
Takustrasse 7
D-14195 Berlin-Dahlem

Germany
Zuse Institute Berlin

GERALD GAMRATH, TOBIAS FISCHER, TRISTAN GALLY,
AMBROS M. GLEIXNER, GREGOR HENDEL, THORSTEN KOCH,

STEPHEN J. MAHER, MATTHIAS MILTENBERGER,
BENJAMIN MÜLLER, MARC E. PFETSCH, CHRISTIAN PUCHERT,
DANIEL REHFELDT, SEBASTIAN SCHENKER, ROBERT SCHWARZ,

FELIPE SERRANO, YUJI SHINANO, STEFAN VIGERSKE,
DIETER WENINGER, MICHAEL WINKLER, JONAS T. WITT,

JAKOB WITZIG

The SCIP Optimization Suite 3.2

ZIB Report 15-60 (February 2016)

Zuse Institute Berlin
Takustrasse 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

The SCIP Optimization Suite 3.2
Gerald Gamrath1, Tobias Fischer2, Tristan Gally2, Ambros M. Gleixner1, Gregor Hendel1,

Thorsten Koch1, Stephen J. Maher1, Matthias Miltenberger1, Benjamin Müller1,
Marc E. Pfetsch2, Christian Puchert3, Daniel Rehfeldt1, Sebastian Schenker1, Robert Schwarz1,

Felipe Serrano1, Yuji Shinano1, Stefan Vigerske5, Dieter Weninger4, Michael Winkler6,
Jonas T. Witt3, and Jakob Witzig1

1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany,
{gamrath,gleixner,hendel,koch,maher,miltenberger,benjamin.mueller,

rehfeldt,schenker,schwarz,serrano,shinano,witzig}@zib.de
2Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany,

{tfischer,gally,pfetsch}@mathematik.tu-darmstadt.de
3RWTH Aachen University, Kackertstr. 7, 52072 Aachen, Germany,

{puchert,witt}@or.rwth-aachen.de
4Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany,

dieter.weninger@math.uni-erlangen.de
5GAMS Software GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, svigerske@gams.com

6Gurobi GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, winkler@gurobi.com

February 29, 2016

Abstract. The SCIP Optimization Suite is a software toolbox for generating and solv-
ing various classes of mathematical optimization problems. Its major components are the
modeling language ZIMPL, the linear programming solver SoPlex, the constraint inte-
ger programming framework and mixed-integer linear and nonlinear programming solver
SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the
generic branch-cut-and-price solver GCG. It has been used in many applications from both
academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Ver-
sion 3.2 was released in July 2015. This release comes with new presolving steps, primal
heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reopti-
mization feature and improved handling of quadratic constraints and special ordered sets.
SoPlex can now solve LPs exactly over the rational number and performance improve-
ments have been achieved by exploiting sparsity in more situations. UG has been tested
successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize
a customized SCIP solver. GCG has been enhanced with a new separator, new primal
heuristics, and improved column management. Finally, new and improved extensions of
SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems,
and mixed-integer semidefinite programs.

Keywords: mixed-integer linear and nonlinear programming, MIP solver, MINLP solver,
linear programming, LP solver, simplex method, modeling, parallel branch-and-bound,
branch-cut-and-price framework, generic column generation, Steiner tree solver, multi-
criteria optimization, mixed-integer semidefinite programming

Mathematics Subject Classification: 90C05, 90C10, 90C11, 90C30, 90C90, 65Y05

2

1 Introduction

The SCIP Optimization Suite is a software toolbox for generating and solving mathematical
optimization problems. It consists of the modeling language ZIMPL [51, 100], the linear
programming solver SoPlex [86, 98], and—as its core—the constraint integer programming
and branch-cut-and-price framework SCIP [2, 96]. On top of its modular framework, SCIP
provides a full-scale solver for mixed-integer linear programming (MIP) and mixed-integer
nonlinear programming (MINLP). Additionally, the SCIP Optimization Suite includes the
UG framework [80, 82, 99] for parallelization of branch-and-bound-based solvers and the
generic branch-cut-and-price solver GCG [35, 93].

The focus of this report lies on the new features and improvements added in version 3.2
of the SCIP Optimization Suite. This covers the major release 3.2.0 from July 2015 as
well as the 3.2.1 bugfix version released February 2016. For the general concepts of the
SCIP Optimization Suite and its components we refer to the references given above and the
documentation available at the project website http://scip.zib.de.

The paper is structured as follows. Each of the next five sections is dedicated to one com-
ponent of the SCIP Optimization Suite: SCIP (Section 2), SoPlex (Section 3), ZIMPL
(Section 4), UG (Section 5), and GCG (Section 6). Section 7 presents three new and im-
proved extensions of SCIP. An evaluation of the performance improvements of the SCIP
Optimization Suite for solving MIPs and MINLPs can be found in Section 8. Finally, Sec-
tion 9 gives an outlook on the future development of the SCIP Optimization Suite.

2 SCIP: Solving Constraint Integer Programs

SCIP 3.2 introduces many new plugins and performance improvements. This release has
a particular focus on presolving, primal heuristics, and branching rules for mixed-integer
linear programming. In regards to mixed-integer nonlinear programming this release includes
improvements to separation, propagation and constraint upgrading processes. Additionally,
SCIP now features the functionality for the reoptimization of mixed-binary programs. The
following is an overview of all new features of SCIP included in this release. A detailed
description of each feature is provided later in this section.

◦ Reoptimization: solving mixed-binary programs with changed objective function or tighter
feasible region (Section 2.1)

◦ Presolving (Section 2.2):

– five new presolvers

– new presolving and propagation algorithm for linear ranged rows and equations using
greatest common divisor arguments

– a global matrix module that provides access to the matrix representation of a mixed-
integer linear program

– improved upgradability of continuous variables to implicit integer variables

– the introduction of presolving levels to classify presolving steps based on their runtime
complexity and improve their coordination

◦ Primal Heuristics (Section 2.3):

– the development of new primal heuristics: distribution diving, indicator and bound
heuristics

– improved clique and variable bound heuristics

– revision of the diving heuristics implementation: constraint handlers can register fixing
candidates, dynamic LP solving to solve fewer diving LPs

◦ Branching Rules (Section 2.4):

3

http://scip.zib.de

– new branching rules: branching on multi-aggregated variables and distribution branch-
ing

– new reliability notions in hybrid reliability pseudo-cost branching

– improvement in the treatment of nonlinearities in hybrid reliability pseudo-cost branch-
ing

◦ Mixed-Integer Nonlinear Programming (Section 2.5):

– a new separator for edge-concave cuts

– the generalized upgrade from quadratic constraints to SOC constraints

– an improved separation procedure for convex quadratic constraints

– improved optimization-based bound tightening by applying separation and propagation

– support for user-defined operators in expression trees/graphs

◦ SOS1 constraint handler (Section 2.6):

– a new branching rule for SOS1 constraints

– an improved separation procedure

– registration of variables in SOS1 constraints as candidates for diving heuristics, also
discussed in Section 2.3

◦ Further changes (Section 2.7):

– an extension of the probing mode to allow separation and objective coefficient changes

– the transfer of history information to and from sub-SCIPs

– the use of sparsity information during separation

– better handling of large values returned by the LP solver

– an improvement of the memory management

– the ability to output information for BAK: Branch-and-bound Analysis Kit

– provided more options for the final feasibility check

– added the option to permute the original problem directly after reading

2.1 Reoptimization

The new reoptimization feature of SCIP can be used to solve a sequence of mixed-binary
programs (P1), . . . , (PN) where

(Pi) min{c>i x : Aix ≥ bi, ` ≤ x ≤ u, x ∈ {0, 1}k ×Rn−k}

with objective function ci, constraint matrix Ai, and right-hand side bi. This sequence is
given implicitly, i.e., at each point in time, only the current problem Pi is known and the
definition of Pi+1 may depend on the solution computed for problem Pi. There are no re-
strictions on the changes in the objective function, but it is required that the feasible region
is not extended within the sequence, i.e., the feasible region of Pi contains that of Pi+1. The
basic idea behind the new feature is to reuse the branch-and-bound tree built during the
solving process of Pi for solving Pi+1. This idea can be realized in combination with a sim-
ple branch-and-bound algorithm without major difficulties and has been previously used by
several authors in both general and application-specific approaches, e.g., generating multiple
solutions for mixed-integer programs [21], investigations on the value function of mixed-integer
programs [72], duality warmstart [71], and in a special branch-and-bound framework for el-
evator scheduling [47]. In the following, we give a short overview how reoptimization can
be used in a state-of-the-art MIP solver in the context of a sophisticated branch-and-bound
algorithm, e.g., cope with dual reductions. For a detailed description we refer to [85].

4

Important ingredients of state-of-the-art MIP solvers are presolving and bound tightening
techniques that use primal and dual reductions. A reduction is called primal if all feasible
solutions are preserved and dual if it may remove feasible solutions (but preserves at least one
optimal solution to guarantee correctness). Since solutions pruned by dual reductions may
become optimal after the objective function is changed, dual reductions are only valid for the
current objective function. Hence, those reductions need to be treated with special care to
guarantee optimality after changing the objective function. In the current release all feasible
solutions pruned by dual reductions are reconstructed as follows: Consider a node v of the
search tree and a set of binary variables C fixed at that node by dual reductions. Moreover,
let C+ := {i ∈ C : xi = 1} and C− := {j ∈ C : xj = 0} be a partition of C based on the
fixing value. Due to the bound tightenings based on dual information all feasible solutions
fulfilling ∨

i∈C+

(xi = 0) ∨
∨
j∈C−

(xj = 1)

are pruned from node v. In the current release all these solutions are reconstructed by adding
a copy v′ of node v with variables in C unfixed and extended by the constraint∑

i∈C+

(1− xi) +
∑
j∈C−

xj ≥ 1.

Since the duplication of all nodes where dual reductions were performed rapidly enlarges
the tree, SCIP 3.2 contains two heuristics that construct a new search tree of smaller size
containing as much important information as possible from the original branch-and-bound
tree. Moreover, the latest release provides a new primal heuristic that is built specifically
for the reoptimization case and modifies an optimal solution of the previous solving process
based on the changes in the objective function.

2.2 Presolving

Presolving aims at reducing the size and, more importantly, improving the formulation of a
given model. It has been shown that presolving is powerful in practice and a key factor in
solving mixed-integer programs [14]. In this section, the new presolving techniques included
in SCIP 3.2 are briefly presented. After that, the matrix module is described, which allows
a column view on the problem paving the way for many of the new presolving methods.
Finally, the coordination of the presolving process was improved by presolving levels, which
is introduced at the end of the section.

Singleton column stuffing. Consider the binary knapsack problem. The task is to select
a set of items, characterized by profits and sizes, such that these items fit into a knapsack of
given capacity while maximizing the total profit. In the LP relaxation of this problem, it is
allowed to pack any fraction of an item. Thus, an optimal solution to the relaxed problem
can be achieved by sorting the items by their profit/size ratio and selecting them in this
order until the capacity is reached [23]. The stuffing presolver transfers this idea for singleton
continuous variables occurring in one common constraint of mixed-integer programs. Details
on the theoretical background and implementation can be found in [33].

Redundant variable upper bounds. In many real world problems, e.g., production plan-
ning, variable upper bound constraints of the form x − Cy ≤ 0 are present, with variables
x ∈ R+, y ∈ {0, 1}, and a coefficient C ≥ 0. In the context of production planning, this can
be regarded as follows: If a product should be produced (corresponding to having a strictly
positive value for x), the corresponding machine needs to be switched on (represented by the
assignment y = 1). The redvub presolver aims at detecting redundant variable upper bound
constraints on the same variable x but different binary variables. For example, if there exists
another constraint x −Dz ≤ 0 with C ≤ D and z ∈ {0, 1}, this constraint is dominated by

5

x− Cy ≤ 0. Therefore, the coefficient D can be tightened to C in the second constraint. In
some cases, even z = y can be aggregated and the constraint x − Dz ≤ 0 can be deleted.
For example, this reduction is valid if the objective function coefficients of y and z are both
non-positive or both non-negative and both variables are singleton columns. This approach
can be transferred to the case of variable lower bounds as well.

Implied free variables. Let `j and uj denote the explicit lower and upper bounds of
variable xj stated in the problem formulation. Further let ¯̀

j and ūj be the tightest bounds
on xj obtained by activity-based bound tightenings of constraints in the model [17, 75]. If ¯̀

j

and ūj are at least as tight as the original bounds, i.e., [¯̀j , ūj] ⊆ [`j , uj], variable xj is said to
be implied free [7]. The implfree presolver multi-aggregates continuous implied free variables
appearing in equality constraints if specific requirements concerning fill-in and numerical
stability are fulfilled. In some cases this approach can even be applied to integer variables.

