and Guido Laubender and to the ISM supercomputer staff
in Tokyo, especially Tomonori Hiruta.

Code Contributions of the Authors

The material presented in the article naturally is based on code and software. In the
following we try to make the corresponding contributions of the authors and possible
contact points more transparent.

The updates to the presolving in SCIP presented in Section 2.2 have been imple-
mented by GG (clique table analysis), by PG, AG, RG, and DW (nonzero cancellation),
and by BM and SV (quadratic constraint disaggregation). The improvements in Sec-
tion 2.4 have been contributed by RG (cut management and MIP separation together
with FeS) and BM, FeS, and AG (bilinear term relaxations). The symmetry handling
extensions of SCIP (Section 2.3) have been implemented by MP and CH. Conflict and
dual proof analysis (Section 2.5) has been extended by JaW. Primal heuristics (Sec-
tion 2.6) have been extended by GH (Adaptive Large Neighborhood Search) and BM
and FeS (MPEC heuristic for MINLP). GG has improved the structure-based heuris-
tics. Additional contributions to the code infrastructure from Section 2.7 have been
made by RG (double-double arithmetic), GH (disjoint set data structure together with
DR, bandit selection algorithms, linear constraint classification together with AG), TG
(new table plugin type together with GH), MV (numerical violation computation for so-
lutions together with GH), and by SV and BM (new NLP solver interfaces to WORHP
and FilterSQP).

The improvements to SoPlex described in Section 3 have been chiefly performed
by MM together with DR (for scaling) and AG (for solution polishing inside SCIP).
The work on the applications in Section 4 has been conducted by LE (CycleClustering
application together with JaW), DR (updates in SCIP-Jack), and TG (warmstarting
procedures in SCIP-SDP). The adjustments to UG explained in Section 5 have been

35

implemented by YS, TG (for MISDP), and DR (for SCIP-Jack). Last, not least, GH
and FrS have supported the infrastructure for performing and evaluating computational
tests with their work on the tools Ipet [53] and Rubberband [88].

References

[1] T. Achterberg. Conflict analysis in mixed integer programming. Discrete Opt., 4(1):4–20,
2007.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007.

[3] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[4] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years
of progress. In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimiza-
tion: Festschrift for Martin Grötschel, pages 449–481. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-38189-8 18.

[5] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions
in mixed integer programming. Technical Report 16-44, ZIB, Takustr. 7, 14195 Berlin,
2016.

[6] F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics
of Operations Research, 8(2):273–286, 1983.

[7] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, 2001.

[8] G. Andreello, A. Caprara, and M. Fischetti. Embedding {0, 1
2
}-cuts in a branch-and-cut

framework: A computational study. INFORMS Journal on Computing, 19(2):229–238,
2007. doi:10.1287/ijoc.1050.0162.

[9] A. Atamtürk, G. L. Nemhauser, and M. W. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121(1):40–55, 2000.

[10] E. Balas and R. Jeroslow. Canonical cuts on the unit hypercube. SIAM Journal on
Applied Mathematics, 23(1):61–69, 1972. doi:10.1137/0123007.

[11] H. Y. Benson. Mixed integer nonlinear programming using interior-point methods. Op-
timization Methods and Software, 26(6):911–931, 2011.

[12] H. Y. Benson and D. F. Shanno. An exact primal-dual penalty method approach to warm-
starting interior-point methods for linear programming. Computational Optimization and
Applications, 38(8):371–399, 2007.

[13] S. J. Benson and Y. Ye. Algorithm 875: DSDP5–software for semidefinite programming.
ACM Transactions on Mathematical Software, 34(4):16:1–16:20, 2008.

[14] T. Berthold. RENS–The optimal rounding. Mathematical Programming Computation, 6
(1):33–54, 2014. doi:10.1007/s12532-013-0060-9.

[15] R. Borndörfer, S. Schenker, M. Skutella, and T. Strunk. PolySCIP. In G.-M. Greuel,
T. Koch, P. Paule, and A. Sommese, editors, Mathematical Software – ICMS 2016,
5th International Congress, Proceedings, volume 9725 of LNCS, Berlin, Germany, 2016.
Springer. doi:10.1007/978-3-319-42432-3.

