
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

STEPHEN MAHER?, MATTHIAS MILTENBERGER?,
JOÃO PEDRO PEDROSO†, DANIEL REHFELDT?,

ROBERT SCHWARZ?, FELIPE SERRANO?

PYSCIPOPT: Mathematical Programming in
Python with the SCIP Optimization Suite

? Zuse Institute Berlin, Germany, {maher, miltenberger, rehfeldt, schwarz, serrano}@zib.de
† Faculdade de Ciências da Universidade do Porto, Portugal, jpp@fc.up.pt

ZIB Report 16-64 (December 2016)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

PySCIPOpt: Mathematical Programming in Python with

the SCIP Optimization Suite

Stephen Maher Matthias Miltenberger João Pedro Pedroso
Daniel Rehfeldt Robert Schwarz Felipe Serrano

Abstract

SCIP is a solver for a wide variety of mathematical optimization problems. It is written
in C and extendable due to its plug-in based design. However, dealing with all C specifics
when extending SCIP can be detrimental to development and testing of new ideas. This
paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to
SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how
to intuitively model mixed-integer linear and quadratic optimization problems and moreover
provide examples on how new Python plug-ins can be added to SCIP.

1 Introduction

Since its initial release in 2005, SCIP has matured into a powerful solver for various classes of
optimization problems and has achieved considerable acclaim in academia and industry. It is
distributed as part of the SCIP Optimization Suite [14], along with the LP solver SoPlex [6,16],
the modeling language ZIMPL [18], the generic column generation solver GCG [11], and the
parallelization framework UG [17]. For an in-depth description of SCIP and the Optimization
Suite in general we refer to the original publication [1] and the report about the latest release
3.2 [3]. SCIP is available in source code and provides tutorials and comprehensive documen-
tation for researchers and practitioners on its web page [14], thereby allowing users to extend
its functionality and write custom plug-ins. As yet, however, such extensions required not only
knowledge of the C programming language, but furthermore impeded fast prototyping, an obsta-
cle keeping some (potential) users from implementing their ideas within a reasonable amount of
time. To overcome these impediments, we have developed PySCIPOpt [13], a Python interface
to SCIP that allows for fast prototyping of new algorithmic concepts and concurrently benefits
from the underlying high performance C code. The interface is implemented by means of the
programming language Cython [8] and documented with the Python standard Docstring [10].

Finally, it is certainly worth mentioning that with JuMP [4] there is already an optimiza-
tion software package available for the Julia language that provides both fast implementation
possibilities and high performance. However, this software does not yet fully support SCIP.1

2 Modeling

The Python interface supports an intuitive modeling syntax using linear and quadratic expres-
sions. The following example shows how to build up and subsequently solve a small mixed-integer

1SCIP can already be used to solve models formulated in JuMP via AMPL’s nl format [7]. Furthermore, there
is an ongoing development effort to develop an interface that supports callbacks [15].

1

quadratic programming problem:

Mathematical formulation:

minimize x + y

subject to 2x + y2 ≥ 10

x, y ≥ 0

x ∈ R
y ∈ Z

Python code:

from pyscipopt import Model

scip = Model()

x = scip.addVar(’x’, vtype=’C’)

y = scip.addVar(’y’, vtype=’I’)

scip.setObjective(x + y)

scip.addCons(2∗x + y∗y >= 10)
scip.optimize()

Most methods can be called with a small number of parameters, leaving it to the interface
to fill in the remaining parameters with default values. If necessary, these parameters can be set
in any order to provide a more flexible interface. This feature is exemplified by the addVar()

method, which is used in the example above with only two specified parameters, while in fact
six may be provided:

addVar(self, # the SCIP model

name = ’’, # name of the variable

vtype = ’C’, # variable type (’C’, ’I’, or ’B’)

lb = 0.0, # lower bound

ub = None, # upper bound

obj = 0.0, # objective coefficient

pricedVar = False # is it a pricing candidate?

)

In this way, a minimalistic and intuitive code can be designed without surrendering any
functionality of the wrapped SCIP method.

3 Extending SCIP: Writing Plug-Ins in Python

Every plug-in supported by PySCIPOpt is encapsulated in a separate file that declares its
interface methods to SCIP. The file defines the Python base class for the respective plug-in,
including its callbacks. These callback definitions can be left empty for optional callbacks, but
need to be implemented by the user in case of fundamental ones. In line with the overall approach
of PySCIPOpt, the user can thereby implement customized plug-ins with minimal effort, but
access to more intricate functionalities of SCIP is still provided.