Two-row bound tightening. The conventional activity-based bound tightening technique
considers single constraints. By examining pairs of constraints it is sometimes possible to
derive tighter bounds on the variables that appear in either of the two constraints. Assume
there are constraints ax + by ≤ c and dx + ez ≤ f with common variables x. By solving
two linear programs L = min{dx : ax + by ≤ c} and U = max{dx : ax + by ≤ c}, i.e.,
L ≤ dx ≤ U , we obtain tighter activities for the second constraint and may derive tighter
bounds on z than single constraint activity-based bound tightening. This presolving approach
was first published in [4] and is implemented in the SCIP 3.2 presolver plugin tworowbnd.

Dual aggregations. Let the MIP min{c>x : Ax ≥ b, x ∈ [`, u], x ∈ Zk × Rn−k} be
given. We assume there exists a variable xj with cj ≤ 0, bounds [`j , uj], and only constraint i
prevents fixing xj to its upper bound. Further there is a binary variable xk with a negative
coefficient in row i. If by setting xk = 0, constraint i becomes redundant and from setting
xk = 1 it follows that xj is at its lower bound, then the aggregation xj := uj+(`j−uj) ·xk can
be applied. This idea is easily transferable to similar cases. More details on this presolving
technique can be found in the source code of the presolver plugin dualagg.

Using greatest common divisors in ranged row propagation. Given a linear con-
straint b ≤ ∑i∈I aixi ≤ b̄, where b can—but does not need to—be equal to b̄. The set of
variables is partitioned into two sets I1, I2 with the following properties: I1 contains only in-
tegral variables and there exists g > 1 such that the greatest common divisor (gcd) of all pairs
of coefficients ai, aj , i, j ∈ I1 is a multiple of g. Let g be the largest value for which the previ-
ous condition holds for the given set I1. The set I2 contains all remaining variables. Consider
the case where both sets are non-empty. Using the gcd g and activity information on both
sets, it is possible to detect infeasibility, bound changes, fixings, or tighter sub-constraints
can be identified. For example, let m2 and M2 be the minimum and maximum activity of set
I2, respectively. If

min {m2 + α · g : α ∈ Z, m2 + α · g ≥ b} > b̄ and
max {M2 + β · g : β ∈ Z, M2 + β · g ≤ b̄} < b,

there is no feasible solution for this constraint and infeasibility of the current problem is
proven.

Upgrade to implicit integer variables. The existing upgrade routine for continuous
variables in linear equations has been extended. The new implementation also handles the
case of an equation with integral coefficients, integral right-hand side, and all but one variable
being of integral type. The continuous variable xi with coefficient ai in the constraint is
replaced by an implicit integer variable z with coefficient 1. They are connected via the
implicit aggregation equality xi = z/ai.

6

Matrix module. As a framework for constraint integer programming, SCIP allows to
define various constraint types by implementing constraint handler plugins. This approach
is very flexible and allows to solve a variety of problem classes, but implies that the problem
can only be accessed in a constraint-based fashion. Sometimes it is also useful to have a
column view. SCIP 3.2 has been extended to provide the ability to generate the matrix given
by the variables and all constraints of linear type and specializations, i.e., all linear, set
partitioning/packing/covering, knapsack, logic or, and variable bound constraints.
This matrix is internally represented in row and column major format, i.e., as ordered and
contiguous arrays of nonzero entries of the rows and columns, respectively [16].

SCIP 3.2 offers some functions for having access to the row and column major format.
In this section, only a selection of useful functions for the column major case is described.
The complete list of functions can be found in src/scip/pub_matrix.h. Before the ma-
trix can be used, it needs to be created by the method SCIPmatrixCreate(). The number
of non-zeros of a column can then be accessed with SCIPmatrixGetColNNonzs(), the non-
zero entries and their row indices can be accessed with SCIPmatrixGetColValPtr() and
SCIPmatrixGetColIdxPtr() respectively. In the end, the memory of the matrix module
needs to be freed by calling SCIPmatrixFree().

Presolving levels. In order to improve the coordination of the increasing number of pre-
solvers, SCIP 3.2 introduces the concept of presolving levels. Presolving steps are now clas-
sified as fast, medium, or exhaustive algorithms. While global presolving plugins typically
implement one presolving step associated to a specific presolving level, constraint-type specific
presolving callbacks implemented in the constraint handlers typically cover a set of presolving
reductions of different complexity. Therefore, a presolving callback can be called in several
presolving levels and decides, based on the current level, which of the algorithms should
be applied. For example, most of the presolving steps of the linear constraint handler like
activity-based bound tightening or coefficient tightening are relatively cheap and are therefore
applied in presolving level fast. There are, however, very expensive procedures like redun-
dancy detection of constraints with a potentially quadratic effort for pairwise comparisons
which are only called in presolving level exhaustive.

Each presolving round starts with running the fast algorithms and only calls medium
and exhaustive ones, if the reductions obtained by presolving so far are not enough to
trigger another presolve round. Thus, a presolving round can consist of only calling all
fast presolving steps once, if those suffice to obtain the desired reduction rate as specified
by parameter presolving/abortfac. Otherwise, all presolving algorithms of level medium
are called and the reduction rate is checked again, either triggering a new presolving round
starting with the fast presolving methods again or advancing to the exhaustive ones. Due
to the high complexity of exhaustive presolving steps, the new reduction rate is checked
after each call of a presolver during the exhaustive phase and as soon as the desired rate
is reached, a new presolving round is triggered (as opposed to the behavior in the fast and
medium level, where all respective presolvers are executed before checking for the reduction
rate). If after executing all exhaustive presolving methods, the desired reduction rate is still
not reached, presolving is terminated.

The information printed during presolving has been adjusted accordingly. A typical output
looks like this:

presolving:
(round 1, fast) 2 del vars, 4 del conss, ..., 0 impls, 13 clqs
(round 2, fast) 7 del vars, 11 del conss, ..., 0 impls, 13 clqs
(round 3, exhaustive) 15 del vars, 24 del conss, ..., 2 impls, 10 clqs
(round 4, medium) 19 del vars, 32 del conss, ..., 3 impls, 14 clqs
(round 5, fast) 25 del vars, 47 del conss, ..., 65 impls, 10 clqs
(round 6, exhaustive) 48 del vars, 66 del conss, ..., 70 impls, 4 clqs
presolving (7 rounds: 7 fast, 4 medium, 3 exhaustive):
48 deleted vars, 66 deleted constraints, ...

7

70 implications, 4 cliques

In this case, SCIP performed seven rounds of presolving. For each round the maximum
presolving level reached in that round is printed as well as the reductions found so far. Note
that for the last round, SCIP does not print an extra line, since possible reductions performed
during that round can be identified in the summary printed at the end. In the first two rounds
the model was sufficiently reduced by fast presolving steps only, round 3 called all fast and
medium presolving methods without significant reductions and only an exhaustive algorithm
was successful enough. Round 4 went up to medium presolving and round 5 was successful
enough with only fast presolving. Finally, round 6 and 7 went up to exhaustive presolving.
While round 6 was able to significantly reduce the model, no presolver had any success in
round 7 and thus presolving was stopped. The summary at the end shows the number of
rounds in which presolving of a certain level was performed. Note that since each round starts
with fast presolving, the number of rounds with fast presolving is always equal to the total
number of presolving rounds.

2.3 Primal heuristics

The current SCIP release contains three new heuristics as well as improvements to several
existing heuristics. In particular, primal diving heuristics have been redesigned and algorith-
mically changed.

Distribution diving. This new primal heuristic extends the set of primal diving heuristics
of SCIP. Diving heuristics explore a single path in an auxiliary search tree with a branching
rule that differs from the rule used in the main tree. Distribution diving branches on variables
which strongly reduce the estimated solution density [67] of the linear constraints in the cre-
ated subproblems. As solution density of a linear inequality, we denote the fraction of feasible
assignments among all possible assignments to the variables occurring in this inequality. The
solution density can be approximated by means of a normal distribution. In [69], solution
densities are proposed for branching in MIP with the aim to find feasible solutions quickly
by forcing changes on other variables. This makes it well-suited for use in a primal diving
heuristic.

To estimate the solution density for a linear inequality a>x ≤ b, we formally replace the
variables xj by random variables Xj following a uniform distribution over their domain. We
then approximate the probability P(a>X ≤ b) by means of a normally distributed variable
∼ N (µ, σ2) using the mean µ and variance σ2 of a>X using Lyapunov’s central limit theorem,
see [67] for a proof. In the case of equality constraints, the authors [69] propose the use of a
centrality measure that combines the two solution densities of the involved inequalities.

Figure 1 shows the relevant distributions for an example constraint x+ 0.5y+ z ≤ 10 that
involves three integer variables x, z ∈ {0, . . . , 5}, and y ∈ {0, . . . , 10}. The activity of the
constraint is modeled as a random variable Q with mean value µ = 7.5 and variance σ2 ≈ 8.3.
The top picture shows the probabilities thatQ takes any particular value t ∈ {0, 0.5, 1, . . . , 15}.
It also shows the probability density function fµ,σ2(t) of a normally distributed variable
R ∼ N (µ, σ2). The second diagram reveals the close relationship between the cumulative
distribution functions of Q and R; the actual probability P(Q ≤ 10) ≈ 0.82 is approximated
well by Φµ,σ2(10) = P(R ≤ 10) ≈ 0.81.

The branching variable selection of the heuristic can be controlled by the user, where the
five possible options include the choice of a variable-direction pair that minimizes the solution
density of any affected inequality after branching. With default settings, the heuristic cycles
through the five different selection methods because experimental results do not reveal any
of the strategies to be superior.

For more information and details about the distribution diving heuristic in SCIP, we refer
to [44]. Please see also the paragraph below on the general adjustment of diving heuristics.

8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fµ,σ2(t)

P (aTX = t)

0 2 4 6 8 10 12 14

t

0.0

0.2

0.4

0.6

0.8

1.0

P (aTX ≤ t)
Φµ,σ2(t)

Figure 1: The actual probability density of Q := X + 0.5Y + Z, where X,Z ∼
U ({0, . . . , 5}) and Y ∼ U ({0, . . . , 10}), and its approximation by a normal distribution
N (µ, σ2). The actual solution density is P(Q ≤ 10) ≈ 0.82, whereas the normal
approximation yields 0.81.

Indicator heuristic. Given a binary variable y and some constraint C, an indicator con-
straint is of the following form: y = 1→ C(x), i.e., if y = 1 then constraint C has to be fulfilled
by variables x. SCIP can handle this general form through the superindicator constraint
handler. For the special case of a linear constraint C = {x : a>x ≤ β}, additional presolving
can be performed and cutting planes can be added; here the indicator constraint handler is
responsible.

In general, an indicator constraint is handled by branching on y. In the y = 0 branch, C
is not enforced, while in the y = 1 branch, C is enforced; in the linear case, the corresponding
linear constraint is separated for the y = 1 branch.

Since an indicator constraint is only indirectly represented in LP relaxations, often a
relaxation solution has y = 1, but the secondary constraint C is not fulfilled. Moreover,
such solutions can sometimes also be produced by the internal mechanisms of the indicator
constraint handler. In the linear case, the indicator heuristic tries to turn such partial solutions
into generally feasible solutions. To this end, the binary indicator variables of all indicator
constraints are fixed to their values and the linear program including the linear inequalities
corresponding to y = 1 variables is solved in the hope that this produces a feasible solution.
Moreover, one can also perform a one-opt approach, i.e., the values of single binary y-variables
are flipped and the corresponding LP is solved.

Both methods are activated and triggered by solutions coming from the indicator con-
straint handler, if there are indicator constraints present.

Bound heuristic. The bound heuristic is a very simple start heuristic. It first fixes all
binary and integer variables to their lower or upper bound and then solves an LP on the
remaining problem. A parameter is used to specify whether the variables should all be fixed
to their upper bound or their lower bound, or whether two runs should be done, one for
each bound. If the bound to which a variable should be fixed is infinite, the heuristic run is
terminated.

This heuristic is inspired by production models in which fixing all startup variables to 1
may give a solution that optimizes the continuous production disregarding startup costs,
while fixing all startup variables to 0 leads to a solution with 0 production, such that stocked
products are optimally distributed and the penalty cost for not fulfilling some of the demands
is minimized.