[16] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. CoRR, abs/1204.5721, 2012. URL http://arxiv.org/abs/

1204.5721.

[17] C. Büskens and D. Wassel. The ESA NLP solver WORHP. In G. Fasano and J. D.
Pintér, editors, Modeling and optimization in space engineering, pages 85–110. Springer,
2012.

[18] A. Caprara and M. Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical Programming,
74(3):221–235, 1996. doi:10.1007/BF02592196.

[19] S. B. Çay, I. Pólik, and T. Terlaky. Warm-start of interior point methods for second order
cone optimization via rounding over optimal Jordan frames. ISE technical report 17T-

36

http://dx.doi.org/10.1007/978-3-642-38189-8_18
http://dx.doi.org/10.1287/ijoc.1050.0162
http://dx.doi.org/10.1137/0123007
http://dx.doi.org/10.1007/s12532-013-0060-9
http://dx.doi.org/10.1007/978-3-319-42432-3
http://arxiv.org/abs/1204.5721
http://arxiv.org/abs/1204.5721
http://dx.doi.org/10.1007/BF02592196

006, Lehigh University, 2017. URL http://www.optimization-online.org/DB_HTML/

2017/05/5998.html.

[20] S. F. Chang and S. T. McCormick. Implementation and computational results for the
hierarchical algorithm for making sparse matrices sparser. ACM Transactions on Math-
ematical Software, 19(3):419–441, 1993. doi:10.1145/155743.152620.

[21] COIN-OR. CppAD, a package for differentiation of C++ algorithms. http://www.

coin-or.org/CppAD.

[22] Computational Optimization Research at Lehigh Laboratory (CORAL). MIP in-
stances. https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/. Vis-
ited 12/2017.

[23] E. Danna. Performance variability in mixed integer programming, 2008. Presentation at
Workshop on Mixed Integer Programming.

[24] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighbor-
hoods to improve MIP solutions. Mathematical Programming, 102(1):71–90, 2005.
doi:10.1007/s10107-004-0518-7.

[25] P. T. Darga, H. Katebi, M. Liffiton, I. L. Markov, and K. Sakallah. Saucy. http:

//vlsicad.eecs.umich.edu/BK/SAUCY/, 2012.

[26] L. Eifler. Mixed-integer programming for clustering in non-reversible Markov processes.
Master’s thesis, Technische Universität Berlin, 2017.

[27] J. M. Elble and N. V. Sahinidis. Scaling linear optimization problems prior to application
of the simplex method. Computational Optimization and Applications, 52(2):345–371,
2012. doi:10.1007/s10589-011-9420-4.

[28] A. Engau. Recent progress in interior-point methods: Cutting-plane algorithms and warm
starts. In M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite, Conic and
Polynomial Optimization, volume 166 of International Series in Operations Research &
Management Science, pages 471–498. Springer Science+Business Media, 2012.

[29] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.

[30] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex programming.
Journal of Heuristics, 20(6):709–731, 2014. doi:10.1007/s10732-014-9266-x.

[31] R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis Report
NA/181, Department of Mathematics, University of Dundee, Scotland, 1998.

[32] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, 91(2):239–269, 2002. doi:10.1007/s101070100244.

[33] H. A. Friberg. CBLIB 2014: A benchmark library for conic mixed-integer and continuous
optimization. Mathematical Programming Computation, 8(2):191–214, 2016.

[34] E. J. Friedman. Fundamental domains for integer programs with symmetries. In A. Dress,
Y. Xu, and B. Zhu, editors, Combinatorial Optimization and Applications, volume 4616
of Lecture Notes in Computer Science, pages 146–153. Springer Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-73556-4 17.

[35] T. Gally and M. E. Pfetsch. Computing restricted isometry constants via mixed-integer
semidefinite programming. Technical report, Optimization Online, 2016. URL http:

//www.optimization-online.org/DB_HTML/2016/04/5395.html.

[36] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-integer semidef-
inite programs. Optimization Methods and Software, 2017. To Appear.

[37] G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-Wolfe decompo-
sition for integer programs. In P. Festa, editor, Experimental Algorithms, volume 6049
of Lecture Notes in Computer Science, pages 239–252. Springer Berlin Heidelberg, 2010.
doi:10.1007/978-3-642-13193-6 21.