3.1 Constraint Handler Example: TSP

In this section we show how to design a simple constraint handler that can solve the traveling
salesman problem (TSP).

The following model for solving the TSP has been proposed by Dantzig–Fulkerson–Johnson
(DFJ) [2]. Let G = (V,E) be a complete, undirected graph with V = {1, · · · , n} being the vertex
set and E the edge set. Furthermore, let cij be the weight of the edge (i, j). We associate with
each edge (i, j) a variable xij , with xij = 1 if edge (i, j) is used in the solution and xij = 0

2

otherwise. Thereupon, the DFJ integer programming formulation can be stated as follows:

minimize
∑
i,j

cijxij (1)

subject to
∑
j

xij = 2 ∀ i ∈ {1, · · · , n} (2)

∑
i,j∈S

xij ≤ |S| − 1 ∀ S ({1, · · · , n}, |S| ≥ 2 (3)

xij ∈ {0, 1} ∀ i < j (4)

The constraints (3) exclude subtours by imposing that for any proper subset S of the vertex
set V such that |S| ≥ 2 a solution cannot encompass a cycle within S. However, as there is
an exponential number of subsets of V , it is impractical to specify all of these constraints. A
possible approach is to iteratively solve the problem, starting without these constraints and after
each solving round add constraints (3) violated by the current solution.

The constraint handler in our PySCIPOpt TSP implementation does not generate its own
constraints, but instead SCIP is querying whether the current solution is feasible and in case it
is not, how feasibility can be achieved. This is accomplished by setting the needscons flag to
False when including the constraint handler into SCIP.

Our example2 uses the external Python library networkx to compute the connected com-
ponents of a graph. The constraint handler then adds the corresponding subtour elimination
constraints as described above when called in the consenfolp() callback. An integer feasible
solution that satisfies the first set of constraints will be checked for subtours in the conscheck()

callback of the TSPconshdlr class. The conslock() callback sets up locks on the variables of
the constraint and is required for a correct implementation. In a nutshell, it tells SCIP how the
variables can be rounded without violating the constraint.

For more information about the different callbacks we refer to the SCIP documentation [14].
When adding constraints via linear or quadratic expressions we recommend to use the quicksum()

function. This eliminates the overhead of intermediate creation/destruction of multiple expres-
sions and instead sets up one instance that will be iteratively extended. A similar implementation
is also provided in the Python interface of the commercial optimization software Gurobi [12].

4 Conclusion and Outlook

With PySCIPOpt we provide a SCIP based optimization tool that allows for fast, minimalistic
and intuitive programing, while still having the more intricate functionalities of SCIP up its
sleeve. We hope that the availability of such a device will help mathematical programming
experts set up prototypes more efficiently and moreover allow less experienced users to more
easily make use of the wide range of capabilities provided by SCIP. In this way, PySCIPOpt
may also serve as coherent tool to make (undergraduate) mathematical optimization students
familiar with the subject, as has already successfully been the case for instance at the University
of Porto [9].

Future developments naturally encompass the extension of PySCIPOpt to cover even more
functionalities provided by SCIP. Missing functions can be easily added by specifying their header

2A proper implementation of this constraint handler would implement the callback conssepalp to separate the
LP solution. The callback consenfolp is called at the end of the node processing loop, where possibly several
calls to the conssepalp callback of the different constraint handlers have already been made.

For reasons of space we provide a concise, although rather inefficient, implementation.

3

declaration in the scip.pxd file and defining a corresponding wrapper function in the class
Model in the scip.pyx file. Of special interest in this context are additional general nonlinear
programming methods [5]: Our objective is to make them blend in with the already existing
features, while maintaining the underlying minimalistic design of PySCIPOpt.

5 Acknowledgements

The authors would like to thank the anonymous reviewers for helpful comments on the paper.
The work for this article has been partly conducted within the Research Campus Modal funded
by the German Federal Ministry of Education and Research (fund number 05M14ZAM).