9

Improved clique and variable bound heuristics. The clique and variable bound heuris-
tics use a large neighborhood search (LNS) approach to generate primal solutions. In contrast
to other LNS heuristics for MIP like rins [22], rens [12], and Local Branching [27] they do
not rely on a feasible or LP solution to define the neighborhood, but rather use two structures
globally available in SCIP, the clique table and the variable bound graph. A clique is a set
of binary variables of which at most one can be set to 1, a variable bound is a bound on one
variable which depends on the value of another variable. Such structures are identified during
presolving and are collected in the clique table and the variable bound graph, respectively.
The heuristics can be called before solving the root node LP. They first define the neigh-
borhood by repeatedly fixing a (set of) variables and applying domain propagation on the
reduced problem to identify consequences on the bounds of other variables. The clique table
and the variable bound graph are used to predict this effect and help to define different fixing
orders, e.g., fixing variables first which lead to many other bounds being changed and thus to
reaching a feasible solution or conflicting bounds fast. After the fixing process is finished, the
LP relaxation of the remaining problem is solved and a simple rounding heuristics is applied
to the solution. Only if this procedure did not already generate a feasible solution, the re-
maining problem is solved as a sub-SCIP. Although the two heuristics were already included
in SCIP before, they are significantly improved in SCIP 3.2. Most importantly, the fixing
and propagation mechanism was rearranged and several new fixing schemes were introduced.
For more details, we refer to [31].

Unification and adjustment of diving heuristics. The primal diving heuristics of SCIP
have been redesigned with two goals in mind: First, more general branching decisions are
incorporated in order to allow for branching on indicator variables or variables in SOS1
constraints. Second, a performance improvement is obtained by lowering the frequency of
nodes at which LPs are solved. As side effect, the code duplication within the implementation
of the diving heuristics is significantly reduced.

Primal diving heuristics in SCIP explore a single probing path down the tree with a
particular variable selection rule inside an auxiliary search tree. Due to warmstart capabilities
of the dual simplex algorithm and the restriction to only explore a single probing path, the
diving procedure is usually fast. We distinguish primal diving heuristics from objective diving
heuristics, which attempt to attain integral feasible solutions by so-called soft roundings
that are induced by temporal changes to the objective coefficient of fractional variables.
A description of the existing primal and objective diving heuristics in SCIP can be found
in [1, 11, 43]. The new primal heuristic distribution diving was added to version 3.2 of SCIP.

The introduction of a dynamic LP solving frequency constitutes the main change during
the execution of the primal diving heuristics. After the bound of a variable is changed,
propagation routines are called to deduce further bound tightenings on other variables and
reduce the local subproblem in size. The LP, however, is not reoptimized at every diving
node, but bound changes and propagation may be iterated until a certain percentage of
domain reductions on all variables is found during probing.

The LP resolve behavior of each diving heuristic is controlled by two user parameters: its
LP solving frequency lpsolvefreq and an LP resolve domain change quotient, denoted by
lpresolvedomchgquot. While using a positive LP solving frequency turns on LP resolving
at a static, positive frequency, setting it to 0 yields the new, dynamic behavior depending
on the number of intermediate domain reductions. The second parameter can be adjusted
to control the number of domain changes, as a percentage of the problem variables, required
to resolve the LP. Note that setting the LP solving frequency to 1 restores the algorithmic
behavior of primal diving heuristics prior to SCIP version 3.2.0.

This algorithmic change is accompanied by a redesign of the diving heuristics. Their be-
havior is now controlled by diveset structures, which all primal diving heuristics include.
An included diveset installs all relevant settings for the diving heuristic plugin and re-
quires the implementation of a variable scoring callback SCIP_DECL_DIVESETGETSCORE, see
the coefdiving-heuristic for an example. The execution of the heuristic calls the new method

10

SCIPperformGenericDivingAlgorithm(), which takes a diveset as argument and subse-
quently performs diving with the given scoring mechanism. More on the implementation of
a primal diving heuristic using the new controller can be found in a dedicated section of the
SCIP-documentation.

In order to generalize the diving scheme to incorporate constraints other than just integral-
ity restrictions, SCIP now provides a new, optional constraint handler callback,
SCIP_DECL_CONSGETDIVEBDCHGS. By implementing this callback, one allows the constraint
handler to participate in the diving variable selection. All constraint handlers that imple-
ment this callback are called in decreasing order of their enforcement priority, similarly to
the way branching is performed during the main search. The constraint handler can use the
scoring mechanism of the passed diveset and buffer its desired set of dive bound changes.

Furthermore, the statistic output of SCIP now contains a section about diving heuristics.
It shows the average, minimal and maximal depth as well as the number of explored probing
nodes, backtracks, and used LP iterations for every primal diving heuristic.

2.4 Branching

SCIP 3.2 comes with two new branching rules for MIP and several enhancements of the default
hybrid reliability pseudo-cost branching rule for MIP and MINLP. Additionally, branching
for problems with SOS1 constraints has been improved, which is discussed in Section 2.6

Distribution branching. Distribution branching is a branching variable selection rule
that approximates solution densities in the subtrees created by branching. This idea was first
presented in [69] in an effort to quickly find feasible solutions in MIP. Distributed branching
has been incorporated it into SCIP as both a branching rule and a diving heuristic. For
more information and further references, we refer to the paragraph on the distribution diving
primal heuristic in Section 2.3.

Branching on multi-aggregated variables. The SCIP 3.2 release introduces the multi-
aggregated branching rule [36], which is the first branching rule in SCIP for general MIPs
that branches on general disjunctions. It only branches on disjunctions defined by multi-
aggregated variables. These are variables that were removed from the problem during the
presolving due to linear dependencies within the variable set. More specifically, a multi-
aggregated variable is replaced throughout the problem by an affine linear sum of other
variables: xk =

∑
j∈S αjxj + β, where S is a subset of the variable set not including xk.

While this procedure reduces the problem size and typically improves the performance of
MIP solvers, it also restricts the degree of freedom in variable-based branching rules, since a
multi-aggregated variable does not serve as a candidate for branching anymore. The multi-
aggregated branching rule attempts to overcome this drawback. It considers not only integer
variables xi with fractional LP solution value x̃i as branching candidates, but also checks for
all integer multi-aggregated variables if their value in the current LP solution

∑
j∈S αj x̃j +β,

is fractional. In that case, the following general disjunction is added to the set of branching
candidates: ∑

j∈S
αjxj ≤

∑
j∈S

αj x̃j

 ∨ ∑
j∈S

αjxj ≥

∑
j∈S

αj x̃j

+ 1.

All branching candidates—single variables as well as general disjunctions—are then evaluated
with a strong branching approach and the one providing the best dual bound improvement is
selected. So far, this branching rule is not competitive for general MIP instances. However,
it can be quite effective for special problem types like Scheduling problems, cf. [36]. This is
particularly evident if the multi-aggregated variables represent high-level decisions that lead
to a more balanced branch-and-bound tree.

11

New reliability notions in hybrid reliability pseudo-cost branching. The state-of-
the-art variable selection scheme for MIPs is called reliability pseudo-cost branching [5]. This
rule uses estimated dual gains via pseudo-costs [9] based on previous branching observations
to rank the branching candidate variables as soon as this information has become reliable; it
performs strong branching to approximate the dual gain on unreliable candidates and updates
the available candidate branching history accordingly. The originally proposed notion of
reliability uses a fixed, variable independent threshold η on the number of observations after
which variables becomes reliable.

Several implementation tricks are used in SCIP to limit the computational effort for
strong branching further, e.g., an iteration limit for every strong branching LP that should
not exceed twice the number of average dual simplex iterations per call so far. Furthermore,
the fixed reliability threshold is decreased if strong branching iterations are very expensive
compared with the number of iterations spent for resolving LPs at the actual search nodes.

The idea for introducing novel notions of reliability is based on the observation that a
fixed threshold might not account for all variables equally well. Besides, a fixed threshold
that needs to be set by the user might not scale well with an increasing problem size. Together
with the objective gain per unit fractionality, which is stored incrementally to be used for the
pseudo-cost based prediction, we incrementally calculate the dual gain variance (normalized
by the fractionality) for every candidate variable.

With this new information at hand, we introduce relative-error reliability and hypothesis
reliability [45]. The first notion computes confidence intervals around the average unit gains
in order to compute relative errors. It marks branching candidates with a large relative error
unreliable and therefore continue strong branching on those candidates. The second notion,
hypothesis reliability, uses a variant of a one-sided t-test [55] in order to concentrate strong
branching on candidates with a gain history insignificantly lower than that of the best pseudo-
candidate at a node. This latter notion of reliability is also used to skip strong branching on
candidates with a significantly lower score than the current candidate.

Both novel notions of reliability can be activated via the advanced user parameters
usehyptestforreliability and userelerrorreliability under branching/relpscost.
Upper and lower bounds for the relative error to be reliable can also be specified and are used
dynamically depending on the overall strong branching effort. In addition, the confidence level
used for the interval construction and hypothesis tests can be adjusted. Whenever activated,
the two new notions are used after the classical (fixed-threshold) reliability, i.e., variables
with too few observations are considered unreliable anyway. If both are active, variables are
considered unreliable only if they are unreliable in terms of both notions.

With the current release, hypothesis reliability is used inside an optimality-based emphasis
setting. The dual gain variance of the variables can now be accessed together with the other
branching history information from the interactive shell via the command

SCIP> display varbranchstatistics[enter]
... LP gain pscostcount gain variance

variable prio ... down up down up down up
t_x0001 0 ... 1.1654 0.7234 137.0 138.0 0.62 0.12
t_x0002 0 ... 1.5283 0.7970 208.0 203.0 0.76 0.10
t_x0003 0 ... 1.7695 0.7431 62.0 65.0 0.56 0.15
t_x0004 0 ... 0.8295 0.7050 23.0 53.0 0.40 0.15
t_x0005 0 ... 1.5882 0.7645 29.0 30.0 0.85 0.13
t_x0006 0 ... 0.5447 0.7723 12.0 28.0 0.25 0.2

Nonlinearities in hybrid reliability pseudo-cost branching. When solving noncon-
vex MINLPs the default branching scheme of SCIP is hierarchical. If an integer variable
with fractional relaxation value is available, the hybrid reliability pseudo-cost branching rule
(relpscost) selects one of these variables. Only if the relaxation solution is integer feasible,
spatial branching is performed.

12

With version 3.2, the computation of the hybrid branching score in relpscost branching
uses information about the “nonlinearity” of a variable: the number of nonlinear terms of the
constraint functions in which the variable appears. The motivation behind this concept is
that variables appearing in many nonlinear terms should be preferred, because branching on
them potentially reduces the violation of nonlinear constraints and may have a positive effect
on their enforcement in the subsequent search.

We normalize the nonlinearity of each variable by the maximal nonlinearity of all variables
and use this normalized value as a new summand in the hybrid score. Its weight is controlled
by the parameter branching/relpscost/nlscoreweight, by default equal to 0.1; hence it
is less important than pseudo-costs, but more important than conflict and inference values.
Note that this only has an effect if the problem contains “nonlinear integer variables”. If
there are no nonlinear constraints or if all nonlinear constraints are defined over continuous
variables the score computation is not affected.

Empirically, we observed a significant reduction in running time by 17.1% on the affected
instances of the benchmark set MINLPLib2. Additionally, six more instances are now solved
within one hour. For more details see [37].

2.5 Mixed-Integer Nonlinear Programming

Besides the changes in hybrid branching discussed in the previous section, the main im-
provements for MINLP in SCIP 3.2 are improved separation and upgrade capabilities of
the quadratic constraint handler. In addition, optimization-based bound tightening has been
enhanced and the expression framework can now be extended by user-defined operators.

New separator for edge-concave cuts. The edge-concave cut separator decomposes a
quadratic constraint x>Qx+ d>x+ b ≤ 0 into edge-concave terms fi and a remaining term r
by solving an auxiliary MIP. Each fi is chosen such that it is edge-concave with respect to the
domain box [`, u] = {x ∈ Rn : `i ≤ xi ≤ ui}, which is equivalent to fi being componentwise
concave.

An underestimate of the quadratic constraint can then be constructed by computing facets
of the convex envelope for each edge-concave function fi [63, 64] and a term-wise underesti-
mate for r.