[38] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-based primal heuristics
for mixed integer programming. In K. Fujisawa, Y. Shinano, and H. Waki, editors,
Optimization in the Real World, volume 13 of Mathematics for Industry, pages 37–53.
Springer Japan, 2015. doi:10.1007/978-4-431-55420-2 3.

[39] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-driven fix-and-propagate
heuristics for mixed integer programming. Technical Report 17-56, ZIB, Takustr. 7, 14195
Berlin, 2017. URL http://nbn-resolving.de/urn:nbn:de:0297-zib-65387.

37

http://www.optimization-online.org/DB_HTML/2017/05/5998.html
http://www.optimization-online.org/DB_HTML/2017/05/5998.html
http://dx.doi.org/10.1145/155743.152620
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
http://dx.doi.org/10.1007/s10107-004-0518-7
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://dx.doi.org/10.1007/s10589-011-9420-4
http://dx.doi.org/10.1007/s10732-014-9266-x
http://dx.doi.org/10.1007/s101070100244
http://dx.doi.org/10.1007/978-3-540-73556-4_17
http://www.optimization-online.org/DB_HTML/2016/04/5395.html
http://www.optimization-online.org/DB_HTML/2016/04/5395.html
http://dx.doi.org/10.1007/978-3-642-13193-6_21
http://dx.doi.org/10.1007/978-4-431-55420-2_3
http://nbn-resolving.de/urn:nbn:de:0297-zib-65387

[40] G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack—a solver
for STP and variants with parallelization extensions. Mathematical Programming Com-
putation, 9(2):231–296, 2017. doi:10.1007/s12532-016-0114-x.

[41] S. Ghosh. DINS, a MIP Improvement Heuristic. In M. Fischetti and D. P. Williamson,
editors, Integer Programming and Combinatorial Optimization: 12th International
IPCO Conference, Ithaca, NY, USA, pages 310–323. Springer Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-72792-7 24.

[42] A. M. Gleixner, T. Berthold, B. Müller, and S. Weltge. Three enhancements for
optimization-based bound tightening. Journal of Global Optimization, pages 1–27, 2016.
doi:10.1007/s10898-016-0450-4.

[43] A. M. Gleixner, D. E. Steffy, and K. Wolter. Iterative refinement for linear programming.
INFORMS Journal on Computing, 28(3):449–464, 2016. doi:10.1287/ijoc.2016.0692.

[44] J. Gondzio. Presolve analysis of linear programs prior to applying an interior point
method. INFORMS Journal on Computing, 9(1):73–91, 1997.

[45] J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme.
Mathematical Programming, 83(1):125–143, 1998.

[46] T. Granlund and the GMP development team. GNU MP: The GNU Multiple Precision
Arithmetic Library, 6.1.2 edition, 2016. http://gmplib.org/.

[47] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Lifted flow cover inequalities for mixed
0-1 integer programs. Mathematical Programming, 85(3):439–467, 1999.

[48] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs
and cutting planes. Mathematical Programming, 82:291–315, 1998.

[49] H. Hijazi. Perspective envelopes for bilinear functions. Technical report, Optimization On-
line, 2015. URL http://www.optimization-online.org/DB_HTML/2015/03/4841.html.

[50] H. Hijazi, P. Bonami, and A. Ouorou. An outer-inner approximation for separable
mixed-integer nonlinear programs. INFORMS Journal on Computing, 26(1):31–44, 2014.
doi:10.1287/ijoc.1120.0545.

[51] C. Hojny and M. E. Pfetsch. Polytopes associated with symmetry handling. Technical
report, Technische Universität Darmstadt, 2017.

[52] F. Hwang, D. Richards, and P. Winter. The Steiner tree problem. Annals of Discrete
Mathematics, 53, 1992.

[53] Ipet. Interactive Performance Evaluation Tools for Optimization Software. http://www.
github.com/gregorch/ipet.

[54] Ipopt. Interior Point OPTimizer. http://www.coin-or.org/Ipopt/.

[55] T. Junttila and P. Kaski. bliss: A tool for computing automorphism groups and canonical
labelings of graphs. http://www.tcs.hut.fi/Software/bliss/, 2012.