4

tsp example.py

import networkx

from pyscipopt import Model, Conshdlr , quicksum, SCIP RESULT

EPS = 1.e−6

class TSPconshdlr(Conshdlr):

def init (self, variables):

self.variables = variables

def find subtours(self, solution=None):

edges = []

x = self.variables

for (i,j) in x:

if self.model.getSolVal(solution, x[i,j]) > EPS:

edges.append((i,j))

G = networkx.Graph()

G.add edges from(edges)

components = list(networkx.connected components(G))

return [] if len(components) == 1 else components

def conscheck(self, constraints , solution , check integrality ,

check lp rows , print reason):

if self.find subtours(solution):

return {"result": SCIP RESULT.INFEASIBLE}
else:

return {"result": SCIP RESULT.FEASIBLE}

def consenfolp(self, constraints , n useful conss , sol infeasible):

subtours = self.find subtours()

if subtours:

x = self.variables

for subset in subtours:

self.model.addCons(quicksum(x[i,j] for(i,j) in pairs(subset))

<= len(subset) − 1)
print("cut: len(%s) <= %s" % (subset, len(subset) − 1))

return {"result": SCIP RESULT.CONSADDED}
else:

return {"result": SCIP RESULT.FEASIBLE}

def conslock(self, constraint , nlockspos , nlocksneg):

x = self.variables

for (i,j) in x:

self.model.addVarLocks(x[i,j], nlocksneg , nlockspos)

def create tsp(vertices, distance):

model = Model("TSP")

x = {}

5

for (i,j) in pairs(vertices):

x[i,j] = model.addVar(vtype = "B",name = "x(%s,%s)" % (i,j))

for i in vertices:

model.addCons(

quicksum(x[j,i] for j in vertices if j < i) +

quicksum(x[i,j] for j in vertices if j > i) == 2)

conshdlr = TSPconshdlr(x) # set up conshdlr with all variables

model.includeConshdlr(conshdlr, "TSP", "TSP subtour eliminator",

needscons=False)

model.setObjective(quicksum(distance[i,j] ∗ x[i,j]
for (i,j) in pairs(vertices)), "minimize")

return model, x

def solve tsp(vertices , distance):

model, x = create tsp(vertices, distance)

model.optimize()

edges = []

for (i,j) in x:

if model.getVal(x[i,j]) > EPS:

edges.append((i,j))

return model.getObjVal(), edges

def pairs(vertices):

for i in vertices:

for j in vertices:

if i < j:

yield (i,j)

def test main():

vertices = [1, 2, 3, 4, 5, 6]

distance = {(u,v):1 for (u,v) in pairs(vertices)}
for u in vertices[:3]:

for v in vertices[3:]:

distance[u,v] = 10

objective value , edges = solve tsp(vertices , distance)

print("Optimal tour:", edges)

print("Optimal cost:", objective value)

if name == " main ":

test main()

6

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

[2] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, 3:393–410, 1954.

[3] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J. Maher,
M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz,
F. Serrano, Y. Shinano, S. Vigerske, D. Weninger, M. Winkler, J. T. Witt, and J. Witzig.
The SCIP Optimization Suite 3.2. Technical Report 15-60, ZIB, Takustr.7, 14195 Berlin,
2016.

[4] M. Lubin and I. Dunning. Computing in Operations Research using Julia. INFORMS
Journal on Computing, 27(2):238–248, 2015.

[5] S. Vigerske and A. Gleixner. SCIP: Global Optimization of Mixed-Integer Nonlinear Pro-
grams in a Branch-and-Cut Framework. Technical Report 16-24, ZIB, Takustr.7, 14195
Berlin, 2016.

[6] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

[7] AmplNLWriter.jl. https://github.com/JuliaOpt/AmplNLWriter.jl.

[8] Cython. http://www.cython.org/.

[9] Decision Support Methods, Universidade do Porto. http://www.dcc.fc.up.pt/~jpp/mad/.

[10] PEP 0257 – Docstring Conventions. https://www.python.org/dev/peps/pep-0257/.

[11] GCG: Generic Column Generation. http://www.or.rwth-aachen.de/gcg/.

[12] Gurobi Optimizer Reference Manual. http://www.gurobi.com/.

[13] PySCIPOpt. https://github.com/SCIP-Interfaces/PySCIPOpt.

[14] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/.

[15] SCIP.jl. https://github.com/ryanjoneil/SCIP.jl.

[16] SoPlex: Sequential object-oriented simPlex. http://soplex.zib.de/.

[17] UG: Ubiquity Generator framework. http://ug.zib.de/.

[18] ZIMPL: Zuse Institute Mathematical Programming Language. http://zimpl.zib.de/.

7