Since an edge-concave function f : [`, u] → R admits a vertex polyhedral [83] convex
envelope, it is possible to obtain the value of the convex envelope for x? ∈ [`, u] by solving
the following linear program [62, 30]:

min
∑
i

λif(vi)

s.t.
∑
i

λiv
i = x?∑

i

λi = 1

λi ≥ 0 ∀ i ∈ {1, . . . , 2n}

where {vi} are all vertices of the hypercube [`, u]. The corresponding dual solution (α, α0)
leads to an inequality α>x + α0 ≤ f(x) valid for all x ∈ [`, u]. Finally, a valid cut for
the original quadratic constraint can be obtained by computing and adding up all these
inequalities for the different fi and underestimating the remaining part r. The cut will be
added to the problem if it separates the current point x?.

Generalized upgrade from quadratic to SOC constraints. A second order cone (SOC)
constraint for variables (x, t) ∈ Rn+1 is defined as ||x||2 ≤ t. In some cases, a quadratic
constraint x>Qx+ d>x+ b ≤ 0, with a symmetric matrix Q ∈ Rn×n having a single strictly
negative eigenvalue and all others strictly positive, can be written as a second order cone

13

constraint: Using an eigenvalue decomposition, every quadratic constraint can be written as
x>PDP>x + d>x + b ≤ 0, where D is a diagonal matrix containing the eigenvalues and P
is orthonormal (P−1 = P>). Say D11 is the negative eigenvalue of Q. After performing
the change of variables y = PTx, we obtain yTDy + dTPy + b ≤ 0. This is equivalent to∑n
i=2(Diiy

2
i + d̄iyi) + b ≤ −D11y

2
1 − d̄1y1, where d̄ = PT d. Completing the squares yields

n∑
i=2

((√
Dii yi +

d̄i

2
√
Dii

)2

− d̄2i
4Dii

)
+ b ≤

(√
−D11 y1 −

d̄1

2
√−D11

)2

+
d̄21

4D11
.

Therefore, we obtain the following extended formulation for the quadratic constraint

y = P>x, (1)
n∑
i=2

(√
Dii yi + γi

)2
+ c ≤

(√
−D11 y1 + γ1

)2
. (2)

where

γ1 = − d̄1

2
√−D11

, γi =
d̄i

2
√
Dii

, for i > 1, c = b+ γ21 −
n∑
i=2

γ2i .

If c ≥ 0 and
√−D11 y1 +γ1 has the same sign for all feasible values of y1, then we can replace

(upgrade) the quadratic constraint by linear constraints (1) plus a SOC constraint arising
from the square root of (2).

When performing such an upgrade, one has to take care of numerical difficulties. Indeed,
since SCIP looks for feasibility with respect to some tolerance, a point may be within the
feasibility tolerance for (1) and (2), but fail to be within the feasibility tolerance for the
original quadratic constraint. This difficulty arises due to the fact that only after solving the
(upgraded) instance, SCIP checks whether the solution satisfies all the original constraints.

To illustrate, consider the constraint x21 + x22 ≤ t2 with t ≥ 0 and let ε be the feasibility
tolerance. After upgrading, ||x||2 ≤ t is obtained and SCIP is going to find a point (x̄, t̄) such
that ||x̄||2 ≤ t̄+ δ with δ ≤ ε. This implies that x̄21 + x̄22 ≤ t̄2 + 2δt̄+ δ2. This solution is not
feasible in the original problem if 2δt̄+ δ2 > ε.

The way SCIP handles this issue is by scaling the upgraded constraint. Notice that scaling
a constraint by L is the same as asking the constraint to be satisfied with tolerance ε/L. We
have observed that a scaling factor L = 10 suffices to resolve all numerical issues in our
experiments.

Support for user-defined operators in expression framework (α-state). The frame-
work for handling algebraic expressions has been extended by the introduction of the new
operator type SCIP_EXPR_USER. This type can be used to implement functions that are not
(or not well) supported by the current expression framework.

A “user-function” is essentially defined by several callbacks, some of them are mandatory
(see SCIPexprCreateUser()). Currently, the following callbacks can or have to be provided:
computing the value, gradient, and Hessian of a user-function, given values (numbers or
intervals) for all arguments of the function; indicating convexity/concavity based on bounds
and convexity information of the arguments; tighten bounds on the arguments of the function
when bounds on the function itself are given; estimating the function from below or above by
a linear function in the arguments; copy and free the function data. Currently, this feature is
meant for low-dimensional (few arguments) functions that are fast to evaluate and for which
bound propagation and/or convexification methods are available that provide a performance
improvement over the existing expression framework.

The evaluation of Hessians (if provided) is currently only available in dense form and
is used by the NLP solver Ipopt. If Hessians are not provided, an approximation algo-
rithm will be enabled in Ipopt. When using user-functions within a nonlinear constraint

14

(cons_nonlinear), the callbacks for propagation, convexity/concavity information, and lin-
ear under-/overestimation are used for tightening bounds and the linear relaxation. The
estimation callback is only used if the user-function is neither convex nor concave.

Note that the current preliminary implementation has not been thoroughly tested yet.
Further, larger API changes to improve the user’s experience with user-functions, e.g., by
bringing the look-and-feel closer to the usual plugin design of SCIP, may occur in a future
release of SCIP.

The “user-function” facility can be used with the AMPL interface to mark constraint-
defining functions as convex or concave. This is achieved by setting a constraint suffix
curvature to 1 for convex functions or to 2 for concave functions. The recognition of
this suffix needs to be enabled in the source code of reader_nl.c first (enable the define
for CHECKCURVSUFFIX). If a function is marked as convex or concave, it will completely be
handled as a user-function, thus its algebraic form is not made available to SCIP. For an
application of this (experimental) feature, we refer to [20].

Improved separation procedure for convex quadratic constraints. The separation
of convex quadratic constraints q(x) := x>Qx + d>x + b ≤ 0, is essential for solving convex
MIQCPs by LP-based branch-and-bound. Given a point x̄ such that q(x̄) > 0, the inequality
q(x̄) + ∇q(x̄)(x − x̄) ≤ 0 separates x̄ from the feasible region. This type of cut is called a
gradient cut at x̄. However, gradient cuts at infeasible points are not necessarily tight at the
feasible region, meaning that the hyperplane q(x̄) +∇q(x̄)(x − x̄) = 0 is not supporting the
region S = {x : q(x) ≤ 0} when x̄ /∈ S.

If an interior point x0 of S is known, a binary search between x̄ and x0 can be performed
until a point in the boundary of S is reached. A gradient cut at this point is tangent at the
feasible region and separates the point x̄. Specifically, the equation q(λx̄+ (1− λ)x0) = 0 for
λ ∈ [0, 1] needs to be solved. With the new parameter constraints/quadratic/gaugecuts,
which is enabled by default, the user can tell SCIP to generate the cuts previously described.

Improvements of optimization-based bound tightening. Optimization-based bound
tightening (OBBT) is one of the most effective procedures to reduce variable domains of
nonconvex mixed-integer nonlinear programs (MINLPs) [70]. The strategy of OBBT is to
minimize and maximize each variable over a linear relaxation of the problem (OBBT-LP),
which provides the best possible bounds that can be learned from the linear relaxation.
In general, these are not the best bounds for the nonconvex MINLP. By using the new
parameters propagating/obbt/separatesol and propagating/obbt/propagatefreq it is
possible to trigger additional separation and propagation rounds after solving an OBBT-LP.
Typically, this increases the quality and quantity of bound reductions found by the OBBT
propagator and thus improves the linear relaxation of the problem.

2.6 SOS1 constraint handler

A special ordered set (SOS) constraint of type 1 requires that at most one out of a given set
of variables takes a nonzero value. SCIP can handle SOS1 constraints without the use of
a mixed-integer programming formulation involving additional binary variables. The SOS1
constraint handler represents every constraint as a clique of a conflict graph. This structure
can be algorithmically exploited, e.g., to get improved branching rules, cutting planes, and
primal heuristics. The most significant changes of the current release are briefly explained
below but for all details we refer the reader to [26].

Branching rules. The validity of the SOS1 constraints can be enforced by different branch-
ing rules. In case that the SOS1 constraints are non-overlapping, i.e., do not share variables,
the algorithm automatically applies the classical SOS1 branching rule [8], which was already
available prior to version 3.2. In the overlapping case, SOS1 branching can be improved
by considering complete bipartite subgraphs (not necessarily induced) of the conflict graph:

15

With standard settings the algorithm branches on the neighborhood of a single variable xi,
i.e., in one branch xi is fixed to 0 and in the other all its neighbors Γ(i) in the conflict graph.
This means that the considered complete bipartite subgraph is associated with a node par-
tition C1 ∪̇ C2 with C1 = {i} and C2 = Γ(i). The new bipartite branching method of the
constraint handler (turned on by setting the parameter constraints/sos1/bipbranch to
TRUE) searches for more general complete bipartite subgraphs with |C1| > 1 and |C2| > 1. A
valid decomposition of the solution set is derived by adding domain fixings xj = 0 for every
j ∈ C1 on one branch and xj = 0 for every j ∈ C2 on the other. Bipartite branching can be
beneficial if the conflict graph contains large balanced complete bipartite subgraphs.

Furthermore, with the new option constraints/sos1/addcomps, the algorithm tries to
strengthen the formulation of the branching nodes by finding local complementarity con-
straints of the form xi · xj = 0. Adding local complementarity constraints results in a
nonstatic conflict graph, which may change dynamically with every branching node.

Cutting planes. The recent SCIP release includes two new cutting plane separators for
SOS1 constraints as well as improvements to the separator of clique bound inequalities, which
was already available prior to version 3.2.

◦ Clique bound inequalities: Consider an SOS1 constraint defined over a variable (sub-)set S
on variables xi, i ∈ S. If every variable has a finite upper bound xi ≤ ui with ui ∈ R>0 for
all i ∈ S, one can add a bound inequality of the form

∑
i∈S

xi

ui
≤ 1 to the LP relaxation.

Instead of separating bound inequalities from the initial SOS1 constraints, a new feature of
the recent release allows to separate them by searching heuristically for maximum weighted
cliques in the conflict graph. This approach can significantly improve the performance of
the solver in case that the SOS1 constraints overlap. If the default settings are used, bound
inequalities are separated with node depth frequency of 10, but a user-defined frequency
can be set with the parameter constraints/sos1/boundcutsdepth.

◦ Implied bound inequalities: Savelsbergh [75] describes preprocessing and probing tech-
niques to deduce logical implications between variables. These techniques can be adapted
to problems containing SOS1 constraints by detecting implications of the form

z > 0 ⇒ x ≤ λ,

where x and z are variables and λ ∈ R. If x ≤ u and z ≤ d with u, d ∈ R>0, then one
can deduce an implied bound inequality x+ u−λ

d z ≤ u. The inequalities are generated as
part of the separation routine of the SOS1 constraint handler in SCIP with a node depth
frequency indicated by the parameter constraints/sos1/implcutsdepth.

◦ Disjunctive cuts: SCIP additionally incorporates a new separator sepa_disjunctive. It
separates disjunctive cuts for two-term disjunctions of the form xi ≤ 0 ∨ xj ≤ 0, which
originate from edges {i, j} of the conflict graph. The implementation in SCIP is based on
the approach presented in [48], where the authors describe a cost-effective way to generate
disjunctive cuts directly from the simplex tableau.

Diving heuristics. Standard MIP-based diving rules iteratively tighten a bound of a frac-
tional variable and resolve the LP (see Section 2.3). However, these rules are not directly
applicable to SOS1 constraints whose variables can be continuous. In the current SCIP re-
lease some of the diving heuristics have been made compatible with SOS1 constraints by
imitating diving on the binary variables yi of a MIP-reformulation with big-M constraints
xi ≤ ui yi, where ui ∈ R>0. The candidate that is selected for diving depends on the specific
diving heuristic; e.g., in case of fractional diving, the variables are selected with respect to
the ratio x∗i /ui, where x∗i is the current LP value of xi.

16

2.7 Further changes

Extended probing mode. SCIP contains two methods to do a temporary dive in the
branch-and-bound tree. The diving mode works directly on the LP structure and allows to
solve the LP after possibly changing variable bounds, adding rows, or changing the objective
function. In contrast, the probing mode creates temporary branch-and-bound nodes, which
makes it possible to perform backtracks during a dive. It allows to perform domain propaga-
tion at the temporary nodes and provides the ability to solve the LP by column generation
if a pricer plugin is implemented. The probing functionality has been extended in two ways:
First, cutting planes can be separated during probing using SCIPseparateSol() and then
applied to the current LP using SCIPapplyCutsProbing(). Second, objective function coef-
ficients can now be changed during probing via SCIPchgVarObjProbing(). Those changes
are mapped to the temporary nodes, so that a backtrack will automatically undo objective
changes as well. Note that due to global conflicts potentially created by conflict analysis,
domain propagation is always performed with respect to the original objective function.