[56] V. Kaibel and A. Loos. Finding descriptions of polytopes via extended formulations and
liftings. In A. R. Mahjoub, editor, Progress in Combinatorial Optimization. Wiley, 2011.

[57] V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes. Mathematical Pro-
gramming, 114(1):1–36, 2008. doi:10.1007/s10107-006-0081-5.

[58] V. Kaibel, M. Peinhardt, and M. E. Pfetsch. Orbitopal fixing. Discrete Optimization, 8
(4):595–610, 2011. doi:10.1016/j.disopt.2011.07.001.

[59] T. Koch. Rapid Mathematical Prototyping. PhD thesis, Technische Universität Berlin,
2004.

[60] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation, 3
(2):103–163, 2011.

[61] S. Küçükyavuz and Y. Pochet. Uncapacitated lot sizing with backlogging: the convex
hull. Mathematical Programming, 118(1):151–175, 2009. doi:10.1007/s10107-007-0186-5.

[62] L. Liberti. Reformulations in mathematical programming: Automatic symmetry
detection and exploitation. Mathematical Programming, 131(1-2):273–304, 2012.
doi:10.1007/s10107-010-0351-0.

[63] F. Liers, A. Martin, and S. Pape. Binary Steiner trees: Structural re-
sults and an exact solution approach. Discrete Optimization, 21:85–117, 2016.
doi:10.1016/j.disopt.2016.05.006.

38

http://dx.doi.org/10.1007/s12532-016-0114-x
http://dx.doi.org/10.1007/978-3-540-72792-7_24
http://dx.doi.org/10.1007/s10898-016-0450-4
http://dx.doi.org/10.1287/ijoc.2016.0692
http://gmplib.org/
http://www.optimization-online.org/DB_HTML/2015/03/4841.html
http://dx.doi.org/10.1287/ijoc.1120.0545
http://www.github.com/gregorch/ipet
http://www.github.com/gregorch/ipet
http://www.coin-or.org/Ipopt/
http://www.tcs.hut.fi/Software/bliss/
http://dx.doi.org/10.1007/s10107-006-0081-5
http://dx.doi.org/10.1016/j.disopt.2011.07.001
http://dx.doi.org/10.1007/s10107-007-0186-5
http://dx.doi.org/10.1007/s10107-010-0351-0
http://dx.doi.org/10.1016/j.disopt.2016.05.006

[64] J. Linderoth. A simplicial branch-and-bound algorithm for solving quadratically con-
strained quadratic programs. Mathematical Programming, 103(2):251–282, 2005.

[65] M. Locatelli. Convex envelopes of bivariate functions through the solution of
KKT systems. Technical report, Optimization Online, 2016. URL http://www.

optimization-online.org/DB_HTML/2016/01/5280.html.

[66] A. Lodi and A. Tramontani. Performance variability in mixed-integer programming.
Tutorials in Operations Research, pages 1–12, 2013. doi:10.1287/educ.2013.0112.

[67] A. Loos. Describing Orbitopes by Linear Inequalities and Projection Based Tools. PhD
thesis, Otto-von-Guericke-Universität Magdeburg, 2010.

[68] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel,
T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Re-
hfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt, and
J. Witzig. The SCIP Optimization Suite 4.0. Technical Report 17-12, ZIB, Takustr. 7,
14195 Berlin, 2017.

[69] H. Marchand. A polyhedral study of the mixed knapsack set and its use to solve mixed
integer programs. PhD thesis, Université catholique de Louvain, 1998.

[70] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49(3):363–371, 2001. doi:10.1287/opre.49.3.363.11211.

[71] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94
(1):71–90, 2002. doi:10.1007/s10107-002-0358-2.

[72] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, 98(1–3):
3–21, 2003. doi:10.1007/s10107-003-0394-6.

[73] F. Margot. Symmetry in integer linear programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A.
Wolsey, editors, 50 Years of Integer Programming, pages 647–686. Springer, 2010.

[74] J. P. Marques-Silva and K. Sakallah. Grasp: A search algorithm for propositional satis-
fiability. Computers, IEEE Transactions on, 48(5):506–521, 1999.

[75] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part i—convex underestimating problems. Mathematical programming, 10(1):147–175,
1976.

[76] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60(0):94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

[77] MINLPLIB2. MINLP library 2. http://www.gamsworld.org/minlp/minlplib2/html/.