Transfer and merging history information. Several primal heuristics of SCIP create
and solve sub-MIPs that result from fixing variables and/or adding constraints. Prior to
this release, variable information was completely uninitialized inside these sub-MIPs no mat-
ter how much history information had already been collected during the main search. A
transfer of collected variable information can be beneficial in both directions; the created
sub-MIPs are solved with a reasonable initialization of history information, while the main
SCIP might benefit from additional history information collected during the sub-MIPs. We
call information passing to a sub-MIP instance a transfer, while it is called a merge in the
opposite direction. The merge of history information is limited to sub-MIPs that use the
same objective function for the variables and do not add additional constraints except an ob-
jective cutoff. Transfers and merges are currently controlled centrally by the user parameters
history/allowtransfer and history/allowmerge that determine whether sub-MIP copies
of the problem should be initialized with the main history information and if the information
should be merged back from sub-MIPs, respectively. The latter is only performed in plug-
ins that define sub-problems solely through variable fixings, but no additional constraints or
changed objective function.

Using sparsity information of the SoPlex LP. The use of sparsity information within
separators has been implemented as a performance improvement for this release. Many sep-
arators use one-row relaxations of the problem which are obtained as aggregations of the
rows of the constraint matrix. Normally, the aggregation coefficients are the solution of a
linear system with the current basis matrix that is computed by the LP solver If SoPlex
is used as LP solver, sparsity information of the array of aggregation coefficients is directly
available and exploiting it leads to a significant reduction of the execution time for various
separators. The implementations of complemented mixed-integer rounding cuts [59], flow
cover cuts [58], Gomory mixed-integer rounding cuts [41, 40], multi-commodity flow network
cuts [6], strong Chvátal-Gomory cuts [56], {0, 1/2}-Chvatal-Gomory cuts [18], and Chvátal-
Gomory cuts computed via a sub-MIP [15, 28] were affected by the improved use of sparsity
information.

Handling different definitions of infinity in SCIP and SoPlex. SCIP and SoPlex
use different default values for infinity, namely 1020 and 10100, respectively. Transferring
floating point values between the two codes is now better handled by properly translating
them into the respective environment. For instance, a bound that is set to 1020 in SCIP will
be set to 10100 when copying the problem to SoPlex.

Memory management. The buffer memory system was unified to be compatible with the
standard/block memory of SCIP. Moreover, safety checks for integer overflows in the size of

17

allocated buffer memory were added. Additionally, a new type of buffer memory was added,
called clear buffer. It can be used if a buffer array is needed with all entries initialized to zero.
Before freeing this buffer array, all non-zero entries need to be reset to zero, which can often
be performed more efficiently than by overwriting the complete array, for example if only few
entries were modified and their indices are known.

Furthermore, the Zi round heuristic has been modified to now use buffer arrays to store its
required data instead of permanent block memory arrays. This change significantly reduces
the overall memory footprint of SCIP.

Python interface. In SCIP 3.2.1, the already existing interface to the programming lan-
guage Python has been vastly extended. The interface is written in Cython [91] and enables
the user to model mixed-integer linear and quadratic programming problems. It also supports
SOS1 and SOS2 constraints. Constraints can be conveniently created by means of expressions:

from pyscipopt import Model
scip = Model()
x = scip.addVar(’x’, vtype=’CONTINUOUS’)
y = scip.addVar(’y’, vtype=’INTEGER’)
scip.setObjective(x + 3y)
scip.addCons(2x - y*y >= 10)
scip.optimize()

Furthermore, new SCIP plugins can be written in Python. To this end, base classes
with empty callback methods are provided and a derived class can implement the relevant
functionality in Python by overriding the callbacks. This feature enables the user to do fast
prototyping of new algorithmic ideas without the coding overhead of the C language. Among
the supported plugins are pricers, heuristics, presolvers, separators, and constraint
handlers.

The code uses docstrings [92], so calling help() on a method will show its documentation.
The most important interface methods are implemented, but there are methods and data
structures in SCIP that currently cannot be called or used from Python.

AMPL interface. The variable and constraint attributes (flags in SCIPcreateVar() and
SCIPcreateCons()) of SCIP can now be set via AMPL suffixes, where 0 (unset) denotes the
default for that attribute, 1 denotes TRUE, and other values denote FALSE. For variables, the
flags “initial” and “removable” are recognized. For constraints, the AMPL interface recognizes
the flags “initial”, “separate”, “enforce”, “check”, “propagate”, “dynamic”, and “removable”.

SCIP output. Branch-and-bound Analysis Kit: SCIP can output information on the
branch-and-bound tree to a file that can be fed into the Branch-and-bound Analysis Kit
(BAK), see [66]. This option is activated by supplying a filename with the SCIP parameter
visual/bakfilename.

Feasibility Check: For the feasibility check of the best found solution it is possible to use
the parameter display/allviols in order to display all violated constraints and variable
bounds. SCIP also provides the possibility to increase the feasibility tolerance for this check
by setting the factor numerics/checkfeastolfac. This can be very useful for numerically
difficult problems for which one wants to use a given feasibility tolerance during the solving
process but a larger one for the final feasibility check.

Problem Permutation: SCIP release 2.0 introduced the possibility to randomly permute
the order of variables and constraints during problem transformation. Release 3.2 now allows
the permutation of the original problem directly after reading. This is triggered if the param-
eter misc/permutationseed is set to a non-negative value before reading in the problem. An
instance modified in this way often leads to different solving behavior, a phenomenon called
performance variability [52]. In order to get more reliable benchmarking results, the MIPLIB
2010 test scripts [90] use the new SCIP functionality to automatically permute the input

18

problems with SCIP, write them to an LP file, and then perform computational experiments
on these permuted instances.

3 SoPlex: Sequential object-oriented simPlex

This release of the SCIP Optimization Suite contains version 2.2.0 of the LP solver SoPlex.
Beside performance improvements of the simplex implementation, the new version provides
the possibility to compute arithmetically exact solutions of LPs with rational input data.

Exact solving capability. Algorithmically, the exact solving capability relies on two meth-
ods that are interleaved with SoPlex’s iterative refinement scheme:

◦ a rational LU factorization of the basis matrix that is used to compute the exact rational
solution corresponding to the current basis. This provably verifies the feasibility and
optimality of the current candidate basis;

◦ a rational reconstruction procedure based on continued fraction approximations which
“rounds” the current numeric solution to a nearby solution with low denominators.

These methods can be used individually or in combination to solve LPs exactly within a
theoretical worst-case bound of polynomially many refinement rounds. For rational recon-
struction, we have integrated and adapted code of Daniel Steffy.1 For more details, including
a computational study of the performance of both approaches, see [37]. For more details on
the underlying iterative refinement method see [38] and [39].

By default SoPlex still operates as a floating-point LP solver. The exact solving features
are activated by parameters. See the section “How to use SoPlex as an exact LP solver” of
SoPlex’s online documentation under http://soplex.zib.de for more details.

Sparsity exploitation. Sparse data structures are now used in more parts of the code to
avoid unnecessary operations on zero-valued entries. Keeping track of nonzero values in a
vector also speeds up its clearing procedure, since only a fraction of the indices needs to be
touched. The same principle applies to the computation of the current objective value, which
is required to determine whether an objective limit has been reached. Here, the nonbasic part
of the objective can be initialized once and then be updated with respect to the simplex pivot
in the current iteration.

In the pricing step, hyper sparse pricing (see [50, 42]) is enabled by default: Better per-
formance is achieved using this pricing by restricting the evaluated indices to a small set of
interesting candidates. This set is updated whenever new candidates are available due to a
basis change.

Further developments. The bound flipping ratio test for the dual simplex is enabled by
default and its potential is increased by preserving bounds of boxed variables in presolving.
Steepest edge pricing norms can be set and extracted, e.g., for restoring them after a dive in
the MIP branch-and-bound tree. To ensure thread safety, the message handler is no longer a
global variable.

4 ZIMPL: Zuse Institute Mathematical Programming Language

A single change has been made for the 3.3.3 release of ZIMPL. For easy compilation under
Windows, an NMAKE-Makefile was added to the distribution.

1Daniel E. Steffy. Dense Iterative Refinement Solver Version 1.1, https://files.oakland.edu/users/
steffy/web/rational/, accessed January 2015

19

http://soplex.zib.de
https://files.oakland.edu/users/steffy/web/rational/
https://files.oakland.edu/users/steffy/web/rational/

5 UG: Ubiquity Generator framework

The parallelization framework UG has been developed and tested extensively with SCIP as
the base solver. In the new version, UG 0.8, the dynamic load balancing mechanism has
been improved, especially for the ramp-down process. With the configuration ug[SCIP,MPI],
which is ParaSCIP, a successful test using 80,000 cores was run on the supercomputer Titan
at the Oak Ridge National Laboratory2. This run was instrumental in solving the open
MIPLIB2010 instance rmine10 [52]. See [81] for details about the computational results and
the algorithmic improvements.

A major new feature is the functionality to parallelize a customized SCIP solver. To
realize this feature ug[SCIP, Pthreads] (shared memory parallelization) and ug[SCIP, MPI]
(distributed memory parallelization) are provided as libraries. This release of the SCIP Op-
timization Suite includes an example demonstrating the use of these libraries to parallelize
a customized SCIP solver for solving Steiner Tree Problems, SCIP-Jack [32], see also Sec-
tion 7.

6 GCG: Generic Column Generation

This release of the SCIP Optimization Suite contains version 2.1.0 of the generic branch-and-
price code GCG.

Basis cuts separator. In branch-price-and-cut algorithms, cutting planes formulated with
original variables do not change the structure of the pricing problems, whereas cutting planes
formulated with master variables in general do. Since projecting a basic solution of the master
LP relaxation to the original solution space does not necessarily yield a basic solution, cutting
planes in the original problem that are separated using a basis are not directly applicable.
Range [73] (and others) proposed as a remedy to heuristically compute a basic solution and
separate this auxiliary solution also with cutting planes that stem from a basis. This might not
only cut off the auxiliary solution, but also the solution we originally wanted to separate. If
the solution we wanted to separate is not cut off, we can strengthen the original LP relaxation
by temporarily adding the obtained cutting planes to the problem formulation and repeat the
procedure.

This separation algorithm was implemented in GCG and added to the latest release. For
a detailed description of the separation algorithm (including several heuristics to obtain a
basic feasible solution) as well as computational results we refer to [57].

Column pool. A column pool was added to GCG in the current release. At present the
column pool is mainly used for column management. Columns are not immediately added
to the restricted master problem but are collected in a column pool which is searched for
negative reduced cost columns after solving the pricing problems. In the future, we plan to
keep promising columns in the column pool if they did not enter the LP and search the pool
in later rounds before calling the pricer.

For each column in the column pool, we store the current reduced cost and the age, which
is defined as the number of pricing steps since its creation. For the column pool, both a soft
and a hard limit on the number of columns in the column pool is specified. The hard limit
is always obeyed, whereas the soft limit can be temporarily violated. The column pool is
implemented as a priority queue where columns with small reduced cost are prioritized. In
the beginning of each pricing step, the reduced costs of the columns in the column pool are
updated and the priority queue is reinitialized. After the pricing problems are solved, columns
are added to the column pool. Then, variables having negative reduced cost are added to the
restricted master problem and removed from the column pool. In the end, the oldest columns
are removed from the column pool such that the soft limit for the number of columns in the
column pool is obeyed.

2https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

20

To avoid checking for feasibility of columns in each node of the branch-and-bound tree,
the column pool will be cleared whenever the node changes.

Set covering heuristic. In several cases, a given MIP model can be reformulated via
Dantzig-Wolfe decomposition such that the resulting master problem takes the form

min c>λ

s.t. Aλ ≥ 1

λ ∈ {0, 1}n,
(3)

with A ∈ {0, 1}m×n, c ∈ Rn+. A heuristic by Caprara et al. [19] was added to GCG that
exploits the structure of such a set covering problem.

Based on the Lagrangian relaxation of (3), it iteratively computes a sequence uk ∈ Rm+ of
near-optimal Lagrangian multiplier vectors for the Lagrangian subproblem

min c>λ− u>(Aλ− 1)

s.t. λ ∈ {0, 1}n. (4)

For each multiplier, a heuristic solution xk for (3) is then computed by greedily setting λ
variables to 1, using a score function taking the multiplier into account. The best of these
solution is then added to the solution pool of GCG.