[78] MOSEK ApS. The MOSEK C optimizer API manual. Version 8.1 (Revision 25), 2017.
URL http://docs.mosek.com/8.1/capi/index.html.

[79] B. Müller, R. Kuhlmann, and S. Vigerske. On the performance of NLP solvers within
global MINLP solvers. In Operations Research Proceedings, 2017. To appear.

[80] F. Ortega and L. A. Wolsey. A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network flow problem. Networks, 41(3):143–158, 2003.
doi:10.1002/net.10068.

[81] J. Ostrowski. Symmetry in Integer Programming. PhD thesis, Lehigh University, 2008.

[82] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical
Programming, 126(1):147–178, 2011. doi:10.1007/s10107-009-0273-x.

[83] M. E. Pfetsch and T. Rehn. A computational comparison of symmetry handling methods
for mixed integer programs. Technical report, Optimization Online, 2015. URL http:

//www.optimization-online.org/DB_HTML/2015/11/5209.html.

[84] N. Ploskas and N. Samaras. The impact of scaling on simplex type algorithms. In
Proceedings of the 6th Balkan Conference in Informatics, BCI ’13, pages 17–22, New
York, NY, USA, 2013. ACM. doi:10.1145/2490257.2490283.

[85] D. Rehfeldt and T. Koch. Generalized preprocessing techniques for Steiner tree and
maximum-weight connected subgraph problems. Technical Report 17-57, ZIB, Takustr.
7, 14195 Berlin, 2017.

[86] D. Rehfeldt and T. Koch. Combining NP-Hard Reduction Techniques and Strong Heuris-
tics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem. Tech-
nical Report 17-45, ZIB, Takustr. 7, 14195 Berlin, 2017.

39

http://www.optimization-online.org/DB_HTML/2016/01/5280.html
http://www.optimization-online.org/DB_HTML/2016/01/5280.html
http://dx.doi.org/10.1287/educ.2013.0112
http://dx.doi.org/10.1287/opre.49.3.363.11211
http://dx.doi.org/10.1007/s10107-002-0358-2
http://dx.doi.org/10.1007/s10107-003-0394-6
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://www.gamsworld.org/minlp/minlplib2/html/
http://docs.mosek.com/8.1/capi/index.html
http://dx.doi.org/10.1002/net.10068
http://dx.doi.org/10.1007/s10107-009-0273-x
http://www.optimization-online.org/DB_HTML/2015/11/5209.html
http://www.optimization-online.org/DB_HTML/2015/11/5209.html
http://dx.doi.org/10.1145/2490257.2490283

[87] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Pro-
gramming Solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.
doi:10.1287/ijoc.1060.0189.

[88] Rubberband. A flexible archiving platform for optimization benchmarks. http://www.

github.com/ambros-gleixner/rubberband.

[89] S. M. Rump. High precision evaluation of nonlinear functions. In Proceedings of 2005
International Symposium on Nonlinear Theory and its Applications, pages 733–736. The
Institute of Electronics, Information and Communication Engineers (IEICE), 2005.

[90] D. Salvagnin. A dominance procedure for integer programming. Master’s thesis, Univer-
sity of Padua, 2005.

[91] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA J. Comput., 6(4):445–454, 1994.

[92] L. Schewe and M. Schmidt. Computing feasible points for MINLPs with MPECs. Tech-
nical report, Optimization Online, 2016. URL http://www.optimization-online.org/

DB_HTML/2016/12/5778.html.

[93] N. C. Schwertman and D. M. Allen. Smoothing an indefinite variance-covariance matrix.
Journal of Statistical Computation and Simulation, 9(3):183–194, 1979.

[94] Y. Shinano. The Ubiquity Generator framework: 7 years of progress in parallelizing
branch-and-bound. ZIB-Report 17-60, Zuse Institute Berlin, 2017. Accepted for the
Operations Research Proceedings 2017.

[95] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP – a parallel
extension of SCIP. In C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum, edi-
tors, Competence in High Performance Computing 2010, pages 135–148. Springer, 2012.
doi:10.1007/978-3-642-24025-6 12.

[96] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. FiberSCIP – a shared mem-
ory parallelization of SCIP. INFORMS Journal on Computing, 30(1):11–30, 2018.
doi:10.1287/ijoc.2017.0762.

[97] A. Skajaa, E. D. Andersen, and Y. Ye. Warmstarting the homogeneous and self-dual
interior point method for linear and conic quadratic problems. Mathematical Programming
Computation, 5(1):1–25, 2013.

[98] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

[99] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13(1–3):231–252, 1999.

[100] S. Vigerske and A. Gleixner. SCIP: Global optimization of mixed-integer nonlinear pro-
grams in a branch-and-cut framework. Optimization Methods & Software, to appear.
doi:10.1080/10556788.2017.1335312.

[101] F. Wesselmann and U. H. Suhl. Implementing cutting plane management and selec-
tion techniques. Technical report, University of Paderborn, Warburger Str. 100, 33098
Paderborn, Germany, 2012.

[102] J. Witzig, I. Beckenbach, L. Eifler, K. Fackeldey, A. Gleixner, A. Grever, and M. We-
ber. Mixed-integer programming for cycle detection in non-reversible Markov processes.
Multiscale Modeling and Simulation, 2016. Accepted for publication.

[103] J. Witzig, T. Berthold, and S. Heinz. Experiments with conflict analysis in mixed in-
teger programming. In D. Salvagnin and M. Lombardi, editors, Integration of AI and
OR Techniques in Constraint Programming: 14th International Conference, CPAIOR
2017, Padua, Italy, June 5-8, 2017, Proceedings, pages 211–220. Springer International
Publishing, Cham, 2017. doi:10.1007/978-3-319-59776-8 17.

[104] K. Wolter. Implementation of cutting plane separators for mixed integer programs.
Diploma thesis, Technische Universität Berlin, 2006.

[105] WORHP. We Optimize Really Huge Problems. https://worhp.de/.

[106] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

[107] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0). Optimization Methods and Software, 18:
491–505, 2003.

40

http://dx.doi.org/10.1287/ijoc.1060.0189
http://www.github.com/ambros-gleixner/rubberband
http://www.github.com/ambros-gleixner/rubberband
http://www.optimization-online.org/DB_HTML/2016/12/5778.html
http://www.optimization-online.org/DB_HTML/2016/12/5778.html
http://dx.doi.org/10.1007/978-3-642-24025-6_12
http://dx.doi.org/10.1287/ijoc.2017.0762
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1080/10556788.2017.1335312
http://dx.doi.org/10.1007/978-3-319-59776-8_17
https://worhp.de/

[108] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi, and
K. Goto. A high-performance software package for semidefinite programs: SDPA 7.
Technical Report Research Report B-460, Dept. of Mathematical and Computing Science,
Tokyo Institute of Technology, 2010.

41

	Introduction
	Advances in SCIP
	Overall Performance Improvements for MIP and MINLP
	Computational Setup
	MIP Performance
	MINLP Performance

	Presolving
	Clique Table Analysis
	Nonzero Cancellation
	Disaggregation of Quadratic Constraints

	Symmetry Handling
	Symmetry Detection
	Symmetry Breaking Polytopes
	Orbital Fixing
	Using Symmetry Handling in SCIP

	Separation and Convexification
	Cut Management
	General Improvements of Separators
	Complemented Mixed-Integer Rounding (CMIR) and Flowcover Separation
	Stronger Relaxations for Bilinear Terms Using Linear Inequalities

	Conflict and Dual Proof Analysis
	Primal Heuristics
	Improved Structure-driven Fix-and-Propagate Heuristics
	The MPEC Heuristic
	Adaptive Large Neighborhood Search

	Technical Improvements and New User Features
	Bandit Algorithms
	Disjoint Set Data Structure
	Double-double Arithmetic
	Statistics Tables
	Numerical Violations
	Classification of Linear Constraint Types
	New Interfaces to NLP Solvers FilterSQP and WORHP

	SoPlex
	LP Solution Polishing
	A New Aggressive Scaling Method
	Technical Improvements

	Applications and Extensions
	CycleClustering
	SCIP-Jack: Steiner Tree and Related Problems
	SCIP-SDP

	The UG Framework
	Revisions to the Steiner Tree Parallelization
	A New Parallel MISDP Solver

	Final Remarks