Refactoring. The constraint handlers that coordinate the branching trees of the original
problem and the master problem have undergone some refactoring: Some fields in their data
structures and methods were renamed, and two methods were split into smaller ones. Some
documentation was also added to the code.

Further, the memory consumption of the cutpacking detector was reduced by decreasing
its excessive usage of the SCIP_HASHMAP data structure.

Further developments. The numerical tolerances given to the original problem are now
also used in the master problem as well as in the pricing problems. The compiler flag
CPLEXSOLVER was re-added to GCG. When this flag is set to true, the pricing problems
that are solved as a MIP are solved with CPLEX instead of SCIP.

7 Other extensions

The SCIP distribution contains example projects that are mainly designed as a starting
point for new users. Some show how to use the API for specific types of problems, others are
simple extensions of SCIP illustrating the implementation of a branch-and-price or branch-
and-cut approach for a specific problem. In recent years, some complex extensions were
developed. It was decided for the current release that these more complex examples are
shipped with the distribution. However, they do not primarily serve as an example, but
rather extend the applicability of SCIP to new problem classes, constituting competitive
codes for specific applications. To reflect their function as a practical extension of SCIP
a new category for extensions has been introduced. These extensions are collected in the
applications subdirectory of the distribution.

The existing vertex coloring and scheduler examples were moved to the applications di-
rectory and two new applications were added. These consider Steiner tree problems and
multi-objective optimization and are introduced in the following section.

Moreover, SCIP-SDP, the external mixed-integer semidefinite programming extension of
SCIP was significantly improved, as is discussed at the end of this section.

21

7.1 SCIP-Jack: Steiner tree problems and variants

The Steiner tree problem in graphs (SPG) is a classical NP-hard problem [49]: Given an
undirected connected graph G = (V,E), weights c : E → Q+ and a set T ⊆ V of terminals,
the problem is to find a minimum weight tree S ⊆ G that spans T . Although extensively
studied both theoretically and practically, the classical SPG rarely arises when modeling real-
world problems. Instead, one predominantly encounters variations of the classical Steiner
tree problem. An example of such a variation is the prize-collecting Steiner tree problem: a
feasible solution to this problem can span any subset of the terminals, but concomitantly a
non-negative penalty is charged for each terminal not contained.

The SCIP 3.2 release sees the first distribution of the Steiner tree problem solver SCIP-
Jack [32], which can handle both the classical SPG and ten of its variants. This versatility
is rendered possible by transformations of the different Steiner tree problem variants into a
general form that are then solved by a branch-and-cut algorithm. In fact, this general form
is a directed Steiner tree problem (V,A, T, c, r) possibly incorporating additional constraints.
As compared to the SPG the directed Steiner tree problem contains arcs A instead of edges
and furthermore distinguishes a terminal r that is required to be the root of each feasible
Steiner tree. An SPG can be transformed into a directed Steiner tree problem by replacing
each edge by two anti-parallel arcs of the same cost and distinguishing an arbitrary terminal
as the root.

The solving approach employed within SCIP-Jack is based on the following flow-balance
directed cut IP formulation, which associates with each arc a ∈ A a variable ya, indicating
whether a is contained in the Steiner tree (ya = 1) or not (ya = 0):

min c>y (5)
y(δ−(W)) ≥ 1 ∀W ⊂ V : r /∈W,W ∩ T 6= ∅, (6)

y(δ−(v))

 =
=
≤

0, if v = r;
1, if v ∈ T \ {r};
1, if v ∈ N ;

∀ v ∈ V, (7)

y(δ−(v)) ≤ y(δ+(v)) ∀ v ∈ V \ T, (8)
y(δ−(v)) ≥ ya ∀ a ∈ δ+(v), v ∈ V \ T, (9)

ya ∈ {0, 1} ∀ a ∈ A, (10)

where δ+(X) := {(u, v) ∈ A : u ∈ X, v ∈ V \X} and δ−(X) := δ+(V \X) for X ⊆ V , and
y(F) :=

∑
e∈F ye for F ⊆ E. Further details of the formulation are provided in [53]. Since

the model potentially contains an exponential number of constraints, a separation approach
is employed. Violated constraints are separated during the execution of the branch-and-cut
algorithm.

Considering the implementation, the two underlying plugins are a reader to read problem
instances and possibly transform them, and a problem data to store the graph and build the
model within SCIP. With the problem having been read in and transformed, the solving
approach can be dissected into three main components:

The heart of SCIP-Jack is a constraint handler that checks solutions for feasibility and
separates violated model constraints. SCIP provides a filtering of cuts to improve numerical
stability and dynamic aging of the generated cuts. Additionally, general-purpose separation
methods of SCIP such as Gomory and mixed-integer rounding cuts are employed. Concerning
branching, the customary hybrid branching rule [3] of SCIP is used; node selection is per-
formed with respect to a best estimate criterion—interleaved with best bound and depth-first
search phases [1].

The second pillar of SCIP-Jack is constituted by reduction methods for both the SPG
and, to a lesser extent, for its variations. These methods are performed prior to the model
being built within SCIP. Additionally, a Steiner tree problem specific propagator has been
implemented based on an idea first published in [25].

22

As the third major solving component, three Steiner tree problem specific primal heuristics
have been implemented in SCIP-Jack as separate plugins: First a constructive heuristic
based on [24] and [68], second a local search approach described in [84], and third a new
recombination heuristic [32].

SCIP-Jack was able to take first place at the 11th DIMACS Challenge in the category
rooted prize-collecting Steiner tree problem. Moreover, employing the UG framework we were
able to solve three SPG benchmark instances for the first time to optimality and improve the
best known solutions to another 11 instances [34].

Finally, to the best of our knowledge, this release marks the first time that a powerful exact
Steiner tree solver has been available in source code to the scientific community. Furthermore,
we plan to publish a considerably extended version of SCIP-Jack as part of the next SCIP
bugfix release. By virtue of a variety of new presolving routines (see [74]) and furthermore a
dual heuristic to decide on a good initial LP relaxation, the performance of SCIP-Jack on
almost all Steiner tree variants will be drastically improved. In this way, SCIP-Jack will be
able to outperform other (specialized) state-of-the-art solvers on several problem variants.

7.2 PolySCIP: Multi-criteria MIP and LP

PolySCIP [95] is a solver for multi-criteria integer programs as well as multi-criteria linear
programs, see Fig. 2 and Fig. 3 for an illustration, respectively. In other words, it solves
optimization problems of the form:

min (c>1 x, . . . , c
>
k x)

s.t. Ax ≤ b,
x ∈ Zn ∨Qn,

where k ≥ 2, A ∈ Qm×n, b ∈ Qm.
Let X be the feasible space of the considered problem and Y = {(c>1 x, . . . , c>k x) : x ∈ X}

be the corresponding image in objective space. A point y∗ ∈ Y is an extreme supported non-
dominated (ESN) point if there is a positive weight vector w ∈ Rk such that w>y∗ < w>y
for all y ∈ Y \ {y∗} (in the case of minimization; w>y∗ > w>y in the case of maximization).
The algorithmic approach and methodology of PolySCIP to compute all ESN points can be
summarized as follows (for a minimization problem): At the beginning an arbitrary ESN point
y1 ∈ Y is computed (by lexicographic optimization) or it is determined that there do not exist
any ESN points for the considered problem. Let Ȳ be the set of ESN points computed (after
the first iteration) and let P = {(a,w) ∈ R ×W : a ≤ w>y ∀y ∈ Ȳ} be the partial weight
space polyhedron with W = {w ∈ Rk+ :

∑k
i=0 wi = 1} (At this stage consider all vertices of

P as non-marked). In every next iteration a non-marked vertex (a,w) ∈ P is chosen and the
weighted optimization problem minw1c

>
1 x + . . . + wkc

>
k x s.t. x ∈ X is solved. Let x̃ be the

computed solution and let ỹ the corresponding point in objective space. If a > w>ỹ, then ỹ
is a new ESN point and Ȳ and the partial weight space polyhedron P is altered. If a ≤ w>ỹ,
then the vertex (a,w) ∈ P is marked. The algorithm stops if all vertices of P are marked.

x1

x2

X
c1

c2 cT1 x

cT2 x

Figure 2: Feasible space of bi-criteria integer program and set in objective space with
dominated points (blue), supported non-dominated points (red) and non-supported
non-dominated point (green).

23

X
x1 x2

x3

c1

c2

cT1 x

cT2 x

Y

Figure 3: Feasible space of bi-criteria linear program and set in objective space with
extreme non-dominated points (red).

The current version of PolySCIP computes all ESN points (and non-dominated rays)
given a multi-criteria linear program or multi-criteria integer program, respectively. For multi-
criteria mixed-integer programs, computing the non-dominated points is more complicated
and is currently not fully supported by PolySCIP.

The file format (with suffix .mop) is based on the MPS file format. Objectives are con-
sidered to be non-constrained rows, i.e, they are defined by the key ‘N’ in the ‘Rows’ section.
For instance, (the beginning of) a tri-criteria minimization problem named ‘sustain’ with
objectives COSTS, EMISSION and HAZARDS would start with

NAME sustain
OBJSENSE
MIN

ROWS
N COSTS
N EMISSION
N HAZARDS

followed by the usual inputs for constraints, upper and lower bounds et cetera defined by the
original MPS format.

7.3 SCIP-SDP: A mixed-integer semidefinite programming solver

Together with SCIP 3.2, version 2.0 of SCIP-SDP [97] was released. SCIP-SDP is a plugin
for SCIP to solve mixed-integer semidefinite programs (MISDPs) of the form

min b>y

s.t.
m∑
i=1

Aiyi − C � 0,

yi ∈ Z ∀i ∈ I,

(11)

for symmetric matrices C, Ai ∈ Rn×n for all i = 1, . . . ,m and a set of indices of integer
variables I. SCIP-SDP adds a constraint-handler for semidefinite constraints to SCIP as
well as a relaxator that can solve semidefinite programs via an interface to SDP-solvers. It also
includes a file-reader for an enhanced sparse SDPA-format with added lines for integrality
constraints.

The original version 1.0 was developed by Sonja Mars and Lars Schewe [60, 61]. The
current version involves a redesign of the code, including some porting from C++ to C, and
several new components, as described in the following.

For SCIP-SDP 2.0 a two-level SDP-solver interface was added, which is, in principle,
independent of SCIP. The first level general interface is shared among the different SDP-
solvers and takes care of some of the presolving, which is usually not contained in SDP-
solvers. This includes the removal of locally fixed variables and zero rows and columns in
the semidefinite constraint in (11), which, for instance, might occur by fixing all variables

24

with entries in these rows and columns to zero. The second level interface is specific to the
different SDP-solvers. It passes the locally presolved problems to the solver, sets parameters
accordingly and then calls the SDP-solver. In addition to the interface to DSDP [10], which
was already included in version 1.0, an interface to the SDP-solver SDPA [87, 88] was added.
When using the latter interface, the different standard settings provided by SDPA from
“fastest” to “stable” are iteratively applied. If none of these settings is able to solve the
problem, a penalty formulation like in DSDP is used, where an identity matrix scaled by
an additional slack variable, which is penalized in the objective, is added to the semidefinite
constraint in (11).

Additionally, a dual fixing propagator called sdpredcost was added to SCIP-SDP. This
is a generalization of reduced cost fixing for linear programs that tightens variable bounds
and fixes binary variables based on the values of the dual variables corresponding to variable
bounds in the solutions of the semidefinite relaxations. For a variable yj with upper and
lower bounds uj and `j , dual variables vj and wj corresponding to these variable bounds, the
upper bound U on the minimization problem given by the best known integer solution, and
the optimal objective value f̄ of the semidefinite relaxation, one can show that the following
holds for all optimal solutions y:

yj ≥ uj −
U − f̄
vj

and yj ≤ `j +
U − f̄
wj

.

This propagator can be restricted to either only binary or integer and continuous variables by
changing the parameters forbins and forintcons. With standard settings the propagator
is applied to all variables.

Finally SCIP-SDP now uses the SCIP shell, cutoff-bounds can be transferred to the
SDP-solvers by enabling the parameter relaxing/SDP/objlimit and average and total SDP
iterations are now displayed in the shell instead of LP iterations. Furthermore, the output of
the SDP-solver can be enabled by the parameter relaxing/SDP/sdpinfo.

8 Summary of performance improvements

This paper highlights the most important features and improvements of the latest release of
the SCIP Optimization Suite. While some features extend the range of problems that can
be solved with the SCIP Optimization Suite, other features are targeted towards improving
performance on particular instance classes. A particular focus is the performance on the
problem classes most frequently solved by the SCIP Optimization Suite: mixed-integer linear
programs (MIPs) and mixed-integer nonlinear programs (MINLPs).

Figure 4 compares the performance of SCIP 3.2 against previous major SCIP versions
on the MIPLIB 2010 [52] benchmark set. For each SCIP version presented in Figure 4, the
most recent release of SoPlex at the time was used as the LP solver. As can be seen, the
number instances solved within the time limit of two hours increases by three and the average
running time decreases by 24 %. Note that this test set of 87 instances can only provide a
rough picture for the performance of a MIP solver. The performance improvement achieved
by version 3.2 on single instances or problems of a specific class may differ. Nevertheless, the
MIPLIB benchmark set was specifically designed to cover a variety of different problem types
and is widely used for benchmarking purposes [65].

For MINLPs, we observe a performance improvement of 14 % and a node reduction of 31 %
on the MINLPLib2 [89] benchmark set. A standard performance profile between SCIP 3.2
and the previous version 3.1 on all 1357 instances of the MINLPLib2 is presented in Figure 5.
As a result of the performance improvements, SCIP 3.2 now solves 31 more instances than
SCIP 3.1. However, SCIP 3.1 achieves a faster runtime on more instances than SCIP 3.2.
This can be explained by the addition of new features aimed at solving hard instances, which
may create a performance overhead on easy instances. Overall, for hard instances this over-
head pays off and results in more instances being solved.

25

solved
(of 87)

0

1000

2000

3000

4000

ti
m
e
in

se
co
nd

s

23

5.82x

36

4.31x

29

4.35x

48

3.60x

51

2.92x

58

2.26x

63

1.89x

67

1.54x

65

1.44x

67

1.24x

70

1.00x

SCIP 0.7 – SoPlex 1.2.2
SCIP 0.8 – SoPlex 1.2.2
SCIP 0.9 – SoPlex 1.3.0
SCIP 1.0 – SoPlex 1.3.2
SCIP 1.1 – SoPlex 1.4.0
SCIP 1.2 – SoPlex 1.4.2
SCIP 2.0 – SoPlex 1.5.0
SCIP 2.1 – SoPlex 1.6.0
SCIP 3.0 – SoPlex 1.7.0
SCIP 3.1 – SoPlex 2.0.0
SCIP 3.2 – SoPlex 2.2.0

Figure 4: Version to version performance improvement on MIPLIB 2010 [52], relative
to the latest release. Shown timings are shifted geometric means over all 87 instances.
On the horizontal axis the numbers of solved instances are displayed.

100 101 102
0.3

0.4

0.5

0.6

performance ratio

pr
ob

le
m
s
so
lv
ed

(%
)

SCIP 3.2 (CPLEX 12.6.2)
SCIP 3.1 (CPLEX 12.6.2)

Figure 5: Performance profile for SCIP 3.1 and 3.2 over 1357 instances of the
MINLPLib2 [89].

9 Outlook

The components of the SCIP Optimization Suite are actively developed in many directions.
Within SCIP, special focus lies on the extension of the reoptimization capabilities, on im-
proved branching rules, and MINLP. The reoptimization feature of SCIP will be extended to
the case of general MIP. Additionally, the main research topics are new heuristics to reduce
the size of the stored search tree, better concepts to deal with dual reductions in branching,
and improved compatibility with some advanced MIP techniques like conflict analysis.

In the context of branching rules, further work on cloud branching [13] is planned, as well
as the integration of other recent branching developments like nonchimerical branching [29]
and an abstract model for the scoring function used in branching [54]. A dynamic solving
strategy for SCIP based on the concept of solving phases [46] will be made available.

An important class of MINLPs is the class of mixed-integer quadratically constrained
programs (MIQCPs). Future goals for the improvement of SCIP on MIQCPs include the
implementation of techniques from the literature that are not yet available in SCIP. Examples
are the reformulation-linearization technique of Sherali and Adams [78] and valid inequalities
arising from semidefinite programming reformulations [79, 76, 77]. Furthermore, the next
major release of SCIP will be able to use a convex nonlinear relaxation to obtain stronger
dual bounds at nodes of the branch-and-bound tree.

In SoPlex, besides general performance improvements, a solution polishing feature is in
development to promote integrality for solutions of MIP relaxations.

Complementary to the external parallelization scheme available via the UG framework,
infrastructure for an internal parallelization of SCIP is currently being developed. This will
both enable the parallelization inside plugins and allow the parallel call of similar plugins.
Within the UG framework, the focus is on the parallelization of additional extensions of
SCIP and the interaction with the future internal parallelism of SCIP.

26

In the near future, the main research direction in GCG will be the further development
of structure detection. First, it will be modularized in the sense that a structure detector or
the user will be able to only specify a partial structure which can then be completed by the
(other) detectors. Second, the effect of different structures on the solution process will be
further investigated, in the hope to devise a better a priori estimate which structure is the
best suitable for a given problem.

The development of the extensions presented in Section 7 will be continued. The main re-
search directions of PolySCIP are the computation of non-supported non-dominated points
for problems with an arbitrary number of objectives and the computation of the front of non-
dominated points of multi-criteria mixed-integer problems. For SCIP-SDP, further research
directions include linear and conic cuts as well as warmstarting possibilities. For the next re-
lease, SCIP-SDP will be extended by a fractional diving heuristic for MISDPs. Furthermore,
an interface to the commercial SDP solver of MOSEK [94] is currently in development.

Acknowledgements. The authors want to thank all contributors to the SCIP Optimization
Suite. Special thanks go to Roland Wunderling, the creator of SoPlex, Tobias Achterberg, the
creator of SCIP, the former developers of SCIP, Timo Berthold, Stefan Heinz, and Kati Wolter,
and the former GCG developer Martin Bergner. We are grateful for the support of Alexander Martin
who developed SIP, the predecessor of SCIP, and who fostered many of the latest developments
in presolving and to Marco Lübbecke for his vision of a generic branch-and-price solver and his
invaluable encouragement and advice concerning the development of GCG.

The work for this article has been partly conducted within the Research Campus Modal funded
by the German Federal Ministry of Education and Research (fund no. 05M14ZAM). The third and
tenth author would like to thank the German Research Foundation (DFG) for funding since part of
this research has been carried out within the Collaborative Research Center 805. The development of
PolySCIP started in the project A5 Multicriteria Optimization within the Collaborative Research
Center 1026 Sustainable Manufacturing, which the thirteenth author would like to acknowledge.

We are grateful to the HLRN III supercomputer staff, especially Matthias Läuter and Guido
Laubender and to the ISM supercomputer staff in Tokyo, especially Tomonori Hiruta. This research
used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC05-00OR22725.

Code Contributions of the Authors. The material presented in the article naturally is
based on code and software. In the following we want to make the corresponding contributions of
the authors and possible contact points more transparent.

The research described in Section 2.1 was mainly carried out by JW. The topics presented in
Section 2.2 are attributed to DW (singleton column stuffing, redundant variable bounds, implied
free variables, two-row bound tightening, dual aggregations, matrix module), MW (using GCDs in
ranged rows, upgrade to implicit integer variables), and GG (presolving levels). Section 2.3 presents
work by GH (distribution diving, revision of diving heuristics), MP (indicator heuristic), and GG
(bound, clique, variable bound heuristic). The contributors to Section 2.4 are GH (distribution
branching, new reliability notions), GG (branching on multi-aggregated variables), and AMG (im-
proved treatment of nonlinearities). Section 2.5 covers work by BM (edge-concave cuts separator,
improved OBBT), FS (upgrade to SOC, improved separation for convex quadratic constraints), and
SV (user-defined operators). The research presented in Section 2.6 was mainly performed by TF.
The contributors to Section 2.7 are GG (probing, memory management, problem permutation), GH
(history transfer, memory management), SM (sparsity information), MM (Python interface, sparsity
information, different infinity definitions), MP (memory management, BAK), SV (AMPL interface),
RS (Python interface) and BM (feasibility check).

The topics described in Section 3 were treated by AMG (exact solving capability) and MM
(sparsity exploitation, further developments). The Windows Makefile for ZIMPL (Section 4) was
added by BM. The research presented Section 5 was carried out by YS. Section 6 describes work
of JTW (basis cut separator, column pool) and CP (set covering heuristic, refactoring). The work
presented in Section 7.1 was mainly done by DR; GG, SJM, TK, YS, and MW contributed to it.
Section 7.2 presents research by SS. Finally, Section 7.3 presents work performed by TG.

27

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007.

[2] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[3] T. Achterberg and T. Berthold. Hybrid branching. In W. J. van Hoeve and J. N.
Hooker, editors, Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009,
volume 5547 of Lecture Notes in Computer Science, pages 309–311. Springer, 2009.

[4] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Multi-row presolve
reductions in mixed integer programming. In Proceedings of the Twenty-Sixth RAMP
Symposium, Hosei University Tokyo, 2014.

[5] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42–54, 2004.

[6] T. Achterberg and C. Raack. The MCF-separator – detecting and exploiting multi-
commodity flows in MIPs. Mathematical Programming C, 2(2):125–165, 2010.

[7] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Mathematical
Programming, 71:221–245, 1995.

[8] E. M. L. Beale and J. A. Tomlin. Special facilities in general mathematical programming
system for non-convex problems using ordered sets of variables. In J. Lawrence, editor,
Proc. 5th International Conference on Operations Research, pages 447–454. Travistock
Publications, London, 1970.

[9] M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent.
Experiments in mixed-integer programming. Mathematical Programming, 1:76–94, 1971.

[10] S. J. Benson and Y. Ye. Algorithm 875: DSDP5–software for semidefinite programming.
ACM Transactions on Mathematical Software, 34(4):16:1–16:20, May 2008.

[11] T. Berthold. Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin, 2006.

[12] T. Berthold. RENS – the optimal rounding. Mathematical Programming Computation,
6(1):33–54, 2014.

[13] T. Berthold and D. Salvagnin. Cloud branching. In C. Gomes and M. Sellmann, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 7874 of Lecture Notes in Computer Science, pages 28–
43. Springer Berlin Heidelberg, 2013.

[14] R. E. Bixby and E. Rothberg. Progress in computational mixed integer programming–a
look back from the other side of the tipping point. Annals of Operations Research,
149:37–41, 2007.

[15] P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected chvátal–
gomory cuts for mixed integer linear programs. Mathematical Programming, 113(2):241–
257, 2008.

[16] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. PhD thesis, TU
Berlin, 1998.

28

[17] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical Programming, 8:54–83,
1975.

[18] A. Caprara and M. Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical Program-
ming, 74(3):221–235, 1996.

[19] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem.
Operations Research, 47(5):730–743, 1999.

[20] C. D’Ambrosio, M. Fampa, J. Lee, and S. Vigerske. On a nonconvex MINLP formulation
of the Euclidean steiner tree problems in n-space. Technical Report 4528, Optimization
Online, 2015.

[21] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling. Generating multiple solutions for
mixed integer programming problems. In M. Fischetti and D. P. Williamson, editors,
Integer Programming and Combinatorial Optimization, Proc. of the 12th International
IPCO Conference, Ithaca, NY, USA, volume 4513 of LNCS, pages 280–294. Springer,
2007.

[22] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102(1):71–90, 2004.

[23] G. B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266–
277, 1957.

[24] M. P. de Aragao and R. F. Werneck. On the implementation of MST-based heuristics
for the Steiner problem in graphs. In Proceedings of the 4th International Workshop on
Algorithm Engineering and Experiments, pages 1–15. Springer, 2002.

[25] C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993.

[26] T. Fischer and M. E. Pfetsch. Branch-and-cut for linear programs with overlapping
SOS1 constraints. Technical report, Available on Optimization Online, submitted for
publication, 2015.

[27] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-3):23–47,
2003.

[28] M. Fischetti and A. Lodi. Optimizing over the first chvátal closure. Mathematical
Programming, 110(1):3–20, 2007.

[29] M. Fischetti and M. Monaci. Branching on nonchimerical fractionalities. OR Letters,
40(3):159–164, 2012.

[30] C. A. Floudas. Deterministic Global Optimization: Theory, Methods and Applications.
Nonconvex Optimization and Its Applications. Springer-Verlag, 2000.

[31] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-based primal heuristics
for mixed integer programming. In K. Fujisawa, Y. Shinano, and H. Waki, editors,
Optimization in the Real World, volume 13 of Mathematics for Industry, pages 37–53.
Springer Japan, 2015.

[32] G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack – a solver
for STP and variants with parallelization extensions. Technical Report 15-27, ZIB,
Takustr.7, 14195 Berlin, 2015.

[33] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger. Progress in
presolving for mixed integer programming. Mathematical Programming Computation,
pages 1–32, 2015.

29

[34] G. Gamrath, T. Koch, D. Rehfeldt, and Y. Shinano. SCIP-Jack – a massively parallel
STP solver. Technical Report 14-35, ZIB, Takustr.7, 14195 Berlin, 2014.

[35] G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-Wolfe decom-
position for integer programs. In P. Festa, editor, Experimental Algorithms, volume
6049 of Lecture Notes in Computer Science, pages 239–252, Berlin, Heidelberg, 2010.
Springer.

[36] G. Gamrath, A. Melchiori, T. Berthold, A. M. Gleixner, and D. Salvagnin. Branching on
multi-aggregated variables. In L. Michel, editor, Integration of AI and OR Techniques
in Constraint Programming, Proc. of CPAIOR, volume 9075 of LNCS, pages 141–156.
Springer International Publishing, 2015.

[37] A. M. Gleixner. Exact and Fast Algorithms for Mixed-Integer Nonlinear Programming.
PhD thesis, Technische Universität Berlin, 2015.

[38] A. M. Gleixner, D. E. Steffy, and K. Wolter. Improving the accuracy of linear program-
ming solvers with iterative refinement. In ISSAC ’12. Proceedings of the 37th Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 187–194. ACM, July
2012.

[39] A. M. Gleixner, D. E. Steffy, and K. Wolter. Iterative refinement for linear programming.
INFORMS Journal on Computing, 2016. To appear. Available as ZIB-Report 15-15,
URN:nbn:de:0297-zib-55118.

[40] R. Gomory. An algorithm for integer solutions to linear programming. Recent Advances
in Mathematical Programming, pages 269–302, 1963.

[41] R. E. Gomory. Solving linear programming problems in integers. Combinatorial Anal-
ysis, 10:211–215, 1960.

[42] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method
and how to exploit it. Computational Optimization and Applications, 32(3):259–283,
2005.

[43] G. Hendel. New rounding and propagation heuristics for mixed integer programming.
Bachelor thesis, Technische Universität Berlin, 2011.

[44] G. Hendel. Empirical analysis of solving phases in mixed integer programming. Master’s
thesis, Technische Universität Berlin, 2014.

[45] G. Hendel. Enhancing MIP branching decisions by using the sample variance of pseudo
costs. In Integration of AI and OR Techniques in Constraint Programming, volume
9075 of LNCS, pages 199–214, 2015. in press.

[46] G. Hendel. Exploiting solving phases for mixed-integer programs. Technical Report
15-64, ZIB, Takustr.7, 14195 Berlin, 2015.

[47] B. Hiller, T. Klug, and J. Witzig. Reoptimization in branch-and-bound algorithms
with an application to elevator control. In Experimental Algorithms, Proc. 12th Inter-
national Symposium, SEA 2013, volume 7933 of LNCS, pages 378–389, Rome, Italy,
2013. Springer.

[48] J. J. Júdice, H. D. Sherali, I. M. Ribeiro, and A. M. Faustino. A complementarity-based
partitioning and disjunctive cut algorithm for mathematical programming problems
with equilibrium constraints. Journal of Global Optimization, 36(1):89–114, 2006.

[49] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

30

http://nbn-resolving.de/urn:nbn:de:0297-zib-55118

[50] A. Koberstein. The dual simplex method, techniques for a fast and stable implementa-
tion. PhD thesis, Universität Paderborn, 2005.

[51] T. Koch. Rapid Mathematical Prototyping. PhD thesis, Technische Universität Berlin,
2004.

[52] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Sal-
vagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Com-
putation, 3(2):103–163, 2011.

[53] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32:207–232, 1998.

[54] P. Le Bodic and G. L. Nemhauser. An Abstract Model for Branching and its Application
to Mixed Integer Programming. ArXiv e-prints, Nov. 2015.

[55] E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer New York,
2005.

[56] A. N. Letchford and A. Lodi. Strengthening chvátal–gomory cuts and gomory fractional
cuts. Operations Research Letters, 30(2):74–82, 2002.

[57] M. E. Lübbecke and J. T. Witt. Separation of generic cutting planes in branch-and-
price using a basis. In E. Bampis, editor, Experimental Algorithms – SEA 2015, volume
9125 of LNCS, pages 110–121, Berlin, June 2015. Springer.

[58] H. Marchand. A polyhedral study of the mixed knapsack set and its use to solve mixed
integer programs. PhD thesis, PhD thesis, Faculté des Sciences Appliquées, Université
catholique de Louvain, 1998.

[59] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve mips.
Operations research, 49(3):363–371, 2001.

[60] S. Mars. Mixed-Integer Semidefinite Programming with an Application to Truss Topol-
ogy Design. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013.

[61] S. Mars and L. Schewe. An SDP-package for SCIP. Technical Report 08/2012, TU
Darmstadt and FAU Erlangen-Nürnberg, 2012.

[62] C. A. Meyer and C. A. Floudas. Convex envelopes for edge-concave functions. Mathe-
matical Programming, 103(2):207–224, 2005.

[63] R. Misener and C. A. Floudas. Global optimization of mixed-integer quadratically-
constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave
relaxations. Mathematical Programming, 136(1):155–182, 2012.

[64] R. Misener, J. B. Smadbeck, and C. A. Floudas. Dynamically generated cutting planes
for mixed-integer quadratically constrained quadratic programs and their incorporation
into GloMIQO 2. Optimization Methods and Software, 30(1):215–249, Jan. 2015.

[65] H. Mittelmann. Decision tree for optimization software: Benchmarks for optimization
software. http://plato.asu.edu/bench.html.

[66] O. Ozaltin, B. Hunsaker, and T. Ralphs. Visualizing branch-and-bound
algorithms. Technical report, Optimization Online, 2007. http://www.
optimization-online.org/DB_HTML/2007/09/1785.html. Code available through
href="https://projects.coin-or.org/CoinBazaar/wiki/Projects/BAK.

31

http://plato.asu.edu/bench.html
http://www.optimization-online.org/DB_HTML/2007/09/1785.html
http://www.optimization-online.org/DB_HTML/2007/09/1785.html
href="https://projects.coin-or.org/CoinBazaar/wiki/Projects/BAK

[67] G. Pesant and C.-G. Quimper. Counting solutions of knapsack constraints. In L. Perron
and M. A. Trick, editors, Proc. of CPAIOR, volume 5015 of Lecture Notes in Computer
Science, pages 203–217. Springer, 2008.

[68] T. Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland Uni-
versity, 2004.

[69] J. Pryor and J. W. Chinneck. Faster integer-feasibility in mixed-integer linear programs
by branching to force change. Computers & Operations Research, 38(8):1143–1152,
2011.

[70] I. Quesada and I. E. Grossmann. A global optimization algorithm for linear fractional
and bilinear programs. Journal of Global Optimization, 6:39–76, 1995.

[71] T. K. Ralphs and M. Guzelsoy. Duality and warm starting in integer programming. In
Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research
Conference, 2006.

[72] T. K. Ralphs and A. Hassanzadeh. On the value function of a mixed integer linear
optimization problem and an algorithm for its construction. Technical Report 14T-004,
ISE, Lehigh University, 2014.

[73] T. M. Range. An integer cutting-plane procedure for the Dantzig-Wolfe decomposition:
Theory. Discussion Papers on Business and Economics 10/2006, Dept. Business and
Economics, University of Southern Denmark, 2006.

[74] D. Rehfeldt. A generic approach to solving the Steiner tree problem and variants.
Master’s thesis, Technische Universität Berlin, 2015.

[75] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA J. Comput., 6(4):445–454, 1994.

[76] A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex mixed integer
quadratically constrained programs: extended formulations. Mathematical Program-
ming, 124(1):383–411, 2010.

[77] A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex mixed integer
quadratically constrained programs: projected formulations. Mathematical Program-
ming, 130(2):359–413, 2010.

[78] H. D. Sherali and W. P. Adams. Reformulation–linearization techniques for discrete
optimization problems. In M. P. Pardalos, D.-Z. Du, and L. R. Graham, editors, Hand-
book of Combinatorial Optimization, pages 2849–2896. Springer New York, New York,
NY, 2013.

[79] H. D. Sherali and B. M. Fraticelli. Enhancing RLT relaxations via a new class of
semidefinite cuts. Journal of Global Optimization, 22(1-4):233–261, 2002.

[80] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP: a parallel
extension of SCIP. In C. Bischof, H.-G. Hegering, W. Nagel, and G. Wittum, editors,
Competence in High Performance Computing 2010, pages 135–148, 2012.

[81] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler. Solv-
ing open MIP instances with ParaSCIP on supercomputers using up to 80,000 cores.
Technical Report ZR 15-53, ZIB, Takustr.7, 14195 Berlin, 2015. Accepted to IPDPS
2016.

[82] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. FiberSCIP – a shared memory
parallelization of SCIP. Technical Report 13-55, ZIB, Takustr.7, 14195 Berlin, 2013.

32

[83] F. Tardella. Existence and sum decomposition of vertex polyhedral convex envelopes.
Optimization Letters, 2(3):363–375, 2008.

[84] E. Uchoa and R. F. Werneck. Fast local search for the steiner problem in graphs. J.
Exp. Algorithmics, 17:2.2:2.1–2.2:2.22, 2012.

[85] J. Witzig. Reoptimization techniques in MIP solvers. Master’s thesis, Technische Uni-
versität Berlin, 2014.

[86] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis,
Technische Universität Berlin, 1996.

[87] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0). Optimization Methods and Software,
18:491–505, 2003.

[88] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi, and
K. Goto. A high-performance software package for semidefinite programs: SDPA 7.
Technical Report Research Report B-460, Dept. of Mathematical and Computing Sci-
ence, Tokyo Institute of Technology, September 2010.

[89] MINLP library 2. http://gamsworld.org/minlp/minlplib2/html/index.html. re-
vision number r277.

[90] MIPLIB: Mixed Integer Problem LIBrary. http://miplib.zib.de/.

[91] Cython. http://www.cython.org/.

[92] PEP 0257 – Docstring Conventions. https://www.python.org/dev/peps/pep-0257/.

[93] GCG: Generic Column Generation. http://www.or.rwth-aachen.de/gcg/.

[94] MOSEK ApS. http://www.mosek.com/.

[95] PolySCIP: a solver for multi-criteria integer and multi-criteria linear programs. http:
//polyscip.zib.de.

[96] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/.

[97] SCIP-SDP: a mixed integer semidefinite programming plugin for SCIP. http://www.
opt.tu-darmstadt.de/scipsdp/.

[98] SoPlex: primal and dual simplex algorithm. http://soplex.zib.de/.

[99] UG: Ubiquity Generator framework. http://ug.zib.de/.

[100] ZIMPL: Zuse Institute Mathematical Programming Language. http://zimpl.zib.de/.

33

http://gamsworld.org/minlp/minlplib2/html/index.html
http://miplib.zib.de/
http://www.cython.org/
https://www.python.org/dev/peps/pep-0257/
http://www.or.rwth-aachen.de/gcg/
http://www.mosek.com/
http://polyscip.zib.de
http://polyscip.zib.de
http://scip.zib.de/
http://www.opt.tu-darmstadt.de/scipsdp/
http://www.opt.tu-darmstadt.de/scipsdp/
http://soplex.zib.de/
http://ug.zib.de/
http://zimpl.zib.de/

	Introduction
	SCIP: Solving Constraint Integer Programs
	Reoptimization
	Presolving
	Primal heuristics
	Branching
	Mixed-Integer Nonlinear Programming
	SOS1 constraint handler
	Further changes

	SoPlex: Sequential object-oriented simPlex
	ZIMPL: Zuse Institute Mathematical Programming Language
	UG: Ubiquity Generator framework
	GCG: Generic Column Generation
	Other extensions
	SCIP-Jack: Steiner tree problems and variants
	PolySCIP: Multi-criteria MIP and LP
	SCIP-SDP: A mixed-integer semidefinite programming solver

	Summary of performance improvements
	Outlook

